WO2019104707A1 - 一种热敏电阻铜电极复合层的制备方法 - Google Patents

一种热敏电阻铜电极复合层的制备方法 Download PDF

Info

Publication number
WO2019104707A1
WO2019104707A1 PCT/CN2017/114185 CN2017114185W WO2019104707A1 WO 2019104707 A1 WO2019104707 A1 WO 2019104707A1 CN 2017114185 W CN2017114185 W CN 2017114185W WO 2019104707 A1 WO2019104707 A1 WO 2019104707A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite layer
copper electrode
electrode composite
temperature
treatment
Prior art date
Application number
PCT/CN2017/114185
Other languages
English (en)
French (fr)
Inventor
桑胜伟
Original Assignee
桑胜伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桑胜伟 filed Critical 桑胜伟
Priority to CN201780097254.1A priority Critical patent/CN111587463B/zh
Priority to PCT/CN2017/114185 priority patent/WO2019104707A1/zh
Publication of WO2019104707A1 publication Critical patent/WO2019104707A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors

Definitions

  • the invention belongs to the field of preparation of a thermistor copper electrode, and particularly relates to a preparation method of a thermistor copper electrode composite layer.
  • Copper is a kind of metal chemical element, and it is also a trace element necessary for human body. Copper is also the earliest metal discovered by human beings. It is a kind of metal widely used by human beings and belongs to heavy metals. Copper is the earliest metal used by humans. As early as in prehistoric times, people began to exploit open-pit copper mines and used weapons to make weapons, tools and other utensils. The use of copper had a profound impact on the progress of early human civilization. Copper is a metal found in the earth's crust and ocean. The content of copper in the earth's crust is about 0.01%. In individual copper deposits, the copper content can reach 3% to 5%. Most of the copper in nature exists as a compound, copper mineral.
  • Copper minerals and other minerals are aggregated into copper ore, and the mined copper ore is subjected to beneficiation to become a copper concentrate with a high copper content. It is the only metal that can produce a large amount of natural output. It is also found in various ores (such as chalcopyrite, chalcopyrite, porphyrite, chalcopyrite and malachite). It can be in the form of elemental metal and brass and bronze. And other alloy forms are used in industrial, engineering and process. Copper has strong electrical conductivity, simple preparation process, low cost, low environmental pollution, and can be directly welded on the copper surface. It is expected to gradually replace precious metal silver as the main electrode material. However, the problem brought by copper cannot be ignored. The copper electrode is easily diffused to the ceramic substrate and is easily oxidized, resulting in a decrease in workability or even failure.
  • the invention provides a method for preparing a thermistor copper electrode composite layer, which has excellent electrical conductivity, oxidation resistance, simple method and cost. Low and easy for industrial production.
  • a method for preparing a thermistor copper electrode composite layer comprises the following steps:
  • the ceramic substrate is ultrasonically cleaned and washed by deionized water for 2 - 3 times, and dried in a dryer.
  • the drying treatment time is 10-15 min, and the drying treatment temperature is 160-200 ° C; drying After use;
  • Ti powder is ball milled to obtain Ti nanopowder; the ceramic substrate is placed in a DC arc plasma evaporation apparatus, vacuum is applied, the degree of vacuum is 10 -3 -10 -4 Mpa, the inert gas is charged, and the inert gas is refluxed.
  • Ti-nano powder plasma spraying treatment is carried out at a treatment temperature of 1600-2000 ° C and a sputtering speed of 1800-2000 m/s. After obtaining a first barrier layer having a thickness of 1300-1800 nm, the temperature is lowered to 20 ° C, and the cooling rate is 200-300.
  • the Ti powder is replaced by Ti-Ni nano powder, and the Ti-Ni nano powder plasma is sprayed under inert gas reflux.
  • the treatment temperature is 2000-2300 ° C, and the spraying speed is 1800-2100 m / s, after obtaining a second barrier layer having a thickness of 1300-1800 nm, the temperature is lowered to 20 ° C, and the cooling rate is 200-300 ° C / s to obtain a semi-finished substrate;
  • the semi-finished substrate is placed in an annealing device for annealing treatment, and after annealing, a solution containing nano-aluminum ions is coated on the surface of the semi-finished substrate to form a film, and after heat treatment, a thermistor copper electrode composite layer is obtained.
  • the ball milling treatment time in the step (2) is 3-4 hours.
  • the inert gas in the step (2) is argon.
  • the number of annealing treatments in the step (3) is 2 times.
  • the heat treatment procedure in the step (3) is: starting from 20-30 ° C, heating at a temperature rising rate of 80-90 ° C / min, and continuing the heat treatment for 20-30 minutes when the temperature is raised to 900-1000 ° C, naturally Cool to room temperature.
  • the invention has the following beneficial effects:
  • the vacuum annealed composite layer has excellent heat resistance.
  • Both Ti and Ti-Ni have good thermal stability, and copper diffusion can be suppressed by the double blocking of the first barrier layer and the second barrier layer.
  • a method for preparing a thermistor copper electrode composite layer comprises the following steps:
  • the ceramic substrate is ultrasonically cleaned and washed twice with deionized water, and dried in a dryer.
  • the drying treatment time is 10 min, the drying treatment temperature is 160 ° C; and it is used after drying;
  • Ti powder is ball milled to obtain Ti nanopowder; the ceramic substrate is placed in a DC arc plasma evaporation apparatus, vacuum is applied, the degree of vacuum is 10 -3 Mpa, the inert gas is charged, and Ti nano is carried out under inert gas reflux.
  • Powder plasma spraying treatment the treatment temperature is 1600 ° C, the sputtering speed is 1800 m / s, the first barrier layer of 1300 nm thickness is obtained, and the temperature is lowered to 20 ° C, the cooling rate is 200 ° C / s; after standing for 1 hour, Ti is The powder was changed into Ti-Ni nano powder, and the Ti-Ni nano powder plasma was sprayed under inert gas reflux.
  • the treatment temperature was 2000 ° C and the sputtering speed was 1800 m/s.
  • the temperature was lowered to 20 ° C, the cooling rate is 200-300 ° C / s, to obtain a semi-finished substrate;
  • the semi-finished substrate is placed in an annealing device for annealing treatment, and after annealing, a solution containing nano-aluminum ions is coated on the surface of the semi-finished substrate to form a film, and after heat treatment, a thermistor copper electrode composite layer is obtained.
  • the ball milling treatment time in the step (2) was 3 hours.
  • the inert gas in the step (2) is argon.
  • the number of annealing treatments in the step (3) is 2 times.
  • the heat treatment procedure in the step (3) is: starting from 20 ° C, heating at a temperature increase rate of 80 ° C / min, and when the temperature is raised to 900 ° C, the heat treatment is continued for 20 minutes, and naturally cooled to room temperature.
  • a method for preparing a thermistor copper electrode composite layer comprises the following steps:
  • the ceramic substrate is ultrasonically cleaned and washed with deionized water for 3 times, and dried in a dryer.
  • the drying treatment time is 15 min, the drying treatment temperature is 200 ° C; and it is used after drying;
  • Ti powder is ball milled to obtain Ti nanopowder; the ceramic substrate is placed in a DC arc plasma evaporation apparatus, vacuum is applied, the degree of vacuum is 10 -4 Mpa, and an inert gas is charged, and Ti nanoparticle is introduced in an inert gas reflux.
  • Powder plasma spraying treatment processing temperature is 2000 ° C, spraying speed is 2000 m / s, after obtaining the first barrier layer of 1800 nm thickness, the temperature is lowered to 20 ° C, the cooling rate is 300 ° C / s; after standing for 2 hours, Ti The powder was changed into Ti-Ni nano powder, and the Ti-Ni nano powder plasma was sprayed under inert gas reflux.
  • the treatment temperature was 2300 ° C
  • the sputtering speed was 2100 m / s
  • the second barrier layer of 1800 nm thickness was obtained and then cooled.
  • the cooling rate is 300 ° C / s, to obtain a semi-finished substrate;
  • the semi-finished substrate is placed in an annealing device for annealing treatment, and after annealing, a solution containing nano-aluminum ions is coated on the surface of the semi-finished substrate to form a film, and after heat treatment, a thermistor copper electrode composite layer is obtained.
  • the ball milling treatment time in the step (2) was 4 hours.
  • the inert gas in the step (2) is argon.
  • the number of annealing treatments in the step (3) is 2 times.
  • the heat treatment procedure in the step (3) is: starting from 30 ° C, heating at a temperature increase rate of 90 ° C / min, and when the temperature is raised to 1000 ° C, the heat treatment is continued for 30 minutes, and naturally cooled to room temperature.
  • a method for preparing a thermistor copper electrode composite layer comprises the following steps:
  • the ceramic substrate is ultrasonically cleaned and washed with deionized water for 3 times, and dried in a dryer.
  • the drying treatment time is 14 min, the drying treatment temperature is 180 ° C; and it is used after drying;
  • Ti powder is ball milled to obtain Ti nanopowder; the ceramic substrate is placed in a DC arc plasma evaporation apparatus, vacuum is applied, the degree of vacuum is 10 -4 Mpa, and an inert gas is charged, and Ti nanoparticle is introduced in an inert gas reflux.
  • Powder plasma spraying treatment the treatment temperature is 1800 ° C, the sputtering speed is 1900 m / s, the first barrier layer with a thickness of 1700 nm is obtained, and the temperature is lowered to 20 ° C, the cooling rate is 250 ° C / s; after standing for 1.5 hours, Ti is The powder was changed into Ti-Ni nano powder, and the Ti-Ni nano powder plasma was sprayed under inert gas reflux.
  • the treatment temperature was 2200 ° C
  • the sputtering speed was 1900 m / s
  • the second barrier layer with a thickness of 1500 nm was obtained and then cooled.
  • the cooling rate is 250 ° C / s, to obtain a semi-finished substrate;
  • the semi-finished substrate is placed in an annealing device for annealing treatment, and after annealing, a solution containing nano-aluminum ions is coated on the surface of the semi-finished substrate to form a film, and after heat treatment, a thermistor copper electrode composite layer is obtained.
  • the ball milling treatment time in the step (2) was 3.5 hours.
  • the inert gas in the step (2) is argon.
  • the number of annealing treatments in the step (3) is 2 times.
  • the heat treatment procedure in the step (3) is: starting from 25 ° C, raising the temperature at a temperature increase rate of 85 ° C / min, and when the temperature is raised to 950 ° C, the heat treatment is continued for 25 minutes, and naturally cooled to room temperature.
  • the procedure is the same as in Embodiment 1, except that there is only the first barrier layer and the second barrier layer.
  • a method for preparing a thermistor copper electrode composite layer comprises the following steps:
  • the ceramic substrate is ultrasonically cleaned and washed twice with deionized water, and dried in a dryer.
  • the drying treatment time is 10 min, the drying treatment temperature is 160 ° C; and it is used after drying;
  • Ti powder is ball milled to obtain Ti nanopowder; the ceramic substrate is placed in a DC arc plasma evaporation apparatus, vacuum is applied, the degree of vacuum is 10 -3 Mpa, the inert gas is charged, and Ti nano is carried out under inert gas reflux.
  • Powder plasma spraying treatment the treatment temperature is 1600 ° C, the sputtering speed is 1800 m / s, the first barrier layer of 1300 nm thickness is obtained, and the temperature is lowered to 20 ° C, the cooling rate is 200 ° C / s; after standing for 1 hour, Ti is The powder was changed into Ti-Ni nano powder, and the Ti-Ni nano powder plasma was sprayed under inert gas reflux.
  • the treatment temperature was 2000 ° C and the sputtering speed was 1800 m/s. After the second barrier layer of 1300 nm thickness was obtained, the temperature was lowered to At 20 ° C, the cooling rate was 200-300 ° C / s, and the annealing treatment was performed twice to obtain a thermistor copper electrode composite layer.
  • the ball milling treatment time in the step (2) was 3 hours.
  • the inert gas in the step (2) is argon.
  • a method for preparing a thermistor copper electrode composite layer comprises the following steps:
  • the ceramic substrate is ultrasonically cleaned and washed with deionized water for 3 times, and dried in a dryer.
  • the drying treatment time is 15 min, the drying treatment temperature is 200 ° C; and it is used after drying;
  • Ti powder is ball milled to obtain Ti nanopowder; the ceramic substrate is placed in a DC arc plasma evaporation apparatus, vacuum is applied, the degree of vacuum is 10 -4 Mpa, and an inert gas is charged, and Ti nanoparticle is introduced in an inert gas reflux.
  • Powder plasma spraying treatment the treatment temperature is 2000 ° C, the sputtering speed is 2000 m / s, after obtaining the first barrier layer of 1800 nm thickness, the temperature is lowered to 20 ° C, the cooling rate is 300 ° C / s; the semi-finished substrate is obtained;
  • the semi-finished substrate is placed in an annealing device for annealing treatment, and after annealing, a solution containing nano-aluminum ions is coated on the surface of the semi-finished substrate to form a film, and after heat treatment, a thermistor copper electrode composite layer is obtained.
  • the ball milling treatment time in the step (2) was 4 hours.
  • the inert gas in the step (2) is argon.
  • the number of annealing treatments in the step (3) is 2 times.
  • the heat treatment procedure in the step (3) is: starting from 30 ° C, heating at a temperature increase rate of 90 ° C / min, and when the temperature is raised to 1000 ° C, the heat treatment is continued for 30 minutes, and naturally cooled to room temperature.
  • Example 3 The procedure is the same as in Example 3, except that there is only a second set of barrier layers.
  • a method for preparing a thermistor copper electrode composite layer comprises the following steps:
  • the ceramic substrate is ultrasonically cleaned and washed with deionized water for 3 times, and dried in a dryer.
  • the drying treatment time is 14 min, the drying treatment temperature is 180 ° C; and it is used after drying;
  • Ti powder is ball milled to obtain Ti nanopowder; the ceramic substrate is placed in a DC arc plasma evaporation apparatus, vacuum is applied, the degree of vacuum is 10 -4 Mpa, the inert gas is charged, and Ti- is carried out under inert gas reflux.
  • Ni nano powder plasma sputtering treatment the treatment temperature is 2200 ° C, the sputtering speed is 1900 m / s, the second barrier layer of 1500 nm thickness is obtained, the temperature is lowered to 20 ° C, the cooling rate is 250 ° C / s, to obtain a semi-finished substrate;
  • the semi-finished substrate is placed in an annealing device for annealing treatment, and after annealing, a solution containing nano-aluminum ions is coated on the surface of the semi-finished substrate to form a film, and after heat treatment, a thermistor copper electrode composite layer is obtained.
  • the ball milling treatment time in the step (2) was 3.5 hours.
  • the inert gas in the step (2) is argon.
  • the number of annealing treatments in the step (3) is 2 times.
  • the heat treatment procedure in the step (3) is: starting from 25 ° C, raising the temperature at a temperature increase rate of 85 ° C / min, and when the temperature is raised to 950 ° C, the heat treatment is continued for 25 minutes, and naturally cooled to room temperature.
  • the ceramic substrate with the thermistor copper electrode composite layer prepared in Example 1-3 and Comparative Example 1-3 was prepared as a thermistor copper electrode, and 100 groups were taken and performance tests were performed. The results are shown in Table 1. :
  • the thermistor copper electrode composite layer obtained by the preparation method of the present invention has excellent properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermistors And Varistors (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

一种热敏电阻铜电极复合层的制备方法,将陶瓷基体洗涤烘干后待用;将Ti粉末球磨处理得到Ti纳米粉末;将陶瓷基体放入直流电弧等离子体蒸发设备中,抽真空,真空度为10 -3-10 -4Mpa,充入惰性气体,在惰性气体回流中分别进行Ti纳米粉末和Ti-Ni纳米粉末等离子喷溅处理,得到半成品基体;将半成品基体置于退火装置中进行退火处理,退火处理后将含有纳米铝离子的溶液在半成品基体的表面涂布成膜,经热处理后得到热敏电阻铜电极复合层。由该方法制备的热敏电阻铜电极复合层具有优良的导电性能、抗氧化性能、且方法简单、成本低、便于工业化生产。

Description

一种热敏电阻铜电极复合层的制备方法 技术领域
本发明属于热敏电阻铜电极制备领域,具体涉及一种热敏电阻铜电极复合层的制备方法。
背景技术
铜元素是一种金属化学元素,也是人体所必须的一种微量元素,铜也是人类最早发现的金属,是人类广泛使用的一种金属,属于重金属。铜是人类最早使用的金属。早在史前时代,人们就开始采掘露天铜矿,并用获取的铜制造武器、式具和其他器皿,铜的使用对早期人类文明的进步影响深远。铜是一种存在于地壳和海洋中的金属。铜在地壳中的含量约为0.01%,在个别铜矿床中,铜的含量可以达到3%~5%。自然界中的铜,多数以化合物即铜矿物存在。铜矿物与其他矿物聚合成铜矿石,开采出来的铜矿石,经过选矿而成为含铜品位较高的铜精矿。是唯一的能大量天然产出的金属,也存在于各种矿石(例如黄铜矿、辉铜矿、斑铜矿、赤铜矿和孔雀石)中,能以单质金属状态及黄铜、青铜和其他合金的形态用于工业、工程技术和工艺上。铜导电能力强、制备工艺简单、成本低、环境污染小、在铜表面可直接焊接等优点,有望逐步取代贵金属银成为主要的电极材料。然而铜带来的问题不容忽视,铜电极容易扩散到陶瓷基体和极易被氧化,导致其工作性能降低,甚至失效。
发明内容
针对现有技术中的不足,本发明提供一种热敏电阻铜电极复合层的制备方法,本发明制备的热敏电阻铜电极复合层具有优良的导电性能、抗氧化性能、且方法简单、成本低、便于工业化生产。
为了实现上述发明目的,本发明采用了以下技术方案:
一种热敏电阻铜电极复合层的制备方法,包括以下步骤:
(1)将陶瓷基体经过超声波清洗后去离子水洗涤2‐3次,置于烘干机中烘干处理,烘干处理时间为10‐15min,烘干处理温度为160‐200℃;烘干后待用;
(2)将Ti粉末球磨处理得到Ti纳米粉末;将陶瓷基体放入直流电弧等离子体蒸发设备中,抽真空,真空度为10-3-10-4Mpa,充入惰性气体,在惰性气体回流中进行Ti纳米粉末等离子喷溅处理,处理温度为1600-2000℃,喷溅速度 为1800-2000m/s,得到1300-1800nm厚度的第一阻挡层后降温至20℃,降温速度为200-300℃/s;静置1-2小时后,将Ti粉末换成Ti-Ni纳米粉末,在惰性气体回流中进行Ti-Ni纳米粉末等离子喷溅处理,处理温度为2000-2300℃,喷溅速度为1800-2100m/s,得到1300-1800nm厚度的第二阻挡层后降温至20℃,降温速度为200-300℃/s,得到半成品基体;
(3)将半成品基体置于退火装置中进行退火处理,退火处理后将含有纳米铝离子的溶液在半成品基体的表面涂布成膜,经热处理后得到热敏电阻铜电极复合层。
优选地,所述步骤(2)中球磨处理时间为3-4小时。
优选地,所述步骤(2)中惰性气体为氩气。
优选地,所述步骤(3)中退火处理次数为2次。
优选地,所述步骤(3)中热处理程序为:从20‐30℃开始,以80‐90℃/min的升温速率升温,温度上升到900‐1000℃时,持续热处理20‐30分钟,自然冷却至室温。
本发明与现有技术相比,具有如下有益效果:
1.经过真空退火处理过的复合层,拥有优良的抗热性能。
2.Ti和Ti-Ni都具有良好的热稳定性,通过第一阻挡层和第二阻挡层的双侧阻挡,能够抑制铜扩散。
3.纳米铝离子的溶液涂布成膜后,具有优良的抗氧化性,能过阻挡铜被氧化。
具体实施方式
下面通过具体实施方式对本发明作进一步详细说明。但本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件按照说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
一种热敏电阻铜电极复合层的制备方法,包括以下步骤:
(1)将陶瓷基体经过超声波清洗后去离子水洗涤2次,置于烘干机中烘干处理,烘干处理时间为10min,烘干处理温度为160℃;烘干后待用;
(2)将Ti粉末球磨处理得到Ti纳米粉末;将陶瓷基体放入直流电弧等离 子体蒸发设备中,抽真空,真空度为10-3Mpa,充入惰性气体,在惰性气体回流中进行Ti纳米粉末等离子喷溅处理,处理温度为1600℃,喷溅速度为1800m/s,得到1300nm厚度的第一阻挡层后降温至20℃,降温速度为200℃/s;静置1小时后,将Ti粉末换成Ti-Ni纳米粉末,在惰性气体回流中进行Ti-Ni纳米粉末等离子喷溅处理,处理温度为2000℃,喷溅速度为1800m/s,得到1300nm厚度的第二阻挡层后降温至20℃,降温速度为200-300℃/s,得到半成品基体;
(3)将半成品基体置于退火装置中进行退火处理,退火处理后将含有纳米铝离子的溶液在半成品基体的表面涂布成膜,经热处理后得到热敏电阻铜电极复合层。
所述步骤(2)中球磨处理时间为3小时。
所述步骤(2)中惰性气体为氩气。
所述步骤(3)中退火处理次数为2次。
所述步骤(3)中热处理程序为:从20℃开始,以80℃/min的升温速率升温,温度上升到900℃时,持续热处理20分钟,自然冷却至室温。
实施例2
一种热敏电阻铜电极复合层的制备方法,包括以下步骤:
(1)将陶瓷基体经过超声波清洗后去离子水洗涤3次,置于烘干机中烘干处理,烘干处理时间为15min,烘干处理温度为200℃;烘干后待用;
(2)将Ti粉末球磨处理得到Ti纳米粉末;将陶瓷基体放入直流电弧等离子体蒸发设备中,抽真空,真空度为10-4Mpa,充入惰性气体,在惰性气体回流中进行Ti纳米粉末等离子喷溅处理,处理温度为2000℃,喷溅速度为2000m/s,得到1800nm厚度的第一阻挡层后降温至20℃,降温速度为300℃/s;静置2小时后,将Ti粉末换成Ti-Ni纳米粉末,在惰性气体回流中进行Ti-Ni纳米粉末等离子喷溅处理,处理温度为2300℃,喷溅速度为2100m/s,得到1800nm厚度的第二阻挡层后降温至20℃,降温速度为300℃/s,得到半成品基体;
(3)将半成品基体置于退火装置中进行退火处理,退火处理后将含有纳米铝离子的溶液在半成品基体的表面涂布成膜,经热处理后得到热敏电阻铜电极复合层。
所述步骤(2)中球磨处理时间为4小时。
所述步骤(2)中惰性气体为氩气。
所述步骤(3)中退火处理次数为2次。
所述步骤(3)中热处理程序为:从30℃开始,以90℃/min的升温速率升温,温度上升到1000℃时,持续热处理30分钟,自然冷却至室温。
实施例3
一种热敏电阻铜电极复合层的制备方法,包括以下步骤:
(1)将陶瓷基体经过超声波清洗后去离子水洗涤3次,置于烘干机中烘干处理,烘干处理时间为14min,烘干处理温度为180℃;烘干后待用;
(2)将Ti粉末球磨处理得到Ti纳米粉末;将陶瓷基体放入直流电弧等离子体蒸发设备中,抽真空,真空度为10-4Mpa,充入惰性气体,在惰性气体回流中进行Ti纳米粉末等离子喷溅处理,处理温度为1800℃,喷溅速度为1900m/s,得到1700nm厚度的第一阻挡层后降温至20℃,降温速度为250℃/s;静置1.5小时后,将Ti粉末换成Ti-Ni纳米粉末,在惰性气体回流中进行Ti-Ni纳米粉末等离子喷溅处理,处理温度为2200℃,喷溅速度为1900m/s,得到1500nm厚度的第二阻挡层后降温至20℃,降温速度为250℃/s,得到半成品基体;
(3)将半成品基体置于退火装置中进行退火处理,退火处理后将含有纳米铝离子的溶液在半成品基体的表面涂布成膜,经热处理后得到热敏电阻铜电极复合层。
所述步骤(2)中球磨处理时间为3.5小时。
所述步骤(2)中惰性气体为氩气。
所述步骤(3)中退火处理次数为2次。
所述步骤(3)中热处理程序为:从25℃开始,以85℃/min的升温速率升温,温度上升到950℃时,持续热处理25分钟,自然冷却至室温。
对比例1
步骤同实施例1,不同之处在于只有第一阻挡层和第二组阻挡层。
一种热敏电阻铜电极复合层的制备方法,包括以下步骤:
(1)将陶瓷基体经过超声波清洗后去离子水洗涤2次,置于烘干机中烘干处理,烘干处理时间为10min,烘干处理温度为160℃;烘干后待用;
(2)将Ti粉末球磨处理得到Ti纳米粉末;将陶瓷基体放入直流电弧等离 子体蒸发设备中,抽真空,真空度为10-3Mpa,充入惰性气体,在惰性气体回流中进行Ti纳米粉末等离子喷溅处理,处理温度为1600℃,喷溅速度为1800m/s,得到1300nm厚度的第一阻挡层后降温至20℃,降温速度为200℃/s;静置1小时后,将Ti粉末换成Ti-Ni纳米粉末,在惰性气体回流中进行Ti-Ni纳米粉末等离子喷溅处理,处理温度为2000℃,喷溅速度为1800m/s,得到1300nm厚度的第二阻挡层后降温至20℃,降温速度为200-300℃/s,退火处理2次,得到热敏电阻铜电极复合层。
所述步骤(2)中球磨处理时间为3小时。
所述步骤(2)中惰性气体为氩气。
对比例2
步骤同实施例2,不同之处在于没有第二阻挡层。
一种热敏电阻铜电极复合层的制备方法,包括以下步骤:
(1)将陶瓷基体经过超声波清洗后去离子水洗涤3次,置于烘干机中烘干处理,烘干处理时间为15min,烘干处理温度为200℃;烘干后待用;
(2)将Ti粉末球磨处理得到Ti纳米粉末;将陶瓷基体放入直流电弧等离子体蒸发设备中,抽真空,真空度为10-4Mpa,充入惰性气体,在惰性气体回流中进行Ti纳米粉末等离子喷溅处理,处理温度为2000℃,喷溅速度为2000m/s,得到1800nm厚度的第一阻挡层后降温至20℃,降温速度为300℃/s;得到半成品基体;
(3)将半成品基体置于退火装置中进行退火处理,退火处理后将含有纳米铝离子的溶液在半成品基体的表面涂布成膜,经热处理后得到热敏电阻铜电极复合层。
所述步骤(2)中球磨处理时间为4小时。
所述步骤(2)中惰性气体为氩气。
所述步骤(3)中退火处理次数为2次。
所述步骤(3)中热处理程序为:从30℃开始,以90℃/min的升温速率升温,温度上升到1000℃时,持续热处理30分钟,自然冷却至室温。
对比例3
步骤同实施例3,不同之处在于只有第二组阻挡层。
一种热敏电阻铜电极复合层的制备方法,包括以下步骤:
(1)将陶瓷基体经过超声波清洗后去离子水洗涤3次,置于烘干机中烘干处理,烘干处理时间为14min,烘干处理温度为180℃;烘干后待用;
(2)将Ti粉末球磨处理得到Ti纳米粉末;将陶瓷基体放入直流电弧等离子体蒸发设备中,抽真空,真空度为10-4Mpa,充入惰性气体,在惰性气体回流中进行Ti-Ni纳米粉末等离子喷溅处理,处理温度为2200℃,喷溅速度为1900m/s,得到1500nm厚度的第二阻挡层后降温至20℃,降温速度为250℃/s,得到半成品基体;
(3)将半成品基体置于退火装置中进行退火处理,退火处理后将含有纳米铝离子的溶液在半成品基体的表面涂布成膜,经热处理后得到热敏电阻铜电极复合层。
所述步骤(2)中球磨处理时间为3.5小时。
所述步骤(2)中惰性气体为氩气。
所述步骤(3)中退火处理次数为2次。
所述步骤(3)中热处理程序为:从25℃开始,以85℃/min的升温速率升温,温度上升到950℃时,持续热处理25分钟,自然冷却至室温。
将实施例1‐3和对比例1‐3制备得到的具有热敏电阻铜电极复合层的陶瓷基体制备成热敏电阻铜电极,各取100组并进行性能测试,所得结果如表1所示:
表1
  电阻(Ω) 电性能的失效率(%) 耐高压合格率(%)
实施例1 10.2 0 100
实施例2 10.3 0 100
实施例3 9.8 0 100
对比例1 14.5 12 97
对比例2 13.6 8 25
对比例3 14.7 11 22
如表1可见:本发明制备方法所得的热敏电阻铜电极复合层具有优良的性能。
以上所述,仅是本发明较佳的实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所做的任何细微修改、等同变 化和修饰,均属于本发明技术方案的范围内。

Claims (5)

  1. 一种热敏电阻铜电极复合层的制备方法,其特征在于,包括以下步骤:
    (1)将陶瓷基体经过超声波清洗后去离子水洗涤2‐3次,置于烘干机中烘干处理,烘干处理时间为10‐15min,烘干处理温度为160‐200℃;烘干后待用;
    (2)将Ti粉末球磨处理得到Ti纳米粉末;将陶瓷基体放入直流电弧等离子体蒸发设备中,抽真空,真空度为10-3-10-4Mpa,充入惰性气体,在惰性气体回流中进行Ti纳米粉末等离子喷溅处理,处理温度为1600-2000℃,喷溅速度为1800-2000m/s,得到1300-1800nm厚度的第一阻挡层后降温至20℃,降温速度为200-300℃/s;静置1-2小时后,将Ti粉末换成Ti-Ni纳米粉末,在惰性气体回流中进行Ti-Ni纳米粉末等离子喷溅处理,处理温度为2000-2300℃,喷溅速度为1800-2100m/s,得到1300-1800nm厚度的第二阻挡层后降温至20℃,降温速度为200-300℃/s,得到半成品基体;
    (3)将半成品基体置于退火装置中进行退火处理,退火处理后将含有纳米铝离子的溶液在半成品基体的表面涂布成膜,经热处理后得到热敏电阻铜电极复合层。
  2. 根据权利要求1所述的一种热敏电阻铜电极复合层的制备方法,其特征在于,所述步骤(2)中球磨处理时间为3-4小时。
  3. 根据权利要求1所述的一种热敏电阻铜电极复合层的制备方法,其特征在于,所述步骤(2)中惰性气体为氩气。
  4. 根据权利要求1所述的一种热敏电阻铜电极复合层的制备方法,其特征在于,所述步骤(3)中退火处理次数为2次。
  5. 根据权利要求1所述的一种热敏电阻铜电极复合层的制备方法,其特征在于,所述步骤(3)中热处理程序为:从20‐30℃开始,以80‐90℃/min的升温速率升温,温度上升到900‐1000℃时,持续热处理20‐30分钟,自然冷却至室温。
PCT/CN2017/114185 2017-12-01 2017-12-01 一种热敏电阻铜电极复合层的制备方法 WO2019104707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780097254.1A CN111587463B (zh) 2017-12-01 2017-12-01 一种热敏电阻铜电极复合层的制备方法
PCT/CN2017/114185 WO2019104707A1 (zh) 2017-12-01 2017-12-01 一种热敏电阻铜电极复合层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/114185 WO2019104707A1 (zh) 2017-12-01 2017-12-01 一种热敏电阻铜电极复合层的制备方法

Publications (1)

Publication Number Publication Date
WO2019104707A1 true WO2019104707A1 (zh) 2019-06-06

Family

ID=66664327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114185 WO2019104707A1 (zh) 2017-12-01 2017-12-01 一种热敏电阻铜电极复合层的制备方法

Country Status (2)

Country Link
CN (1) CN111587463B (zh)
WO (1) WO2019104707A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759033B (zh) * 2020-12-31 2022-02-01 江苏经纬知识产权运营有限公司 一种多层连体缩叠管结构的便洁净水器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306508A (ja) * 1995-05-08 1996-11-22 Nippondenso Co Ltd 薄膜型サーミスタ素子およびその製造方法
TW201101344A (en) * 2009-06-25 2011-01-01 China Steel Corp Positive temperature coefficient (PTC) thermistor component and manufacturing method thereof
CN102503580A (zh) * 2011-10-21 2012-06-20 浙江大学 热敏陶瓷溅射膜电极的制备方法
WO2013145052A1 (ja) * 2012-03-28 2013-10-03 日本電気株式会社 サーミスタ素子
CN204066918U (zh) * 2014-09-18 2014-12-31 兴勤(常州)电子有限公司 复合式铜电极陶瓷正温度系数热敏电阻
CN104602375A (zh) * 2014-12-17 2015-05-06 内蒙古坤瑞玻璃工贸有限公司 热敏陶瓷电加热玻璃及其制备方法
CN105006316A (zh) * 2015-06-03 2015-10-28 常熟市林芝电子有限责任公司 陶瓷热敏电阻器真空溅射电极及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794302A (ja) * 1993-09-21 1995-04-07 Asahi Chem Ind Co Ltd 銅系端子電極を含む抵抗体
CN101236811B (zh) * 2008-02-27 2010-06-02 石开轩 热敏电阻的被电极方法
JP2011060850A (ja) * 2009-09-07 2011-03-24 Nippon Steel Corp Cu系配線材料前駆体、Cu系配線材料およびこれらの形成方法
TWI506142B (zh) * 2010-08-30 2015-11-01 Daido Steel Co Ltd NiCu alloy target and laminated film for Cu electrode protective film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306508A (ja) * 1995-05-08 1996-11-22 Nippondenso Co Ltd 薄膜型サーミスタ素子およびその製造方法
TW201101344A (en) * 2009-06-25 2011-01-01 China Steel Corp Positive temperature coefficient (PTC) thermistor component and manufacturing method thereof
CN102503580A (zh) * 2011-10-21 2012-06-20 浙江大学 热敏陶瓷溅射膜电极的制备方法
WO2013145052A1 (ja) * 2012-03-28 2013-10-03 日本電気株式会社 サーミスタ素子
CN204066918U (zh) * 2014-09-18 2014-12-31 兴勤(常州)电子有限公司 复合式铜电极陶瓷正温度系数热敏电阻
CN104602375A (zh) * 2014-12-17 2015-05-06 内蒙古坤瑞玻璃工贸有限公司 热敏陶瓷电加热玻璃及其制备方法
CN105006316A (zh) * 2015-06-03 2015-10-28 常熟市林芝电子有限责任公司 陶瓷热敏电阻器真空溅射电极及其制造方法

Also Published As

Publication number Publication date
CN111587463A (zh) 2020-08-25
CN111587463B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN102534630B (zh) 一种多孔氮化钛纳米管阵列薄膜及其制备方法
CN113293424B (zh) 一种石墨烯/铜复合粉体及其制备方法、石墨烯/铜复合材料及其制备方法和应用
JP2018506641A (ja) 熱復元性に優れたFe−Ni系合金金属箔及びその製造方法
CN103928233B (zh) 具有稳定电极结构的薄膜电容器及其制备方法
WO2019104707A1 (zh) 一种热敏电阻铜电极复合层的制备方法
CN105547535B (zh) 用于薄膜压力传感器的应变薄膜及其制备方法、薄膜压力传感器芯体
CN104148656B (zh) 一种片状铜粉的制备方法
JP6228891B2 (ja) 燃料電池用セパレータ材に用いるチタン合金およびセパレータ材の製造方法
CN104357757A (zh) 一种青铜阀门耐摩擦合金涂层及其涂覆工艺
TWI423932B (zh) 透明導電膜之成膜方法
JP6804827B2 (ja) 酸化グラフェンとその積層体並びに積層体の用途
WO2019224578A1 (en) A method for the manufacture of graphene oxide from electrode graphite scrap
CN103805940A (zh) 一种齿轮钢表面纳米化并提高表面自由能的离子渗氧方法
CN103789722B (zh) 一种显著提高齿轮耐蚀性的化学热处理方法
CN103895319B (zh) 一种高性能的复合石墨烯导电涂料的喷涂制备复合膜的方法
CN107742562B (zh) 一种热敏电阻铜电极的防氧化层及其制备工艺
JP2015045035A5 (zh)
WO2020038019A1 (zh) 一种Fe-Mn-Cr-Ni系中熵不锈钢及其制备方法
CN108821263B (zh) 一种高强石墨烯膜及其制备方法
TWI667092B (zh) 奈米核殼結構焊膏及其製備方法
CN106702458A (zh) 制备高发射率钛合金微弧氧化陶瓷膜层的电解液及方法
KR101409403B1 (ko) 금속재료에 탄소나노튜브를 포함하는 코팅층을 형성하는 방법 및 이 코팅층을 갖는 금속재료
JP2019167292A (ja) 酸化グラフェンとその積層体並びに積層体の用途
CN108922701A (zh) 一种热敏电阻双层电极及其制备方法
US2143824A (en) Asymmetrical conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933244

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/10/2020)