CN108788134A - 一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法 - Google Patents

一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法 Download PDF

Info

Publication number
CN108788134A
CN108788134A CN201810569538.2A CN201810569538A CN108788134A CN 108788134 A CN108788134 A CN 108788134A CN 201810569538 A CN201810569538 A CN 201810569538A CN 108788134 A CN108788134 A CN 108788134A
Authority
CN
China
Prior art keywords
zinc
nanometer
copper
core
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810569538.2A
Other languages
English (en)
Inventor
张燕萍
赵志国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Co Ltd Of Li Wusheng Enterprise Group
Original Assignee
Shanghai Co Ltd Of Li Wusheng Enterprise Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Co Ltd Of Li Wusheng Enterprise Group filed Critical Shanghai Co Ltd Of Li Wusheng Enterprise Group
Priority to CN201810569538.2A priority Critical patent/CN108788134A/zh
Publication of CN108788134A publication Critical patent/CN108788134A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种石墨烯‑纳米锌铜核壳结构导电薄膜材料的制备方法。该方法利用直流磁控溅射系统制备锌薄膜和铜薄膜,并先后经过高温退火处理,使得铜包覆锌并形成纳米合金颗粒。再采用等离子体增强化学气相沉积方法,将石墨烯生长并包覆于铜锌合金颗粒表面,形成核壳结构薄膜材料。该材料中石墨烯不仅有效地保护铜锌核不受空气氧化和腐蚀,还协同两者优异的导电性,结合集流体与导电膜于一体,可广泛应用于导电及电发热基材。

Description

一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法
技术领域
本发明涉及一种石墨烯-纳米锌铜核壳结构导电薄膜材料的制备方法,属于导电石墨烯基复合材料制备及应用技术领域。
背景技术
对于核壳结构纳米二元合金材料,常见的化学制备方法有:连续还原法和共还原法。该两种方法都涉及到液相化学还原,反应体系中众多因素,如温度、pH值、金属前驱体、还原剂、络合剂、杂质离子等,任何因素的变化都对产物造成一定程度影响,如粒子的平均尺寸、形貌、分散度等,工艺实施的可控性较差。此外,常见的物理制备方法有:共蒸发法。真空蒸发法生长样品时操作步骤复杂,设备也非常昂贵,不利于大规模工业化生产。
发明内容
本发明公开了一种石墨烯-纳米锌铜核壳结构导电薄膜材料的制备方法。该制备方法可调制石墨烯和纳米合金的结构及形貌,大幅改善电子在石墨烯中的传输具有方向差异性的缺点,可促进石墨烯协同纳米锌铜合金材料优异的导电性,形成巨大的技术潜力,对现有导电、存储、储能、催化、光学等领域技术将有很大提升。
本发明技术方案是这样实现的:
一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法,其特征在于:具体步骤如下:
步骤一、采用直流磁控溅射系统在衬底上制备锌薄膜;
步骤二、将锌薄膜进行高温退火处理,过程中锌薄膜形成球状锌颗粒;
步骤三、采用直流磁控溅射系统,在经退火处理的锌颗粒表面沉积铜薄膜;
步骤四、将附有铜薄膜的复合材料进行高温退火处理,过程中准液态的铜薄膜发生迁移,并包覆于纳米锌颗粒表面;
步骤五、采用等离子体增强化学气相沉积系统,在含衬底的纳米锌铜颗粒表面沉积石墨烯,并包覆于纳米锌铜颗粒表面,制备得到石墨烯-纳米锌铜核壳结构导电薄膜材料。
进一步的,步骤一中所述衬底为铜或铝或镍或铁或钛或锌中的一种或两种以上合金片材料的组合。
进一步的,步骤一中所制备的锌薄膜厚度为100nm-500nm。
进一步的,步骤二中所设定的退火温度为700-900℃,退火时间为10-60分钟,锌颗粒粒径为5-30nm。
进一步的,步骤三中所制备的铜薄膜厚度为400nm-1μm。
进一步的,步骤四中所设定的退火温度为700-900℃,退火时间为10-60分钟,所形成的纳米锌铜颗粒粒径为10-50nm。
进一步的,步骤五中所制备的石墨烯-纳米锌铜核壳结构导电薄膜材料粒径为60-100nm。
本发明的有益效果是:本发明公开的纳米合金材料制备方法采用物理合成,利用直流磁控溅射系统制备合金材料,能有效大幅提高其粒径和纯度的可控性。且相对于射频溅射,直流溅射气氛的离化率比较低,也就是化学反应活性较低,因此采用直流反应溅射时,所制备的纳米合金材料对溅射气氛的敏感性相对来说要低许多。而且,其制备工艺简单,能够对接产线,极大地降低了生产成本。
石墨烯是由单层碳原子紧密排列而成的二维原子晶体材料,具有优异的电学性能,其室温下的载流子迁移率可达15000cm2/(V·s),在柔性电子器件、传感器、复合材料、储能、储氢等领域具有广泛的应用前景。纳米合金材料由于其粒径尺寸及结构不同于块状合金材料,因而在电学性能等方面表现出独特的性质。通过石墨烯包覆在纳米锌铜外部,调制了其沿着衬底呈现的平坦形貌,大幅改善了电子在石墨烯中的传输具有方向差异性的缺点,其电导率可达62.1MS/m,高于标准退火纯铜6.6%。此外,纳米合金通过结构的调控,可实现尺寸效应、表面效应及组分效应的组合,并产生广泛的新功能。本发明提供的制备技术,可促进石墨烯协同纳米锌铜合金材料优异的导电性,形成巨大的技术潜力,对现有导电、存储、储能、催化、光学等领域技术将有很大提升。
具体实施方式
以下结合实施例对本发明进行详细说明,但本实施例不能用于限制本发明,凡是采用本发明的相似方法及其相似变化,均应列入本发明的保护范围。
实施例1
采用直流磁控溅射系统在铜衬底上制备厚度为100nm锌薄膜,将锌薄膜进行700℃高温退火处理,退火时间为30分钟,锌颗粒粒径为30nm。继续采用直流磁控溅射系统,在经退火处理的锌颗粒表面沉积厚度为1μm铜薄膜,将附有铜薄膜的复合材料进行700℃高温退火处理,退火时间为10分钟过程中准液态的铜薄膜发生迁移,并包覆于纳米锌颗粒表面,所形成的纳米锌铜颗粒粒径为50nm。最后采用等离子体增强化学气相沉积系统,制备得到粒径为100nm石墨烯-纳米锌铜核壳材料。
实施例2
采用直流磁控溅射系统在铜铁镍合金衬底上制备厚度为500nm锌薄膜,将锌薄膜进行900℃高温退火处理,退火时间为60分钟,锌颗粒粒径为20nm。继续采用直流磁控溅射系统,在经退火处理的锌颗粒表面沉积厚度为800nm铜薄膜,将附有铜薄膜的复合材料进行900℃高温退火处理,退火时间为60分钟过程中准液态的铜薄膜发生迁移,并包覆于纳米锌颗粒表面,所形成的的纳米锌铜颗粒粒径为40nm。最后采用等离子体增强化学气相沉积系统,制备得到粒径为90nm石墨烯-纳米锌铜核壳材料。
实施例3
采用直流磁控溅射系统在铜铁镍合金衬底上制备厚度为300nm锌薄膜,将锌薄膜进行800℃高温退火处理,退火时间为30分钟,锌颗粒粒径为30nm。继续采用直流磁控溅射系统,在经退火处理的锌颗粒表面沉积厚度为900nm铜薄膜,将附有铜薄膜的复合材料进行800℃高温退火处理,退火时间为30分钟过程中准液态的铜薄膜发生迁移,并包覆于纳米锌颗粒表面,所形成的的纳米锌铜颗粒粒径为30nm。最后采用等离子体增强化学气相沉积系统,制备得到粒径为80nm石墨烯-纳米锌铜核壳材料。
实施例4
采用直流磁控溅射系统在钛铝合金衬底上制备厚度为150nm锌薄膜,将锌薄膜进行800℃高温退火处理,退火时间为15分钟,锌颗粒粒径为20nm。继续采用直流磁控溅射系统,在经退火处理的锌颗粒表面沉积厚度为300nm铜薄膜,将附有铜薄膜的复合材料进行800℃高温退火处理,退火时间为30分钟过程中准液态的铜薄膜发生迁移,并包覆于纳米锌颗粒表面,所形成的的纳米锌铜颗粒粒径为30nm。最后采用等离子体增强化学气相沉积系统,制备得到粒径为70nm石墨烯-纳米锌铜核壳材料。
实施例5
采用直流磁控溅射系统在铜铝合金衬底上制备厚度为200nm锌薄膜,将锌薄膜进行800℃高温退火处理,退火时间为30分钟,锌颗粒粒径为15nm。继续采用直流磁控溅射系统,在经退火处理的锌颗粒表面沉积厚度为500nm铜薄膜,将附有铜薄膜的复合材料进行800℃高温退火处理,退火时间为30分钟过程中准液态的铜薄膜发生迁移,并包覆于纳米锌颗粒表面,所形成的的纳米锌铜颗粒粒径为25nm。最后采用等离子体增强化学气相沉积系统,制备得到粒径为60nm石墨烯-纳米锌铜核壳材料。
下表为5个实施例所制备的石墨烯-纳米锌铜核壳材料采用四端法测试电性能的结果:
电阻率(10-8Ω·m) 电导率(MS/m)
标准退火纯铜 1.72 58
实施例1 1.70 58.8
实施例2 1.62 61.7
实施例3 1.67 59.9
实施例4 1.65 60.6
实施例5 1.61 62.1
从表中可以看出,实施例所制备的复合材料有着优异的电性能,其电导率与标准退火纯铜的电导率相比均有明显提升,其中实施例5在对比组中具有最优异的电性能,电导率提升了6.6%。将来可通过工艺优化提高材料的致密度、结晶性,有效降低材料内部产生的点缺陷,导电性能有望能进一步提升。

Claims (7)

1.一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法,其特征在于:具体步骤如下:
步骤一、采用直流磁控溅射系统在衬底上制备锌薄膜;
步骤二、将锌薄膜进行高温退火处理,过程中锌薄膜形成球状锌颗粒;
步骤三、采用直流磁控溅射系统,在经退火处理的锌颗粒表面沉积铜薄膜;
步骤四、将附有铜薄膜的复合材料进行高温退火处理,过程中准液态的铜薄膜发生迁移,并包覆于纳米锌颗粒表面;
步骤五、采用等离子体增强化学气相沉积系统,在含衬底的纳米锌铜颗粒表面沉积石墨烯,并包覆于纳米锌铜颗粒表面,制备得到石墨烯-纳米锌铜核壳结构导电薄膜材料。
2.根据权利要求1所述的一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法,其特征在于:步骤一中所述衬底为铜或铝或镍或铁或钛或锌中的一种或两种以上合金片材料的组合。
3.根据权利要求1所述的一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法,其特征在于:步骤一中所制备的锌薄膜厚度为100nm-500nm。
4.根据权利要求1所述的一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法,其特征在于:步骤二中所设定的退火温度为700-900℃,退火时间为10-60分钟,锌颗粒粒径为5-30nm。
5.根据权利要求1所述的一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法,其特征在于:步骤三中所制备的铜薄膜厚度为400nm-1μm。
6.根据权利要求1所述的一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法,其特征在于:步骤四中所设定的退火温度为700-900℃,退火时间为10-60分钟,所形成的纳米锌铜颗粒粒径为10-50nm。
7.根据权利要求1所述的一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法,其特征在于:步骤五中所制备的石墨烯-纳米锌铜核壳结构导电薄膜材料粒径为60-100nm。
CN201810569538.2A 2018-06-05 2018-06-05 一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法 Pending CN108788134A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810569538.2A CN108788134A (zh) 2018-06-05 2018-06-05 一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810569538.2A CN108788134A (zh) 2018-06-05 2018-06-05 一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法

Publications (1)

Publication Number Publication Date
CN108788134A true CN108788134A (zh) 2018-11-13

Family

ID=64088616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810569538.2A Pending CN108788134A (zh) 2018-06-05 2018-06-05 一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法

Country Status (1)

Country Link
CN (1) CN108788134A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860688A (zh) * 2019-11-19 2020-03-06 中国科学院生态环境研究中心 一种核壳结构双金属共价键合三维石墨烯宏观体及其制备方法
WO2021156196A1 (en) 2020-02-03 2021-08-12 Cealtech As Process and device for large-scale production of graphene
CN114023561A (zh) * 2021-10-29 2022-02-08 华中科技大学 一种非本征二维复合磁性材料、制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218967A (ja) * 2011-04-07 2012-11-12 Panasonic Corp グラフェン膜の形成方法
CN203815714U (zh) * 2014-02-26 2014-09-10 东莞市万丰纳米材料有限公司 一种用杀菌抑菌透气性材料制作的创可贴
CN104637794A (zh) * 2015-01-27 2015-05-20 北京中科天顺信息技术有限公司 一种氮化物led垂直芯片结构及其制备方法
CN104707997A (zh) * 2013-12-17 2015-06-17 青岛胜利锅炉有限公司 一种铜/石墨核壳结构的制备工艺
CN106077622A (zh) * 2016-06-20 2016-11-09 石京 石墨烯包覆金属基复合粉末的气相沉积制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218967A (ja) * 2011-04-07 2012-11-12 Panasonic Corp グラフェン膜の形成方法
CN104707997A (zh) * 2013-12-17 2015-06-17 青岛胜利锅炉有限公司 一种铜/石墨核壳结构的制备工艺
CN203815714U (zh) * 2014-02-26 2014-09-10 东莞市万丰纳米材料有限公司 一种用杀菌抑菌透气性材料制作的创可贴
CN104637794A (zh) * 2015-01-27 2015-05-20 北京中科天顺信息技术有限公司 一种氮化物led垂直芯片结构及其制备方法
CN106077622A (zh) * 2016-06-20 2016-11-09 石京 石墨烯包覆金属基复合粉末的气相沉积制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中国科学院合肥物质科学研究院: "铜纳米颗粒/石墨烯核壳结构材料催化研究获进展", 《人体工程学报》 *
井强山: "《甲烷催化转化制合成气研究》", 1 July 2008, 郑州大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860688A (zh) * 2019-11-19 2020-03-06 中国科学院生态环境研究中心 一种核壳结构双金属共价键合三维石墨烯宏观体及其制备方法
WO2021156196A1 (en) 2020-02-03 2021-08-12 Cealtech As Process and device for large-scale production of graphene
CN114023561A (zh) * 2021-10-29 2022-02-08 华中科技大学 一种非本征二维复合磁性材料、制备方法及应用
CN114023561B (zh) * 2021-10-29 2022-12-09 华中科技大学 一种非本征二维复合磁性材料、制备方法及应用

Similar Documents

Publication Publication Date Title
WO2018036428A1 (zh) 一种金属纳米线-抗氧化材料复合的透明导电膜及其制备
CN105803420B (zh) 石墨烯和/或碳纳米管包覆金刚石复合材料及其制备方法及应用
CN102358938B (zh) 一种低温大面积可控合成具有优良场发射特性的单晶wo2和wo3纳米线阵列的方法
CN108788134A (zh) 一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法
Xu et al. Flexible transparent conductive films on PET substrates with an AZO/AgNW/AZO sandwich structure
CN108573763B (zh) 电线电缆导体、石墨烯包覆金属粉体和导体的制备方法
KR20160146714A (ko) 강자성 금속 나노와이어 분산액 및 그의 제조 방법
Morikawa et al. Characteristics of nanostructured bismuth telluride thin films fabricated by oblique deposition
CN106350771B (zh) 一种低热阻、抗辐照的纳米多层薄膜材料及其制备方法
CN108411267A (zh) 一种制备自由态多面体纳米Ag颗粒的方法
Huang et al. Fermi level tuning of ZnO films through supercycled atomic layer deposition
Wei et al. Ferromagnetic anisotropy of carbon-doped ZnO nanoneedles fabricated by ion beam technique
Šadl et al. Protective alumina coatings prepared by aerosol deposition on magnetocaloric gadolinium elements
CN103643075A (zh) 纳米颗粒增强的铜基复合材料及其制备方法
KR101716042B1 (ko) 기능성 물질 코팅이 수반되는 in situ 나노소재 제조방법 및 이에 따라 제조된 나노소재
Ahmed et al. Microstructure and residual stress dependence of molybdenum films on DC magnetron sputtering conditions
CN114054762A (zh) 基于石墨烯缺陷调控的石墨烯/金属基复合材料制备方法
CN105018890A (zh) 真空气体保护压力烧结制备TiB2直流磁控溅射镀膜靶
Khan et al. Enhancement the graphitic nature of DLC by Au doping and incorporation of 300 keV Ni2+ ions in DLC thin films
WO2010053582A1 (en) Chromium doped diamond-like carbon
CN104099586B (zh) 一种薄膜的制备方法
Liao et al. Electroless deposition of pure copper film on carbon fabric substrate using hydrazine as reducing agent
TWI376833B (en) Method for preparing a surface modification coating of metal bipolar plates
CN104651790B (zh) 一种金属电阻率Cu/Cu2O半导体弥散复合薄膜及其制备方法
CN113321207A (zh) 一种金属催化剂制备高导热石墨烯膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181113