CN106350771B - 一种低热阻、抗辐照的纳米多层薄膜材料及其制备方法 - Google Patents

一种低热阻、抗辐照的纳米多层薄膜材料及其制备方法 Download PDF

Info

Publication number
CN106350771B
CN106350771B CN201610908041.XA CN201610908041A CN106350771B CN 106350771 B CN106350771 B CN 106350771B CN 201610908041 A CN201610908041 A CN 201610908041A CN 106350771 B CN106350771 B CN 106350771B
Authority
CN
China
Prior art keywords
film
nano
flouride
low thermal
thermal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610908041.XA
Other languages
English (en)
Other versions
CN106350771A (zh
Inventor
肖湘衡
司书尧
赵晓龙
李文庆
蒋昌忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201610908041.XA priority Critical patent/CN106350771B/zh
Publication of CN106350771A publication Critical patent/CN106350771A/zh
Application granted granted Critical
Publication of CN106350771B publication Critical patent/CN106350771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Materials For Photolithography (AREA)

Abstract

本发明公布了一种低热阻、抗辐照的纳米多层薄膜材料,它是以金属钨纳米薄膜和单层石墨烯交叉层叠的多层复合结构,制备方法为:将金属钨纳米薄膜沉积在二氧化硅基底上,然后转移单层石墨烯到所述金属钨纳米薄膜的表面,之后交替沉积钨纳米薄膜和转移单层石墨烯,得到低热阻、抗辐照的纳米多层薄膜材料。针对目前双金属的多层膜结构会使材料的热学性能大大降低,本发明提供了一种兼顾优秀的导热性能和抗辐照性能材料,其为以金属钨纳米薄膜和单层石墨烯交叉层叠的多层复合结构,不仅可以减小由于多层膜结构界面存在导致的热传导性能的下降,而且可以使材料保持优秀的抗辐照能力。

Description

一种低热阻、抗辐照的纳米多层薄膜材料及其制备方法
技术领域
本发明属于纳米材料领域,涉及一种低热阻、抗辐照的纳米多层薄膜材料及其制备方法。
背景技术
能源是人类赖以生存和发展的基础,并不断推动着人类社会的持续进步。进入21世纪后,现代社会飞速发展,对能源的需求和消耗大量增加,能源与环境对社会发展的制约问题也日渐凸显。核能发电作为一种新型的清洁能源,具有资源消耗小,环境影响小,供应能力超强等显著优点,越来越受到国际社会的重视,核电成为是许多国家能源战略的重要选择,解决当前世界能源问题的有效途径之一。但是在核能利用的道路上,核安全问题是我们必须面对的问题。1946年“中子物理学之父”费米就提出“核技术的成败取决于材料在反应堆强辐照场下的行为”。
近些年,含有大量界面和晶界的双金属纳米多层膜材料,可以大幅度减少辐照引起的损伤被广泛研究和认可,但是这种多层膜的设计使材料的热学性能出现了断崖式的下降,因此,面对高温、高辐照的核反应环境,研发一种兼顾良好导热性能和抗辐照性能的材料成为当务之急。
发明内容
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种低热阻、抗辐照的纳米多层薄膜材料及其制备方法,有效减小由于多层膜结构界面存在导致的热传导性能的下降,而且可以使材料保持优秀的抗辐照能力。
本发明为解决上述提出的问题所采用的技术方案为:
一种低热阻、抗辐照的纳米多层薄膜材料,它是以金属钨纳米薄膜和单层石墨烯交叉层叠的多层复合结构。
按上述方案,所述金属钨纳米薄膜的层数为N层,单层石墨烯的层数为N-1层,其中N为大于等于2的整数。
按上述方案,所述的低热阻、抗辐照的纳米多层薄膜材料的表层均为金属钨纳米薄膜,故所述金属钨纳米薄膜较单层石墨烯多一层。
按上述方案,所述每层金属钨纳米薄膜在1~500nm范围内,为多晶的金属钨纳米薄膜。
按上述方案,所述单层石墨烯为单个原子层的二维材料。
上述低热阻、抗辐照的纳米多层薄膜材料的制备方法:将金属钨纳米薄膜沉积在二氧化硅基底上,然后转移单层石墨烯到所述金属钨纳米薄膜的表面,之后交替沉积钨纳米薄膜和转移单层石墨烯,得到低热阻、抗辐照的纳米多层薄膜材料。
按上述方案,所述沉积方式为磁控溅射方法沉积。通常情况下,通过固定其他磁控溅射参数,调整磁控溅射时间,使金属钨纳米薄膜的沉积厚度与时间正相关,时间越长,沉积厚度越厚。优选地,所述磁控溅射的参数:溅射电压120~180w,本底真空低于10-4pa,成膜真空在0.1~1pa,通入氩气为10~30sccm。
按上述方案,所述转移方法为湿法转移。
上述低热阻、抗辐照的纳米多层薄膜材料的制备方法,具体包括以下步骤:
(1)在二氧化硅基底上沉积金属钨纳米薄膜;
(2)使用湿法转移方法将单层石墨烯转移到步骤(1)所述金属钨纳米薄膜表面;
(3)继续在步骤(2)所述单层石墨烯的表面沉积下一层金属钨纳米薄膜;
(4)根据需求循环重复步骤(2)和(3)M次,M为大于等于0的整数;
(5)去除步骤(4)所得多层复合材料中的二氧化硅基底,即得到低热阻、抗辐照的纳米多层薄膜材料。
按上述方案,所述单层石墨烯是在铜箔衬底上通过化学气相沉积法生长所得。其中,所述化学气相沉积法优选以甲烷为碳源。
按上述方案,所述湿法转移是将生长有单层石墨烯的铜箔中的铜箔刻蚀溶解,保留单层石墨烯,转移至金属钨纳米薄膜表面。更具体地,所述湿法转移是:取双面生长有单层石墨烯的铜箔,其中一面单层石墨烯采用聚合物(如聚甲基丙烯酸甲酯,PMMA)涂覆保护,另一面单层石墨烯用氧等离子体刻蚀清除,随后在氧化溶液中将铜箔刻蚀溶解,得到聚合物/单层石墨烯复合物;将所得聚合物/单层石墨烯复合物洗涤后,转移至金属钨纳米薄膜表面,并用有机溶剂溶解除去聚合物。其中,所述氧化溶液为氯化铁溶液等能够与铜发生氧化还原反应的溶液。
与现有技术相比,本发明的有益效果是:
1、针对目前双金属的多层膜结构会使材料的热学性能大大降低,本发明提供了一种兼顾优秀的导热性能和抗辐照性能材料,其为以金属钨纳米薄膜和单层石墨烯交叉层叠的多层复合结构,不仅可以减小由于多层膜结构界面存在导致的热传导性能的下降,而且可以使材料保持优秀的抗辐照能力。
2、本发明所述低热阻、抗辐照的纳米多层薄膜材料是单层石墨烯与金属钨交叉堆积成的多层膜结构,具有较低的界面接触热阻,在10-9~10-8Km2W-1数量级,并且相比纯的金属钨纳米薄膜表现出优秀的抗辐照性能,在未来建造反应堆的第一壁材料将会有重要的应用。
3、本发明所述低热阻、抗辐照的纳米多层薄膜材料还具有可以通过控制溅射参数调控金属钨纳米薄膜的周期厚度、以及调控沉积金属钨纳米薄膜和转移单层石墨烯的次数,进而调控纳米多层薄膜材料的总厚度。
4、本发明所述低热阻、抗辐照的纳米多层薄膜材料的多层膜结构相比纯金属钨膜,注入氦离子之后形成较少的氦泡,表现出优秀的抗辐照特性。
附图说明
图1为实施例1所得低热阻、抗辐照的纳米多层薄膜材料的SEM图。
图2为实施例2所得低热阻、抗辐照的纳米多层薄膜材料的SEM图。
图3为实施例3所得低热阻、抗辐照的纳米多层薄膜材料的SEM图。
图4为实施例4所得低热阻、抗辐照的纳米多层薄膜材料注入氦离子后的TEM图。
图5为对比例纯的金属钨膜注入氦离子后的TEM图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
下述实施例中,光热方法所用激光为调制频率在600-20000Hz的方波,功率为600mw。
实施例1
一种低热阻、抗辐照的纳米多层薄膜材料,它是以金属钨纳米薄膜和单层石墨烯交叉层叠的多层复合结构;其中,所述金属钨纳米薄膜的厚度为30nm,层数为6层,单层石墨烯的层数为5层。
上述低热阻、抗辐照的纳米多层薄膜材料的制备方法,具体包括以下步骤:
(1)将300nm二氧化硅片基底用丙酮、无水乙醇、去离子水依次超声10min,之后用氮气枪吹干,随后利用磁控溅射系统沉积一层金属钨纳米薄膜;其中,磁控溅射的参数:溅射电压150w,本底真空低于10-4pa,成膜真空在0.5pa,通入氩气为20sccm,溅射时间为5min,使金属钨纳米薄膜厚度为30nm;
(2)取双面生长有单层石墨烯的铜箔,其中一面单层石墨烯采用聚甲基丙烯酸甲酯(PMMA)涂覆保护,另一面单层石墨烯用氧等离子体刻蚀清除,随后在氯化铁溶液中将铜箔刻蚀溶解,得到PMMA/单层石墨烯复合物;将所得PMMA/单层石墨烯复合物用硅片烯转移至去离子水中清洗干净后,转移至金属钨纳米薄膜表面,并用丙酮溶解除去PMMA,从而实现单层石墨烯转移到步骤(1)所述金属钨纳米薄膜表面;
(3)继续在步骤(2)所述单层石墨烯的表面接着利用磁控溅射系统沉积下一层厚度为30nm金属钨纳米薄膜;
(4)循环重复步骤(2)和(3)4次;
(5)去除步骤(4)所得多层复合材料中的二氧化硅基底,即得到低热阻、抗辐照的纳米多层薄膜材料,其中金属钨纳米薄膜6层,单层石墨烯5层。
通过光热方法测量技术测量本实施例所得的低热阻、抗辐照的纳米多层薄膜材料,其中金属钨纳米薄膜的层数为6层,单层石墨烯的层数为5层,此时添加石墨烯层引起的热阻(即加入石墨烯层后有了界面,所以此处的界面热阻即该材料整体的热阻)为14.78×10-9Km2W-1,。这意味着由于石墨烯界面引起的热阻非常小,几乎不会阻碍热量的传输,本实施例所得材料表现出优秀的导热性质。
实施例2
本实施例与实施例1的不同之处在于:每层金属钨纳米薄膜厚度为40nm;磁控溅射时间为10min。
通过光热方法测量技术测量本实施例所得的低热阻、抗辐照的纳米多层薄膜材料,其中金属钨纳米薄膜的层数为6层,单层石墨烯的层数为5层,此时添加石墨烯层引起的热阻为17.92×10-9Km2W-1。这意味着由于石墨烯界面引起的热阻非常小,几乎不会阻碍热量的传输,本实施例所得材料表现出优秀的导热性质。
实施例3
本实施例与实施例1的不同之处在于:每层金属钨纳米薄膜厚度为40nm;磁控溅射时间为10min,使每层金属钨纳米薄膜厚度为40nm;步骤(4)为循环重复步骤(2)和(3)6次;所得到低热阻、抗辐照的纳米多层薄膜材料,其中金属钨纳米薄膜8层,单层石墨烯7层。
通过光热方法测量技术测量本实施例所得低热阻、抗辐照的纳米多层薄膜材料,其中金属钨纳米薄膜的层数为8层,单层石墨烯的层数为7层,此时添加石墨烯层引起的热阻为10.29×10-9Km2W-1。这意味着由于石墨烯界面引起的热阻非常小,几乎不会阻碍热量的传输,本实施例所得材料表现出优秀的导热性质。
由图1~3可知:实施例1、实施例2、实施例3所得低热阻、抗辐照的纳米多层薄膜材料样品中,其中任意相邻两层金属钨纳米薄膜之间均转移了单层石墨烯。而且,由图1和图2表明:金属钨纳米薄膜的周期厚度可以调控,以适应不同的辐照环境;由图2和图3表明:沉积金属钨纳米薄膜和转移单层石墨烯的次数可以根据需求灵活调控,进而可以调控纳米薄膜总厚度以适应不同的辐照环境。
对于调控纳米薄膜总厚度以适应不同的辐照环境,举例说明如下:比如,通过模拟计算可以得到50keV,DPA=5的氦离子辐照金属钨纳米薄膜,氦离子在钨薄膜中可以到达的最大深度约为200nm。这样,所需要的低热阻、抗辐照的纳米多层薄膜材料可以设计成为10层周期厚度为20nm的金属钨纳米薄膜与转移在每两层钨膜之间9层单层石墨烯组成的多层复合结构,即以金属钨纳米薄膜和单层石墨烯交叉层叠的多层复合结构,其中每层金属钨纳米薄膜厚度为20nm,层数为10层,单层石墨烯的层数为9层,不但可以保证热量高效地传输,而且有效地减少了氦泡的数量。因此,对应不同的辐照能量和剂量,本发明可以设计不同的周期厚度和总厚度的纳米多层薄膜材料以满足实际要求。
实施例4
一种低热阻、抗辐照的纳米多层薄膜材料,它是以金属钨纳米薄膜和单层石墨烯交叉层叠的多层复合结构;其中,所述金属钨纳米薄膜厚度为15nm,层数为8层,单层石墨烯的层数为7层。
上述低热阻、抗辐照的纳米多层薄膜材料的制备方法,具体包括以下步骤:
(1)将300nm二氧化硅片基底用丙酮、无水乙醇、去离子水依次超声10min,之后用氮气枪吹干,随后利用磁控溅射系统沉积一层金属钨纳米薄膜;磁控溅射的参数:溅射电压150w,本底真空低于10-4pa,成膜真空在0.5pa,通入氩气为20sccm,溅射时间为2.5min,使金属钨纳米薄膜厚度为15nm;
所述单层石墨烯为单个原子层的二维材料,通过铜箔为衬底,甲烷为碳源化学气相沉积法生长制得;
(2)取双面生长有单层石墨烯的铜箔,其中一面单层石墨烯采用聚甲基丙烯酸甲酯(PMMA)涂覆保护,另一面单层石墨烯用氧等离子体刻蚀清除,随后在氯化铁溶液中将铜箔刻蚀溶解,得到PMMA/单层石墨烯复合物;将所得PMMA/单层石墨烯复合物用硅片烯转移至去离子水中清洗干净后,转移至金属钨纳米薄膜表面,并用丙酮溶解除去PMMA,从而实现单层石墨烯转移到步骤(1)所述金属钨纳米薄膜表面;
(3)继续在步骤(2)所述单层石墨烯的表面接着利用磁控溅射系统沉积下一层厚度为15nm金属钨纳米薄膜;
(4)循环重复步骤(2)和(3)6次;
(5)去除步骤(4)所得多层复合材料中的二氧化硅基底,即得到低热阻、抗辐照的纳米多层薄膜材料,其中金属钨纳米薄膜8层,单层石墨烯7层。
作为对比,利用磁控溅射系统在二氧化硅基底沉积一层较厚的钨纳米薄膜,与本实施例所得低热阻、抗辐照的纳米多层薄膜材料同时一起用氦离子垂直注入模拟中子辐照,注入的能量均为50kev,注入剂量均为1×1017ions/cm2。结果如图4和图5所示,可知:本发明所述低热阻、抗辐照的纳米多层薄膜材料相比于纯的金属钨膜,形成氦泡的数量大面积的减少,表明本发明所得多层膜结构相对于纯的金属钨膜表现出优秀的抗辐照特性。
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

Claims (8)

1.一种低热阻、抗辐照的纳米多层薄膜材料,其特征在于它是以金属钨纳米薄膜和单层石墨烯交叉层叠的多层复合结构;所述金属钨纳米薄膜的层数为N层,单层石墨烯的层数为N-1层,其中N为大于等于2的整数;所述的低热阻、抗辐照的纳米多层薄膜材料的上下表层均为金属钨纳米薄膜。
2.根据权利要求1所述的一种低热阻、抗辐照的纳米多层薄膜材料,其特征在于所述金属钨纳米薄膜为多晶的金属钨纳米薄膜,厚度在1~500 nm范围。
3.根据权利要求1所述的一种低热阻、抗辐照的纳米多层薄膜材料,其特征在于所述单层石墨烯为单个原子层的二维材料。
4.一种低热阻、抗辐照的纳米多层薄膜材料的制备方法,其特征在于将金属钨纳米薄膜沉积在二氧化硅基底上,然后转移单层石墨烯到所述金属钨纳米薄膜的表面,之后交替沉积钨纳米薄膜和转移单层石墨烯,得到低热阻、抗辐照的纳米多层薄膜材料。
5.根据权利要求4所述的一种低热阻、抗辐照的纳米多层薄膜材料的制备方法,其特征在于所述沉积方式为磁控溅射方法沉积。
6.根据权利要求4所述的一种低热阻、抗辐照的纳米多层薄膜材料的制备方法,其特征在于所述转移方法为湿法转移方法。
7.根据权利要求4所述的一种低热阻、抗辐照的纳米多层薄膜材料的制备方法,其特征在于它包括以下步骤:
(1)在二氧化硅基底上沉积金属钨纳米薄膜;
(2)使用湿法转移方法将单层石墨烯转移到步骤(1)所述金属钨纳米薄膜表面;
(3)继续在步骤(2)所述单层石墨烯的表面沉积下一层金属钨纳米薄膜;
(4)根据需求循环重复步骤(2)和(3)M次,M为大于等于0的整数;
(5)去除步骤(4)所得多层复合材料中的二氧化硅基底,即得到低热阻、抗辐照的纳米多层薄膜材料。
8.根据权利要求7所述的一种低热阻、抗辐照的纳米多层薄膜材料的制备方法,其特征在于它所述单层石墨烯是在铜箔衬底上通过化学气相沉积法生长所得;所述湿法转移是将生长有单层石墨烯的铜箔中的铜箔刻蚀溶解,保留单层石墨烯,转移至金属钨纳米薄膜表面。
CN201610908041.XA 2016-10-18 2016-10-18 一种低热阻、抗辐照的纳米多层薄膜材料及其制备方法 Active CN106350771B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610908041.XA CN106350771B (zh) 2016-10-18 2016-10-18 一种低热阻、抗辐照的纳米多层薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610908041.XA CN106350771B (zh) 2016-10-18 2016-10-18 一种低热阻、抗辐照的纳米多层薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106350771A CN106350771A (zh) 2017-01-25
CN106350771B true CN106350771B (zh) 2019-07-23

Family

ID=57866651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610908041.XA Active CN106350771B (zh) 2016-10-18 2016-10-18 一种低热阻、抗辐照的纳米多层薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106350771B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524369A (zh) * 2018-10-16 2019-03-26 江苏万邦微电子有限公司 一种基于抗辐照加固的芯片封装体
CN109637678B (zh) * 2019-02-18 2024-01-02 中国人民解放军国防科技大学 基于石墨烯导热的双重冷却聚变堆第一壁部件
CN110983287A (zh) * 2019-10-21 2020-04-10 武汉大学 转移大面积二维材料的方法
CN112725742A (zh) * 2019-10-28 2021-04-30 国家纳米科学中心 一种三明治结构材料及其制备方法和器件
CN110862604B (zh) * 2019-12-03 2023-04-21 宝胜科技创新股份有限公司 一种核电站用无卤阻燃护套材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942178A (zh) * 2012-11-22 2013-02-27 武汉大学 一种贵金属纳米阵列与单层石墨烯复合基底及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Radiation Resistant Vanadium-Graphene Nanolayered Composite》;Youbin Kim et al.;《Scientific RepoRts》;20160421;第1-9页
《Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites》;Youbin Kim et al.;《NATURE COMMUNICATIONS》;20130702;第1-7页

Also Published As

Publication number Publication date
CN106350771A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN106350771B (zh) 一种低热阻、抗辐照的纳米多层薄膜材料及其制备方法
Li et al. Synthesis of graphene films on copper foils by chemical vapor deposition
Sheng et al. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes
Xu et al. Large‐scale growth and field‐effect transistors electrical engineering of atomic‐layer SnS2
Banerjee et al. Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique
Park et al. Thin Ag layer inserted GZO multilayer grown by roll-to-roll sputtering for flexible and transparent conducting electrodes
CN104085887B (zh) 一种化学气相沉积法制备石墨烯
CN103265021B (zh) 层数可控石墨烯的生长方法
Jouane et al. Influence of flexible substrates on inverted organic solar cells using sputtered ZnO as cathode interfacial layer
Xu et al. Effect of growth temperature and coating cycles on structural, electrical, optical properties and stability of ITO films deposited by magnetron sputtering
CN103613094A (zh) 一种同时制备石墨烯和多孔非晶碳薄膜的方法
Kim et al. Electronic structure and stability of low symmetry Ta2O5polymorphs
CN107012443A (zh) 一种绝缘衬底图形化直接生长石墨烯的工艺方法
Wahl et al. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells
Chang et al. Enhancement of the light-scattering ability of Ga-doped ZnO thin films using SiOx nano-films prepared by atmospheric pressure plasma deposition system
JP2013035716A (ja) グラフェン構造体及びグラフェン構造体の製造方法
Sakurai et al. Properties of CuInGaSe2 solar cells based upon an improved three-stage process
Muslim et al. Properties of nickel films growth by radio frequency magnetron sputtering at elevated substrate temperatures
CN108788134A (zh) 一种石墨烯-纳米锌铜合金核壳结构导电材料的制备方法
CN105088342B (zh) 一种Ge量子点的制备方法及其应用
Zhu et al. Highly transparent conductive F-doped SnO2 films prepared on polymer substrate by radio frequency reactive magnetron sputtering
Kim Influence of negative metal ion bombardment on the properties of ITO/PET films deposited by dc magnetron sputtering
CN104979038A (zh) 拓扑绝缘体/石墨烯复合柔性透明导电薄膜及其制备方法与应用
de Moure-Flores et al. Copper telluride thin films grown by pulsed laser deposition
Jiang et al. Enhancement of the light trapping by double-layered surface texture of ITO/AZO and AZO/AZO transparent conductive films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant