WO2019103059A1 - 直流バス制御システム - Google Patents

直流バス制御システム Download PDF

Info

Publication number
WO2019103059A1
WO2019103059A1 PCT/JP2018/043064 JP2018043064W WO2019103059A1 WO 2019103059 A1 WO2019103059 A1 WO 2019103059A1 JP 2018043064 W JP2018043064 W JP 2018043064W WO 2019103059 A1 WO2019103059 A1 WO 2019103059A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
bus
power
control system
discharge
Prior art date
Application number
PCT/JP2018/043064
Other languages
English (en)
French (fr)
Inventor
大之 山下
正和 杉山
克彦 津野
佳代 小池
藤井 克司
和田 智之
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to CN201880074799.5A priority Critical patent/CN111448733A/zh
Priority to EP18882169.8A priority patent/EP3716435A4/en
Priority to JP2019555345A priority patent/JP6923231B2/ja
Priority to CN202410081512.9A priority patent/CN117833190A/zh
Priority to KR1020207014503A priority patent/KR102444737B1/ko
Priority to AU2018373453A priority patent/AU2018373453B2/en
Publication of WO2019103059A1 publication Critical patent/WO2019103059A1/ja
Priority to US16/878,725 priority patent/US11133673B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/02Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/04Constant-current supply systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/008Systems for storing electric energy using hydrogen as energy vector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell

Definitions

  • the present disclosure relates to a DC bus control system.
  • JP-A-2017-5944 (paragraphs [0101] to [0107], FIG. 1) JP 2005-224009 A (paragraphs [0009] to [0022], FIG. 1 and FIG. 3) Patent No. 5800919 (paragraphs [0050] to [0052], FIG. 12)
  • a DC bus control system for controlling power fluctuation of a DC bus connecting between an input power supply and a load comprises: a main stabilization device having a first charging / discharging element and a first power converter; A discharge element, a charge element, or at least one metastabilization device having a discharge element and a second power converter, wherein the first power converter is a storage capacity indicator of the first charge / discharge element.
  • the first power converter is a storage capacity indicator of the first charge / discharge element.
  • the second power converter is configured to set a current target value according to a difference between a threshold value for charging or discharging the second charge / discharge element, the charging element, or the discharging element and the voltage of the DC bus.
  • the current equal to the current target value is 2 of the charge and discharge elements, to flow to the charging element or discharge element, and the second charging and discharging elements configured for exchanging DC power between the charging element or the DC bus and the discharge element.
  • FIG. 6 is a conceptual diagram schematically showing the relationship between charge and discharge power of a storage device, input power of a water electrolysis cell, output power of a fuel cell, etc., and a bus voltage. It is operation
  • FIG. 1 is an overall configuration diagram of a DC bus control system according to this embodiment.
  • the DC bus control system shown in FIG. 1 includes, as input power sources, a solar power generation system 10 and a wind power generation system 20, which are renewable energy power supply systems.
  • the power generation systems 10 and 20 are connected in parallel and the output side is connected to the DC bus 70.
  • the solar power generation system 10 includes a solar cell 11 and a power converter 12, and the wind power generation system 20 includes a wind power generator 21 and a power converter 22.
  • the input power may be arbitrary.
  • energy such as wave power or geothermal energy may be used in addition to those described above, hydro (small hydro) power generation, tidal power generation, tidal power generation, temperature It may be a power supply system such as differential power generation. In addition, the above-described ones may be combined.
  • the number of power supply systems connected in parallel with one another is not particularly limited.
  • a main stabilizer 30 and meta-stabilizers 40, 50, and 60 Connected to the DC bus 70 are a main stabilizer 30 and meta-stabilizers 40, 50, and 60, and a load 90.
  • the main stabilizing device 30 sets a variable bus voltage target value within a predetermined allowable range centered on the reference bus voltage (the reference voltage of the DC bus 70), and the output voltage on the DC bus 70 side is the bus voltage target value.
  • the power converter 32 is operated to charge / discharge control the power storage device 31 so as to coincide with
  • the metastabilizer 40 calculates an input / output current target value based on the difference between the charge / discharge threshold and the voltage of the DC bus, and the power is adjusted so that the input / output current matches the input / output current target value.
  • the converter 42 is operated to control the charge and discharge of the storage device 41.
  • the storage devices 31 and 41 are, for example, a battery (secondary battery), an electric double layer capacitor, a capacitor, a flywheel, or a redox flow battery.
  • the power converters 32 and 42 are, for example, isolated DC / DC converters or choppers, and can exchange DC power in both directions as indicated by arrows.
  • the power converter 52 performs DC / DC conversion so that the input / output current matches the input / output current target value calculated based on the difference between the charging threshold and the voltage of the DC bus.
  • the direct current power is supplied to the water electrolysis cell 51 (a kind of charging operation), and water is electrolyzed to generate hydrogen gas and oxygen gas.
  • the metastabilizer 60 supplies DC power generated by the electrochemical reaction of the fuel cell 61 to the DC bus 70 via the power converter 62 (a kind of discharge operation), but at that time, the discharge threshold
  • the power converter 62 performs DC / DC conversion so that the input / output current matches the input / output current target value calculated based on the difference between the voltage of the DC bus and the DC bus.
  • the carbon dioxide is reduced by electrochemically reducing carbon dioxide It may be a means for producing bonds (CH 4, C 2 H 4 etc.) or alcohol, or a means for producing ammonia by reducing nitrogen, and as a substitute for the fuel cell 61, a fuel cell using alcohol etc., a chemical substance It may be a power generation means that burns (hydrogen, C—H, alcohol, ammonia, etc.) to rotate a turbine or the like.
  • FIG. 2 is another configuration example of the metastabilization device.
  • the above-described metastabilizers 50 and 60 may be a monolithic metastabilizer 50A sharing the hydrogen storage device 53.
  • power storage devices 31 and 41 can absorb (charge) and release (discharge) direct current power. Further, the water electrolysis cell 51 (and the hydrogen storage device 53 in FIG. 2) converts direct current power into gas and stores it, and the fuel cell 61 (and also the hydrogen storage device 53) converts electricity into direct current power. Operation is possible.
  • the storage devices 31 and 41 constitute a charge / discharge element, the water electrolysis cell 51 (and the hydrogen storage device 53) constitute a charge element, and the fuel cell 61 (and the hydrogen storage device 53) constitute a discharge element.
  • each stabilizing device 30, 40, 50, and 60 is regarded as a power buffer for transferring DC power to and from DC bus 70 by the operation of power converters 32, 42, 52, and 62. be able to.
  • the main stabilization device 30 and the metastabilization device 40 are power buffers having a charge / discharge function
  • the metastabilization device 50 is a power buffer having a charge function
  • the metastabilization device 60 is a power buffer having a discharge function.
  • main stabilizer 30 having the function of setting the bus voltage target value
  • the necessary number of meta-stabilizers may be provided according to the number of parallel power supply systems and the required power of the load 90 .
  • the monitoring and indication device 80 collects state information (voltage, current, temperature, etc.) of each of the power generation systems 10 and 20, the main stabilization device 30, and the metastabilization devices 40, 50, and 60, and performs state monitoring or operation Monitoring is performed, and on the basis of these monitoring results, operation commands (start / stop commands etc.) of each part and charge / discharge threshold value commands etc. are generated.
  • state information voltage, current, temperature, etc.
  • operation commands start / stop commands etc.
  • charge / discharge threshold value commands etc. are generated.
  • Various supervisory signals and commands can be transmitted and received between the supervisory / instruction device 80 and the above-described units by wire or wirelessly.
  • the load 90 may be a DC load such as a DC motor or a DC / AC converter that converts DC power into AC power and its AC load. Further, an AC power system may be connected to the DC bus 70 via a DC / AC converter.
  • the solar power generation system 10 and the wind power generation system 20 are provided as input power sources.
  • the solar power generation system 10 and the wind power generation system 20 have a common function in that generated power using renewable energy is converted into DC power by the power converters 12 and 22 and supplied to the DC bus 70. Therefore, the solar power generation system 10 will be described below as an example.
  • FIG. 3 is a block diagram showing a configuration example of the power converter 12 in the solar power generation system 10. As shown in FIG.
  • the power converter 12 includes a DC / DC converter 12A and a control circuit 12B.
  • the DC / DC conversion unit 12A converts the DC output voltage of the solar cell 11 into a DC voltage of a predetermined magnitude by the operation of the semiconductor switching element and outputs the DC voltage to the DC bus 70. There is.
  • the output voltage and current of the solar cell 11 are detected by the voltage detector 12a and the current detector 12b, and the detected values are input to the MPPT control unit 12c.
  • the MPPT control unit 12c searches for the maximum output point of the solar cell 11 by a hill climbing method or the like, and outputs it to the voltage / current control unit 12d.
  • the voltage / current control unit 12d sends a drive pulse generated by PWM (pulse width modulation) control or the like to the drive circuit 12e, and the drive circuit 12e is a semiconductor switching element of the DC / DC conversion unit 12A based on the drive pulse. Turn on and off.
  • PWM pulse width modulation
  • the voltage of the DC bus 70 is detected by the voltage detector 12f, and the bus voltage detection value is input to the comparison unit 12g together with the bus voltage target value sent from the main stabilizing device 30 described later.
  • the comparison unit 12 g generates a control signal according to the deviation between the bus voltage detection value and the bus voltage target value, and outputs the control signal to the voltage / current control unit 12 d.
  • the voltage / current control unit 12d calculates a drive pulse that causes the detected bus voltage to coincide with the desired bus voltage value based on the control signal. For example, the detected bus voltage value indicates the desired bus voltage value. When it exceeds, the control operation is performed to reduce the output voltage of the DC / DC conversion unit 12A (including the operation stop).
  • FIG. 4 is a block diagram showing a configuration example of the power converter 32 in the main stabilizing device 30. As shown in FIG.
  • the power converter 32 includes a DC / DC converter 32A and a control circuit 32B.
  • DC / DC conversion unit 32A has a function of transferring DC power in both directions between DC bus 70 and power storage device 31 to control charge / discharge of power storage device 31, and is an insulation type having a semiconductor switching element. It is comprised by DC / DC converter, a chopper, etc.
  • the power storage device 31 is provided with a sensor 31 a that detects voltage, current, and temperature.
  • control circuit 32B The configuration of the control circuit 32B is as follows.
  • the voltage of the DC bus 70 is detected by the voltage detector 32a, and the bus voltage target value is calculated by the bus voltage target value calculator 32b in accordance with the storage amount index of the power storage device 31.
  • the method of calculating the bus voltage target value will be described later.
  • a state of charge (SOC) obtained by integrating the charge / discharge current of the power storage device 31 detected by the sensor 31a can be used.
  • the deviation between the bus voltage target value and the bus voltage detection value is calculated by the subtractor 32c, and this voltage deviation is input to the charge / discharge control unit 32d.
  • the voltage / current, temperature, and charge / discharge threshold of the storage device 31 are input to the charge / discharge control unit 32 d, and the charge / discharge control unit 32 d determines the bus voltage detection value as the bus voltage while considering these input information.
  • PWM control or the like is performed to generate a drive pulse so as to match the voltage target value.
  • the drive circuit 32e turns on / off the semiconductor switching element of the DC / DC conversion unit 32A according to the drive pulse. As described above, the DC / DC conversion unit 32A performs charge / discharge control of the storage device 31 to make the bus voltage detection value coincide with the bus voltage target value.
  • the control circuit 32B may set the charge / discharge threshold of the power storage device 31 by itself or may receive it as a command from the monitoring / instruction device 80 of FIG.
  • FIG. 5 is a block diagram showing one configuration example of the power converter 42 in the meta-stabilization device 40 of FIG.
  • the power converter 42 includes a DC / DC converter 42A and a control circuit 42B.
  • Power converter 42 has a function similar to that of power converter 32 in FIG. 4 in that DC power is bidirectionally exchanged between DC bus 70 and power storage device 41. Similar to the power storage device 31, the power storage device 41 is provided with a sensor 41 a that detects voltage / current and temperature.
  • the control circuit 42B includes a voltage detector 42a, a comparison unit 42b, a subtractor 42c, a charge / discharge control unit 42d, and a drive circuit 42e.
  • Power converter 42 shown in FIG. 5 differs from power converter 32 in FIG. 4 in the following points.
  • the charge / discharge control unit 42d calculates the input / output current target value based on the deviation between the charge / discharge threshold value and the bus voltage detection value.
  • Charge / discharge control unit 42d further performs charge / discharge control on power storage device 41 such that the input / output current of DC / DC conversion unit 42A matches the input / output current target value.
  • the charge / discharge threshold may be a threshold (charge threshold and discharge threshold) related to charge / discharge of power storage device 41, and an input / output current target value may be determined according to the difference between the threshold and the voltage of DC bus 70. .
  • the comparison unit 42b provided in the control circuit 42B compares the charge / discharge threshold of the power storage device 41 with the bus voltage detection value, and according to the magnitude relationship between the charge threshold or discharge threshold and the bus voltage detection value A discharge command is output to control the operation of the charge / discharge control unit 42d.
  • the charge and discharge threshold may be set by the control circuit 42 B itself or may be received as a command from the monitoring and pointing device 80.
  • FIG. 6 is a block diagram showing one configuration example of the power converter 52 in the metastabilization device 50. As shown in FIG.
  • the power converter 52 includes a DC / DC converter 52A and a control circuit 52B.
  • the DC / DC conversion unit 52A has a function of converting the DC power of the DC bus 70 into a predetermined magnitude and supplying it to the water electrolysis cell 51, and is an insulation type DC / DC converter or chopper provided with a semiconductor switching element. And so on.
  • the water electrolysis cell 51 performs an operation of electrolyzing water using DC power supplied from the DC / DC conversion unit 52A and storing the generated hydrogen gas in an external storage device (not shown), in other words, one type Perform charging operation.
  • the control circuit 52B that controls the DC / DC conversion unit 52A is configured substantially the same as the control circuit 42B of FIG.
  • the voltage of the DC bus 70 is detected by the voltage detector 52a, and the difference between the charge threshold and the detected bus voltage is calculated by the subtractor 52c. It is input to the unit 52d. Further, the bus voltage detection value is input to the comparison unit 52b together with the charge threshold value, and the comparison unit 52b outputs a charge command to the charge control unit 52d when the bus voltage detection value exceeds the charge threshold value.
  • the charge threshold value corresponds to the start voltage of the electrolysis by the water electrolysis cell 51. That is, the charge threshold is a threshold for charging the water electrolysis cell 51.
  • the charge control unit 52d calculates the input / output current target value based on the voltage deviation input from the subtractor 52c, and charges the DC / DC conversion unit 52A so that the input / output current matches the input / output current target value.
  • a drive pulse as a command is generated and output to the drive circuit 52e.
  • the drive circuit 52e supplies DC power to the water electrolysis cell 51 to electrolyze water by turning on and off the semiconductor switching element of the DC / DC conversion unit 52A according to the drive pulse.
  • the DC / DC conversion unit 52A operates to match the input / output current with the input / output current target value while controlling the DC power supplied to the water electrolysis cell 51 by the above operation.
  • the power generation operation by the fuel cell 61 is considered as a discharge operation, and the water electrolysis cell 51, the charge threshold value, and the charge controller 52d of the metastabilizer 50 shown in FIG.
  • the battery 61, the discharge threshold value, and the discharge control unit may be replaced.
  • the discharge threshold value in this case corresponds to the start voltage of the power generation by the fuel cell 61.
  • the drive pulse corresponding to the discharge command is output to the discharge control unit to operate the DC / DC conversion unit, and the power generated by the fuel cell 61 is output. , And supplied to the DC bus 70 via the DC / DC conversion unit.
  • the DC / DC conversion unit operates to match the input / output current with the input / output current target value while controlling the generated power of the fuel cell 61 by the above operation.
  • the water electrolysis cell 51 and the fuel cell 61 are also provided with sensors for detecting voltage, current, temperature and the like, and these detection values are input to the charge control unit 52d and the discharge control unit. Illustration is omitted.
  • charge threshold and the discharge threshold may be set by each control circuit by itself, or may be received from the monitoring / instruction device 80 as a command.
  • FIG. 7 shows the charge / discharge power of the storage device 41 of the metastabilization device 40 according to the voltage of the DC bus 70, the input power of the water electrolysis cell 51 of the metastabilization device 50, the fuel of the metastabilization device 60.
  • FIG. 6 is a conceptual diagram schematically showing the output power of the battery 61.
  • the lateral width of the triangular symbol in FIG. 7 indicates the magnitude of each power, and the wider the width, the larger the power value.
  • FIG. 7 illustrates the case where the input power source is a renewable energy power system, and the renewable energy power system is, for example, the solar power generation system 10 and / or the wind power generation system 20 of FIG. 1.
  • the charge / discharge operation of each part is controlled in accordance with the voltage of the DC bus 70 to which the generated electric power is supplied and the charge / discharge threshold of the power storage device 41, the water electrolysis cell 51, and the fuel cell 61.
  • the lower the voltage the higher the discharge power discharged from the power storage device 41.
  • the higher the bus voltage is higher than the charge threshold value of the water electrolysis cell 51, the larger the charge power supplied to the water electrolysis cell 51, and the lower the bus voltage is lower than the discharge threshold value of the fuel cell 61 the fuel cell 61 is.
  • DC bus 70 and metastabilizers 40, 50, and 60 are controlled by changing the charge threshold and the discharge threshold of power storage device 41, water electrolysis cell 51, and fuel cell 61 to control the charge / discharge operation.
  • the DC power transferred between the and can be adjusted individually. In other words, it is possible to finely control the operation as each power buffer.
  • the change of the charge threshold and the discharge threshold can be performed by the power converters 42, 52, and 62 themselves based on a command from the monitoring and pointing device 80.
  • FIG. 8A and 8B are operation explanatory diagrams of the main stabilizing device 30.
  • FIG. 8A and 8B are operation explanatory diagrams of the main stabilizing device 30.
  • main stabilization device 30 exchanges DC power between DC bus 70 and power storage device 31, and controls charge / discharge of power storage device 31.
  • Control circuit 32B in power converter 32 sets a bus voltage target value based on the storage amount index (for example, charging rate) of power storage device 31 in accordance with, for example, the characteristics shown in FIG. 8B.
  • the bus voltage target value is set to be higher as the storage capacity index is larger and lower as the storage capacity index is smaller within the allowable range of the voltage of the DC bus 70, and the bus voltage detection value is set as the bus voltage target value.
  • the control circuit 32B controls the DC / DC conversion unit 32A so as to coincide with each other.
  • FIG. 9A and 9B illustrate the operation of the metastabilizers 40 and 50.
  • FIG. 9A and 9B illustrate the operation of the metastabilizers 40 and 50.
  • the power converter 42 of the meta-stabilizer 40 charges the power storage device 41 using the DC power of the DC bus 70, and the power converter 52 of the meta-stabilizer 50
  • the DC power of the DC bus 70 is supplied to the water electrolysis cell 51 to electrolyze water.
  • the charging characteristics in this case are as shown in FIG. 9B, and control the power converters 42 and 52 such that the charging current increases as the voltage of the DC bus 70 becomes higher than the charging threshold of the storage device 41 or the water electrolysis cell 51. Do.
  • FIG. 10A and 10B illustrate the operation of the metastabilizers 40 and 60.
  • FIG. 10A and 10B illustrate the operation of the metastabilizers 40 and 60.
  • the power converter 42 of the metastabilizer 40 discharges the storage device 41 to supply DC power to the DC bus 70, and the power converter 62 of the metastabilizer 60. Causes the fuel cell 61 to generate electricity and supply DC power to the DC bus 70.
  • the discharge characteristic in this case is as shown in FIG. 10B, and power converters 42 and 62 are controlled such that the discharge current increases as the voltage of DC bus 70 becomes lower than the discharge threshold of power storage device 41 or fuel cell 61. .
  • FIG. 11 shows a model of a DC bus control system used for the simulation, which includes a photovoltaic power generation system 10, a main stabilizer 30, semi-stabilizers 50 and 60, a DC bus 70, and a load 90.
  • the power converter 12 of the solar power generation system 10 performs MPPT (maximum power point tracking) control that changes the current and the voltage drawn every 0.1 [sec].
  • the power converter 32 of the main stabilization device 30 measures the charge / discharge current of the power storage device 31 every 0.1 [sec] to obtain an estimated storage amount index, and this estimated storage amount index, the reference storage amount index, and A bus voltage target value is calculated based on the reference bus voltage.
  • FIG. 12 is a block diagram showing the main part of the main stabilizing device 30. As shown in FIG. The configuration shown in FIG. 12 includes an oscillator 1, an estimated storage amount index computing unit 2, subtracters 3 and 6, a gain multiplier 4, an adder 5, and a PID (proportional-integral-derivative) controller 7. K1 is a constant corresponding to the reference storage capacity index, and K2 is a constant corresponding to the reference bus voltage.
  • FIG. 13 is a block diagram showing the main part of the metastabilization device 50 used for the simulation.
  • the configuration shown in FIG. 13 includes a subtractor 9 for determining a deviation between the bus voltage detection value and the reference bus voltage, a PID controller 110 that operates to eliminate the deviation, and a memory 111, and outputs the current to the water electrolysis cell 51 Calculate
  • FIG. 14 is a block diagram showing the main part of the meta-stabilizer 60 used for the simulation.
  • the configuration shown in FIG. 14 includes a subtractor 112 for determining a deviation between a reference bus voltage and a voltage detection value of the fuel cell 61, and a PID controller 113 operable to eliminate the deviation.
  • FIG.15 and FIG.16 is a wave form diagram of the voltage of each part which shows a simulation result, and an electric current.
  • FIG. 15 shows the voltage of the solar cell 11, (b) shows the current of the solar cell 11, (c) shows the bus voltage, and (d) shows the load current.
  • FIG. 16 shows the voltage of the storage device 31, (b) shows the current of the storage device 31, (c) shows the current of the water electrolysis cell 51, and (d) shows the current of the fuel cell 61 (leakage current in steady state) Show).
  • time t3 40 [sec]
  • time t5 time
  • the bus voltage target value in FIG. 15 (c) is calculated by the block diagram of the main stabilizing device 30 shown in FIG.
  • the bus voltage detection value follows the bus voltage target value well.
  • the main stabilizing device 30 having the power storage device 31, the metastabilization device 50 having the water electrolysis cell 51, and the fuel cell 61 are provided for the fluctuation of the output of the solar cell 11 and the fluctuation of the load current during the simulation period.
  • the meta-stabilizer 60 autonomously performs a charging operation or a discharging operation according to the magnitude relationship between each charge / discharge threshold and the bus voltage to operate as a power buffer.
  • the bus voltage detection value is maintained within a predetermined allowable range (approximately in the range of 379.7 V to 380.5 V).
  • the bus voltage detection value follows the bus voltage target value well and is maintained substantially constant within the predetermined allowable range.
  • a plurality of metastabilizers having a charging function for example, a metastabilizer having a water electrolysis cell
  • the quickest response metastable apparatus operates preferentially. Then, since the power fluctuation of the DC bus 70 is absorbed, the other metastabilizer may not operate. Such a situation is not desirable from the viewpoint of equalizing the operation of each device.
  • a plurality of metastabilizers having a discharge function for example, a metastabilizer having a fuel cell
  • a metastabilizer having a charge / discharge function for example, a storage battery
  • Droop control is applied to reduce the output voltage as the output current increases, between multiple metastabilizers having the same function (charge function or discharge function), and the droop rate
  • the load of each device may be shared at a predetermined rate by adjusting
  • a certain metastabilizer in consideration of reaction response and charge capacity of each metastabilizer. It is also conceivable to prioritize and operate the charging power and the discharging power, such as operating with almost full charge, and operating almost completely discharged with other metastabilizers. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Eletrric Generators (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

入力電源と負荷との間を接続する直流バスの電力変動を制御する直流バス制御システムは、第1の充放電要素と第1の電力変換器とを有する主安定化装置と、第2の充放電要素、充電要素、または放電要素と第2の電力変換器とを有する少なくとも1つの準安定化装置とを含み、第1の電力変換器は、第1の充放電要素の蓄電量指標に応じたバス電圧目標値を求め、バス電圧目標値に直流バスの電圧が一致するように、第1の充放電要素と直流バスとの間で直流電力を双方向に授受するよう構成され、第2の電力変換器は、第2の充放電要素、充電要素、または放電要素の充電又は放電に関する閾値と直流バスの電圧との差分に応じて電流目標値を求め、電流目標値に等しい電流が第2の充放電要素、充電要素、または放電要素に流れるように、第2の充放電要素、充電要素、または放電要素と直流バスとの間で直流電力を授受するよう構成される。

Description

直流バス制御システム
 本開示は、直流バス制御システムに関する。
 近年、化石エネルギーや原子力エネルギーの代替電源として、太陽光や風力、波力等の再生可能エネルギーを利用した電源システムが注目されており、これらの一部は既に実用化されている。
 この種の電源システムは、天候や季節、立地等によって発電電力が大きく変動する。このため、電源システムが接続される直流バスの電圧を所定の許容範囲に維持するには、太陽電池や風力発電機等の電源を、入力範囲が広く大容量の電力変換器を介して直流バスに接続することが望ましい。しかしながら、その場合には、電力変換器の大容量化によってシステム全体の大型化や複雑化、高コスト化を招くことになる。
 ここで、電源システムから直流バスに供給される電力や直流バス電圧を安定化させる従来技術としては、例えば特許文献1~3に記載されたものが知られている。しかしながら、再生可能エネルギー電源システムの電力変動が大きいため、再生可能エネルギー電源システムの出力変動や負荷変動に起因して発生する直流バスの電力変動を効率的に制御することは難しい。
特開2017-5944号公報(段落[0101]~[0107]、図1) 特開2005-224009号公報(段落[0009]~[0022]、図1,図3) 特許第5800919号公報(段落[0050]~[0052]、図12)
 以上を鑑みると、入力電源や負荷の変動に起因して生ずる直流バスの電力変動を効率的に制御するための制御システムを提供することが望まれる。
 入力電源と負荷との間を接続する直流バスの電力変動を制御する直流バス制御システムは、第1の充放電要素と第1の電力変換器とを有する主安定化装置と、第2の充放電要素、充電要素、または放電要素と第2の電力変換器とを有する少なくとも1つの準安定化装置とを含み、前記第1の電力変換器は、前記第1の充放電要素の蓄電量指標に応じたバス電圧目標値を求め、前記バス電圧目標値に前記直流バスの前記電圧が一致するように、前記第1の充放電要素と前記直流バスとの間で直流電力を双方向に授受するよう構成され、前記第2の電力変換器は、前記第2の充放電要素、充電要素、または放電要素の充電又は放電に関する閾値と前記直流バスの前記電圧との差分に応じて電流目標値を求め、前記電流目標値に等しい電流が前記第2の充放電要素、充電要素、または放電要素に流れるように、前記第2の充放電要素、充電要素、または放電要素と前記直流バスとの間で直流電力を授受するよう構成される。
 少なくとも1つの実施例によれば、入力電源や負荷の変動に起因して生ずる直流バスの電力変動を効率的に制御するための制御システムを提供することができる。
実施形態に係る直流バス制御システムの全体構成図である。 実施形態における準安定化装置の他の例を示す構成図である。 太陽光発電システム内の電力変換器の一構成例を示すブロック図である。 主安定化装置内の電力変換器の一構成例を示すブロック図である。 準安定化装置内の電力変換器の一構成例を示すブロック図である。 準安定化装置内の電力変換器の一構成例を示すブロック図である。 蓄電装置の充放電電力、水電解セルの入力電力、燃料電池の出  力電力等とバス電圧との関係を模式的に示した概念図である。 主安定化装置の動作説明図である。 主安定化装置の動作説明図である。 準安定化装置の動作説明図である 準安定化装置の動作説明図である 準安定化装置の動作説明図である。 準安定化装置の動作説明図である。 シミュレーションに用いた直流バス制御システムのモデルの構成図である。 シミュレーションに用いた主安定化装置の主要部のブロック図である。 シミュレーションに用いた準安定化装置の主要部のブロック図である。 シミュレーションに用いた準安定化装置の主要部のブロック図である。 シミュレーションの結果を示す各部の電圧、電流の波形図である。 シミュレーションの結果を示す各部の電圧、電流の波形図である。
 以下、図に沿って本発明の実施形態を説明する。
 図1は、この実施形態に係る直流バス制御システムの全体構成図である。図1に示される直流バス制御システムは、入力電源として、再生可能エネルギー電源システムである太陽光発電システム10及び風力発電システム20を含む。これらの発電システム10及び20は並列に接続されてその出力側が直流バス70に接続されている。太陽光発電システム10は太陽電池11及び電力変換器12を含み、風力発電システム20は風力発電機21及び電力変換器22を含む。
 入力電源は任意のものであってよい。入力電源が再生可能エネルギー電源システムである場合、上述したもの以外に波力や地熱等のエネルギーを利用したものであっても良いし、水力(小水力)発電、潮力発電、潮流発電、温度差発電等の電源システムであっても良い。また、上述したものも含め、これらの組み合わせであっても良い。
 更に、互いに並列に接続される電源システムの数は特に限定されない。
 直流バス70には、主安定化装置30及び準安定化装置40,50,及び60が接続されていると共に、負荷90が接続されている。
 主安定化装置30は、基準バス電圧(直流バス70の基準電圧)を中心とした所定の許容範囲内で可変のバス電圧目標値を設定し、直流バス70側の出力電圧がバス電圧目標値に一致するように電力変換器32を動作させて蓄電装置31を充放電制御する。
 また、準安定化装置40は、充放電閾値と前記直流バスの前記電圧との差分に基づいて入出力電流目標値を演算し、入出力電流が前記入出力電流目標値に一致するように電力変換器42を動作させて蓄電装置41を充放電制御する。
 ここで、蓄電装置31及び41は、例えばバッテリー(二次電池)、電気二重層コンデンサー、キャパシタ、フライホイール、又はレドックスフロー電池等である。また、電力変換器32及び42は、例えば絶縁型のDC/DCコンバータ又はチョッパ等であり、矢印に示すごとく双方向に直流電力を授受可能である。
 準安定化装置50は、充電閾値と前記直流バスの前記電圧との差分に基づいて演算した入出力電流目標値に入出力電流が一致するように電力変換器52がDC/DC変換を行って水電解セル51に直流電力を供給し(一種の充電動作)、水を電気分解して水素ガス及び酸素ガスを生成する。また、準安定化装置60は、燃料電池61の電気化学反応により発生した直流電力を、電力変換器62を介して直流バス70に供給する(一種の放電動作)が、その際に、放電閾値と前記直流バスの前記電圧との差分に基づいて演算した入出力電流目標値に入出力電流が一致するように電力変換器62がDC/DC変換を行う。
 上述した準安定化装置50や準安定化装置60の構成はあくまで例示的なものであり、水電解セル51に代わるものとしては、電気化学的に、二酸化炭素還元を行ってC-H系の結合(CH4,C2H4等)やアルコールを製造する手段、または、窒素を還元してアンモニアを製造する手段でも良いし、燃料電池61に代わるものとしては、アルコール等を用いた燃料電池や、化学物質(水素やC-H系、アルコール、アンモニア等)を燃焼してタービン等を回転させる発電手段でも構わない。
 図2は、準安定化装置の他の構成例である。図示する如く、前述した準安定化装置50及び60が水素貯蔵装置53を共有するような一体構造の準安定化装置50Aであっても良い。
 図1において、蓄電装置31及び41は直流電力の吸収(充電)、放出(放電)が可能である。また、水電解セル51(及び、図2の水素貯蔵装置53)は直流電力をガスに変換して蓄積し、燃料電池61(及び、同じく水素貯蔵装置53)はガスを直流電力に変換する発電動作が可能である。蓄電装置31及び41は充放電要素を構成し、水電解セル51(及び水素貯蔵装置53)は充電要素を構成し、燃料電池61(及び水素貯蔵装置53)は放電要素を構成する。
 上記のように、各安定化装置30,40,50,及び60は、電力変換器32,42,52,及び62の動作により直流バス70との間で直流電力をそれぞれ授受する電力バッファとみなすことができる。また主安定化装置30及び準安定化装置40は充放電機能を有する電力バッファ、準安定化装置50は充電機能を有する電力バッファ、準安定化装置60は放電機能を有する電力バッファである。
 なお、バス電圧目標値の設定機能を有する主安定化装置30は1台で良いが、準安定化装置は、電源システムの並列数や負荷90の要求電力に応じて必要台数だけ設ければ良い。
 監視・指示装置80は、各発電システム10及び20、主安定化装置30、及び準安定化装置40,50,及び60の状態情報(電圧、電流、温度等)を収集して状態監視や動作監視を行うと共に、これらの監視結果に基づいて各部の運転指令(起動・停止指令等)、及び充放電閾値指令等を生成する。監視・指示装置80と上述した各部との間では、有線または無線により各種の監視信号及び指令を送受信可能である。
 負荷90は、直流電動機等の直流負荷、又は直流電力を交流電力に変換するDC/AC変換器及びその交流負荷であっても良い。また、直流バス70にDC/AC変換器を介して交流電力系統が接続されていても良い。
 次に、図1における各部の構成について説明する。図1の構成では、入力電源として太陽光発電システム10及び風力発電システム20を有している。
 太陽光発電システム10及び風力発電システム20は、再生可能エネルギーを用いた発電電力を電力変換器12及び22により直流電力に変換して直流バス70に供給する点で共通の機能を有する。このため、以下では、太陽光発電システム10を例として説明をする。
 図3は、太陽光発電システム10内の電力変換器12の一構成例を示すブロック図である。この電力変換器12は、DC/DC変換部12Aと制御回路12Bとを備えている。
 DC/DC変換部12Aは、半導体スイッチング素子の動作により太陽電池11の直流出力電圧を所定の大きさの直流電圧に変換して直流バス70に出力するものであり、例えば昇圧チョッパによって構成されている。
 DC/DC変換部12Aを制御する制御回路12Bでは、太陽電池11の出力電圧及び電流が電圧検出器12a及び電流検出器12bにより検出され、これらの検出値はMPPT制御部12cに入力されている。MPPT制御部12cでは、山登り法等により太陽電池11の最大出力点を探索して電圧・電流制御部12dに出力する。
 電圧・電流制御部12dは、PWM(パルス幅変調)制御等により生成した駆動パルスを駆動回路12eに送出し、駆動回路12eは、上記駆動パルスに基づいてDC/DC変換部12Aの半導体スイッチング素子をオン及びオフさせる。
 また、直流バス70の電圧が電圧検出器12fにより検出され、このバス電圧検出値は後述の主安定化装置30から送られたバス電圧目標値と共に比較部12gに入力されている。比較部12gは、バス電圧検出値とバス電圧目標値との偏差に応じた制御信号を生成して電圧・電流制御部12dに出力する。
 電圧・電流制御部12dは、上記制御信号に基づいて、バス電圧検出値をバス電圧目標値に一致させるような駆動パルスを演算するものであり、例えば、バス電圧検出値がバス電圧目標値を上回る場合にはDC/DC変換部12Aの出力電圧を低下させる(運転停止も含む)ように制御動作を行う。
 図4は主安定化装置30内の電力変換器32の一構成例を示すブロック図である。この電力変換器32は、DC/DC変換部32A及び制御回路32Bを備えている。
 DC/DC変換部32Aは、直流バス70と蓄電装置31との間で直流電力を双方向に授受して蓄電装置31を充放電制御する機能を有し、半導体スイッチング素子を備えた絶縁型のDC/DCコンバータやチョッパ等により構成されている。蓄電装置31には、電圧・電流及び温度を検出するセンサ31aが設置されている。
 制御回路32Bの構成は、以下の通りである。
 電圧検出器32aにより直流バス70の電圧が検出されると共に、バス電圧目標値演算部32bにより、蓄電装置31の蓄電量指標に応じてバス電圧目標値が演算される。なお、バス電圧目標値の演算方法については後述する。
 上記の蓄電量指標としては、例えば、センサ31aにより検出される蓄電装置31の充放電電流を積分して得た充電率(SOC:State of Charge)を用いることができる。
 バス電圧目標値とバス電圧検出値との偏差が減算器32cにより演算され、この電圧偏差は充放電制御部32dに入力されている。
 充放電制御部32dには蓄電装置31の電圧・電流、温度、及び、充放電閾値が入力されており、充放電制御部32dは、これらの入力情報を考慮しながら、バス電圧検出値がバス電圧目標値に一致するようにPWM制御等を行って駆動パルスを生成する。駆動回路32eは、上記駆動パルスに従ってDC/DC変換部32Aの半導体スイッチング素子をオン及びオフさせる。DC/DC変換部32Aは、上記のように蓄電装置31を充放電制御してバス電圧検出値をバス電圧目標値に一致させる。
 なお、蓄電装置31の充放電閾値は、制御回路32Bが自ら設定しても良いし、図1の監視・指示装置80からの指令として受信しても良い。
 図5は、図1の準安定化装置40内の電力変換器42の一構成例を示すブロック図である。この電力変換器42は、DC/DC変換部42A及び制御回路42Bを備えている。電力変換器42は、直流バス70と蓄電装置41との間で直流電力を双方向に授受する点で、図4の電力変換器32と同様の機能を有する。蓄電装置41には、前記蓄電装置31と同様に、電圧・電流、及び温度を検出するセンサ41aが設けられている。制御回路42Bは、電圧検出器42a、比較部42b、減算器42c、充放電制御部42d、及び駆動回路42eを含む。
 図5に示す電力変換器42は図4の電力変換器32と以下の点で異なる。制御回路42Bは、充放電閾値とバス電圧検出値との偏差に基づいて充放電制御部42dが入出力電流目標値を演算する。充放電制御部42dは更に、DC/DC変換部42Aの入出力電流が入出力電流目標値に一致するように蓄電装置41に対する充放電制御を行う。ここで上記充放電閾値は蓄電装置41の充放電に関する閾値(充電閾値及び放電閾値)であってよく、当該閾値と直流バス70の電圧との差分に応じて入出力電流目標値を定めてよい。
 更に、制御回路42Bに設けられた比較部42bは、蓄電装置41の充放電閾値をバス電圧検出値と比較し、充電閾値または放電閾値とバス電圧検出値との大小関係に応じて充電指令または放電指令を出力して充放電制御部42dの動作を制御する。なお、充放電閾値は、制御回路42Bが自ら設定しても良いし、監視・指示装置80から指令として受信しても良い。
 図6は準安定化装置50内の電力変換器52の一構成例を示すブロック図である。この電力変換器52は、DC/DC変換部52A及び制御回路52Bを備えている。
 DC/DC変換部52Aは、直流バス70の直流電力を所定の大きさに変換して水電解セル51に供給する機能を有し、半導体スイッチング素子を備えた絶縁型のDC/DCコンバータやチョッパ等により構成されている。水電解セル51は、DC/DC変換部52Aから供給された直流電力を用いて水を電気分解し、生成された水素ガスを外部の貯蔵装置(図示せず)に貯蔵する動作、言い換えれば一種の充電動作を行う。
 DC/DC変換部52Aを制御する制御回路52Bは、おおむね図5の制御回路42Bと同様に構成されている。
 すなわち、図6の制御回路52Bにおいて、電圧検出器52aにより直流バス70の電圧が検出されると共に、充電閾値とバス電圧検出値との偏差が減算器52cにより演算され、この電圧偏差が充電制御部52dに入力されている。また、バス電圧検出値は充電閾値と共に比較部52bに入力されており、比較部52bは、バス電圧検出値が充電閾値を上回ると充電指令を充電制御部52dに出力する。ここで、充電閾値は、水電解セル51による電気分解の開始電圧に相当する。即ち上記充電閾値は、水電解セル51の充電に関する閾値である。
 充電制御部52dは、減算器52cから入力された電圧偏差に基づいて入出力電流目標値を演算すると共に、DC/DC変換部52Aの入出力電流が入出力電流目標値に一致するように充電指令としての駆動パルスを生成し、駆動回路52eに出力する。駆動回路52eでは、上記駆動パルスに従ってDC/DC変換部52Aの半導体スイッチング素子をオン及びオフさせることにより、水電解セル51に直流電力を供給して水を電気分解する。
 DC/DC変換部52Aは、上記の動作により水電解セル51に供給される直流電力を制御しつつ、入出力電流を入出力電流目標値に一致させるように動作する。
 図1の準安定化装置60については、燃料電池61による発電動作を放電動作と考え、図6に示した準安定化装置50の水電解セル51、充電閾値、及び充電制御部52dをそれぞれ燃料電池61、放電閾値、放電制御部に置き換えて構成すれば良い。この場合の放電閾値は、燃料電池61による発電の開始電圧に相当する。
 準安定化装置60では、バス電圧検出値が放電閾値を下回ったときに放電指令に相当する駆動パルスを放電制御部に出力してDC/DC変換部を動作させ、燃料電池61による発電電力を、DC/DC変換部を介して直流バス70に供給する。
 DC/DC変換部は、上記の動作により燃料電池61の発電電力を制御しつつ、入出力電流を入出力電流目標値に一致させるように動作する。
 水電解セル51や燃料電池61にも、電圧・電流及び温度等を検出するセンサが設けられ、これらの検出値が充電制御部52dや放電制御部に入力されているが、便宜上、上記センサの図示は省略してある。
 また、充電閾値及び放電閾値は、各制御回路が自ら設定しても良いし、監視・指示装置80から指令として受信しても良い。
 図3~図6に示した電力変換器12,32,42,及び52、特に制御回路12B,32B,42B,及び52Bの構成や動作は、あくまで例示的なものであって何ら本発明の技術的範囲を限定するものではなく、これらと異なる構成を採用しても良いことは言うまでもない。
 次に、図7は、直流バス70の電圧に応じた準安定化装置40の蓄電装置41の充放電電力、準安定化装置50の水電解セル51の入力電力、準安定化装置60の燃料電池61の出力電力を、それぞれ模式的に示した概念図である。図7における三角形シンボルの横方向の幅は各電力の大きさを示しており、幅が広いほど電力値が大きくなる。
 図7では、入力電源が再生可能エネルギー電源システムである場合を例示しており、再生可能エネルギー電源システムは、例えば、図1の太陽光発電システム10及び/又は風力発電システム20である。これらの発電電力が供給される直流バス70の電圧と蓄電装置41、水電解セル51、燃料電池61の充放電閾値等に応じて、各部の充放電動作が制御される。
 例えば、蓄電装置41に関する(a)に示すように、バス電圧が蓄電装置41の充電閾値より高ければ高いほど蓄電装置41に供給される充電電力は大きくなり、バス電圧が蓄電装置41の放電閾値より低ければ低いほど蓄電装置41から放出される放電電力は大きくなる。同様にして、バス電圧が水電解セル51の充電閾値より高ければ高いほど水電解セル51に供給される充電電力は大きくなり、バス電圧が燃料電池61の放電閾値より低ければ低いほど燃料電池61から発生する放電電力は大きくなる。
 蓄電装置41に関する(b)は、基準バス電圧に応じて充電閾値及び放電閾値を(a)より低く設定した場合、(c)は充電閾値及び放電閾値を(a)より高く設定した場合である。同様の閾値の設定変更操作は水電解セル51の充電閾値及び燃料電池61の放電閾値に対しても可能である。
 このように、蓄電装置41、水電解セル51、及び燃料電池61の充電閾値及び放電閾値を変化させて充放電動作を制御することにより、直流バス70と準安定化装置40,50,及び60との間で授受される直流電力を個別に調整することができる。言い換えれば、それぞれの電力バッファとしての動作をきめ細かく制御することが可能である。
 前述したごとく充電閾値及び放電閾値の変更は、監視・指示装置80からの指令に基づき、あるいは、電力変換器42,52,及び62が自ら行うことができる。
 図8A及び8Bは主安定化装置30の動作説明図である。
 図8Aに破線(太線)で示すように、主安定化装置30は直流バス70と蓄電装置31との間で直流電力を授受し、蓄電装置31を充放電制御する。電力変換器32内の制御回路32Bは、例えば図8Bに示す特性に従って、蓄電装置31の蓄電量指標(例えば充電率)に基づきバス電圧目標値を設定する。
 このバス電圧目標値は、直流バス70の電圧の許容範囲内で、蓄電量指標が大きいほど高く、蓄電量指標が小さいほど低くなるように設定され、このバス電圧目標値にバス電圧検出値が一致するように制御回路32BがDC/DC変換部32Aを制御する。
 図9A及び9Bは準安定化装置40及び50の動作説明図である。
 図9Aに破線(太線)で示すように、準安定化装置40の電力変換器42は直流バス70の直流電力を用いて蓄電装置41を充電し、準安定化装置50の電力変換器52は直流バス70の直流電力を水電解セル51に供給して水を電気分解する。
 この場合の充電特性は図9Bに示す通りであり、直流バス70の電圧が蓄電装置41または水電解セル51の充電閾値より高くなるほど充電電流が大きくなるように電力変換器42及び52をそれぞれ制御する。
 図10A及び10Bは準安定化装置40及び60の動作説明図である。
 図10Aに破線(太線)で示すように、準安定化装置40の電力変換器42は蓄電装置41を放電させて直流バス70に直流電力を供給し、準安定化装置60の電力変換器62は燃料電池61を発電動作させて直流バス70に直流電力を供給する。
 この場合の放電特性は図10Bに示す通りであり、直流バス70の電圧が蓄電装置41または燃料電池61の放電閾値より低くなるほど放電電流が大きくなるように電力変換器42及び62をそれぞれ制御する。
 次いで、開示の技術の効果を検証するために行ったシミュレーションについて説明する。
 図11は、シミュレーションに用いた直流バス制御システムのモデルを示し、太陽光発電システム10と、主安定化装置30、準安定化装置50及び60、直流バス70、及び負荷90を備えている。
 ここで、太陽光発電システム10の電力変換器12は、0.1[sec]ごとに引き出す電流及び電圧を変更するMPPT(最大電力点追従)制御を行うものとする。
 主安定化装置30の電力変換器32は、0.1[sec]ごとに蓄電装置31の充放電電流を測定して推定蓄電量指標を求め、この推定蓄電量指標、基準蓄電量指標、及び基準バス電圧に基づいてバス電圧目標値を演算する。
 図12は、主安定化装置30の主要部を示すブロック図である。図12に示される構成は、発振器1、推定蓄電量指標演算部2、減算器3及び6、ゲイン乗算器4、加算器5、及びPID(比例・積分・微分)コントローラ7を含む。なお、K1は基準蓄電量指標に相当する定数、K2は基準バス電圧に相当する定数である。
 図13はシミュレーションに用いた準安定化装置50の主要部を示すブロック図である。図13に示す構成は、バス電圧検出値と基準バス電圧との偏差を求める減算器9、上記偏差をなくすように動作するPIDコントローラ110、及びメモリ111を含み、水電解セル51に出力する電流を演算する。
 また、図14はシミュレーションに用いた準安定化装置60の主要部を示すブロック図である。図14に示す構成は、基準バス電圧と燃料電池61の電圧検出値との偏差を求める減算器112と、上記偏差をなくすように動作するPIDコントローラ113とを含み、燃料電池61による発電電流を演算する。
 図15及び図16は、シミュレーション結果を示す各部の電圧及び電流の波形図である。
 図15において(a)は太陽電池11の電圧、(b)は太陽電池11の電流、(c)はバス電圧、及び(d)は負荷電流を示す。図16において(a)は蓄電装置31の電圧、(b)は蓄電装置31の電流、(c)は水電解セル51の電流、及び(d)は燃料電池61の電流(定常時の漏れ電流を含む)を示している。
 ここでは、時刻t1で太陽電池11の出力電流が立ち上がり、その後、時刻t2で負荷90が起動されると共に、時刻t3(=40[sec])で太陽電池11の電流が減少して時刻t5(=80[sec])で負荷電流が零となる場合の各部の電圧及び電流の挙動をシミュレーションする。
 時刻t1における太陽電池11の発電開始に伴い、バス電圧が蓄電装置31及び水電解セル51の充電閾値より高くなると蓄電装置31及び水電解セル51への充電が開始され、蓄電装置31の電圧は高くなり(図16(a))、水電解セル51の入力電流は増加する(図16(c))。
 これにより、蓄電装置31の蓄電量指標が増大するため、バス電圧目標値も時刻t1以後は高くなる(図15(c))。
 時刻t2で負荷90が起動されると、バス電圧は若干、低下する(図15(c))。
 時刻t3で太陽電池11の電流及びバス電圧が減少し、バス電圧が蓄電装置31の放電閾値を下回ると蓄電装置31が放電するため、蓄電装置31の電圧は低下する(図16(a),(b))。なお、図16(b)では負方向の電流が放電電流である。同時に、時刻t3以後は水電解セル51の電流も零になる。
 バス電圧が燃料電池61の放電閾値を下回ると、時刻t3の直後の時刻t4から燃料電池61の出力電流が増加すると共に(図16(d))、時刻t4以後は、バス電圧及び蓄電装置31の電圧がほぼ一定値に維持される(図15(c),図16(a))。
 その後、時刻t5において負荷電流が零になると(図15(d))、バス電圧が上昇し始め、バス電圧が燃料電池61の放電閾値を上回ると燃料電池61からの放電電流は零になる(図15(c),図16(d))。また、バス電圧が蓄電装置31の充電閾値を上回ることにより、蓄電装置31の充電が開始され、時刻t6まで充電が継続する(図16(a),(b))。
 更に、バス電圧が水電解セル51の充電閾値を上回ると、水電解セル51の電圧がバス電圧にほぼ等しくなるまで水電解セル51への入力電流が増加していき、時刻t6以後は入力電流がほぼ一定値となる(図16(c))。
 上記の動作において、図15(c)におけるバス電圧目標値は、図12に示した主安定化装置30のブロック図により演算されている。バス電圧検出値はバス電圧目標値に良く追従している。
 また、シミュレーション期間における太陽電池11の出力の変動や負荷電流の変動に対しては、蓄電装置31を有する主安定化装置30、水電解セル51を有する準安定化装置50、燃料電池61を有する準安定化装置60が、各充放電閾値とバス電圧との大小関係に応じて自律的に充電動作または放電動作を行って電力バッファとして動作する。これにより、バス電圧検出値は所定の許容範囲(ほぼ379.7[V]~380.5[V]の範囲)に維持されていることが判る。
 ここで、直流バス70の供給電力について考えると、上記のように、バス電圧検出値がバス電圧目標値に良く追従し、所定の許容範囲内でほぼ一定に維持されることから、直流バス70における電力変動は電流値の変動とほぼ一致する。従って、本発明の直流バス制御システムにおいては、主安定化装置30による電圧の制御と準安定化装置50及び60による電流の制御により、直流バス70の電力変動を制御できるということになる。
 なお、充電機能を有する準安定化装置(例えば水電解セルを備えた準安定化装置)が直流バス70に複数台接続されている場合には、応答の早い準安定化装置が優先的に動作して直流バス70の電力変動を吸収してしまうため、他の準安定化装置が動作しない可能性がある。このような状況は、各装置の動作を平準化させる観点からは望ましいものではない。また、放電機能を有する準安定化装置(例えば燃料電池を備えた準安定化装置)が直流バス70に複数台接続されている場合や、充放電機能を有する準安定化装置(例えば蓄電装置を備えた準安定化装置)が直流バス70に複数台接続されている場合も、同様の問題が生じ得る。
 上記の問題に対しては、同一の機能(充電機能または放電機能)を有する複数台の準安定化装置の間で、出力電流が増加するほど出力電圧を低下させるドループ制御を適用し、ドループ率を調整することで各装置の負荷(利用率や動作責務)を所定の割合で分担させれば良い。
 また、上記のように複数台の準安定化装置の動作を平準化させる運用方法以外に、個々の準安定化装置の反応応答性や充電容量等を考慮して、例えば、ある準安定化装置については満充電に近い状態で動作させ、他の準安定化装置についてはほぼ完全に放電させた状態で動作させるというように、充電電力及び放電電力に優先順位をつけて運用する方法も考えられる。
 本願は、日本特許庁に2017年11月21日に出願された日本特許出願2017-223808号に基づいて優先権を主張するものであり、その全内容を参照によりここに援用する。
10:太陽光発電システム
11:太陽電池
12:電力変換器
12A:DC/DC変換部
12B:制御回路
12a,12f:電圧検出器
12b:電流検出器
12c:MPPT制御部
12d:電圧・電流制御部
12e:駆動回路
12g:比較部
20:風力発電システム
21:風力発電機
22:電力変換器
30:主安定化装置
31:蓄電装置
31a:センサ
32:電力変換器
32A:DC/DC変換部
32B:制御回路
32a:電圧検出器
32b:バス電圧目標値演算部
32c:減算器
32d:充放電制御部
32e:駆動回路
40:準安定化装置
41:蓄電装置
41a:センサ
42:電力変換器
42A:DC/DC変換部
42B:制御回路
42a:電圧検出器
42b:比較部
42c:減算器
42d:充放電制御部
42e:駆動回路
50,50A:準安定化装置
51:水電解セル
52:電力変換器
52A:DC/DC変換部
52B:制御回路
52a:電圧検出器
52b:比較部
52c:減算器
52d:充電制御部
52e:駆動回路
53:水素貯蔵装置
60:準安定化装置
61:燃料電池
62:電力変換器
70:直流バス
80:監視・指示装置
90:負荷

Claims (12)

  1.  入力電源と負荷との間を接続する直流バスの電力変動を制御する直流バス制御システムであって、
     第1の充放電要素と第1の電力変換器とを有する主安定化装置と、
     第2の充放電要素、充電要素、または放電要素と第2の電力変換器とを有する少なくとも1つの準安定化装置と
    を含み、
     前記第1の電力変換器は、前記第1の充放電要素の蓄電量指標に応じたバス電圧目標値を求め、前記バス電圧目標値に前記直流バスの前記電圧が一致するように、前記第1の充放電要素と前記直流バスとの間で直流電力を双方向に授受するよう構成され、
     前記第2の電力変換器は、前記第2の充放電要素、充電要素、または放電要素の充電又は放電に関する閾値と前記直流バスの前記電圧との差分に応じて電流目標値を求め、前記電流目標値に等しい電流が前記第2の充放電要素、充電要素、または放電要素に流れるように、前記第2の充放電要素、充電要素、または放電要素と前記直流バスとの間で直流電力を授受するよう構成される、
     ことを特徴とする直流バス制御システム。
  2.  請求項1に記載した直流バス制御システムにおいて、
     前記少なくとも1つの準安定化装置は複数の準安定化装置であり、前記複数の準安定化装置は、少なくとも、前記充電要素を有する準安定化装置、及び、前記放電要素を有する準安定化装置を含むことを特徴とする直流バス制御システム。
  3.  請求項1または請求項2に記載した直流バス制御システムにおいて、 前記第1の電力変換器は、前記直流バスの前記電圧の所定の許容範囲内に収まるように前記バス電圧目標値を定めるよう構成されることを特徴とする直流バス制御システム。
  4.  請求項1~請求項3の何れか1項に記載した直流バス制御システムにおいて、
     前記第1の電力変換器は、第1のDC/DC変換器を含み、前記直流バスの前記電圧と前記第1の電力変換器に接続された前記第1の充放電要素の充放電閾値とを比較した結果に基づいて、前記第1のDC/DC変換器を制御するよう構成されることを特徴とする直流バス制御システム。
  5.  請求項4に記載した直流バス制御システムにおいて、
     前記主安定化装置、及び前記準安定化装置に関する運転指令及び状態情報を送受信可能な監視・指示装置を更に備え、
     前記監視・指示装置は、前記充放電閾値を前記第1の電力変換器に送信するよう構成されることを特徴とする直流バス制御システム。
  6.  請求項1~請求項5の何れか1項に記載した直流バス制御システムにおいて、
     前記第2の電力変換器は、第2のDC/DC変換器を含み、前記第2の充放電要素若しくは前記充電要素の充電閾値または前記第2の充放電要素若しくは前記放電要素の放電閾値と前記直流バスの前記電圧とを比較した結果に基づいて、前記第2のDC/DC変換器を制御するよう構成されることを特徴とする直流バス制御システム。
  7.  請求項6に記載した直流バス制御システムにおいて、
     前記主安定化装置、及び前記準安定化装置に関する運転指令及び状態情報を送受信可能な監視・指示装置を更に備え、
     前記監視・指示装置は、前記充電閾値または前記放電閾値を前記第2の電力変換器に送信するよう構成されることを特徴とする直流バス制御システム。
  8.  請求項1~請求項7の何れか1項に記載した直流バス制御システムにおいて、
     前記蓄電量指標が大きいほど前記バス電圧目標値を大きくすることを特徴とする直流バス制御システム。
  9.  請求項1~請求項8の何れか1項に記載した直流バス制御システムにおいて、
     前記蓄電量指標が前記第1の充放電要素の充電率であることを特徴とする直流バス制御システム。
  10.  前記第2の電力変換器は、前記閾値と前記直流バスの前記電圧との差分が大きいほど前記第2の充放電要素、充電要素、または放電要素の充放電電流を大きくする、請求項1に記載の直流バス制御システム。
  11.  前記の入力電源として再生可能エネルギー電源システムを更に含む、請求項1に記載の直流バス制御システム。
  12.  前記負荷を更に含む、請求項11に記載の直流バス制御システム。
PCT/JP2018/043064 2017-11-21 2018-11-21 直流バス制御システム WO2019103059A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880074799.5A CN111448733A (zh) 2017-11-21 2018-11-21 直流总线控制系统
EP18882169.8A EP3716435A4 (en) 2017-11-21 2018-11-21 DC BUS CONTROL SYSTEM
JP2019555345A JP6923231B2 (ja) 2017-11-21 2018-11-21 直流バス制御システム
CN202410081512.9A CN117833190A (zh) 2017-11-21 2018-11-21 直流总线控制系统
KR1020207014503A KR102444737B1 (ko) 2017-11-21 2018-11-21 직류 버스 제어 시스템
AU2018373453A AU2018373453B2 (en) 2017-11-21 2018-11-21 Direct-current bus control system
US16/878,725 US11133673B2 (en) 2017-11-21 2020-05-20 Direct current bus control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-223808 2017-11-21
JP2017223808 2017-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/878,725 Continuation US11133673B2 (en) 2017-11-21 2020-05-20 Direct current bus control system

Publications (1)

Publication Number Publication Date
WO2019103059A1 true WO2019103059A1 (ja) 2019-05-31

Family

ID=66630534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043064 WO2019103059A1 (ja) 2017-11-21 2018-11-21 直流バス制御システム

Country Status (7)

Country Link
US (1) US11133673B2 (ja)
EP (1) EP3716435A4 (ja)
JP (1) JP6923231B2 (ja)
KR (1) KR102444737B1 (ja)
CN (2) CN111448733A (ja)
AU (1) AU2018373453B2 (ja)
WO (1) WO2019103059A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010227A (ja) * 2019-06-28 2021-01-28 パナソニックIpマネジメント株式会社 蓄電池システム、制御方法、及びプログラム
WO2021200902A1 (ja) * 2020-03-31 2021-10-07 国立研究開発法人理化学研究所 直流バス制御システム
JP2021174773A (ja) * 2020-04-20 2021-11-01 台達電子企業管理(上海)有限公司 燃料電池のエネルギー供給システム及びそれに基づくエネルギー調節方法
WO2021261094A1 (ja) * 2020-06-22 2021-12-30 国立研究開発法人理化学研究所 直流バス制御システム
WO2022004611A1 (ja) 2020-06-30 2022-01-06 古河電気工業株式会社 電力変換器、電力変換器の制御方法、電力システム、電力システムの制御方法及びプログラム
WO2022004615A1 (ja) 2020-06-30 2022-01-06 古河電気工業株式会社 電力変換器、電力変換器の制御方法、電力システム、電力システムの制御方法及びプログラム
WO2022030299A1 (ja) 2020-08-06 2022-02-10 古河電気工業株式会社 電力変換器、電力変換器の制御方法、電力システム、電力システムの制御方法及びプログラム
WO2022059617A1 (ja) 2020-09-15 2022-03-24 古河電気工業株式会社 電力変換器、電力変換器の制御方法、電力システム、電力システムの制御方法およびプログラム
WO2022097413A1 (ja) * 2020-11-05 2022-05-12 株式会社日立製作所 Dcグリッドシステム、制御装置、制御方法
WO2022107583A1 (ja) 2020-11-20 2022-05-27 古河電気工業株式会社 電力システム及び電力システムの制御方法
WO2022130802A1 (ja) 2020-12-17 2022-06-23 古河電気工業株式会社 電力変換器、電力システム及び電力変換器の制御方法
WO2023054406A1 (ja) * 2021-09-29 2023-04-06 国立研究開発法人理化学研究所 直流バス制御システム
WO2023106406A1 (ja) 2021-12-10 2023-06-15 国立研究開発法人理化学研究所 直流バス制御システム
EP4266524A1 (en) * 2022-04-21 2023-10-25 DC Systems B.V. Droop control in a dc operated system
WO2023210123A1 (ja) * 2022-04-28 2023-11-02 株式会社村田製作所 バッテリユニット、電源システム
WO2024034194A1 (ja) * 2022-08-09 2024-02-15 株式会社フジタ 電力制御システム
JP7509050B2 (ja) 2021-02-19 2024-07-02 トヨタ自動車株式会社 発電制御装置、車両、制御方法及び制御プログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11870249B2 (en) * 2018-05-24 2024-01-09 Hamilton Sundstrand Corporation Electrical power system including energy storage modules and shared system controller
KR102245969B1 (ko) * 2019-11-21 2021-04-29 연세대학교 산학협력단 태양광 발전 시스템의 일정 출력 제어를 위한 장치 및 방법
CN112202160B (zh) * 2020-10-20 2022-06-03 国网四川省电力公司电力科学研究院 一种直挂母线式储能控制系统及控制方法
CN113589076B (zh) * 2021-07-23 2024-04-02 西门子(中国)有限公司 飞轮储能中电机负载的模拟方法和计算机可读介质
IT202100019952A1 (it) * 2021-07-27 2023-01-27 Hera S P A Impianto per la produzione e la gestione di energia rinnovabile per aree urbane, industriali e simili
TW202341556A (zh) * 2021-11-11 2023-10-16 美商博隆能源股份有限公司 用於微電網中之負載追隨及備援的混合燃料電池系統及其操作方法
EP4366114A1 (de) * 2022-11-07 2024-05-08 H2-Greenforce, BV Anlage zur autarken und ununterbrochenen bereitstellung von wasserstoff

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224009A (ja) 2004-02-05 2005-08-18 My Way Giken Kk 分散電源システム
JP2006129585A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd 直流配電システムの制御装置及び変換器制御装置
JP2012095418A (ja) * 2010-10-26 2012-05-17 Sharp Corp 直流給電システム
WO2013145618A1 (ja) * 2012-03-26 2013-10-03 パナソニック株式会社 充放電制御装置、及び充放電制御方法
WO2013145658A1 (ja) * 2012-03-26 2013-10-03 パナソニック株式会社 充放電制御装置、蓄電システム、および充放電制御方法
JP2015130732A (ja) * 2014-01-07 2015-07-16 Tdk株式会社 電力安定化装置
JP2017005944A (ja) 2015-06-15 2017-01-05 川崎重工業株式会社 直流安定化電源システム
JP2017175888A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 電力変換システム、電力変換装置
JP2017223808A (ja) 2016-06-14 2017-12-21 富士ゼロックス株式会社 搬送装置、定着装置及び画像形成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58919B2 (ja) 1973-09-14 1983-01-08 マツナカ シゲオ ヒヨウリヒタイシヨウブツピン ノ ヒヨウリケンシユツソウチ
HUE038150T2 (hu) * 2008-11-19 2018-09-28 Toshiba Mitsubishi Elec Ind Kimeneti teljesítmény szabályozó berendezés
WO2011109514A1 (en) * 2010-03-02 2011-09-09 Icr Turbine Engine Corporatin Dispatchable power from a renewable energy facility
EP2715904B1 (en) * 2011-05-24 2016-06-29 Cameron, D. Kevin System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads
DE112012005842T5 (de) 2012-02-08 2014-11-06 Mitsubishi Electric Corporation Energie-Umwandlungsvorrichtung
JP5989478B2 (ja) * 2012-09-20 2016-09-07 シャープ株式会社 蓄電装置および直流システム
CN103762610B (zh) * 2014-01-07 2016-03-02 中国科学院电工研究所 基于主从下垂控制的分布式储能系统
JP2015201973A (ja) * 2014-04-08 2015-11-12 日本電信電話株式会社 給電システム
CN106505616B (zh) * 2016-11-17 2018-12-18 华北电力大学(保定) 一种直流配电网直流电压的调节方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224009A (ja) 2004-02-05 2005-08-18 My Way Giken Kk 分散電源システム
JP2006129585A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd 直流配電システムの制御装置及び変換器制御装置
JP2012095418A (ja) * 2010-10-26 2012-05-17 Sharp Corp 直流給電システム
WO2013145618A1 (ja) * 2012-03-26 2013-10-03 パナソニック株式会社 充放電制御装置、及び充放電制御方法
WO2013145658A1 (ja) * 2012-03-26 2013-10-03 パナソニック株式会社 充放電制御装置、蓄電システム、および充放電制御方法
JP2015130732A (ja) * 2014-01-07 2015-07-16 Tdk株式会社 電力安定化装置
JP2017005944A (ja) 2015-06-15 2017-01-05 川崎重工業株式会社 直流安定化電源システム
JP2017175888A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 電力変換システム、電力変換装置
JP2017223808A (ja) 2016-06-14 2017-12-21 富士ゼロックス株式会社 搬送装置、定着装置及び画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3716435A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010227A (ja) * 2019-06-28 2021-01-28 パナソニックIpマネジメント株式会社 蓄電池システム、制御方法、及びプログラム
JP7390545B2 (ja) 2019-06-28 2023-12-04 パナソニックIpマネジメント株式会社 蓄電池システム、制御方法、及びプログラム
WO2021200902A1 (ja) * 2020-03-31 2021-10-07 国立研究開発法人理化学研究所 直流バス制御システム
JP2021174773A (ja) * 2020-04-20 2021-11-01 台達電子企業管理(上海)有限公司 燃料電池のエネルギー供給システム及びそれに基づくエネルギー調節方法
JP7194769B2 (ja) 2020-04-20 2022-12-22 台達電子企業管理(上海)有限公司 燃料電池のエネルギー供給システム及びそれに基づくエネルギー調節方法
WO2021261094A1 (ja) * 2020-06-22 2021-12-30 国立研究開発法人理化学研究所 直流バス制御システム
WO2022004611A1 (ja) 2020-06-30 2022-01-06 古河電気工業株式会社 電力変換器、電力変換器の制御方法、電力システム、電力システムの制御方法及びプログラム
WO2022004615A1 (ja) 2020-06-30 2022-01-06 古河電気工業株式会社 電力変換器、電力変換器の制御方法、電力システム、電力システムの制御方法及びプログラム
WO2022030299A1 (ja) 2020-08-06 2022-02-10 古河電気工業株式会社 電力変換器、電力変換器の制御方法、電力システム、電力システムの制御方法及びプログラム
WO2022059617A1 (ja) 2020-09-15 2022-03-24 古河電気工業株式会社 電力変換器、電力変換器の制御方法、電力システム、電力システムの制御方法およびプログラム
WO2022097413A1 (ja) * 2020-11-05 2022-05-12 株式会社日立製作所 Dcグリッドシステム、制御装置、制御方法
JP7510850B2 (ja) 2020-11-05 2024-07-04 株式会社日立製作所 Dcグリッドシステム、制御装置、制御方法
WO2022107583A1 (ja) 2020-11-20 2022-05-27 古河電気工業株式会社 電力システム及び電力システムの制御方法
WO2022130802A1 (ja) 2020-12-17 2022-06-23 古河電気工業株式会社 電力変換器、電力システム及び電力変換器の制御方法
JP7509050B2 (ja) 2021-02-19 2024-07-02 トヨタ自動車株式会社 発電制御装置、車両、制御方法及び制御プログラム
WO2023054406A1 (ja) * 2021-09-29 2023-04-06 国立研究開発法人理化学研究所 直流バス制御システム
WO2023106406A1 (ja) 2021-12-10 2023-06-15 国立研究開発法人理化学研究所 直流バス制御システム
EP4266524A1 (en) * 2022-04-21 2023-10-25 DC Systems B.V. Droop control in a dc operated system
WO2023210123A1 (ja) * 2022-04-28 2023-11-02 株式会社村田製作所 バッテリユニット、電源システム
WO2024034194A1 (ja) * 2022-08-09 2024-02-15 株式会社フジタ 電力制御システム

Also Published As

Publication number Publication date
KR20200090163A (ko) 2020-07-28
EP3716435A1 (en) 2020-09-30
US20200280183A1 (en) 2020-09-03
CN111448733A (zh) 2020-07-24
US11133673B2 (en) 2021-09-28
JP6923231B2 (ja) 2021-08-18
KR102444737B1 (ko) 2022-09-19
EP3716435A4 (en) 2021-04-07
CN117833190A (zh) 2024-04-05
AU2018373453B2 (en) 2021-12-09
JPWO2019103059A1 (ja) 2020-11-19
AU2018373453A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
WO2019103059A1 (ja) 直流バス制御システム
US6674263B2 (en) Control system for a renewable energy system
US9800051B2 (en) Method and apparatus for controlling energy flow between dissimilar energy storage devices
Francis et al. Optimized PI+ load–frequency controller using BWNN approach for an interconnected reheat power system with RFB and hydrogen electrolyser units
WO2011114422A1 (ja) 電力供給システム、電力供給方法、プログラム、記録媒体及び電力供給制御装置
JP2010041819A (ja) 太陽光発電装置用の充電制御装置
WO2015001800A1 (ja) マイクログリッドの制御装置及びその制御方法
JP2015192566A (ja) 電力システム及び直流送電方法
JP6802694B2 (ja) 電力供給安定化システムおよび再生エネルギ発電システム
JP2017051083A (ja) 発電システム、発電方法およびプログラム
Dutta et al. Load frequency control of multi‐area hybrid power system integrated with renewable energy sources utilizing FACTS & energy storage system
CN106159980B (zh) 发电系统和能量管理方法
JP2015220889A (ja) 電力供給システム
KR20150085227A (ko) 에너지 저장 시스템 및 그의 제어 방법
JP2016103915A (ja) 蓄電池システムおよび蓄電方法
WO2021261094A1 (ja) 直流バス制御システム
CN106786803A (zh) 独立运行光伏发电系统供大于需时的一种无损功率平衡法
JP6439165B2 (ja) 交流電源装置の出力電力制御方法及び交流電源装置
WO2021200902A1 (ja) 直流バス制御システム
JP6412777B2 (ja) 電力貯蔵システム
JP2016116404A (ja) 交流電源装置の出力電力制御方法及び交流電源装置
KR102463396B1 (ko) 에너지 저장 시스템
JP2015177571A (ja) 蓄電池付きパワーコンディショナ
RU2695633C1 (ru) Модульная электроэнергетическая установка
WO2023054406A1 (ja) 直流バス制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019555345

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018373453

Country of ref document: AU

Date of ref document: 20181121

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018882169

Country of ref document: EP

Effective date: 20200622