WO2019102684A1 - 光検出回路 - Google Patents

光検出回路 Download PDF

Info

Publication number
WO2019102684A1
WO2019102684A1 PCT/JP2018/032910 JP2018032910W WO2019102684A1 WO 2019102684 A1 WO2019102684 A1 WO 2019102684A1 JP 2018032910 W JP2018032910 W JP 2018032910W WO 2019102684 A1 WO2019102684 A1 WO 2019102684A1
Authority
WO
WIPO (PCT)
Prior art keywords
light detection
detection circuit
anode
cathode
input terminal
Prior art date
Application number
PCT/JP2018/032910
Other languages
English (en)
French (fr)
Inventor
牧野 健二
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP18881336.4A priority Critical patent/EP3715803A4/en
Priority to CN201880074769.4A priority patent/CN111417845B/zh
Priority to KR1020207015682A priority patent/KR20200087175A/ko
Priority to US16/647,496 priority patent/US11118970B2/en
Publication of WO2019102684A1 publication Critical patent/WO2019102684A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J1/46Electric circuits using a capacitor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/1626Arrangements with two photodetectors, the signals of which are compared
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/024Arrangements for cooling, heating, ventilating or temperature compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F17/00Amplifiers using electroluminescent element or photocell
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/087Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/99A diode as rectifier being used as a detecting circuit in an amplifying circuit

Definitions

  • the present disclosure relates to a light detection circuit.
  • a light detection circuit including a photodiode (see, for example, Patent Documents 1 and 2).
  • the photodiode the number of electrons and holes corresponding to the light amount (incident light amount) of the incident light is generated at the PN junction composed of the P-type semiconductor and the N-type semiconductor.
  • the anode of the photodiode is connected to the inverting input terminal of the operational amplifier, and a feedback resistor is provided in parallel between the inverting input terminal and the output terminal of the operational amplifier. And feedback capacitors are connected.
  • a photocurrent corresponding to the amount of incident light is input to an amplifier circuit (transimpedance amplifier; TransImpedance Amplifier) composed of an operational amplifier, a feedback resistor and a feedback capacitor, and the photocurrent is amplified. Output as a voltage signal.
  • Transimpedance amplifier TransImpedance Amplifier
  • the light detection circuit for example, when a photodiode having a light reception sensitivity such that the photocurrent generated per 1 W of incident light quantity is several mA is used, in order to obtain an appropriate voltage signal according to the incident light quantity It is necessary to provide a feedback resistor having a large resistance value of several M ⁇ or so. Therefore, the time constant of the transimpedance amplifier becomes large, and it may take time for the light detection circuit to output a voltage signal (output voltage) according to the amount of incident light after the incident light is incident on the photodiode.
  • the present disclosure describes a light detection circuit capable of shortening the response time from the incidence of incident light to the output of an output voltage corresponding to the amount of incident light.
  • a light detection circuit includes a first anode and a first cathode, and a voltage is generated between the first anode and the first cathode by the photovoltaic power generated according to the amount of incident light.
  • a first operational amplifier having a first light detection element, a first non-inverted input terminal, a first inverted input terminal, and a first output terminal.
  • the first non-inverting input terminal is connected to a fixed potential
  • one of the first anode and the first cathode is connected to the first inverting input terminal
  • the other of the first anode and the first cathode is the first output terminal Connected to
  • the first noninverting input terminal of the first operational amplifier is connected to a fixed potential, and one of the first anode and the first cathode of the first light detection element is the first inversion of the first operational amplifier
  • the other of the first anode and the first cathode of the first light detection element is connected to the input terminal, and the other is connected to the first output terminal of the first operational amplifier.
  • the amount of incident light between the first anode and the first cathode Generates a voltage according to the Since the potential of the first inverting input terminal is substantially equal to the fixed potential, the output voltage of the first output terminal is a value based on the voltage generated between the first anode and the first cathode.
  • the voltage generated in the first light detection element according to the amount of incident light becomes the output voltage output from the first operational amplifier as it is, so the output voltage corresponding to the amount of incident light is output after the incident light is incident It is possible to shorten the response time until it is done.
  • the light detection circuit may further include an amplification circuit that amplifies an output voltage generated at the first output terminal.
  • the output voltage of the first output terminal is amplified by the amplifier circuit. This makes it possible to detect the amount of incident light based on the output voltage obtained by amplifying the voltage generated between the first anode and the first cathode of the first light detection element.
  • the amplification circuit may include a second operational amplifier, a first resistance element, and a second resistance element.
  • the second operational amplifier may have a second noninverting input terminal, a second inverting input terminal, and a second output terminal.
  • One end of the first resistance element may be connected to the second inverting input terminal, and the other end of the first resistance element may be connected to the first output terminal.
  • One end of the second resistive element may be connected to the second inverting input terminal, and the other end of the second resistive element may be connected to the second output terminal.
  • the second non-inverting input terminal may be connected to a fixed potential.
  • the first resistance element may be a second light detection element having a second anode and a second cathode.
  • a voltage may be generated between the second anode and the second cathode by the photovoltaic power generated according to the amount of incident light.
  • the voltage generated between the first anode and the first cathode of the first light detection element has a value substantially proportional to the resistance value of the parallel resistance component included in the first light detection element.
  • the amplification factor of the amplification circuit is determined based on the resistance value of the parallel resistance component included in the second light detection element. In the above configuration, for example, when the ambient temperature of the light detection circuit rises, the resistance value of the parallel resistance component included in the first light detection element decreases, so the output voltage of the first output terminal decreases. On the other hand, when the ambient temperature of the light detection circuit rises, the resistance value of the parallel resistance component included in the second light detection element also decreases, so the amplification factor of the amplification circuit increases.
  • the amplification factor of the amplification circuit increases. Also, even if the output voltage of the first output terminal increases based on the ambient temperature, the amplification factor of the amplifier circuit decreases. This makes it possible to reduce the fluctuation of the output voltage of the second output terminal based on the ambient temperature.
  • the second light detection element may be configured on the same chip as the first light detection element.
  • the output voltage of the second output terminal based on the ambient temperature It is possible to further reduce the fluctuation.
  • the first light detection element may be configured of a single or a plurality of first photodiodes connected in series.
  • the second light detection element may be configured of a single or a plurality of second photodiodes connected in series.
  • the number of second photodiodes may be smaller than the number of first photodiodes.
  • the output voltage of the first output terminal is substantially proportional to the product of the resistance value of the parallel resistance component of the first photodiode and the number of first photodiodes.
  • the amplification circuit is an inversion amplification circuit
  • the amplification factor is approximately inversely proportional to the product of the resistance value of the parallel resistance component of the second photodiode and the number of second photodiodes. Therefore, in the above configuration, the output voltage of the second output terminal is substantially proportional to the value obtained by dividing the number of first photodiodes by the number of second photodiodes.
  • the number of second photodiodes smaller than the number of first photodiodes, the variation of the output voltage of the second output terminal based on the ambient temperature can be reduced while the second output terminal having a high voltage value is reduced. It becomes possible to output an output voltage.
  • the first anode may be connected to the first inverting input terminal and the first cathode may be connected to the first output terminal.
  • the voltage generated between the first anode and the first cathode is the output voltage of the first output terminal, the response from when the incident light is incident to when the output voltage corresponding to the amount of incident light is output It becomes possible to shorten time.
  • the first cathode may be connected to the first inverting input terminal and the first anode may be connected to the first output terminal.
  • the voltage generated between the first anode and the first cathode is the output voltage of the first output terminal, the response from when the incident light is incident to when the output voltage corresponding to the amount of incident light is output It becomes possible to shorten time.
  • the light detection circuit may further include a capacitive element.
  • One end of the capacitive element may be connected to the first anode, and the other end of the capacitive element may be connected to the first cathode.
  • the capacitance element can stabilize the operation of the first operational amplifier.
  • a low-pass filter is configured by the parallel resistance component and the capacitive element included in the first light detection element, and it becomes possible to remove the high frequency component included in the output voltage of the first output terminal.
  • the light detection circuit may further include a third resistance element.
  • One end of the third resistance element may be connected to the first anode, and the other end of the third resistance element may be connected to the first cathode.
  • the third resistance element can reduce the influence of the ambient temperature on the gain of the first operational amplifier.
  • FIG. 1 is a diagram showing the configuration of the light detection circuit according to the first embodiment.
  • FIG. 2 is a diagram showing an equivalent circuit of a photodiode.
  • FIG. 3A shows an example of the relationship between the amount of incident light and the output voltage in the light detection circuit shown in FIG.
  • FIG. 3B is a diagram showing an example of the relationship between the amount of incident light and the output voltage in the light detection circuit of the comparative example.
  • FIG. 4 is a diagram showing a first modification of the light detection circuit according to the first embodiment.
  • FIG. 5 is a diagram showing a second modification of the light detection circuit according to the first embodiment.
  • FIG. 6 is a view showing a third modification of the light detection circuit according to the first embodiment.
  • FIG. 1 is a diagram showing the configuration of the light detection circuit according to the first embodiment.
  • FIG. 2 is a diagram showing an equivalent circuit of a photodiode.
  • FIG. 3A shows an example of the relationship between the amount of incident light and the output voltage in
  • FIG. 7 is a diagram showing the configuration of the light detection circuit according to the second embodiment.
  • FIG. 8 is a diagram showing the configuration of the light detection circuit according to the third embodiment.
  • FIG. 9 is a view showing an example of the relationship between the ambient temperature of the light detection element and the parallel resistance component.
  • FIG. 10 is a view showing a first modification of the light detection circuit according to the third embodiment.
  • FIG. 11 is a view showing a second modification of the light detection circuit according to the third embodiment.
  • FIG. 12 is a view showing a third modification of the light detection circuit according to the third embodiment.
  • connection means electrical connection unless specifically described.
  • an aspect in which one element is connected to another element can include that one element is connected to another element via another circuit element such as a resistive element.
  • FIG. 1 is a diagram showing the configuration of the light detection circuit according to the first embodiment.
  • the light detection circuit 1 shown in FIG. 1 is a circuit for detecting the amount of incident light. Specifically, the light detection circuit 1 generates an output voltage Vout1 according to the amount of incident light, and outputs the output voltage Vout1 to the outside.
  • the light detection circuit 1 includes a light detection element 2 (first light detection element) and an operational amplifier 3 (first operational amplifier).
  • the light detection element 2 is a photoelectric conversion element that generates an electrical signal according to the amount of incident light.
  • the light detection element 2 is composed of a plurality of photodiodes 20 (a plurality of first photodiodes) connected in series.
  • Each photodiode 20 is a PN-type photodiode having a PN junction composed of a P-type semiconductor and an N-type semiconductor.
  • the photodiode 20 is, for example, an InAsSb photodiode.
  • the InAsSb photodiode has a semi-insulating substrate and a PN junction portion provided on the semi-insulating substrate, and the PN junction portion is made of InAsSb (indium arsenide antimony) which is a compound semiconductor.
  • the semi-insulating substrate is made of, for example, GaAs (gallium arsenide) which is a compound semiconductor.
  • InAsSb photodiodes are suitable, for example, for the detection of infrared radiation having a wavelength around 3 ⁇ m to 5 ⁇ m.
  • the light detection element 2 is also referred to as a photovoltaic element.
  • Each photodiode 20 has an anode (positive electrode) connected to the P-type semiconductor in the PN junction and a cathode (negative electrode) connected to the N-type semiconductor in the PN junction.
  • a layer of P-type semiconductor and an N-type semiconductor in the PN junction of each photodiode 20 are generated by generating electrons and holes (carriers) whose number is approximately proportional to the amount of incident light at the PN junction of each photodiode 20.
  • Photovoltaic power is generated between the Therefore, by electrically connecting the anode and the cathode of the photodiode 20, a photocurrent Ip having an amount of current corresponding to the amount of incident light flows.
  • FIG. 2 is a diagram showing an equivalent circuit of a photodiode.
  • each photodiode 20 is an equivalent circuit including a current source 12, a diode 13, a capacitance component 14, a parallel resistance component (shunt resistance) 15, and a series resistance component 16.
  • the current source 12 supplies a photocurrent Ip having a current amount substantially proportional to the incident light amount.
  • the diode 13 is connected in parallel to the current source 12.
  • the capacitive component 14 is connected in parallel to the current source 12.
  • the parallel resistance component 15 is connected in parallel to the current source 12 and has a resistance value Rsh0.
  • the series resistance component 16 is connected in series to the current source 12.
  • the parallel resistance component 15 of each photodiode 20 is a resistance component generated by the leak current of the PN junction.
  • the resistance value Rsh0 of the parallel resistance component 15 depends on the size of the band gap at the PN junction. The wider the band gap at the PN junction, the larger the resistance value Rsh0, and the narrower the band gap at the PN junction, the smaller the resistance value Rsh0.
  • photodiodes 20 are shown in FIG. 1, in the light detection circuit 1, for example, 200 photodiodes 20 are connected in series to constitute the light detection element 2.
  • the plurality of photodiodes 20 are connected in series so that the anode of one of the two photodiodes 20 adjacent to each other is connected to the cathode of the other.
  • the anode of the photodiode 20 disposed at one end of the light detection element 2 is not connected to the cathode of another photodiode 20 and constitutes the anode 21 of the light detection element 2.
  • the cathode of the photodiode 20 disposed at the other end of the light detection element 2 is not connected to the anode of another photodiode 20 and constitutes the cathode 22 of the light detection element 2. That is, the light detection element 2 has the anode 21 (first anode) and the cathode 22 (first cathode).
  • the light detection element 2 configured by connecting a plurality of photodiodes 20 in series can also be represented by an equivalent circuit similar to each photodiode 20.
  • the resistance value Rsh1 of the parallel resistance component included in the light detection element 2 corresponds to the number of photodiodes 20 in the resistance value Rsh0. It becomes approximately equal to the value obtained by multiplying.
  • the resistance value Rsh1 is a resistance value between the anode 21 and the cathode 22. Since the resistance value of the series resistance component 16 is much smaller than the resistance value Rsh0, the influence of the series resistance component 16 can be ignored.
  • the operational amplifier 3 is an operational amplifier having a noninverting input terminal 31 (first noninverting input terminal), an inverting input terminal 32 (first inverting input terminal), and an output terminal 33 (first output terminal).
  • the noninverting input terminal 31 is connected to the ground potential (fixed potential).
  • the anode 21 is connected to the inverting input terminal 32.
  • the cathode 22 is connected to the output terminal 33.
  • the light detection circuit 1 outputs the output voltage Vout1 at the output terminal 33 to the outside as a detection result.
  • the non-inverted input terminal 31 may be connected to a fixed potential other than the ground potential. In this case, the fixed potential may have either positive or negative constant value.
  • the number of electrons and holes substantially proportional to the amount of incident light is generated in the light detection element 2.
  • the band gap of the InAsSb photodiode is narrow, so the resistance value Rsh1 is small.
  • the resistance value Rsh1 is several hundreds k ⁇ .
  • substantially all of the photocurrent Ip generated in the light detection element 2 flows to the parallel resistance component included in the light detection element 2.
  • a voltage substantially equal to the product of the resistance value Rsh1 and the photocurrent Ip is generated between the anode 21 and the cathode 22 of the light detection element 2.
  • the voltage generated between the anode 21 and the cathode 22 is a potential difference between the potential of the anode 21 and the potential of the cathode 22.
  • the non-inverting input terminal 31 is connected to the ground potential, and the potential of the inverting input terminal 32 and the potential of the non-inverting input terminal 31 are substantially the same, so the potential of the inverting input terminal 32 is approximately 0V. Therefore, the output voltage Vout1 of the output terminal 33 can be regarded as the same as the voltage generated between the anode 21 and the cathode 22. Thus, the output voltage Vout1 has a value corresponding to the amount of incident light, so that the amount of incident light can be detected by measuring the output voltage Vout1.
  • the output voltage Vout1 of the output terminal 33 is a value obtained by adding the fixed potential to the voltage generated between the anode 21 and the cathode 22. .
  • FIG. 3A shows an example of the relationship between the amount of incident light and the output voltage in the light detection circuit shown in FIG.
  • the horizontal axis indicates the amount of incident light, and the unit is an arbitrary unit.
  • the vertical axis represents the output voltage Vout1, and its unit is millivolts (mV).
  • FIG. 3B is a diagram showing an example of the relationship between the amount of incident light and the output voltage in the light detection circuit of the comparative example. In the light detection circuit of the comparative example, the photocurrent output from the photodiode is converted to the output voltage by the transimpedance amplifier.
  • the cathode of the light detection element is connected to the ground potential
  • the anode of the light detection element is connected to the inverting input terminal of the operational amplifier
  • one end of the feedback capacitor and the feedback resistor connected in parallel with each other is the operational amplifier The other end is connected to the output terminal of the operational amplifier.
  • the horizontal axis indicates the amount of incident light, and the unit thereof is an arbitrary unit.
  • the vertical axis represents the output voltage, and its unit is millivolts (mV).
  • the output voltage Vout1 increases.
  • the output voltage Vout1 is substantially proportional to the amount of incident light, as in the light detection circuit of the comparative example in FIG. 3B, and the amount of incident light and the output voltage Vout1 have a linear relationship. Since the output voltage Vout1 is detected based on the voltage generated between the anode 21 and the cathode 22 in the light detection circuit 1, the light detection circuit 1 is referred to as a voltage readout type (voltage mode). On the other hand, since the light detection circuit of the comparative example operates so as not to change the potential difference between the anode and the cathode of the light detection element, the photocurrent flows from the anode to the transimpedance amplifier.
  • the output voltage is detected based on the current flowing from the anode of the light detection element to the feedback resistor, so the light detection circuit of the comparative example is referred to as current readout type (current mode). .
  • the photocurrent Ip substantially proportional to the amount of incident light generated in the light detection element 2 flows to the parallel resistance component included in the inside of the light detection element 2, so between the anode 21 and the cathode 22 A voltage corresponding to the amount of incident light is generated. Since the potential of the inverting input terminal 32 is substantially equal to the ground potential, the voltage generated between the anode 21 and the cathode 22 is the output voltage Vout1 generated at the output terminal 33.
  • the voltage corresponding to the amount of incident light generated in the light detection element 2 becomes the output voltage Vout1 output from the operational amplifier 3 as it is, according to the amount of incident light after the incident light enters the light detection element 2 It is possible to shorten the response time until the output voltage Vout1 is output.
  • the response time of the photodetection circuit converts the photocurrent Ip into a voltage signal Affected by the time constant of the transimpedance amplifier.
  • the light detection circuit 1 only the light detection element 2 is provided between the inverting input terminal 32 and the output terminal 33. Therefore, the response time from the incidence of incident light to the light detection element 2 to the output of the output voltage Vout1 according to the amount of incident light is either the response time of the light detection element 2 itself or the response time of the operational amplifier 3 It depends on the slower one.
  • a buffer circuit (voltage follower) that performs impedance conversion as a light detection circuit that detects an output voltage according to the amount of incident light.
  • the cathode 22 is connected to the ground potential
  • the anode 21 is connected to the noninverting input terminal of the operational amplifier
  • the inverting input terminal and the output terminal of the operational amplifier are shorted.
  • a fixed voltage having a constant value is not input to any of the inverting input terminal and the non-inverting input terminal, and the operation of the operational amplifier is performed by noise input to the operational amplifier or noise generated by the operational amplifier. It may not be stable.
  • the non-inversion input terminal 31 since the non-inversion input terminal 31 is connected to the ground potential, the stability of the operation of the operational amplifier 3 can be improved.
  • FIG. 4 is a diagram showing a first modification of the light detection circuit according to the first embodiment.
  • the light detection circuit 1A shown in FIG. 4 is different from the light detection circuit 1 shown in FIG. 1 in the connection form of the light detection element 2.
  • the anode 21 is connected to the output terminal 33, and the cathode 22 is connected to the inverting input terminal 32.
  • the same effect as the light detection circuit 1 is exerted.
  • the polarity (positive or negative) of the output voltage Vout1 in the light detection circuit 1A is opposite to the polarity of the output voltage Vout1 in the light detection circuit 1, but the voltage value (absolute value) of the output voltage Vout1 is the same. That is, although the output voltage Vout1 in the light detection circuit 1A has the opposite polarity to the output voltage Vout1 in the light detection circuit 1, the voltage generated between the anode 21 and the cathode 22 is output as in the light detection circuit 1 The output voltage Vout1 of the terminal 33 is obtained.
  • one of the anode 21 and the cathode 22 is connected to the inverting input terminal 32, and the other of the anode 21 and the cathode 22 is connected to the output terminal 33.
  • FIG. 5 is a diagram showing a second modification of the light detection circuit according to the first embodiment.
  • the light detection circuit 1B shown in FIG. 5 is different from the light detection circuit 1 shown in FIG. 1 in that the light detection circuit 1B further includes a capacitive element (capacitor) 23.
  • the capacitive element 23 is connected in parallel to the light detection element 2.
  • One end of the capacitive element 23 is connected to the anode 21 (inverted input terminal 32), and the other end of the capacitive element 23 is connected to the cathode 22 (output terminal 33).
  • the same effect as the light detection circuit 1 is exerted.
  • the operation of the operational amplifier 3 is stabilized.
  • a low pass filter is formed by the parallel resistance component and the capacitive element 23 included in the light detection element 2, and the high frequency component included in the output voltage Vout1 in the light detection circuit 1B is removed.
  • the cathode 22 may be connected to the inverting input terminal 32, and the anode 21 may be connected to the output terminal 33.
  • FIG. 6 is a view showing a third modification of the light detection circuit according to the first embodiment.
  • the light detection circuit 1C shown in FIG. 6 is different from the light detection circuit 1 shown in FIG. 1 in that the light detection circuit 1C further includes a resistance element 24 (third resistance element).
  • the resistance element 24 is connected in parallel to the light detection element 2.
  • One end of the resistive element 24 is connected to the anode 21 (inverted input terminal 32), and the other end of the resistive element 24 is connected to the cathode 22 (output terminal 33).
  • the same effect as the light detection circuit 1 is exerted.
  • the cathode 22 may be connected to the inverting input terminal 32, and the anode 21 may be connected to the output terminal 33.
  • the second modification may be applied to the light detection circuit 1C according to the third modification. That is, one end of the capacitive element 23 and the resistive element 24 connected in parallel to each other may be connected to the anode 21 (inverted input terminal 32), and the other end may be connected to the cathode 22 (output terminal 33).
  • FIG. 7 is a diagram showing the configuration of the light detection circuit according to the second embodiment.
  • the light detection circuit 10 according to the second embodiment is different from the light detection circuit 1 according to the first embodiment in that it further includes an inverting amplification circuit 4 (amplification circuit).
  • the inverting amplification circuit 4 is a circuit that inverts and amplifies the output voltage Vout1.
  • the inverting amplification circuit 4 includes an operational amplifier 40 (second operational amplifier), a resistive element 44 (first resistive element) having a resistance value R1, and a resistive element 45 (second resistive element) having a resistance value R2. Prepare.
  • the operational amplifier 40 has a noninverting input terminal 41 (second noninverting input terminal), an inverting input terminal 42 (second inverting input terminal), and an output terminal 43 (second output terminal).
  • the output terminal 33 of the operational amplifier 3 is connected to the inverting input terminal 42 of the operational amplifier 40 via the resistance element 44.
  • one end of the resistive element 44 is connected to the inverting input terminal 42, and the other end of the resistive element 44 is connected to the output terminal 33.
  • the output voltage Vout1 is input to the inverting amplification circuit 4.
  • One end of the resistive element 45 is connected to the inverting input terminal 42 (one end of the resistive element 44), and the other end of the resistive element 45 is connected to the output terminal 43.
  • the noninverting input terminal 41 is connected to the ground potential (fixed potential).
  • the noninverting input terminal 41 may be connected to a fixed potential other than the ground potential.
  • the fixed potential may have either positive or negative constant value.
  • the fixed potential connected to the noninverting input terminal 41 may be different from or the same as the fixed potential connected to the noninverting input terminal 31 of the operational amplifier 3.
  • the amplification factor of the inverting amplification circuit 4 is the ratio (R2 / R1) of the resistance value R2 to the resistance value R1
  • the inverting amplification circuit 4 amplifies the output voltage Vout1 by-(R2 / R1) times the output voltage Vout2 Generate
  • the resistance value R1 and the resistance value R2 are set such that the amplification factor is 100.
  • the light detection circuit 10 outputs the output voltage Vout2 to the outside as a detection result.
  • the output voltage Vout1 is amplified by the inverting amplification circuit 4. As a result, it is possible to detect the amount of incident light based on the output voltage Vout2 obtained by amplifying the voltage generated between the anode 21 and the cathode 22.
  • the light detection circuit 10 may be provided with a non-inversion amplification circuit (amplification circuit) (not shown) in place of the inversion amplification circuit 4.
  • the non-inverting amplification circuit includes an operational amplifier 40, a resistance element 44, and a resistance element 45.
  • the output terminal 33 of the operational amplifier 3 is connected to the noninverting input terminal 41 of the operational amplifier 40.
  • One end of the resistive element 44 is connected to the inverting input terminal 42, and the other end of the resistive element 44 is connected to the ground potential.
  • One end of the resistive element 45 is connected to the inverting input terminal 42 (one end of the resistive element 44), and the other end of the resistive element 45 is connected to the output terminal 43.
  • the non-inverting amplifier circuit amplifies an output voltage Vout1 by (1 + R2 / R1) times to generate an output voltage Vout2.
  • the first to third modifications of the first embodiment and their combinations may be applied to the light detection circuit 10 according to the second embodiment.
  • FIG. 8 is a diagram showing the configuration of the light detection circuit according to the third embodiment.
  • the light detection circuit 100 according to the third embodiment is different from the light detection circuit 10 according to the second embodiment in that an inverting amplification circuit 4A is provided instead of the inverting amplification circuit 4. It is different.
  • the inverting amplification circuit 4A is different from the inverting amplification circuit 4 in that a light detection element 50 (second light detection element) is provided instead of the resistance element 44.
  • the anode 52 (second anode) of the light detection element 50 is connected to the output terminal 33
  • the cathode 53 (second cathode) of the light detection element 50 is connected to the inverting input terminal 42.
  • the light detection element 50 has a plurality of photodiodes 51 (a plurality of second photodiodes) connected in series.
  • the light detection element 50 is composed of two photodiodes 51.
  • Each photodiode 51 is, for example, an InAsSb photodiode, and may be made of the same material as the photodiode 20.
  • the light detection element 50 includes a parallel resistance component having a resistance value Rsh2.
  • the parallel resistance component of the light detection element 50 is a resistance component generated between the anode 52 and the cathode 53. That is, the parallel resistance component of the light detection element 50 constitutes a resistance element (first resistance element) connected between the output terminal 33 of the operational amplifier 3 and the inverting input terminal 42 of the operational amplifier 40.
  • the amplification factor of the inverting amplification circuit 4A is the ratio (R2 / Rsh2) of the resistance value R2 to the resistance value Rsh2. Therefore, in the light detection circuit 100, the output voltage Vout1 is amplified by-(R2 / Rsh2) times. An output voltage Vout2 obtained thereby is generated.
  • the resistance value of the series resistance component of the photodiode 51 (the light detection element 50) is much smaller than the resistance value of the parallel resistance component of the photodiode 51 (the light detection element 50). It can be ignored.
  • FIG. 9 is a view showing an example of the relationship between the ambient temperature of the light detection element and the parallel resistance component.
  • FIG. 9 shows the relationship between the resistance value Rsh1 ( ⁇ ) of the parallel resistance component of the light detection element 2 having 245 InAsSb photodiodes connected in series and the ambient temperature (° C.).
  • the resistance value Rsh1 decreases as the ambient temperature of the light detection element 2 increases, and the resistance value Rsh1 increases as the ambient temperature of the light detection element 2 decreases.
  • the output voltage Vout1 may vary depending on the amount of incident light.
  • the resistance value Rsh1 is It becomes n1 ⁇ Rsh0.
  • the resistance value of the parallel resistance component included in the photodiode 51 is the same as the resistance value Rsh 0 of the photodiode 20 Assuming that, the resistance value Rsh2 is n2 ⁇ Rsh0.
  • the output voltage Vout2 is obtained by the following equation (1). Furthermore, following Formula (2) is obtained by rearranging Formula (1).
  • the output voltage Vout2 is The resistance value of each photodiode 51 and each photodiode 20 is not affected. Therefore, even if the resistance value Rsh0 (Rsh1) has a different value depending on the ambient temperature, the output voltage Vout2 becomes substantially the same if the incident light amount is the same.
  • the resistance value Rsh1 is 100 k ⁇ (Rsh0 is 0.5 k ⁇ ), and the resistance value Rsh2 is 1 k ⁇ .
  • the output voltage Vout1 at this time is 1 mV
  • the amplification factor of the inverting amplification circuit 4 is 10 times
  • the output voltage Vout2 is 10 mV.
  • the light detection element 50 may be configured on the same chip as the light detection element 2 so that the temperature characteristics of the parallel resistance components are substantially the same.
  • the PN junctions of the respective photodiodes 20 and the respective photodiodes 51 are provided on the same semi-insulating substrate.
  • the cathode 22 and the anode 52 are connected to each other on the semi-insulating substrate, and the cathode 22 and the anode 52 are connected to each other on the semi-insulating substrate in which the light detection element 2 and the light detection element 50 are configured.
  • Three external connection terminals consisting of an electrode, an anode 21 and a cathode 53 may be provided.
  • Each photodiode 20 and each photodiode 51 may have a PN junction of the same structure.
  • the light detection element 50 may be shielded from light, and incident light may be incident on the light detection element 50 as in the light detection element 2.
  • the voltage generated between the anode 21 and the cathode 22 is substantially equal to the resistance value Rsh1 multiplied by the photocurrent Ip.
  • the resistance value Rsh1 decreases, and the output voltage Vout1 decreases.
  • the resistance value Rsh2 also decreases, and the amplification factor of the inverting amplification circuit 4 increases. Therefore, even if the output voltage Vout1 decreases based on the ambient temperature, the amplification factor of the inverting amplification circuit 4 increases, so the influence of the fluctuation of the resistance value Rsh1 due to the ambient temperature is reduced (cancelled).
  • the resistance value Rsh1 increases, and the output voltage Vout1 increases.
  • the resistance value Rsh2 also increases, and the amplification factor of the inverting amplification circuit 4 decreases. Therefore, even if the output voltage Vout1 increases based on the ambient temperature, the amplification factor of the inverting amplification circuit 4 decreases, so the influence of the fluctuation of the resistance value Rsh1 due to the ambient temperature is reduced (cancelled). This makes it possible to reduce the fluctuation of the output voltage Vout2 based on the ambient temperature.
  • the parallel resistance components of the respective photodiodes 20 and the respective photodiodes 51 have the same resistance value Rsh0. Therefore, the parallel resistance component of each photodiode 20 and the parallel resistance component of each photodiode 51 have substantially the same temperature characteristics. Thereby, as shown in the equation (2), the output voltage Vout2 is not influenced by the parallel resistance component of each photodiode 20 and each photodiode 51, so that the fluctuation of the output voltage Vout2 based on the ambient temperature is further reduced. Is possible.
  • the output voltage Vout2 is approximately proportional to the value (n1 / n2) obtained by dividing the number n1 of the photodiodes 20 by the number n2 of the photodiodes 51. Therefore, by making the number n2 of the photodiodes 51 smaller than the number n1 of the photodiodes 20, it is possible to output the output voltage Vout2 having a high voltage value while reducing the fluctuation of the output voltage Vout2 based on the ambient temperature. It becomes.
  • the photocurrent Ip generated by the light detection element 2 is determined by the quantum efficiency, the fluctuation of the photocurrent Ip based on the individual difference between the light detection elements 2 and 50 is small.
  • the quantum efficiency is a value obtained by dividing the number of electrons or holes generated according to the amount of incident light by the number of photons of incident light.
  • the resistance values Rsh1 and Rsh2 fluctuate due to the individual differences of the light detection elements 2 and 50.
  • the resistance value of the parallel resistance component of each photodiode 20 and each photodiode 51 becomes the same value (resistance value Rsh0).
  • the output voltage Vout2 is not influenced by the parallel resistance component of each photodiode 20 and each photodiode 51, and the fluctuation of the output voltage Vout2 based on the individual difference is reduced. It becomes possible.
  • the parallel resistance component of each photodiode 51 has a temperature characteristic such that the resistance value decreases as the ambient temperature increases, and the resistance value increases as the ambient temperature decreases.
  • the light detection element 2 and the light detection element 50 may be configured by different chips.
  • FIG. 10 is a view showing a first modification of the light detection circuit according to the third embodiment.
  • the light detection circuit 100A differs from the light detection circuit 100 shown in FIG. 8 in that it includes an inverting amplification circuit 4B instead of the inverting amplification circuit 4A.
  • the inverting amplification circuit 4B is different from the inverting amplification circuit 4A in the connection form of the light detection element 50.
  • the cathode 53 is connected to the output terminal 33, and the anode 52 is connected to the inverting input terminal 42.
  • the same effect as that of the light detection circuit 100 is exerted. That is, even if the polarity of the light detection element 50 in the light detection circuit 100A is opposite to the polarity of the light detection element 50 in the light detection circuit 100, the same effect as that of the light detection circuit 100 can be obtained.
  • FIG. 11 is a view showing a second modification of the light detection circuit according to the third embodiment.
  • the light detection circuit 100B differs from the light detection circuit 100 shown in FIG. 8 in the connection form of the light detection element 2.
  • the cathode 22 is connected to the inverting input terminal 32, and the anode 21 is connected to the output terminal 33.
  • the same effect as the light detection circuit 100 is exerted. That is, even if the polarity of the light detection element 2 in the light detection circuit 100B is opposite to the polarity of the light detection element 2 in the light detection circuit 100, the same effect as that of the light detection circuit 100 is achieved.
  • FIG. 12 is a view showing a third modification of the light detection circuit according to the third embodiment.
  • the light detection circuit 100C is different in the connection form of the light detection element 2 from the light detection circuit 100A shown in FIG.
  • the cathode 22 is connected to the inverting input terminal 32, and the anode 21 is connected to the output terminal 33.
  • the same effect as that of the light detection circuit 100 is exerted. That is, even if the polarity of the light detection element 50 in the light detection circuit 100C and the polarity of the light detection element 2 are both opposite to the polarities of the light detection element 50 and the light detection element 2 in the light detection circuit 100, the light detection circuit The same effect as 100 is achieved.
  • the second and third modifications of the first embodiment and the combination thereof may be applied to the light detection circuits 100, 100A, 100B, and 100C according to the third embodiment.
  • the PN junction of each photodiode 20 is And InAsSb may be made of a semiconductor material other than InAsSb.
  • the PN junction of each photodiode 20 may be made of single element semiconductor Si (silicon) or Ge (germanium).
  • the PN junction of each photodiode 20 may be made of compound semiconductor InGaAs (indium gallium arsenide), GaAs (gallium arsenide), GaAlAs (aluminum gallium arsenide), or InP (indium phosphide).
  • the PN junction of each photodiode 51 may be made of a semiconductor material different from the PN junction of each photodiode 20.
  • the number n 2 of the photodiodes 51 may be equal to or more than the number n 1 of the photodiodes 20.
  • Each photodiode 20 and each photodiode 51 may be a PIN photodiode having a PIN junction.
  • amplification circuits other than the inversion amplification circuit 4 and the non-inversion amplification circuit may be used.
  • the circuit for amplifying the output voltage Vout1 may not include the operational amplifier 40.
  • Photodetection circuit 2 ... Photodetection element, 21 ... Anode, 22 ... Cathode, 3 ... Operational amplifier, 4, 4A, 4B ... Inverted amplification circuit , 50 ... light detection element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)
  • Amplifiers (AREA)

Abstract

光検出回路は、第1アノード及び第1カソードを有し、入射光量に応じて生じた光起電力によって第1アノードと第1カソードとの間に電圧が発生する第1光検出素子と、第1非反転入力端子、第1反転入力端子及び第1出力端子を有する第1演算増幅器と、を備え、第1非反転入力端子は固定電位に接続され、第1アノード及び第1カソードのうちの一方は第1反転入力端子に接続され、第1アノード及び第1カソードのうちの他方は第1出力端子に接続される。

Description

光検出回路
 本開示は、光検出回路に関する。
 フォトダイオードを備える光検出回路が知られている(例えば、特許文献1,2参照)。フォトダイオードでは、P型半導体及びN型半導体から構成されるPN接合部に入射光の光量(入射光量)に応じた数の電子及び正孔が生成される。例えば特許文献1に記載の光検出回路では、フォトダイオードのアノードが演算増幅器の反転入力端子に接続されており、演算増幅器の反転入力端子及び出力端子の間には、並列に設けられた帰還抵抗及び帰還容量が接続されている。フォトダイオードに入射光が入射することで、入射光量に応じた光電流が演算増幅器、帰還抵抗及び帰還容量から構成される増幅回路(トランスインピーダンスアンプ;TransImpedance Amplifier)に入力され、光電流が増幅されて電圧信号として出力される。
特開2002-134761号公報 特開2005-216984号公報
 上述の光検出回路において、例えば入射光量1Wあたりに生成される光電流が数mAであるような受光感度を有するフォトダイオードが用いられる場合、入射光量に応じた適切な電圧信号を得るためには数MΩ程度の大きい抵抗値を有する帰還抵抗を設ける必要がある。このため、トランスインピーダンスアンプの時定数が大きくなり、フォトダイオードに入射光が入射してから光検出回路が入射光量に応じた電圧信号(出力電圧)を出力するまでに時間を要するおそれがある。
 本開示は、入射光が入射してから入射光量に応じた出力電圧が出力されるまでの応答時間を短縮することが可能な光検出回路を説明する。
 本開示の一側面に係る光検出回路は、第1アノード及び第1カソードを有し、入射光量に応じて生じた光起電力によって第1アノードと第1カソードとの間に電圧が発生する第1光検出素子と、第1非反転入力端子、第1反転入力端子及び第1出力端子を有する第1演算増幅器と、を備える。第1非反転入力端子は固定電位に接続され、第1アノード及び第1カソードのうちの一方は第1反転入力端子に接続され、第1アノード及び第1カソードのうちの他方は第1出力端子に接続される。
 この光検出回路では、第1演算増幅器の第1非反転入力端子は固定電位に接続され、第1光検出素子の第1アノード及び第1カソードのうちの一方は第1演算増幅器の第1反転入力端子に接続され、第1光検出素子の第1アノード及び第1カソードのうちの他方は第1演算増幅器の第1出力端子に接続される。例えば、入射光量に応じて第1光検出素子で発生した光電流が、第1光検出素子の内部に含まれる並列抵抗成分に流れる場合、第1アノードと第1カソードとの間には入射光量に応じた電圧が発生する。第1反転入力端子の電位は固定電位に略等しくなるので、第1出力端子の出力電圧は第1アノードと第1カソードとの間に発生する電圧に基づいた値となる。これにより、入射光量に応じて第1光検出素子において発生した電圧が、そのまま第1演算増幅器から出力される出力電圧となるので、入射光が入射してから入射光量に応じた出力電圧が出力されるまでの応答時間を短縮することが可能となる。
 光検出回路は、第1出力端子に発生する出力電圧を増幅する増幅回路をさらに備えてもよい。
 この場合、第1出力端子の出力電圧が増幅回路によって増幅される。これにより、第1光検出素子の第1アノードと第1カソードとの間に発生する電圧を増幅することで得られる出力電圧に基づいて、入射光量を検出することが可能となる。
 増幅回路は、第2演算増幅器、第1抵抗素子及び第2抵抗素子を有してもよい。第2演算増幅器は、第2非反転入力端子、第2反転入力端子及び第2出力端子を有してもよい。第1抵抗素子の一端は第2反転入力端子に接続されてもよく、第1抵抗素子の他端は第1出力端子に接続されてもよい。第2抵抗素子の一端は第2反転入力端子に接続されてもよく、第2抵抗素子の他端は第2出力端子に接続されてもよい。第2非反転入力端子は固定電位に接続されてもよい。
 この場合、第2抵抗素子の抵抗値を第1抵抗素子の抵抗値で除算することで得られる増幅率で、第1出力端子の出力電圧を増幅することが可能となる。
 第1抵抗素子は、第2アノード及び第2カソードを有する第2光検出素子であってもよい。第2光検出素子では、入射光量に応じて生じた光起電力によって第2アノードと第2カソードとの間に電圧が発生してもよい。
 第1光検出素子の第1アノードと第1カソードとの間に発生する電圧は、第1光検出素子に含まれる並列抵抗成分の抵抗値に略比例した値となる。増幅回路の増幅率は、第2光検出素子に含まれる並列抵抗成分の抵抗値に基づいて決まる。上記構成では、例えば、光検出回路の周囲温度が高くなると、第1光検出素子に含まれる並列抵抗成分の抵抗値が減少するので、第1出力端子の出力電圧は減少する。一方、光検出回路の周囲温度が高くなると、第2光検出素子に含まれる並列抵抗成分の抵抗値も減少するので、増幅回路の増幅率は増加する。このため、周囲温度に基づいて第1出力端子の出力電圧が減少しても、増幅回路の増幅率は増加する。また周囲温度に基づいて第1出力端子の出力電圧が増加しても、増幅回路の増幅率は減少する。これにより、周囲温度に基づいた第2出力端子の出力電圧の変動を低減することが可能となる。
 第2光検出素子は、第1光検出素子と同一のチップに構成されてもよい。
 この場合、第1光検出素子における並列抵抗成分の温度特性と、第2光検出素子における並列抵抗成分の温度特性とが略同一となるので、周囲温度に基づいた第2出力端子の出力電圧の変動をより低減することが可能となる。
 第1光検出素子は、単一又は直列に接続された複数の第1フォトダイオードで構成されてもよい。第2光検出素子は、単一又は直列に接続された複数の第2フォトダイオードで構成されてもよい。
 この場合、第1フォトダイオードのP型半導体の層及びN型半導体の層に入射光量に応じた数の正孔及び電子が生成されるので、入射光量に応じた出力電圧を検出することが可能となる。
 第2フォトダイオードの個数は、第1フォトダイオードの個数よりも少なくてもよい。
 第1出力端子の出力電圧は、第1フォトダイオードの並列抵抗成分の抵抗値と第1フォトダイオードの個数とを乗算した値に略比例する。例えば、増幅回路が反転増幅回路の場合、増幅率は第2フォトダイオードの並列抵抗成分の抵抗値と第2フォトダイオードの個数とを乗算した値に略反比例する。このため、上記構成では、第2出力端子の出力電圧は、第1フォトダイオードの個数を第2フォトダイオードの個数で除算した値に略比例する。従って、第2フォトダイオードの個数を第1フォトダイオードの個数よりも少なくすることで、周囲温度に基づく第2出力端子の出力電圧の変動を低減しつつ、高い電圧値を有する第2出力端子の出力電圧を出力することが可能となる。
 第1アノードは第1反転入力端子に接続されてもよく、第1カソードは第1出力端子に接続されてもよい。
 この場合、第1アノードと第1カソードとの間に発生する電圧が第1出力端子の出力電圧となるので、入射光が入射してから入射光量に応じた出力電圧が出力されるまでの応答時間を短縮することが可能となる。
 第1カソードは第1反転入力端子に接続されてもよく、第1アノードは第1出力端子に接続されてもよい。
 この場合、第1アノードと第1カソードとの間に発生する電圧が第1出力端子の出力電圧となるので、入射光が入射してから入射光量に応じた出力電圧が出力されるまでの応答時間を短縮することが可能となる。
 光検出回路は、容量素子をさらに備えてもよい。容量素子の一端は第1アノードに接続されてもよく、容量素子の他端は第1カソードに接続されてもよい。
 この場合、容量素子によって第1演算増幅器の動作を安定させることが可能となる。また、第1光検出素子に含まれる並列抵抗成分と容量素子とによってローパスフィルタが構成され、第1出力端子の出力電圧に含まれる高周波成分を除去することが可能となる。
 光検出回路は、第3抵抗素子をさらに備えてもよい。第3抵抗素子の一端は第1アノードに接続されてもよく、第3抵抗素子の他端は第1カソードに接続されてもよい。
 この場合、第3抵抗素子によって第1演算増幅器の利得に対する周囲温度の影響を緩和することが可能となる。
 本開示によれば、入射光が入射してから入射光量に応じた出力電圧が出力されるまでの応答時間を短縮することが可能となる。
図1は、第1実施形態に係る光検出回路の構成を示す図である。 図2は、フォトダイオードの等価回路を示す図である。 図3の(a)は、図1に示される光検出回路における入射光量と出力電圧との関係の一例を示す図である。図3の(b)は、比較例の光検出回路における入射光量と出力電圧との関係の一例を示す図である。 図4は、第1実施形態に係る光検出回路の第1変形例を示す図である。 図5は、第1実施形態に係る光検出回路の第2変形例を示す図である。 図6は、第1実施形態に係る光検出回路の第3変形例を示す図である。 図7は、第2実施形態に係る光検出回路の構成を示す図である。 図8は、第3実施形態に係る光検出回路の構成を示す図である。 図9は、光検出素子の周囲温度と並列抵抗成分との関係の一例を示す図である。 図10は、第3実施形態に係る光検出回路の第1変形例を示す図である。 図11は、第3実施形態に係る光検出回路の第2変形例を示す図である。 図12は、第3実施形態に係る光検出回路の第3変形例を示す図である。
 以下、図面を参照しながら、実施形態に係る光検出回路を説明する。各図において同一又は相当の部分には同一の符号を付し、重複する説明を省略する。なお、以下の説明において、「接続」とは、特に説明がない場合には、電気的な接続を意味する。例えば、一の要素が他の要素に接続される態様には、一の要素が抵抗素子等の他の回路素子を介して他の要素に接続されることが含まれ得る。
 図1は、第1実施形態に係る光検出回路の構成を示す図である。図1に示される光検出回路1は、入射光量を検出するための回路である。具体的には、光検出回路1は、入射光量に応じた出力電圧Vout1を生成し、出力電圧Vout1を外部に出力する。光検出回路1は、光検出素子2(第1光検出素子)と、演算増幅器3(第1演算増幅器)と、を備える。
 光検出素子2は、入射光量に応じた電気信号を生成する光電変換素子である。光検出素子2は、直列に接続された複数のフォトダイオード20(複数の第1フォトダイオード)で構成される。各フォトダイオード20は、P型半導体及びN型半導体から構成されるPN接合部を有するPN型フォトダイオードである。フォトダイオード20は、例えば、InAsSbフォトダイオードである。InAsSbフォトダイオードは、半絶縁性基板と、半絶縁性基板上に設けられたPN接合部と、を有し、PN接合部は化合物半導体であるInAsSb(インジウムヒ素アンチモン)で構成される。半絶縁性基板は、例えば、化合物半導体であるGaAs(ヒ化ガリウム)で構成される。InAsSbフォトダイオードは、例えば3μm~5μm付近の波長を有する赤外線の検出に適している。なお、光検出素子2は光起電力素子とも称される。
 各フォトダイオード20は、PN接合部におけるP型半導体に接続されたアノード(正電極)と、PN接合部におけるN型半導体に接続されたカソード(負電極)とを有する。各フォトダイオード20のPN接合部において、入射光量に略比例した数の電子及び正孔(キャリア)が生成されることで、各フォトダイオード20のPN接合部におけるP型半導体の層とN型半導体の層との間に光起電力が生成される。このため、フォトダイオード20のアノードとカソードとの間が電気的に接続されることで、入射光量に応じた電流量を有する光電流Ipが流れる。
 図2は、フォトダイオードの等価回路を示す図である。図2に示されるように、各フォトダイオード20は、電流源12と、ダイオード13と、容量成分14と、並列抵抗成分(シャント抵抗)15と、直列抵抗成分16と、を備える等価的な回路(等価回路)11で表され得る。電流源12は、入射光量に略比例した電流量を有する光電流Ipを流す。ダイオード13は、電流源12に対して並列に接続される。容量成分14は、電流源12に対して並列に接続される。並列抵抗成分15は、電流源12に対して並列に接続され、抵抗値Rsh0を有する。直列抵抗成分16は、電流源12に対して直列に接続される。各フォトダイオード20の並列抵抗成分15は、PN接合部のリーク電流によって生じる抵抗成分である。並列抵抗成分15の抵抗値Rsh0は、PN接合部におけるバンドギャップの大きさに依存する。PN接合部におけるバンドギャップが広いほど、抵抗値Rsh0は大きくなり、PN接合部におけるバンドギャップが狭いほど、抵抗値Rsh0は小さくなる。
 図1では4つのフォトダイオード20が示されているが、光検出回路1では、例えば200個のフォトダイオード20が直列に接続されることで、光検出素子2が構成される。光検出素子2では、互いに隣り合う2つのフォトダイオード20の一方が有するアノードが、他方が有するカソードに接続されるように、複数のフォトダイオード20が直列に接続される。光検出素子2において一端に配置されるフォトダイオード20のアノードは、他のフォトダイオード20のカソードに接続されておらず、光検出素子2のアノード21を構成する。光検出素子2において他端に配置されるフォトダイオード20のカソードは、他のフォトダイオード20のアノードに接続されておらず、光検出素子2のカソード22を構成する。つまり、光検出素子2は、アノード21(第1アノード)及びカソード22(第1カソード)を有する。
 複数のフォトダイオード20が直列に接続されて構成される光検出素子2も、各フォトダイオード20と同様の等価回路で表され得る。各フォトダイオード20のバンドギャップが狭い場合、光電流Ipのほとんどが並列抵抗成分15に流れるので、光検出素子2に含まれる並列抵抗成分の抵抗値Rsh1は、抵抗値Rsh0にフォトダイオード20の個数を乗算することで得られる値に略等しくなる。この抵抗値Rsh1は、アノード21とカソード22との間の抵抗値である。なお、直列抵抗成分16の抵抗値は、抵抗値Rsh0に比べて非常に小さいので、直列抵抗成分16の影響を無視することができる。
 演算増幅器3は、非反転入力端子31(第1非反転入力端子)と、反転入力端子32(第1反転入力端子)と、出力端子33(第1出力端子)とを有するオペアンプである。非反転入力端子31は接地電位(固定電位)に接続される。反転入力端子32にはアノード21が接続される。出力端子33にはカソード22が接続される。光検出回路1は、出力端子33における出力電圧Vout1を検出結果として外部に出力する。なお、非反転入力端子31は接地電位以外の固定電位に接続されてもよい。この場合、固定電位は正負いずれの一定値を有していてもよい。
 以上のように構成された光検出回路1において、光検出素子2に入射光が入射すると、入射光量に略比例した数の電子及び正孔が光検出素子2に生成される。各フォトダイオード20がInAsSbフォトダイオードである場合、InAsSbフォトダイオードのバンドギャップは狭いので、抵抗値Rsh1は小さい。例えば、200~300個のInAsSbフォトダイオードを直列に接続した場合における抵抗値Rsh1は数百kΩである。また、演算増幅器3の反転入力端子32に入力可能な電流は非常に小さいので、アノード21から光検出素子2の外部に光電流Ipが流れることができない。このため、光検出素子2に生成された光電流Ipの略全てが、光検出素子2に含まれる並列抵抗成分に流れる。その結果、光検出素子2のアノード21とカソード22との間には、抵抗値Rsh1と光電流Ipとを乗算した値に略等しい電圧が発生する。アノード21とカソード22との間に発生する電圧は、アノード21の電位とカソード22の電位との電位差である。
 非反転入力端子31は接地電位に接続されており、反転入力端子32の電位と非反転入力端子31の電位とは略同一となるので、反転入力端子32の電位は略0Vとなる。このため、出力端子33の出力電圧Vout1は、アノード21とカソード22との間に発生する電圧と同一とみなされ得る。これにより、出力電圧Vout1は入射光量に応じた値となるので、出力電圧Vout1を計測することによって入射光量を検出することができる。なお、非反転入力端子31が接地電位以外の固定電位に接続される場合、出力端子33の出力電圧Vout1は、アノード21とカソード22との間に発生する電圧に固定電位を加えた値となる。
 次に、図3の(a)及び図3の(b)を用いて入射光量と出力電圧との関係を説明する。図3の(a)は、図1に示される光検出回路における入射光量と出力電圧との関係の一例を示す図である。図3の(a)では、横軸は入射光量を示しており、その単位は任意単位(arbitrary unit)である。縦軸は出力電圧Vout1を示しており、その単位はミリボルト(mV)である。図3の(b)は、比較例の光検出回路における入射光量と出力電圧との関係の一例を示す図である。比較例の光検出回路では、トランスインピーダンスアンプによってフォトダイオードから出力される光電流が出力電圧に変換される。このトランスインピーダンスアンプでは、光検出素子のカソードが接地電位に接続され、光検出素子のアノードが演算増幅器の反転入力端子に接続され、互いに並列に接続された帰還容量及び帰還抵抗の一端が演算増幅器の反転入力端子に接続され、他端が演算増幅器の出力端子に接続される。図3の(b)では、横軸は入射光量を示しており、その単位は任意単位(arbitrary unit)である。縦軸は出力電圧を示しており、その単位はミリボルト(mV)である。
 図3の(a)に示されるように、入射光量が増加すると出力電圧Vout1は増加する。また、出力電圧Vout1は、図3の(b)における比較例の光検出回路と同様に、入射光量に略比例しており、入射光量と出力電圧Vout1とは線形な関係を有する。なお、光検出回路1ではアノード21とカソード22との間に発生する電圧に基づいて出力電圧Vout1が検出されるので、光検出回路1は電圧読出し型(電圧モード)と称される。一方、比較例の光検出回路は、光検出素子のアノード及びカソード間の電位差を変化させないように動作するので、光電流がアノードからトランスインピーダンスアンプに流れる。このため、比較例の光検出回路では光検出素子のアノードから帰還抵抗に流れる電流に基づいて出力電圧が検出されるので、比較例の光検出回路は電流読出し型(電流モード)と称される。
 光検出回路1では、光検出素子2で発生した入射光量に略比例した光電流Ipが、光検出素子2の内部に含まれる並列抵抗成分に流れるので、アノード21とカソード22との間には入射光量に応じた電圧が発生する。反転入力端子32の電位は接地電位に略等しいので、アノード21とカソード22との間に発生する電圧が出力端子33において発生する出力電圧Vout1となる。このように、光検出素子2において発生した入射光量に応じた電圧が、そのまま演算増幅器3から出力される出力電圧Vout1となるので、入射光が光検出素子2に入射してから入射光量に応じた出力電圧Vout1を出力するまでの応答時間を短縮することが可能となる。
 演算増幅器3の反転入力端子32と出力端子33との間に、並列接続された帰還抵抗及び帰還容量が設けられる光検出回路では、光検出回路の応答時間は、光電流Ipを電圧信号に変換するトランスインピーダンスアンプの時定数の影響を受ける。これに対して、光検出回路1では、反転入力端子32と出力端子33との間には光検出素子2のみが設けられる。このため、光検出素子2に入射光が入射してから入射光量に応じた出力電圧Vout1が出力されるまでの応答時間は、光検出素子2そのものの応答時間及び演算増幅器3の応答時間のいずれか遅い方によって決まる。
 入射光量に応じた出力電圧を検出する光検出回路として、インピーダンス変換を行うバッファ回路(ボルテージフォロワ)を用いることが考えられる。具体的には、バッファ回路では、カソード22が接地電位に接続され、アノード21が演算増幅器の非反転入力端子に接続され、演算増幅器の反転入力端子と出力端子との間が短絡される。しかしながら、このバッファ回路では、反転入力端子及び非反転入力端子のいずれにも一定値を有する固定電圧が入力されず、演算増幅器に入力されるノイズ又は演算増幅器で発生するノイズによって演算増幅器の動作が安定しないおそれがある。これに対して、光検出回路1では、非反転入力端子31は接地電位に接続されるので、演算増幅器3の動作の安定性を向上させることが可能となる。
 図4は、第1実施形態に係る光検出回路の第1変形例を示す図である。図4に示された光検出回路1Aは、図1に示された光検出回路1と比較して、光検出素子2の接続形態において相違する。具体的には、アノード21が出力端子33に接続され、カソード22が反転入力端子32に接続される。
 光検出回路1Aにおいても光検出回路1と同様の効果が奏される。光検出回路1Aにおける出力電圧Vout1の極性(正負)は、光検出回路1における出力電圧Vout1の極性と反対であるが、出力電圧Vout1の電圧値(絶対値)は同一である。つまり、光検出回路1Aにおける出力電圧Vout1は、光検出回路1における出力電圧Vout1と反対の極性を有するが、光検出回路1と同様に、アノード21とカソード22との間に発生する電圧が出力端子33の出力電圧Vout1となる。このように、光検出回路1,1Aでは、アノード21及びカソード22のうちの一方が反転入力端子32に接続され、アノード21及びカソード22のうちの他方が出力端子33に接続される。
 図5は、第1実施形態に係る光検出回路の第2変形例を示す図である。図5に示された光検出回路1Bは、図1に示された光検出回路1と比較して、容量素子(キャパシタ)23をさらに備える点において相違する。容量素子23は、光検出素子2に並列に接続されている。容量素子23の一端はアノード21(反転入力端子32)に接続され、容量素子23の他端はカソード22(出力端子33)に接続される。
 光検出回路1Bにおいても光検出回路1と同様の効果が奏される。光検出回路1Bでは、容量素子23によって、位相余裕が小さい場合に演算増幅器3の発振を抑制できるので、演算増幅器3の動作が安定する。また、光検出素子2に含まれる並列抵抗成分と容量素子23とによってローパスフィルタが構成され、光検出回路1Bにおける出力電圧Vout1に含まれる高周波成分が除去される。なお、第2変形例において、第1変形例と同様に、カソード22が反転入力端子32に接続されてもよく、アノード21が出力端子33に接続されてもよい。
 図6は、第1実施形態に係る光検出回路の第3変形例を示す図である。図6に示された光検出回路1Cは、図1に示された光検出回路1と比較して、抵抗素子24(第3抵抗素子)をさらに備える点において相違する。抵抗素子24は、光検出素子2に並列に接続されている。抵抗素子24の一端はアノード21(反転入力端子32)に接続され、抵抗素子24の他端はカソード22(出力端子33)に接続される。
 光検出回路1Cにおいても光検出回路1と同様の効果が奏される。光検出回路1Cでは、周囲温度に基づく抵抗素子24の特性の変動が小さければ、並列に接続された抵抗素子24及び光検出素子2の並列抵抗成分から構成される合成抵抗の抵抗値の周囲温度に基づく変動は、光検出素子2の並列抵抗成分のみの抵抗値Rsh1の変動よりも小さい。このため、抵抗素子24によって出力電圧Vout1に対する周囲温度の影響が緩和される。なお、第3変形例において、第1変形例と同様に、カソード22が反転入力端子32に接続されてもよく、アノード21が出力端子33に接続されてもよい。第3変形例に係る光検出回路1Cに第2変形例が適用されてもよい。つまり、互いに並列に接続された容量素子23及び抵抗素子24の一端がアノード21(反転入力端子32)に接続されてもよく、他端がカソード22(出力端子33)に接続されてもよい。
 次に、図7を用いて第2実施形態に係る光検出回路を説明する。図7は、第2実施形態に係る光検出回路の構成を示す図である。図7に示されるように、第2実施形態に係る光検出回路10は、第1実施形態に係る光検出回路1と比較して、反転増幅回路4(増幅回路)をさらに備える点において相違する。反転増幅回路4は、出力電圧Vout1を反転増幅する回路である。反転増幅回路4は、演算増幅器40(第2演算増幅器)と、抵抗値R1を有する抵抗素子44(第1抵抗素子)と、抵抗値R2を有する抵抗素子45(第2抵抗素子)と、を備える。
 演算増幅器40は、非反転入力端子41(第2非反転入力端子)と、反転入力端子42(第2反転入力端子)と、出力端子43(第2出力端子)と、を有する。演算増幅器3の出力端子33は、抵抗素子44を介して演算増幅器40の反転入力端子42に接続される。具体的には、抵抗素子44の一端が反転入力端子42に接続され、抵抗素子44の他端が出力端子33に接続される。これにより、反転増幅回路4に出力電圧Vout1が入力される。抵抗素子45の一端は反転入力端子42(抵抗素子44の一端)に接続され、抵抗素子45の他端は出力端子43に接続される。非反転入力端子41は接地電位(固定電位)に接続される。なお、非反転入力端子41は接地電位以外の固定電位に接続されてもよい。この場合、固定電位は正負いずれの一定値を有していてもよい。非反転入力端子41に接続される固定電位は、演算増幅器3の非反転入力端子31に接続される固定電位と異なっていてもよく、同一であってもよい。
 反転増幅回路4の増幅率は、抵抗値R1に対する抵抗値R2の比(R2/R1)であるので、反転増幅回路4は出力電圧Vout1を-(R2/R1)倍に増幅した出力電圧Vout2を生成する。例えば、出力電圧Vout1を-100倍に増幅した出力電圧Vout2を得たい場合、増幅率が100となるような抵抗値R1及び抵抗値R2が設定される。光検出回路10は、出力電圧Vout2を検出結果として外部に出力する。
 以上のように構成された光検出回路10では、出力電圧Vout1が反転増幅回路4によって増幅される。これにより、アノード21とカソード22との間に発生する電圧を増幅することで得られる出力電圧Vout2に基づいて、入射光量を検出することが可能となる。
 光検出回路10は、反転増幅回路4に代えて、不図示の非反転増幅回路(増幅回路)を備えていてもよい。非反転増幅回路は、反転増幅回路4と同様に、演算増幅器40と、抵抗素子44と、抵抗素子45と、を備える。演算増幅器3の出力端子33は、演算増幅器40の非反転入力端子41に接続される。抵抗素子44の一端は反転入力端子42に接続され、抵抗素子44の他端は接地電位に接続される。抵抗素子45の一端は反転入力端子42(抵抗素子44の一端)に接続され、抵抗素子45の他端は出力端子43に接続される。非反転増幅回路は、出力電圧Vout1を(1+R2/R1)倍に増幅した出力電圧Vout2を生成する。なお、第2実施形態に係る光検出回路10に第1実施形態の第1変形例~第3変形例及びそれらの組み合わせが適用されてもよい。
 次に、図8を用いて第3実施形態に係る光検出回路を説明する。図8は、第3実施形態に係る光検出回路の構成を示す図である。図8に示されるように、第3実施形態に係る光検出回路100は、第2実施形態に係る光検出回路10と比較して、反転増幅回路4に代えて反転増幅回路4Aを備える点において相違する。反転増幅回路4Aは、反転増幅回路4と比較して、抵抗素子44に代えて光検出素子50(第2光検出素子)を備える点において相違する。図8では、光検出素子50のアノード52(第2アノード)が出力端子33に接続され、光検出素子50のカソード53(第2カソード)が反転入力端子42に接続される。
 光検出素子50は、直列に接続された複数のフォトダイオード51(複数の第2フォトダイオード)を有する。例えば、光検出素子50は2個のフォトダイオード51で構成される。各フォトダイオード51は、例えばInAsSbフォトダイオードであり、フォトダイオード20と同一の材料で構成されてもよい。光検出素子50には、抵抗値Rsh2を有する並列抵抗成分が含まれる。光検出素子50の並列抵抗成分は、アノード52とカソード53との間に生じる抵抗成分である。つまり、光検出素子50の並列抵抗成分は、演算増幅器3の出力端子33と演算増幅器40の反転入力端子42との間に接続される抵抗素子(第1抵抗素子)を構成する。このため、反転増幅回路4Aの増幅率は、抵抗値Rsh2に対する抵抗値R2の比(R2/Rsh2)となるので、光検出回路100では、出力電圧Vout1を-(R2/Rsh2)倍に増幅することで得られた出力電圧Vout2が生成される。なお、フォトダイオード51(光検出素子50)の直列抵抗成分の抵抗値は、フォトダイオード51(光検出素子50)の並列抵抗成分の抵抗値に比べて非常に小さいので、直列抵抗成分の影響を無視することができる。
 図9は、光検出素子の周囲温度と並列抵抗成分との関係の一例を示す図である。図9では、直列に接続された245個のInAsSbフォトダイオードを有する光検出素子2の並列抵抗成分の抵抗値Rsh1(Ω)と周囲温度(℃)との関係が示されている。図9に示されるように、光検出素子2の周囲温度が高くなると抵抗値Rsh1は減少し、光検出素子2の周囲温度が低くなると抵抗値Rsh1は増加する。このように、光検出素子2の周囲温度によって、抵抗値Rsh1は異なる値となるので、入射光量が同じであったとしても出力電圧Vout1が異なる値となるおそれがある。
 光検出素子2が直列に接続されたn1個(n1は2以上の整数)のフォトダイオード20を有する場合、光電流Ipが光検出素子2の並列抵抗成分に全て流れるとすると、抵抗値Rsh1はn1×Rsh0となる。光検出素子50が直列に接続されたn2個(n2は2以上の整数)のフォトダイオード51を有する場合、フォトダイオード51に含まれる並列抵抗成分の抵抗値がフォトダイオード20の抵抗値Rsh0と同一であるとすると、抵抗値Rsh2はn2×Rsh0となる。このとき、出力電圧Vout2は下記の式(1)によって求められる。さらに式(1)を整理することにより、下記の式(2)が得られる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 式(2)に示されるように、各フォトダイオード51に含まれる並列抵抗成分の抵抗値が光検出素子2を構成するフォトダイオード20の抵抗値Rsh0と同一であるとすると、出力電圧Vout2は、各フォトダイオード51及び各フォトダイオード20の抵抗値に影響されない。このため、周囲温度によって抵抗値Rsh0(Rsh1)が異なる値を有していたとしても、入射光量が同一であれば、出力電圧Vout2は略同一となる。
 一例として、光検出素子2が200個(n1=200)のフォトダイオード20で構成され、光検出素子50が2個(n2=2)のフォトダイオード51で構成される場合における出力電圧Vout1の計算結果を示す。周囲温度が15℃のとき、抵抗値Rsh1は200kΩ(Rsh0は1kΩ)であり、抵抗値Rsh2は2kΩである。光電流Ipが10nAであるとすると、このときの出力電圧Vout1は2mVとなる。抵抗値R2が10kΩであるとすると、反転増幅回路4の増幅率は5倍となり出力電圧Vout2は10mVとなる。一方、周囲温度が35℃のとき、抵抗値Rsh1は100kΩ(Rsh0は0.5kΩ)であり、抵抗値Rsh2は1kΩである。このときの出力電圧Vout1は1mVとなり、反転増幅回路4の増幅率は10倍であり出力電圧Vout2は10mVとなる。このように、周囲温度に基づく抵抗素子45及び演算増幅器3,40の特性の変動が小さければ、周囲温度が異なったとしても、入射光量が同一のときの出力電圧Vout2は略同一となるので、光検出素子50によって温度補償を行うことが可能となる。
 光検出素子2及び光検出素子50では、それぞれの並列抵抗成分の温度特性が略同一となるように、光検出素子50は光検出素子2と同一のチップに構成されてもよい。具体的には、同じ半絶縁性基板上に各フォトダイオード20及び各フォトダイオード51のPN接合部が設けられる。この場合、カソード22とアノード52とが半絶縁性基板上で互いに接続され、光検出素子2及び光検出素子50が構成された半絶縁性基板上に、カソード22及びアノード52が互いに接続された電極と、アノード21と、カソード53と、から成る3つの外部接続用の端子が設けられてもよい。また、各フォトダイオード20及び各フォトダイオード51は、同一構造のPN接合部を有していてもよい。なお、光検出素子50は遮光されてもよく、光検出素子50には光検出素子2と同様に入射光が入射されてもよい。
 以上のように構成された光検出回路100では、アノード21とカソード22との間に発生する電圧は、抵抗値Rsh1に光電流Ipを乗算した値と略等しい。光検出回路1の周囲温度が高くなると、抵抗値Rsh1が減少するので出力電圧Vout1は減少する。一方、光検出回路1の周囲温度が高くなると、抵抗値Rsh2も減少するので反転増幅回路4の増幅率は増加する。このため、たとえ周囲温度に基づいて出力電圧Vout1が減少したとしても、反転増幅回路4の増幅率は増加するので、周囲温度による抵抗値Rsh1の変動の影響が低減(相殺)される。同様に、光検出回路1の周囲温度が低くなると、抵抗値Rsh1が増加するので出力電圧Vout1は増加する。一方、光検出回路1の周囲温度が低くなると、抵抗値Rsh2も増加するので反転増幅回路4の増幅率は減少する。このため、たとえ周囲温度に基づいて出力電圧Vout1が増加したとしても、反転増幅回路4の増幅率は減少するので、周囲温度による抵抗値Rsh1の変動の影響が低減(相殺)される。これにより、周囲温度に基づいた出力電圧Vout2の変動を低減することが可能となる。
 光検出素子50が光検出素子2と同一のチップに構成されるので、各フォトダイオード20及び各フォトダイオード51の並列抵抗成分が同一の抵抗値Rsh0を有する。このため、各フォトダイオード20の並列抵抗成分と各フォトダイオード51の並列抵抗成分とは、略同一の温度特性を有する。これにより、式(2)に示されるように、出力電圧Vout2は各フォトダイオード20及び各フォトダイオード51の並列抵抗成分に影響されないので、周囲温度に基づいた出力電圧Vout2の変動をより低減することが可能となる。
 式(2)に示されるように、出力電圧Vout2は、フォトダイオード20の個数n1をフォトダイオード51の個数n2で除算した値(n1/n2)に略比例する。従って、フォトダイオード51の個数n2をフォトダイオード20の個数n1よりも少なくすることで、周囲温度に基づく出力電圧Vout2の変動を低減しつつ、高い電圧値を有する出力電圧Vout2を出力することが可能となる。
 光検出素子2が生成する光電流Ipは、量子効率によって決まるので、光検出素子2,50の個体差に基づく光電流Ipの変動は小さい。量子効率は、入射光量に応じて生成される電子又は正孔の数を入射光の光子数で除算することで得られる値である。一方、抵抗値Rsh1,Rsh2は、光検出素子2,50の個体差によって変動する。同一のチップに光検出素子2及び光検出素子50が構成される場合、各フォトダイオード20及び各フォトダイオード51の並列抵抗成分の抵抗値は互いに同一の値(抵抗値Rsh0)となる。このため、上述の式(2)に示されるように、出力電圧Vout2は各フォトダイオード20及び各フォトダイオード51の並列抵抗成分の影響を受けなくなり、個体差に基づく出力電圧Vout2の変動を低減することが可能となる。なお、各フォトダイオード51の並列抵抗成分が、各フォトダイオード20と同様に周囲温度の増加に伴い抵抗値が減少し、周囲温度の減少に伴い抵抗値が増加するような温度特性を有していれば、光検出素子2及び光検出素子50は異なるチップで構成されてもよい。
 図10は、第3実施形態に係る光検出回路の第1変形例を示す図である。図10に示されるように、光検出回路100Aは、図8に示された光検出回路100と比較して、反転増幅回路4Aに代えて反転増幅回路4Bを備える点において相違する。反転増幅回路4Bは、反転増幅回路4Aと比較して、光検出素子50の接続形態において相違する。反転増幅回路4Bでは、カソード53が出力端子33に接続され、アノード52が反転入力端子42に接続される。
 光検出回路100Aにおいても光検出回路100と同様の効果が奏される。つまり、光検出回路100Aにおける光検出素子50の極性が、光検出回路100における光検出素子50の極性と反対であっても、光検出回路100と同様の効果が奏される。
 図11は、第3実施形態に係る光検出回路の第2変形例を示す図である。図11に示されるように、光検出回路100Bは、図8に示された光検出回路100と比較して、光検出素子2の接続形態において相違する。光検出回路100Bでは、カソード22が反転入力端子32に接続され、アノード21が出力端子33に接続される。
 光検出回路100Bにおいても光検出回路100と同様の効果が奏される。つまり、光検出回路100Bにおける光検出素子2の極性が、光検出回路100における光検出素子2の極性と反対であっても、光検出回路100と同様の効果が奏される。
 図12は、第3実施形態に係る光検出回路の第3変形例を示す図である。図12に示されるように、光検出回路100Cは、図10に示された光検出回路100Aと比較して、光検出素子2の接続形態において相違する。光検出回路100Cでは、カソード22が反転入力端子32に接続され、アノード21が出力端子33に接続される。
 光検出回路100Cにおいても光検出回路100と同様の効果が奏される。つまり、光検出回路100Cにおける光検出素子50の極性と光検出素子2の極性とが、ともに光検出回路100における光検出素子50及び光検出素子2の極性と反対であっても、光検出回路100と同様の効果が奏される。
 なお、第3実施形態に係る光検出回路100,100A,100B,100Cに、第1実施形態の第2変形例及び第3変形例並びにそれらの組み合わせが適用されてもよい。
 上述の第1実施形態から第3実施形態において、光検出素子2の並列抵抗成分が演算増幅器3の動作が可能である抵抗値Rsh1を有していれば、各フォトダイオード20のPN接合部は、InAsSb以外の半導体材料で構成されてもよい。例えば、各フォトダイオード20のPN接合部は、単一元素半導体であるSi(シリコン)又はGe(ゲルマニウム)で構成されもよい。各フォトダイオード20のPN接合部は、化合物半導体であるInGaAs(インジウムガリウムヒ素)、GaAs(ガリウムヒ素)、GaAlAs(ヒ化アルミニウムガリウム)、又はInP(リン化インジウム)で構成されてもよい。各フォトダイオード51のPN接合部は、各フォトダイオード20のPN接合部と異なる半導体材料で構成されてもよい。
 光検出素子2に含まれるフォトダイオード20の個数は1個(n1=1)であってもよい。光検出素子50に含まれるフォトダイオード51の個数は1個(n2=1)であってもよい。フォトダイオード51の個数n2は、フォトダイオード20の個数n1以上であってもよい。
 各フォトダイオード20及び各フォトダイオード51は、PIN接合部を有するPIN型フォトダイオードであってもよい。
 出力電圧Vout1を増幅する回路として、反転増幅回路4及び非反転増幅回路以外の増幅回路が用いられてもよい。出力電圧Vout1を増幅する回路は、演算増幅器40を備えていなくてもよい。
 1,1A,1B,1C,10,100,100A,100B,100C…光検出回路、2…光検出素子、21…アノード、22…カソード、3…演算増幅器、4,4A,4B…反転増幅回路、50…光検出素子。

Claims (11)

  1.  第1アノード及び第1カソードを有し、入射光量に応じて生じた光起電力によって前記第1アノードと前記第1カソードとの間に電圧が発生する第1光検出素子と、
     第1非反転入力端子、第1反転入力端子及び第1出力端子を有する第1演算増幅器と、
    を備え、
     前記第1非反転入力端子は固定電位に接続され、
     前記第1アノード及び前記第1カソードのうちの一方は前記第1反転入力端子に接続され、前記第1アノード及び前記第1カソードのうちの他方は前記第1出力端子に接続される、
    光検出回路。
  2.  前記第1出力端子に発生する出力電圧を増幅する増幅回路をさらに備える、
    請求項1に記載の光検出回路。
  3.  前記増幅回路は、第2演算増幅器、第1抵抗素子及び第2抵抗素子を有し、
     前記第2演算増幅器は、第2非反転入力端子、第2反転入力端子及び第2出力端子を有し、
     前記第1抵抗素子の一端は前記第2反転入力端子に接続され、前記第1抵抗素子の他端は前記第1出力端子に接続され、
     前記第2抵抗素子の一端は前記第2反転入力端子に接続され、前記第2抵抗素子の他端は前記第2出力端子に接続され、
     前記第2非反転入力端子は固定電位に接続される、
    請求項2に記載の光検出回路。
  4.  前記第1抵抗素子は、第2アノード及び第2カソードを有する第2光検出素子であり、
     前記第2光検出素子では、入射光量に応じて生じた光起電力によって前記第2アノードと前記第2カソードとの間に電圧が発生する、
    請求項3に記載の光検出回路。
  5.  前記第2光検出素子は、前記第1光検出素子と同一のチップに構成される、
    請求項4に記載の光検出回路。
  6.  前記第1光検出素子は、単一又は直列に接続された複数の第1フォトダイオードで構成され、
     前記第2光検出素子は、単一又は直列に接続された複数の第2フォトダイオードで構成される、
    請求項4又は請求項5に記載の光検出回路。
  7.  前記第2フォトダイオードの個数は、前記第1フォトダイオードの個数よりも少ない、
    請求項6に記載の光検出回路。
  8.  前記第1アノードは前記第1反転入力端子に接続され、前記第1カソードは前記第1出力端子に接続される、
    請求項1~請求項7のいずれか一項に記載の光検出回路。
  9.  前記第1カソードは前記第1反転入力端子に接続され、前記第1アノードは前記第1出力端子に接続される、
    請求項1~請求項7のいずれか一項に記載の光検出回路。
  10.  容量素子をさらに備え、
     前記容量素子の一端は前記第1アノードに接続され、前記容量素子の他端は前記第1カソードに接続される、
    請求項1~請求項9のいずれか一項に記載の光検出回路。
  11.  第3抵抗素子をさらに備え、
     前記第3抵抗素子の一端は前記第1アノードに接続され、前記第3抵抗素子の他端は前記第1カソードに接続される、
    請求項1~請求項10のいずれか一項に記載の光検出回路。
PCT/JP2018/032910 2017-11-24 2018-09-05 光検出回路 WO2019102684A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18881336.4A EP3715803A4 (en) 2017-11-24 2018-09-05 OPTICAL DETECTION CIRCUIT
CN201880074769.4A CN111417845B (zh) 2017-11-24 2018-09-05 光检测电路
KR1020207015682A KR20200087175A (ko) 2017-11-24 2018-09-05 광 검출 회로
US16/647,496 US11118970B2 (en) 2017-11-24 2018-09-05 Optical detection circuit comprising an optical detector to generate voltage between an anode and a cathode due to photoelectromotive force generated in accordance with incident light quantity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017226192A JP6470386B1 (ja) 2017-11-24 2017-11-24 光検出回路
JP2017-226192 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019102684A1 true WO2019102684A1 (ja) 2019-05-31

Family

ID=65356192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032910 WO2019102684A1 (ja) 2017-11-24 2018-09-05 光検出回路

Country Status (6)

Country Link
US (1) US11118970B2 (ja)
EP (1) EP3715803A4 (ja)
JP (1) JP6470386B1 (ja)
KR (1) KR20200087175A (ja)
CN (1) CN111417845B (ja)
WO (1) WO2019102684A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062436A1 (en) * 2019-09-27 2021-04-01 The Procter & Gamble Company Systems and methods for thermal radiation detection
US11592336B2 (en) 2019-09-27 2023-02-28 The Procter & Gamble Company Systems and methods for thermal radiation detection
WO2024116583A1 (ja) * 2022-11-30 2024-06-06 浜松ホトニクス株式会社 光検出回路および光検出装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874768A (ja) * 1971-12-29 1973-10-08
JP2000183320A (ja) * 1998-12-14 2000-06-30 Toshiba Corp 受光装置
JP2002134761A (ja) 2000-10-20 2002-05-10 Hamamatsu Photonics Kk 受光装置
JP2005216984A (ja) 2004-01-28 2005-08-11 Yokogawa Electric Corp フォトダイオード受光回路
US20060091294A1 (en) * 2004-10-29 2006-05-04 Michael Frank Apparatus and method for interference suppression in optical or radiation sensors
WO2007125873A1 (ja) * 2006-04-24 2007-11-08 Asahi Kasei Emd Corporation 赤外線センサ
JP2010506141A (ja) * 2006-10-04 2010-02-25 シャープ株式会社 光センサおよび周囲光センサ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4442381A (en) * 1982-08-30 1984-04-10 Fuji Photo Optical Co., Ltd. Auto strobe control circuit
JPS6020655A (ja) * 1983-07-15 1985-02-01 Iwatsu Electric Co Ltd 光検出回路
JPS6181677A (ja) * 1984-09-28 1986-04-25 Fujitsu Ltd 受光装置
SU1696894A1 (ru) * 1990-01-16 1991-12-07 Научно-исследовательский институт прикладных физических проблем им.А.Н.Севченко Фотометр
JP2962384B2 (ja) * 1992-12-28 1999-10-12 順造 小野 音の強さを自動補正する機能を備えた補聴器
JP3472907B2 (ja) 1997-04-09 2003-12-02 松下電工株式会社 焦電型赤外線検出装置
JP4861887B2 (ja) 2007-04-20 2012-01-25 日本オプネクスト株式会社 半導体受光装置、光受信モジュールおよび半導体受光装置の製造方法
EP2351052A1 (en) * 2008-11-06 2011-08-03 Vishay Intertechnology Inc. Four-terminal resistor with four resistors and adjustable temperature coefficient of resistance
JP6217399B2 (ja) * 2014-01-10 2017-10-25 富士通株式会社 装置制御システム、装置制御方法、および装置制御プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874768A (ja) * 1971-12-29 1973-10-08
JP2000183320A (ja) * 1998-12-14 2000-06-30 Toshiba Corp 受光装置
JP2002134761A (ja) 2000-10-20 2002-05-10 Hamamatsu Photonics Kk 受光装置
JP2005216984A (ja) 2004-01-28 2005-08-11 Yokogawa Electric Corp フォトダイオード受光回路
US20060091294A1 (en) * 2004-10-29 2006-05-04 Michael Frank Apparatus and method for interference suppression in optical or radiation sensors
WO2007125873A1 (ja) * 2006-04-24 2007-11-08 Asahi Kasei Emd Corporation 赤外線センサ
JP2010506141A (ja) * 2006-10-04 2010-02-25 シャープ株式会社 光センサおよび周囲光センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715803A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062436A1 (en) * 2019-09-27 2021-04-01 The Procter & Gamble Company Systems and methods for thermal radiation detection
US11585697B2 (en) 2019-09-27 2023-02-21 The Procter & Gamble Company Systems and methods for thermal radiation detection
US11592336B2 (en) 2019-09-27 2023-02-28 The Procter & Gamble Company Systems and methods for thermal radiation detection
US11906362B2 (en) 2019-09-27 2024-02-20 The Procter & Gamble Company Systems and methods for thermal radiation detection
US12025500B2 (en) 2019-09-27 2024-07-02 The Procter & Gamble Company Systems and methods for thermal radiation detection
WO2024116583A1 (ja) * 2022-11-30 2024-06-06 浜松ホトニクス株式会社 光検出回路および光検出装置

Also Published As

Publication number Publication date
CN111417845B (zh) 2022-11-25
CN111417845A (zh) 2020-07-14
EP3715803A1 (en) 2020-09-30
US20200271514A1 (en) 2020-08-27
KR20200087175A (ko) 2020-07-20
EP3715803A4 (en) 2021-08-04
US11118970B2 (en) 2021-09-14
JP2019096786A (ja) 2019-06-20
JP6470386B1 (ja) 2019-02-13

Similar Documents

Publication Publication Date Title
WO2019102684A1 (ja) 光検出回路
CN108737753B (zh) 用于飞行时间系统的主动像素电路及其操作方法
US10944486B2 (en) DC current cancellation scheme for an optical receiver
US9116040B2 (en) Radiation detection device with improved illumination range having a photodetector that operates in two detecting modes
Barile et al. A new VCII based low-power low-voltage front-end for silicon photomultipliers
TW202249418A (zh) 差分主動像素
Nayak et al. A 10-Gb/s− 18.8 dBm Sensitivity 5.7 mW Fully-Integrated Optoelectronic Receiver With Avalanche Photodetector in 0.13-$\mu $ m CMOS
Masini et al. Monolithic integration of near-infrared Ge photodetectors with Si complementary metal–oxide–semiconductor readout electronics
US20050077925A1 (en) Dc cancellation apparatus and method
JPH04252923A (ja) 光検波回路
JP6428091B2 (ja) 赤外線イメージセンサ
CN212843636U (zh) 一种高灵敏度的大面元光电探测器组件
Chandrakanta et al. The non-uniform characteristics of a photodiode
JPH0257740B2 (ja)
US10845238B2 (en) Circuit and device for small photo currents and detection of small photo currents
JPH0451774B2 (ja)
Seo et al. An analog front-end IC with regulated RI amplifier and CDS CTIA for microbolometer
JP6323921B2 (ja) 光受信回路
WO2024116583A1 (ja) 光検出回路および光検出装置
JP6933543B2 (ja) 半導体光検出装置および特定波長の光検出方法
JP2013201309A (ja) 半導体光センサ装置
KR20240130935A (ko) 광전 소자
JP2023177829A (ja) 電流電圧変換器、及び、検出器
Padmanabhan et al. A CMOS Front-end for GaN-based UV Imaging
JPH04225611A (ja) 広ダイナミックレンジ受光回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207015682

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018881336

Country of ref document: EP

Effective date: 20200624