WO2019101029A1 - 用于充换电站电池包的隔离系统、充换电站及隔离方法 - Google Patents

用于充换电站电池包的隔离系统、充换电站及隔离方法 Download PDF

Info

Publication number
WO2019101029A1
WO2019101029A1 PCT/CN2018/116133 CN2018116133W WO2019101029A1 WO 2019101029 A1 WO2019101029 A1 WO 2019101029A1 CN 2018116133 W CN2018116133 W CN 2018116133W WO 2019101029 A1 WO2019101029 A1 WO 2019101029A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
charging
thermal runaway
subsystem
Prior art date
Application number
PCT/CN2018/116133
Other languages
English (en)
French (fr)
Inventor
赵金程
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Priority to EP18880985.9A priority Critical patent/EP3716438A4/en
Publication of WO2019101029A1 publication Critical patent/WO2019101029A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/256Carrying devices, e.g. belts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to the field of charging and discharging, and particularly relates to an isolation system, a charging and replacing power station and an isolation method for charging and replacing a battery pack of a power station.
  • the power exchange scheme is generally completed in the charging and replacing power station. Specifically, the battery rack and the power exchange platform are arranged in the charging and replacing power station, and the power exchange of the full power/depletion power battery between the battery rack and the power exchange platform is performed.
  • Robots such as the Stack Guided Vehicle (RGV).
  • the power-changing robot completes the action of replacing the power battery for the electric vehicle stopped on the power-changing platform by reciprocating the track on the pre-layed track between the battery rack and the power exchange platform.
  • a thermal runaway detecting device such as a temperature sensor
  • a fire extinguishing device such as a gas fire extinguisher
  • the above method improves the safety of the battery in thermal runaway to a certain extent
  • the main drawback of this method is that the method cannot be quickly and accurately because the temperature sensor is disposed near the battery pack while monitoring one or more battery packs.
  • the ground knows the temperature change and the specific position inside the battery pack that is out of control, and thus it is impossible to take precise and rapid fire-fighting measures.
  • the existing fire protection method for the thermal runaway of the battery pack has a problem of low positioning accuracy and poor fire extinguishing effect.
  • the present invention provides a battery pack for charging and replacing a power station.
  • the charging system comprises a battery rack, wherein the battery rack stores a plurality of battery packs
  • the isolation system comprises: an acquisition subsystem, which is used for at least obtaining thermal runaway information of the battery pack; the battery transporter a system for transporting a thermally runaway battery pack to an isolated location; and a control subsystem coupled to the acquisition subsystem and the battery delivery subsystem, respectively, for the battery pack being
  • the battery delivery subsystem is controlled to transport the thermally runaway battery pack to the isolated position during a thermal runaway condition.
  • the thermal runaway information includes an inner core temperature of the battery pack and/or a smoke concentration near the battery pack.
  • the acquisition subsystem includes a battery management unit and/or a smoke detector of the same number as the battery pack, and each of the battery packs correspondingly Configuring a battery management unit and/or a smoke detector; wherein the battery management unit is disposed in the battery pack or the battery holder for acquiring an inner core temperature of the battery pack; A smoke detector is disposed at the exhaust port of the battery rack adjacent to the battery pack for acquiring a smoke concentration in the vicinity of the battery pack.
  • each of the battery packs is provided with a battery management unit and a smoke detector, and the collection subsystem further includes a battery disposed in each of the batteries.
  • a charging control unit of the package wherein the charging control unit is respectively connected to the control subsystem, the battery management unit corresponding to the battery pack, and the smoke detector, for receiving the thermal runaway information and based on the The thermal runaway information determines the status of the battery pack and uploads the status of the battery pack to the control subsystem.
  • the battery delivery subsystem includes a power-changing robot for transporting a thermally run-out battery pack from the battery rack to the The isolation location.
  • the battery delivery subsystem further includes a battery transfer unit disposed on the battery rack, the battery transfer unit for using a battery that is out of control The bag is transferred from the battery rack to the power changing robot.
  • control subsystem is further provided with a smoke detector for acquiring a smoke concentration in the vicinity of the control subsystem.
  • the invention also provides a charging and replacing power station, the charging and replacing power station comprising a battery rack, wherein the battery rack stores a plurality of battery packs, and the charging and replacing power station further comprises an isolation system for isolating the thermal runaway battery pack
  • the isolation system is the isolation system for charging a battery pack of a power station according to any one of the above aspects.
  • the invention also provides an isolation method for charging and replacing a battery pack of a power station, the charging and replacing power station comprising a battery rack, wherein the battery rack stores a plurality of battery packs, and the isolation method comprises:
  • the thermal runaway information includes an inner core temperature of the battery pack and/or a smoke concentration near the battery pack.
  • the step of "determining the state of the battery pack based on the thermal runaway information" further includes:
  • the battery pack is determined to be in a thermal runaway state when the core temperature reaches a first set threshold and/or the smoke concentration reaches a second set threshold.
  • the isolation system for charging the battery pack of the power station includes an acquisition subsystem, a battery delivery subsystem, and a control subsystem.
  • the acquisition subsystem is configured to acquire at least thermal runaway information of the battery pack
  • the battery delivery subsystem is configured to transport the thermal runaway battery pack to the isolated position
  • the control subsystem is respectively connected to the collection subsystem and the battery delivery subsystem for use in the battery
  • the battery delivery subsystem is controlled to transport the thermally runaway battery pack to the isolated location when the package is in a thermal runaway condition.
  • the thermal runaway information includes the battery pack core temperature and/or the smoke concentration near the battery pack.
  • the isolation system of the present invention can detect the thermal runaway information of the battery pack from the thermal runaway source of the battery pack, and timely discover and accurately locate the thermal runaway battery pack, thereby improving The positioning accuracy of the isolation system, and the transportation of the battery transportation subsystem, can quickly transport the thermal runaway battery pack to the isolated position based on the newly discovered thermal runaway battery pack, so that the thermal runaway battery pack and other batteries The package is isolated to effectively avoid secondary hazards and improve the safety of the charging and replacing station. That is to say, through the setting of the isolation system, the problem of low positioning accuracy and poor fire extinguishing effect of the fire protection method of the battery pack thermal runaway in the prior art is overcome.
  • the acquisition subsystem includes a battery management unit, a smoke detector, and a charging control unit disposed in each battery pack
  • the battery delivery subsystem includes a power changing robot and a battery transfer unit disposed on the battery rack.
  • the battery management unit first obtains the core temperature of the battery pack, and the smoke detector collects the smoke concentration of the battery pack exhaust port.
  • the charging control unit determines that the battery pack is in thermal runaway based on the core temperature and the smoke concentration.
  • the status is uploaded to the control subsystem in time, and the control subsystem completes the fast and accurate positioning of the thermal runaway battery based on the judgment result.
  • control subsystem sends a command to the battery transfer unit and the power-changing robot, thereby controlling the battery transfer unit to transfer the thermally run-out battery pack from the battery rack to the power-changing robot, and then the power-changing robot packs the thermally run-out battery pack
  • the battery rack is transported to the isolated position to complete the isolation of the thermal runaway battery, avoiding the occurrence of secondary hazards and improving safety.
  • FIG. 1 is a schematic structural view of an isolation system for charging and replacing a battery pack of a power station according to the present invention
  • FIG. 2 is a schematic structural view of a charging and replacing station of the present invention
  • FIG. 3 is a schematic flow chart of an isolation method for charging and replacing a battery pack of a power station according to the present invention.
  • BMS battery management unit
  • the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed connections, for example, or It is a detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • Figure 1 is a schematic view of the structure of an isolation system for charging and replacing a battery pack of a power plant.
  • the isolation system for charging and replacing the battery pack of the present invention includes an acquisition subsystem, Battery delivery subsystem and control subsystem.
  • the acquisition subsystem is configured to obtain thermal runaway information of the battery pack and determine whether the battery pack is in a thermal runaway state based on the information
  • the battery transport subsystem is configured to transport the thermal runaway battery pack to the isolated position
  • the control subsystem and the acquisition subsystem respectively
  • a battery delivery subsystem is coupled to control the battery delivery subsystem to transport the thermally runaway battery pack to an isolated position when the battery pack is in a thermal runaway condition.
  • the thermal runaway information includes the core temperature of the battery pack and/or the smoke concentration near the battery pack.
  • the isolation position may be a position of the battery pack dedicated to handling the thermal runaway disposed inside/out of the charging station, and the position is provided with an isolation device or a fire extinguishing device, such as an isolation sandbox disposed inside or outside the power station or A closed room with a gas fire extinguishing device, etc.
  • the isolation system of the present invention can detect the thermal runaway information of the battery pack from the heat source of the battery pack, and find and accurately locate in time.
  • the thermal runaway battery pack improves the positioning accuracy of the isolation system, and the battery transport subsystem transports the set.
  • the heat runaway battery pack can be quickly transported to the isolated position based on the newly discovered thermal runaway battery pack.
  • the out-of-control battery pack is isolated from other battery packs, effectively avoiding secondary hazards and improving the safety of the charging and replacing station. That is to say, through the setting of the isolation system, the problem of low positioning accuracy and poor fire extinguishing effect of the fire protection method of the battery pack thermal runaway in the prior art is overcome.
  • the acquisition subsystem preferably includes a battery management unit (BMS), a smoke detector, and a charging control unit of the same number as the battery pack, each battery pack corresponding to one battery management unit, one smoke detection And a charging control unit.
  • BMS battery management unit
  • the battery management unit is disposed inside the battery pack for obtaining the inner core temperature of the battery pack
  • the smoke detector is disposed at the exhaust port of the battery pack for obtaining the smoke concentration near the battery pack
  • the charging control unit and the controller respectively a system, a battery management unit and a smoke detector connection for collecting core temperature information and smoke concentration information, and determining whether the battery pack is in a thermal runaway state based on the above information, and uploading the status of the battery pack to the control subsystem .
  • the battery delivery subsystem preferably includes a power-changing robot for transporting the thermally runaway battery pack from the battery rack to the isolated position, and for transferring the thermally runaway battery pack on the battery rack from the battery rack to the power-changing robot Battery transfer unit.
  • the battery management unit When the battery pack is out of control, the battery management unit first obtains the inner core temperature of the battery pack, the smoke detector collects the smoke concentration of the battery pack exhaust port, and the charging control unit determines that the battery pack is hot based on the inner core temperature and the smoke concentration. Out of control state and timely upload the judgment result to the control subsystem, the control subsystem completes the fast and accurate positioning of the thermal runaway battery on the one hand based on the judgment result, and the control subsystem sends the command to the battery transfer unit and the power exchange robot to control The battery transfer unit transfers the thermal runaway battery pack from the battery rack to the power change robot, and then the power exchange robot transports the heat runaway battery pack from the battery rack to the isolated position to complete the isolation of the thermal runaway battery.
  • the above arrangement has the advantages that the invention can greatly improve the judgment speed and the positioning accuracy when the battery is out of control by detecting the temperature change of the core of the battery pack and obtaining the smoke concentration of the battery pack exhaust port. This is because the battery pack is provided with an exhaust port. Once the battery has a thermal runaway such as fire or explosion, the temperature of the core of the battery pack rises first, and the generated smoke must first be discharged from the exhaust port, so the battery pack is obtained.
  • the inner core temperature can obtain the thermal runaway information of the battery pack from the battery pack heat source and the battery pack exhaust port in time, and improve the positioning speed and accuracy of the isolation system.
  • the invention can not only timely transport the thermal runaway battery pack to the isolated position, thereby avoiding secondary damage, and can also greatly save the construction of the isolation system. cost. This is because there is a certain time difference from the ignition of the battery pack to the spread of the fire. During this time difference, only the inside of the battery pack is on fire, and other parts of the power station can still operate normally. Therefore, the present invention makes full use of this time difference to complete the timely transportation and isolation of the thermal runaway battery, and improve the safety of the charging and replacing power station.
  • the isolation system of the present invention is suitable for more specific application scenarios.
  • the battery management unit BMS
  • the function of determining whether the battery pack is in thermal runaway is performed by the control subsystem, and the charging control unit is only used to collect thermal runaway information and transmit the information to the control subsystem.
  • each battery pack is configured with one battery management unit and one smoke detector at the same time
  • each battery pack is configured with only one battery management unit or one.
  • the smoke detector can also achieve the purpose of improving the positioning speed and accuracy of the isolation system of the present invention.
  • the thermal runaway information is the inner core temperature of the battery pack
  • the thermal runaway information is the battery pack. The concentration of smoke nearby.
  • a smoke detector may be disposed on the control subsystem for acquiring the smoke concentration near the control subsystem to combine the thermal runaway collected by the acquisition subsystem. The information is further judged to avoid misjudgment. If the smoke alarm at the exhaust port of the battery pack fails, the control subsystem can still determine that the battery pack is in accordance with the core temperature detected by the battery management unit in the battery pack and the smoke concentration detected by the second smoke detector. Thermal runaway status.
  • FIG. 2 is a schematic view of the structure of the charging and replacing station of the present invention.
  • the charging and replacing station of the present invention comprises a power changing platform 1, a battery rack 2, a charging control cabinet 3, a main control cabinet 4, and a power changing robot 5.
  • the battery rack 2 is provided with a battery transport unit (not shown) and a plurality of battery packs 6, each of which has a battery management unit (not shown) built therein, and one battery pack 6 is disposed around each of the battery packs 6.
  • Smoke detector (not shown).
  • a charging control unit (not shown) corresponding to each battery pack 6 is disposed in the charging control cabinet 3, and a control subsystem (not shown) is disposed in the main control cabinet 4, and the switching robot 5 is laid under There is a rail 7, and a fire door 8 is provided at the end of the rail 7, and the fire door 8 is an isolated position, and an isolation device 9 (such as an isolation sandbox) for isolating the thermal runaway battery pack is disposed at the position.
  • the battery management unit, the smoke detector, the charging control unit, the power-changing robot 5, the battery transport unit, and the control subsystem constitute the isolation system of the present invention.
  • FIG. 3 is a schematic flow chart of a method for isolating a battery pack of a power station according to the present invention.
  • the isolation method for charging and replacing the battery pack of the power station mainly includes the following steps:
  • thermal runaway information of the battery pack such as thermal runaway information including a core temperature of the battery pack and/or a smoke concentration near the battery pack, obtain a battery core temperature through a battery management unit (BMS), and/or pass the smoke detector Obtain the smoke concentration of the battery exhaust port;
  • BMS battery management unit
  • S200 determining, according to the thermal runaway information, a state of the battery pack, for example, the charging control unit determines whether the battery pack is in a thermal runaway state based on a core temperature and/or a smoke concentration of the battery pack;
  • the step S200 may further include:
  • the battery pack is in a thermal runaway state.
  • the process of the isolation method of the present invention is illustrated by taking a single isolation process of a thermally runaway battery pack as an example:
  • the battery management unit and the smoke detector respectively obtain the core temperature and the smoke concentration of the battery pack 6 ⁇ the charging control unit determines whether the battery pack 6 is in a thermal runaway state ⁇ when determining that the battery pack 6 is in a thermal runaway state, uploading the determination result to the control
  • the subsystem ⁇ control subsystem quickly cuts off the charging power circuit of the battery pack 6, and commands the battery compartment to pull out the battery pack 6 charging plug ⁇ the control subsystem causes the fire door 8 to open, and at the same time, the power-changing robot 5 reaches the battery rack 2, and the docking is completed.
  • the control subsystem controls the battery transfer unit to transfer the thermally run-out battery pack to the power-changing robot 5 ⁇ the control subsystem controls the power-changing robot 5 to quickly transport the heat-uncontrolled battery pack To the isolated position, the battery pack 6 enters the isolation sandbox 9.

Abstract

一种用于充换电站电池包(6)的隔离系统、充换电站及隔离方法。充换电站包括电池架(2),电池架(2)上存放有多个电池包(6),隔离系统包括:采集子系统,其至少用于获取电池包(6)的热失控信息;电池输送子系统,其用于将热失控的电池包(6)运送至隔离位置;以及控制子系统,控制子系统分别与采集子系统和电池输送子系统连接,用于在电池包(6)处于热失控状态时控制电池输送子系统将热失控的电池包(6)运送至隔离位置。上述技术方案能准确定位热失控的电池包(6)并将其运送至隔离位置,提高了隔离系统的定位精度,有效避免二次危害。

Description

用于充换电站电池包的隔离系统、充换电站及隔离方法 技术领域
本发明涉及充换电领域,具体涉及一种用于充换电站电池包的隔离系统、充换电站及隔离方法。
背景技术
近年来,随着新能源汽车的不断发展,新能源汽车的能量补给也成为各大厂商所重点关注的问题。以电动汽车为例,在诸多的加电方式中,换电方案由于具有对电池包损伤小、能够为车主提供方便快捷的加电体验等优势,而成为各大厂商比较推崇的解决方案。换电方案一般在充换电站内完成,具体而言,充换电站内配置有电池架和换电平台,以及在电池架和换电平台之间的运载满电/亏电动力电池的换电机器人,如堆垛机/轨道导引车(Rail Guided Vehicle,RGV)。换电机器人通过在电池架和换电平台之间预先铺设的轨道上往复行驶的方式,完成为停于换电平台上的电动汽车更换动力电池的动作。电池架上密集存放有数块电池包,由于电池包的能量密度高,属于易燃易爆物品,因此一旦某块电池包发生着火、爆炸等热失控事件,很容易将火势蔓延到其他电池上,后果不堪设想。
为解决上述问题,现有技术中通常在电池架附近配置有热失控检测装置(如温度传感器)和灭火装置(如气体灭火器),一旦检测装置检测到异常,灭火装置便立即开启进行灭火。虽然上述方式一定程度上提高了电池发生热失控时的安全性,但是这种方式的主要缺陷在于:由于温度传感器设置于电池包附近,同时监测一个或多个电池包,所以该方法无法快速准确地在第一时间获知热失控的电池包内部的温度变化和具体位置,进而也就无法采取精准迅速的灭火措施,而一旦无法及时有效地扑灭火灾,很容易产生二次危害,造成重大消防事故。也就是说,现有的用于电池包热失控的消防方法存在定位精度低、灭火效果差的问题。
相应地,本领域需要一种新的用于充换电站电池包的隔离系统及隔离方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的用于电池包热失控的消防方法存在的定位精度低、灭火效果差的问题,本发明提供了一种用于充换电站电池包的隔离系统,所述充换电站包括电池架,所述电池架上存放有多个电池包,所述隔离系统包括:采集子系统,其至少用于获取电池包的热失控信息;电池输送子系统,其用于将热失控的电池包运送至隔离位置;以及控制子系统,所述控制子系统分别与所述采集子系统和所述电池输送子系统连接,用于在所述电池包处于热失控状态时控制所述电池输送子系统将所述热失控的电池包运送至所述隔离位置。
在上述用于充换电站电池包的隔离系统的优选技术方案中,所述热失控信息包括所述电池包的内芯温度和/或所述电池包附近的烟雾浓度。
在上述用于充换电站电池包的隔离系统的优选技术方案中,所述采集子系统包括与所述电池包数量相同的电池管理单元和/或烟雾探测器,每个所述电池包对应地配置有一个电池管理单元和/或一个烟雾探测器;其中,所述电池管理单元设置于所述电池包内或所述电池架,用于获取所述电池包的内芯温度;其中,所述烟雾探测器设置于所述电池架靠近所述电池包的排气口处,用于获取所述电池包附近的烟雾浓度。
在上述用于充换电站电池包的隔离系统的优选技术方案中,每个所述电池包配置有一个电池管理单元和一个烟雾探测器,所述采集子系统还包括配置于每个所述电池包的充电控制单元,所述充电控制单元分别与所述控制子系统、所述电池包对应的所述电池管理单元和所述烟雾探测器连接,用于接收所述热失控信息并基于所述热失控信息判断所述电池包的状态,以及将所述电池包的状态上传至所述控制子系统。
在上述用于充换电站电池包的隔离系统的优选技术方案中,所述电池输送子系统包括换电机器人,所述换电机器人用于将热失控的电池包从所述电池架运送至所述隔离位置。
在上述用于充换电站电池包的隔离系统的优选技术方案中,所述电池输送子系统还包括设置于所述电池架上的电池传送单元,所述 电池传送单元用于将热失控的电池包从所述电池架转送至所述换电机器人。
在上述用于充换电站电池包的隔离系统的优选技术方案中,所述控制子系统上还设置有烟雾探测器,所述烟雾探测器用于获取所述控制子系统附近的烟雾浓度。
本发明还提供了一种充换电站,所述充换电站包括电池架,所述电池架上存放有多个电池包,所述充换电站还包括用于隔离热失控的电池包的隔离系统,所述隔离系统为上述方案中任一项所述的用于充换电站电池包的隔离系统。
本发明还提供了一种用于充换电站电池包的隔离方法,所述充换电站包括电池架,所述电池架上存放有若干个电池包,所述隔离方法包括:
获取电池包的热失控信息;
基于所述热失控信息,判断所述电池包的状态;
在所述电池包处于热失控状态时,将热失控的电池包运送至隔离位置;
其中,所述热失控信息包括所述电池包的内芯温度和/或所述电池包附近的烟雾浓度。
在上述用于充换电站电池包的隔离方法的优选技术方案中,“基于所述热失控信息,判断所述电池包的状态”的步骤进一步包括:
在所述内芯温度达到第一设定阈值并且/或者所述烟雾浓度达到第二设定阈值时,判定所述电池包处于热失控状态。
本领域技术人员能够理解的是,在本发明的优选技术方案中,用于充换电站电池包的隔离系统包括采集子系统、电池输送子系统以及控制子系统。采集子系统至少用于获取电池包的热失控信息,电池输送子系统用于将热失控的电池包运送至隔离位置,控制子系统分别与采集子系统和电池输送子系统连接,用于在电池包处于热失控状态时控制电池输送子系统将热失控的电池包运送至隔离位置。其中,热失控信息包括电池包内芯温度和/或电池包附近的烟雾浓度。通过采集电池包内芯温度和/或电池包附近的烟雾浓度,本发明的隔离系统可以从电池包的热失控源头检测电池包的热失控信息,及时发现并准确定位热失控的电池包,提高隔离系统的定位精度,而电池运输子系统运输的设置,可以在及时 发现的热失控的电池包的基础上,将热失控的电池包快速运送至隔离位置,使热失控的电池包与其他电池包隔离开,有效避免二次危害,提高充换电站的安全性。也就是说,通过隔离系统的设置,克服了现有技术中电池包热失控的消防方法存在的定位精度低、灭火效果差的问题。
具体而言,采集子系统包括配置于每个电池包的电池管理单元、烟雾探测器和充电控制单元,电池输送子系统包括换电机器人和设置于电池架上的电池传送单元。在电池包出现热失控时,电池管理单元第一时间获取电池包内芯温度、烟雾探测器采集电池包排气口的烟雾浓度,充电控制单元基于内芯温度和烟雾浓度判定电池包处于热失控状态并及时将结果上传给控制子系统,进而控制子系统基于判断结果完成对热失控电池快速准确的定位。进一步地,控制子系统通过向电池传送单元和换电机器人发送指令,进而控制电池传送单元将热失控的电池包从电池架转送至换电机器人上,然后换电机器人将热失控的电池包从电池架运送至隔离位置,完成热失控电池的隔离,避免二次危害的发生,提高安全性。
附图说明
下面参照附图并结合来描述本发明的用于充换电站电池包的隔离系统、充换电站及隔离方法。附图中:
图1为本发明的用于充换电站电池包的隔离系统的结构示意图;
图2为本发明的充换电站的结构示意图;
图3为本发明的用于充换电站电池包的隔离方法的流程示意图。
附图标记列表
1、换电平台;2、电池架;3、充电控制柜;4、主控柜;5、换电机器人;6、电池包;7、轨道;8、消防门;9、隔离装置。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然附图中的电池管理单元(BMS) 是设置在电池包内部,但是这种位置关系非一成不变,本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合,如电池管理单元还可以设置在电池包外,并且与电池包电连接。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参照图1,图1为本发明的用于充换电站电池包的隔离系统的结构示意图。如图1所示,为了解决现有的用于电池包热失控的消防方法存在的定位精度低、灭火效果差的问题,本发明的用于充换电站电池包的隔离系统包括采集子系统、电池输送子系统以及控制子系统。采集子系统用于获取电池包的热失控信息并基于该信息判断电池包是否处于热失控状态,电池输送子系统用于将热失控的电池包运送至隔离位置,控制子系统分别与采集子系统和电池输送子系统连接,用于在电池包处于热失控状态时控制电池输送子系统将热失控的电池包运送至隔离位置。其中,热失控信息包括电池包的内芯温度和/或电池包附近的烟雾浓度。其中,隔离位置可以为在充换电站内/外设置的专用于处理热失控的电池包的位置,并且该位置设置有隔离装置或灭火设施,如充换电站内/外设置的隔离沙箱或带有气体灭火装置的密闭房间等。
由上述描述可以看出,通过采集电池包的内芯温度和/或电池包附近的烟雾浓度,本发明的隔离系统可以从电池包的发热源头检测电池包的热失控信息,及时发现并准确定位热失控的电池包,提高隔离系统的定位精度,而电池运输子系统运输的设置,可以在及时发现的热失控的电池包的基础上,将热失控的电池包快速运送至隔离位置,使热 失控的电池包与其他电池包隔离开,有效避免二次危害,提高充换电站的安全性。也就是说,通过隔离系统的设置,克服了现有技术中电池包热失控的消防方法存在的定位精度低、灭火效果差的问题。
继续参照图1,具体而言,采集子系统优选地包括与电池包数量相同的电池管理单元(BMS)、烟雾探测器以及充电控制单元,每个电池包分别对应一个电池管理单元、一个烟雾探测器以及一个充电控制单元。其中,电池管理单元设置于电池包内部,用于获取电池包的内芯温度;烟雾探测器设置于电池包排气口处,用于获取电池包附近的烟雾浓度;充电控制单元分别与控制子系统、电池管理单元和烟雾探测器连接,其用于收集内芯温度信息和烟雾浓度信息,并基于上述信息判断电池包是否处于热失控状态,以及将所述电池包的状态上传至控制子系统。电池输送子系统优选地包括用于将热失控的电池包从电池架运送至隔离位置的换电机器人,以及用于将电池架上的热失控的电池包从电池架转送至换电机器人上的电池传送单元。
在电池包出现热失控时,电池管理单元第一时间获取电池包的内芯温度、烟雾探测器采集电池包排气口的烟雾浓度,充电控制单元基于内芯温度和烟雾浓度判定电池包处于热失控状态并及时将判定结果上传给控制子系统,控制子系统基于判断结果一方面完成对热失控电池快速准确的定位,另一方面控制子系统通过向电池传送单元和换电机器人发送指令,控制电池传送单元将热失控的电池包从电池架转送至换电机器人上,然后换电机器人将热失控的电池包从电池架运送至隔离位置,完成热失控电池的隔离。
上述设置方式的优点在于:通过检测电池包内芯的温度变化以及获取电池包排气口的烟雾浓度,本发明可以极大地提高电池热失控时的判断速度和定位精度。这是由于电池包都设置有排气口,一旦电池出现着火、爆炸等热失控现象,电池包内芯的温度最先上升,并且产生的烟雾必然先从排气口排出,因此通过获取电池包内芯温度可以及时从电池包发热源和电池包排气口两个方面获取电池包的热失控信息,提高隔离系统的定位速度和精准度。而通过合理利用充换电站的电池传送单元和换电机器人等已有资源,本发明不仅可以及时将热失控的电池包运送至隔离位置,避免二次危害,而且还可以大大节省隔离系统的建设成本。这是由于从电池包着火到火势蔓延开具有一定的时间差,在该时间 差内只是电池包内部着火,换电站内其他部分仍可正常运转。因此本发明充分利用这一时间差,完成热失控电池的及时运送和隔离,提高充换电站的安全性。
本领域技术人员能够理解的是,上述设置方式仅仅用于阐述本发明的原理,并非旨在与限制本发明的保护范围,在不偏离本发明原理的情形下,本领域技术人员可以对上述设置方式作任何形式的调整,以便本发明的隔离系统适用于更加具体的应用场景。例如,电池管理单元(BMS)还可以设置于电池包外的电池架上,并且与电池包电连接。再如,判断电池包是否处于热失控的功能由控制子系统完成,充电控制单元仅用于收集热失控信息并将该信息传输给控制子系统。
此外,虽然本实施方式是以每个电池包同时配置有一个电池管理单元和一个烟雾探测器进行描述的,但本领域技术人员能够理解的是,每个电池包只配置一个电池管理单元或一个烟雾探测器,也可以实现本发明的提高隔离系统的定位速度和精准度的目的。与此对应地,在每个电池包只配置一个电池管理单元时,热失控信息为电池包的内芯温度,在每个电池包至配置一个烟雾探测器的情形下,热失控信息为电池包附近的烟雾浓度。
在另一种优选的实施方式中,为提高隔离系统的稳定性,还可以在控制子系统上设置烟雾探测器,用于获取控制子系统附近的烟雾浓度,以结合采集子系统采集的热失控信息进行进一步判断,避免产生误判。如在电池包排气口的烟雾报警器发生故障时,控制子系统根据该电池包内的电池管理单元检测到的内芯温度和第二烟雾探测器检测到的烟雾浓度仍然可以判定电池包处于热失控状态。
下面参照图2,图2为本发明的充换电站的结构示意图。如图2所示,在一种可能的实施方式中,本发明的充换电站包括换电平台1、电池架2、充电控制柜3、主控柜4以及换电机器人5。电池架2上设置有电池运送单元(图中未示出)和多块电池包6,每个电池包6内置有电池管理单元(图中未示出),每个电池包6周围设置有一个烟雾探测器(图中未示出)。充电控制柜3中设置有与每个电池包6对应的充电控制单元(图中未示出),主控柜4里设置有控制子系统(图中未示出),换电机器人5下方铺设有轨道7,轨道7的尽头设置有消防门8,消防门8外为隔离位置,该位置上设置有用于隔离热失控的电池包的隔离装置9 (如隔离沙箱)。其中,电池管理单元、烟雾探测器、充电控制单元、换电机器人5、电池运送单元以及控制子系统构成本发明的隔离系统。
下面参照图3,图3为本发明的用于充换电站电池包的隔离方法的流程示意图。如图3所示,用于充换电站电池包的隔离方法主要包括以下步骤:
S100、获取电池包的热失控信息,如热失控信息包括电池包的内芯温度和/或电池包附近的烟雾浓度,通过电池管理单元(BMS)获取电池内芯温度并且/或者通过烟雾探测器获取电池排气口的烟雾浓度;
S200、基于热失控信息,判断电池包的状态,如充电控制单元基于电池包的内芯温度和/或烟雾浓度判断电池包是否处于热失控状态;
S300、在电池包处于热失控状态时,将热失控的电池包运送至隔离位置,如在充电控制单元判定电池包处于热失控状态时,控制子系统控制电池传送单元将该电池包转送至换电机器人上,换电机器人进而将电池包通过导轨运送至充换电外的隔离位置。
其中,步骤S200可以进一步包括:
在内芯温度达到第一设定阈值并且/或者排气口烟雾浓度达到第二设定阈值时,判定电池包处于热失控状态。
下面参照表1描述一种判断电池包是否热失控的方法。
表1电池包热失控判断表
Figure PCTCN2018116133-appb-000001
表1中,“过高”代表内芯温度/烟雾浓度达到或超过第一/第二设定阈值,“正常”代表内芯温度/烟雾浓度未达到或小于第一/第二设定阈值。
当然,上述表1只是一种可能的实施方式,在不偏离本发明原理的情形下,任何基于内芯温度和/或烟雾浓度判断电池包热失控的方法均落入本发明的保护范围。
下面结合图2和图3,以热失控的电池包的一次隔离过程为例,阐述本发明的隔离方法的流程:
电池管理单元和烟雾探测器分别获取电池包6的内芯温度和烟雾浓度→充电控制单元判定电池包6是否处于热失控状态→在判定电池包6处于热失控状态时,将判定结果上传给控制子系统→控制子系统快速切断电池包6的充电功率回路,命令电池仓拔出电池包6充电插头→控制子系统使消防门8打开,同时使换电机器人5到达电池架2,并对接完毕→换电机器人5与电池架2对接的同时,控制子系统控制电池传送单元将热失控的电池包转送至换电机器人5上→控制子系统控制换电机器人5将热失控的电池包迅速运送至隔离位置,使电池包6进入隔离沙箱9。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种用于充换电站电池包的隔离系统,所述充换电站包括电池架,所述电池架上存放有多个电池包,其特征在于,所述隔离系统包括:
    采集子系统,其至少用于获取电池包的热失控信息;
    电池输送子系统,其用于将热失控的电池包运送至隔离位置;以及
    控制子系统,所述控制子系统分别与所述采集子系统和所述电池输送子系统连接,用于在所述电池包处于热失控状态时控制所述电池输送子系统将所述热失控的电池包运送至所述隔离位置。
  2. 根据权利要求1所述的用于充换电站电池包的隔离系统,其特征在于,所述热失控信息包括所述电池包的内芯温度和/或所述电池包附近的烟雾浓度。
  3. 根据权利要求2所述的用于充换电站电池包的隔离系统,其特征在于,所述采集子系统包括与所述电池包数量相同的电池管理单元和/或烟雾探测器,每个所述电池包对应地配置有一个电池管理单元和/或一个烟雾探测器;
    其中,所述电池管理单元设置于所述电池包内或所述电池架,用于获取所述电池包的内芯温度;
    其中,所述烟雾探测器设置于所述电池架靠近所述电池包的排气口处,用于获取所述电池包附近的烟雾浓度。
  4. 根据权利要求3所述的用于充换电站电池包的隔离系统,其特征在于,每个所述电池包配置有一个电池管理单元和一个烟雾探测器,所述采集子系统还包括配置于每个所述电池包的充电控制单元,所述充电控制单元分别与所述控制子系统、所述电池包对应的所述电池管理单元和所述烟雾探测器连接,用于接收所述热失控信息并基于所述热失控信息判断所述电池包的状态,以及将所述电池包的状态上传至所述控制子系统。
  5. 根据权利要求1至4中任一项所述的用于充换电站电池包的隔离系统, 其特征在于,所述电池输送子系统包括换电机器人,所述换电机器人用于将热失控的电池包从所述电池架运送至所述隔离位置。
  6. 根据权利要求5所述的用于充换电站电池包的隔离系统,其特征在于,所述电池输送子系统还包括设置于所述电池架上的电池传送单元,所述电池传送单元用于将热失控的电池包从所述电池架转送至所述换电机器人。
  7. 根据权利要求6所述的用于充换电站电池包的隔离系统,其特征在于,所述控制子系统上还设置有烟雾探测器,所述烟雾探测器用于获取所述控制子系统附近的烟雾浓度。
  8. 一种充换电站,所述充换电站包括电池架,所述电池架上存放有多个电池包,其特征在于,所述充换电站还包括用于隔离热失控的电池包的隔离系统,所述隔离系统为权利要求1至7中任一项所述的用于充换电站电池包的隔离系统。
  9. 一种用于充换电站电池包的隔离方法,所述充换电站包括电池架,所述电池架上存放有若干个电池包,其特征在于,所述隔离方法包括:
    获取电池包的热失控信息;
    基于所述热失控信息,判断所述电池包的状态;
    在所述电池包处于热失控状态时,将热失控的电池包运送至隔离位置;
    其中,所述热失控信息包括所述电池包的内芯温度和/或所述电池包附近的烟雾浓度。
  10. 根据权利要求9所述的用于充换电站电池包的隔离方法,其特征在于,“基于所述热失控信息,判断所述电池包的状态”的步骤进一步包括:
    在所述内芯温度达到第一设定阈值并且/或者所述烟雾浓度达到第二设定阈值时,判定所述电池包处于热失控状态。
PCT/CN2018/116133 2017-11-23 2018-11-19 用于充换电站电池包的隔离系统、充换电站及隔离方法 WO2019101029A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18880985.9A EP3716438A4 (en) 2017-11-23 2018-11-19 BATTERY PACK INSULATION SYSTEM OF A CHARGING AND BATTERY EXCHANGE STATION, CHARGING AND BATTERY EXCHANGE STATION AND ISOLATION PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711179782.X 2017-11-23
CN201711179782.XA CN108183516A (zh) 2017-11-23 2017-11-23 用于充换电站电池包的隔离系统、充换电站及隔离方法

Publications (1)

Publication Number Publication Date
WO2019101029A1 true WO2019101029A1 (zh) 2019-05-31

Family

ID=62545231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116133 WO2019101029A1 (zh) 2017-11-23 2018-11-19 用于充换电站电池包的隔离系统、充换电站及隔离方法

Country Status (3)

Country Link
EP (1) EP3716438A4 (zh)
CN (1) CN108183516A (zh)
WO (1) WO2019101029A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112158100A (zh) * 2019-12-13 2021-01-01 史玉成 一种基于区块链的电动汽车电池更换系统
CN112332491A (zh) * 2020-11-13 2021-02-05 上海空间电源研究所 一种基于异步串并转换的电池隔离控制系统及方法
CN113189773A (zh) * 2021-04-16 2021-07-30 歌尔光学科技有限公司 头戴式设备
EP4074541A4 (en) * 2019-12-11 2023-06-07 Hangzhou Hikrobot Co., Ltd. BATTERY MODULE TRANSFER SYSTEM AND PROCEDURE FOR AGV
CN116487795A (zh) * 2023-06-25 2023-07-25 深圳市天富利信息技术有限公司 一种新能源储能柜及储能系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183516A (zh) * 2017-11-23 2018-06-19 蔚来汽车有限公司 用于充换电站电池包的隔离系统、充换电站及隔离方法
CN110667411A (zh) * 2019-11-20 2020-01-10 无锡顺达智能自动化工程股份有限公司 新能源汽车换电电池仓储充电箱和换电电池仓储充电方法
CN111403834A (zh) * 2020-03-25 2020-07-10 唐山尚新融大电子产品有限公司 一种用于储能系统的模块化电池系统
CN112332490A (zh) * 2020-11-13 2021-02-05 苏州索尔智行新能源科技有限公司 换电站的安全防护方法、装置、计算机设备和存储介质
CN113616955A (zh) * 2021-07-08 2021-11-09 江苏葑全新能源动力科技有限公司 充换电站电池热失控快速灭火系统和方法
CN113571820B (zh) * 2021-08-31 2023-06-16 科大国创新能科技有限公司 一种储能系统及处理方法
CN114454748A (zh) * 2021-09-10 2022-05-10 青岛特来电新能源科技有限公司 储能电池消防应急装置及其控制方法及充电场站
CN116215304A (zh) * 2021-12-02 2023-06-06 奥动新能源汽车科技有限公司 换电站内的热失控电池的处置方法
CN114590159A (zh) * 2022-03-09 2022-06-07 金茂智慧交通科技(天津)有限公司 电池更换系统、方法、装置、电子设备及存储介质
WO2023178555A1 (zh) * 2022-03-23 2023-09-28 时代电服科技有限公司 电池失效处理方法、装置、系统、电子设备和存储介质
CN217515004U (zh) * 2022-03-31 2022-09-30 时代电服科技有限公司 换电系统及其电池仓
CN115333049B (zh) * 2022-10-14 2023-02-14 深圳海润新能源科技有限公司 电池模块热失控处理方法、装置、电子设备及存储介质
CN115692903B (zh) * 2022-12-30 2023-03-17 新乡市镇华电力科技有限公司 一种储能电站电池热失控应急管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320320A (zh) * 2011-06-30 2012-01-18 普天新能源有限责任公司 用于电动汽车充换电站动力电池的消防转运装置
CN102681517A (zh) * 2012-05-25 2012-09-19 许继集团有限公司 充换电站的智能告警系统及方法
US20130187616A1 (en) * 2012-01-20 2013-07-25 Chia-Ming Chuang Battery Discharge System and Method of Operation thereof
CN106693234A (zh) * 2017-02-07 2017-05-24 上海蔚来汽车有限公司 电池隔离装置、具有该装置的充换电站和电池隔离方法
CN106924914A (zh) * 2017-04-21 2017-07-07 公安部上海消防研究所 电动汽车充换电站动力电池热失控的应急处置系统及方法
CN108183516A (zh) * 2017-11-23 2018-06-19 蔚来汽车有限公司 用于充换电站电池包的隔离系统、充换电站及隔离方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206483014U (zh) * 2017-02-07 2017-09-12 上海蔚来汽车有限公司 电池隔离装置和具有该装置的充换电站

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320320A (zh) * 2011-06-30 2012-01-18 普天新能源有限责任公司 用于电动汽车充换电站动力电池的消防转运装置
US20130187616A1 (en) * 2012-01-20 2013-07-25 Chia-Ming Chuang Battery Discharge System and Method of Operation thereof
CN102681517A (zh) * 2012-05-25 2012-09-19 许继集团有限公司 充换电站的智能告警系统及方法
CN106693234A (zh) * 2017-02-07 2017-05-24 上海蔚来汽车有限公司 电池隔离装置、具有该装置的充换电站和电池隔离方法
CN106924914A (zh) * 2017-04-21 2017-07-07 公安部上海消防研究所 电动汽车充换电站动力电池热失控的应急处置系统及方法
CN108183516A (zh) * 2017-11-23 2018-06-19 蔚来汽车有限公司 用于充换电站电池包的隔离系统、充换电站及隔离方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3716438A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074541A4 (en) * 2019-12-11 2023-06-07 Hangzhou Hikrobot Co., Ltd. BATTERY MODULE TRANSFER SYSTEM AND PROCEDURE FOR AGV
CN112158100A (zh) * 2019-12-13 2021-01-01 史玉成 一种基于区块链的电动汽车电池更换系统
CN112158100B (zh) * 2019-12-13 2022-08-09 苏州鱼得水电气科技有限公司 一种基于区块链的电动汽车电池更换系统
CN112332491A (zh) * 2020-11-13 2021-02-05 上海空间电源研究所 一种基于异步串并转换的电池隔离控制系统及方法
CN112332491B (zh) * 2020-11-13 2022-10-28 上海空间电源研究所 一种基于异步串并转换的电池隔离控制系统及方法
CN113189773A (zh) * 2021-04-16 2021-07-30 歌尔光学科技有限公司 头戴式设备
CN116487795A (zh) * 2023-06-25 2023-07-25 深圳市天富利信息技术有限公司 一种新能源储能柜及储能系统
CN116487795B (zh) * 2023-06-25 2023-11-21 深圳市宾迪奇千科技有限公司 一种新能源储能柜及储能系统

Also Published As

Publication number Publication date
EP3716438A1 (en) 2020-09-30
EP3716438A4 (en) 2021-08-11
CN108183516A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
WO2019101029A1 (zh) 用于充换电站电池包的隔离系统、充换电站及隔离方法
US10440542B2 (en) Wireless battery monitoring and control system for parachute deployment and auto load disengagement
CN108091947B (zh) 电动车用动力电池组安全防控系统
CN110265736B (zh) 具有智能火灾预警功能的储能电站电池管理系统及预警方法
US20200036056A1 (en) Wireless Battery Monitoring and Control System
EP3709386A1 (en) Battery pack storage device and control method therefor
EP3881697A1 (en) Battery health monitoring method and apparatus, and electronic cigarette
CN108635700B (zh) 用于充换电站的安全防护系统及安全防护方法
CN109733780A (zh) 动力电池智能仓储系统和方法
CN107458260A (zh) 充电柜
WO2018113270A1 (zh) 自动导引运输车的电池模组管理方法、装置
CN102842738B (zh) 一种电动汽车用锂离子电池阻燃防爆装置及方法
CN110064149A (zh) 耦合bms的新能源大巴电池自动灭火装置及控制方法
CN209168356U (zh) 火灾报警控制系统
WO2023065951A1 (zh) 一种储能单元热失控实验平台及其控制方法
JP2021530079A (ja) スレーブbms点検システム及び方法
US20140152267A1 (en) Battery systems and remaining capacity management systems for secondary battery
CN110401235A (zh) 一种具有消防管理功能的锂电池管理系统
CN115071484A (zh) 一种换电站电池热管理方法、系统、设备及存储介质
CN109782189A (zh) 一种用于车辆电池组的测试系统
CN113452094A (zh) 充电仓消防隔离方法、充电仓电池包隔离结构
EP4310987A2 (en) Battery safety monitoring system and method, and energy storage system
CN210542971U (zh) 耦合bms的新能源大巴电池自动灭火装置
WO2023178555A1 (zh) 电池失效处理方法、装置、系统、电子设备和存储介质
CN208539055U (zh) 一种动力电池加热片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018880985

Country of ref document: EP

Effective date: 20200623