WO2023065951A1 - 一种储能单元热失控实验平台及其控制方法 - Google Patents

一种储能单元热失控实验平台及其控制方法 Download PDF

Info

Publication number
WO2023065951A1
WO2023065951A1 PCT/CN2022/120529 CN2022120529W WO2023065951A1 WO 2023065951 A1 WO2023065951 A1 WO 2023065951A1 CN 2022120529 W CN2022120529 W CN 2022120529W WO 2023065951 A1 WO2023065951 A1 WO 2023065951A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
energy storage
pressure
thermal runaway
storage unit
Prior art date
Application number
PCT/CN2022/120529
Other languages
English (en)
French (fr)
Inventor
张灿
吴明霞
黄廷立
安仲勋
华黎
张文权
Original Assignee
上海奥威科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海奥威科技开发有限公司 filed Critical 上海奥威科技开发有限公司
Publication of WO2023065951A1 publication Critical patent/WO2023065951A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of thermal runaway, in particular to an experimental platform for thermal runaway of an energy storage unit and a control method thereof.
  • the thermal runaway experiment of the energy storage unit is an experiment to detect the temperature, pressure and gas composition of the energy storage unit in the thermal runaway state, which is of great significance to the monitoring, risk assessment and service safety of the power battery system .
  • the energy storage unit When the energy storage unit is thermally out of control, it will emit a large amount of smoke and generate a large amount of heat.
  • the sensor for detecting gas components cannot adapt to the environment with too high temperature, and its suitable working temperature is below 60°C, obviously it cannot adapt to the high temperature environment in the process of thermal runaway. If the sensor is placed in an environment far away from the experimental sample in order to avoid damage, there will be information lag or misalignment, which will cause a large error in the experimental results.
  • An object of the present invention is to provide an experimental platform for thermal runaway of energy storage units, which can avoid hysteresis of monitoring results, ensure the accuracy of results, and ensure the normal operation of sensor components, avoid damage to sensor components, and prolong service life.
  • An experimental platform for thermal runaway of an energy storage unit comprising:
  • a box body, the box body is provided with an accommodating cavity, and the experimental sample is placed in the accommodating cavity;
  • the heating platform is set in the accommodating cavity, capable of heating the experimental sample
  • a charging and discharging component the charging and discharging component is partly arranged in the accommodating cavity, capable of charging and discharging the experimental sample;
  • a detection module the detection module is arranged in the accommodating cavity, the detection module includes a detection box, a liquid-cooled perforated grid, a sensor assembly and a fan, the liquid-cooled perforated grid and the sensor assembly are arranged in the In the detection box, and according to the fluid flow direction in the detection box, the liquid-cooled perforated grid is arranged upstream of the sensor assembly, the detection box is provided with a fluid inlet and a fluid outlet, and the fan runs through set at the fluid inlet or the fluid outlet.
  • the detection module further includes a first temperature sensor, and the first temperature sensor is arranged upstream of the sensor assembly according to the fluid direction in the detection box.
  • the detection module further includes a controller, a flow control valve is arranged on the liquid cooling pipeline of the liquid-cooled perforated grid, and the controller is connected with the first temperature sensor, the fan and the flow rate
  • the control valves are all electrically connected, and the controller can control the rotation speed of the fan and the flow rate of the heat exchange medium in the liquid-cooled porous grid according to the temperature measured by the first temperature sensor.
  • a pressure sensor and a pressure display instrument are also included, the pressure sensor is used to measure the pressure in the accommodating cavity, and the pressure display instrument is used to display the pressure.
  • the pressure sensor includes a pressure measuring part, the pressure measuring part is disposed in the accommodating cavity, and the pressure measuring part is wrapped with a heat insulating material.
  • the pressure relief pipeline communicates with the accommodating chamber
  • the pressure relief valve is arranged on the pressure relief pipeline
  • the controller communicates with the The pressure sensor and the pressure relief valve are all electrically connected.
  • it also includes an inert gas unit and an intake pipeline, one end of the intake pipeline communicates with the inert gas unit, and the other end communicates with the accommodating chamber.
  • an intake valve is also included, the intake valve is arranged on the intake pipeline, and the intake valve is electrically connected to the controller.
  • a second temperature sensor is also included, and the second temperature sensor is used to measure the temperature of the experimental sample.
  • Another object of the present invention is to provide a control method that can control the thermal runaway test platform of the energy storage unit, ensure the normal operation of the sensor during the thermal runaway test, avoid damage to the sensor, and prolong the service life of the sensor.
  • a control method for controlling the above-mentioned energy storage unit thermal runaway experimental platform comprising the following steps:
  • the experimental sample is heated, overcharged or overdischarged.
  • the liquid cooling system of the experimental box is turned on to cool the accommodating cavity, and the flow rate thereof is controlled to be the first preset flow rate L10.
  • the upstream temperature reaches the third preset temperature T21
  • the flow rate of the heat exchange medium in the liquid-cooled perforated grid plate increases to the fourth preset flow rate L22, and the fan is turned off, wherein T21>T20, and L22 is greater than L21 ;
  • the pressure relief valve and the inlet valve are opened, so that the accommodating chamber, the inert gas unit and the outside world are uniform connected to close the sensor assembly.
  • the invention provides an energy storage unit thermal runaway experiment platform and a control method thereof, wherein the energy storage unit thermal runaway experiment platform includes a box body, a heating platform, a charging and discharging component, and a detection module.
  • the experimental sample is placed on the heating platform in the box, which can realize three experimental scenarios of heating, overcharging and overdischarging.
  • the detection module is arranged in the box, and the sensor assembly is arranged in the detection box of the detection module, which is used for real-time monitoring of the gas composition and concentration generated by the experimental sample during the thermal runaway experiment.
  • the detection box is also provided with a fan and a liquid-cooled perforated grid, wherein the fan is installed at the fluid inlet of the detection box to provide power for the gas in the accommodating cavity to be sucked into the detection box, or the fan is set at the fluid inlet of the detection box. At the outlet, to provide power for the gas discharge in the detection box.
  • the liquid-cooled perforated grid is arranged upstream of the sensor assembly to cool down the fluid flowing to the sensor assembly, which can prevent the sensitivity of the sensor assembly from reducing at high temperatures, resulting in errors in measurement results, or even damage Case.
  • the sensor components and experimental samples of the thermal runaway experimental platform of the energy storage unit are all set in the box, which can ensure the timeliness and accuracy of the monitoring results.
  • the particles will not cause damage to the sensor components when the explosion occurs, and Cooling the temperature of the sensor component through the liquid-cooled perforated grid can ensure the normal operation of the sensor component, avoid its damage, and prolong its service life.
  • the control method provided by the invention can control the thermal runaway experiment platform of the energy storage unit, ensure the normal operation of the sensor during the thermal runaway experiment, avoid damage to the sensor, and prolong the service life of the sensor.
  • Fig. 1 is a schematic structural diagram of an energy storage unit thermal runaway experimental platform provided by an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of a detection module provided by an embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • a first feature being “on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the energy storage unit When the energy storage unit is thermally out of control, it will emit a large amount of smoke and generate a large amount of heat.
  • the sensor for detecting gas components cannot adapt to the environment with too high temperature, and its suitable working temperature is below 60°C, obviously it cannot adapt to the high temperature environment in the process of thermal runaway. If the sensor is placed in an environment far away from the experimental sample 9 in order to avoid damage, there will be information lag or misalignment, which will cause a large error in the experimental results. Therefore, this embodiment provides an experimental platform for thermal runaway of an energy storage unit to solve the above problems.
  • the experimental sample 9 of the thermal runaway experiment includes a supercapacitor cell, a supercapacitor module, a lithium battery cell, a lithium battery module, a nickel-metal hydride battery cell, a nickel-metal hydride battery module, and the like.
  • the thermal runaway experimental platform of the energy storage unit includes a box body 1 , a heating platform 2 , a charging and discharging component 3 and a detection module 4 .
  • the box body 1 is provided with an accommodating cavity, and the experimental sample 9 is placed in the accommodating cavity.
  • the upper cover of the box body 1 is a quick-release upper cover 11, that is, a detachable structure between the upper cover and the side wall of the box body 1. Specifically, fast and sealed connection and disassembly between the upper cover and the side wall of the box body 1 are realized by buckling. It is known that when combustion occurs in the box body 1, the upper cover can be quickly disassembled for fire extinguishing treatment.
  • the box body 1 includes an observation window (not shown in the figure).
  • the bottom of the box body 1 is also provided with rollers 8, and the rollers 8 are equipped with braking devices.
  • the heating platform 2 is arranged in the accommodating cavity, and the heating platform 2 can heat the experimental sample 9 placed thereon.
  • the charging and discharging assembly 3 is partly arranged in the accommodating cavity, and one end of the charging and discharging assembly 3 is electrically connected to the experimental sample 9 to charge and discharge the experimental sample 9 . It can be seen that three experimental scenarios of heating, overcharging and overdischarging can be realized by placing the experimental sample 9 in the box 1 .
  • the part of the charge-discharge assembly 3 disposed in the accommodating cavity is wrapped with a heat-insulating protective layer to protect the cables inside it.
  • a charging and discharging through hole is provided on the box body 1, and the other end of the charging and discharging component 3 is electrically connected to the outside through the charging and discharging through hole.
  • a sealing ring is provided at the charging and discharging through hole to ensure the sealing here.
  • the detection module 4 is arranged in the accommodating cavity, so as to ensure that the detection module 4 and the experimental sample 9 are in the same atmosphere environment, and ensure the timeliness and accuracy of detection.
  • the detection module 4 includes a detection box 41 , a liquid-cooled perforated grid 42 , a sensor assembly (not shown in the figure) and a blower 43 .
  • the sensor assembly is arranged in the sensor arrangement area 45 of the detection box 41 of the detection module 4 for real-time monitoring of the gas composition and concentration generated by the experimental sample 9 during the thermal runaway experiment.
  • the sensor assembly includes multiple sensors for smoke detection, CO detection, CO2 detection, H2 detection, HF detection, CxHy detection, humidity detection and pressure detection.
  • the composition of the sensor assembly can be adjusted according to experimental needs, and is not limited here.
  • the liquid-cooled porous grid 42 is also arranged in the detection box 41, and according to the fluid flow direction in the detection box 41, the liquid-cooled porous grid 42 is arranged upstream of the sensor assembly to cool down the fluid flowing to the sensor assembly, that is It can avoid the decrease of sensitivity of the sensor components at high temperature, errors in measurement results, and even damage.
  • the detection box 41 is provided with a fluid inlet and a fluid outlet, and the blower 43 is arranged through the fluid inlet or the fluid outlet. That is, the fan 43 is arranged at the fluid inlet of the detection box 41 to provide power for the gas in the accommodating chamber to be sucked into the detection box 41, or the fan 43 is arranged at the fluid outlet of the detection box 41 to provide power for the gas in the detection box 41 The discharge provides power.
  • the sensor assembly and the experimental sample 9 of the thermal runaway experimental platform of the energy storage unit are all arranged in the box body 1, which can ensure the timeliness and accuracy of the monitoring results.
  • the sensor assembly is damaged, and the temperature of the sensor assembly is cooled by the liquid-cooled perforated grid plate 42, which can ensure the normal operation of the sensor assembly, avoid its damage, and prolong its service life.
  • the detection module 4 further includes a first temperature sensor 44 , and the first temperature sensor 44 is arranged upstream of the sensor assembly according to the fluid direction in the detection box 41 .
  • the detection module 4 also includes a controller (not shown in the figure), and a flow control valve (not shown in the figure) is arranged on the liquid cooling pipeline of the liquid-cooled perforated grid plate 42, and the controller communicates with the first
  • the temperature sensor 44 , the fan 43 and the flow control valve are all electrically connected, and the controller can control the speed of the fan 43 and the flow rate of the heat exchange medium in the liquid-cooled perforated grid plate 42 according to the temperature measured by the first temperature sensor 44 .
  • the specific control scheme will be introduced in detail later.
  • the energy storage unit is often placed in a relatively closed environment for work. Once the energy storage unit is thermally out of control, a large amount of gas will be generated in a short period of time, which will inevitably cause the pressure in the closed environment to rise, and it is easy to cause an explosion. Therefore, it is extremely important to detect the pressure in the box 1 of the experimental sample 9 during the thermal runaway process.
  • the thermal runaway experimental platform of the energy storage unit also includes a pressure sensor (not shown in the figure) and a pressure display instrument 5, the pressure sensor It is used to measure the pressure in the accommodating cavity, and the pressure display instrument 5 is used to display the pressure.
  • the pressure sensor includes a pressure measuring part, the pressure measuring part is arranged in the accommodating cavity, and the pressure measuring part is wrapped with a heat insulating material.
  • the thermal runaway experiment platform of the energy storage unit also includes a vent Pressure pipeline (not shown in the figure) and pressure relief valve (not shown in the figure), the pressure relief pipeline communicates with the accommodating cavity, the pressure relief valve is arranged on the pressure relief pipeline, the controller communicates with the pressure sensor, pressure relief The valves are both electrically connected. The controller can judge whether it is necessary to open the pressure relief valve for pressure relief according to the pressure value in the tank 1 measured by the pressure sensor.
  • the energy storage unit thermal runaway experiment platform further includes an inert gas unit (not shown in the figure) and an air inlet pipeline 6, one end of the air inlet pipeline 6 communicates with the inert gas unit, and the other end communicates with the accommodating chamber.
  • the thermal runaway experimental platform of the energy storage unit also includes an inlet valve (not shown in the figure), the inlet valve is arranged on the inlet pipeline 6, and the inlet valve and The controller is electrically connected.
  • the energy storage unit thermal runaway experiment platform also includes a second temperature sensor (not shown in the figure). To measure the temperature of experimental sample 9.
  • the second temperature sensor is electrically connected to the controller.
  • the energy storage unit thermal runaway experiment platform also includes an experiment box liquid cooling system (not shown in the figure) arranged in the box body 1 .
  • the liquid cooling system of the experimental box includes a flow regulating valve to adjust the flow rate of the internal heat exchange medium, thereby adjusting the heat exchange efficiency of the liquid cooling system of the experimental box.
  • This embodiment also provides a control method, which can control the above-mentioned energy storage unit thermal runaway experiment platform, ensure the normal operation of the sensor during the thermal runaway experiment, avoid damage to the sensor, and prolong the service life of the sensor.
  • the control method includes the following steps:
  • the experimental sample 9 is placed on the heating platform 2, and the experimental sample 9 is heated, overcharged or overdischarged according to the experimental scene.
  • the temperature of the experimental sample 9 continues to rise during heating, overcharging or overdischarging, and the second temperature sensor monitors the temperature of the experimental sample 9 in real time, and transmits the temperature value to the controller in real time, so that the controller can issue corresponding control commands.
  • the controller controls the liquid cooling system of the experiment box to be turned on to reduce the temperature in the accommodating cavity to prevent high-temperature combustion, and controls its flow to the first preset flow L10.
  • the controller controls the flow control valve of the liquid-cooled perforated grid plate 42 to open the heat exchange pipeline to adjust the internal heat exchange medium
  • the flow rate is the second preset flow rate L20.
  • the controller controls the fan 43 to turn on, and the speed of the fan 43 is adjusted to the first speed K1. After a period of time, the air flow rate is stable, and the sensor assembly is turned on to measure the gas composition. and concentration data.
  • the controller controls the heating platform 2 or the charging and discharging component 3 to stop heating, overcharging or overdischarging.
  • the controller controls the flow control valve of the liquid-cooled perforated grid plate 42 to increase the flow rate of the heat exchange medium in the liquid-cooled perforated grid plate 42 to the third preset flow rate L21, L21>L20, to increase cooling efficiency.
  • the controller controls the flow rate of the heat exchange medium in the liquid-cooled perforated grid plate 42 to further increase to the fourth preset flow rate L22, and Control fan 43 is closed.
  • the fan 43 is off, the measurement result of the sensor assembly has a certain hysteresis.
  • the controller controls the pressure relief valve and the intake valve to open, so that the accommodating chamber It is connected with the inert gas unit and the outside world. While releasing the pressure, input the inert gas to avoid combustion, and close the sensor assembly at the same time, and the experiment is over. If during the experiment, the temperature of the experimental sample 9 has not reached the critical temperature Tmax, and the pressure in the accommodating cavity has not reached the critical pressure Pmax, the gas composition and concentration can change little, and the temperature of the experimental sample 9 is reduced to the first Four preset temperature T11, as a sign of the end of the experiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种储能单元热失控实验平台,包括箱体(1)、加热平台(2)、充放电组件(3)和检测模块(4)。箱体(1)内设置有容置腔,实验样品(9)、加热平台(2)和检测模块(4)均设置在容置腔内。加热平台(2)能够加热实验样品(9)。充放电组件(3)部分设置在容置腔内,能够对实验样品(9)进行充放电。检测模块(4)包括检测盒(41)、液冷多孔栅板(42)、传感器组件和风机(43),液冷多孔栅板(42)和传感器组件设置在检测盒(41)内,且按照检测盒(41)内的流体流动方向,液冷多孔栅板(42)设置在传感器组件的上游,检测盒(41)上设置有流体入口和流体出口,风机(43)贯穿设置在流体入口或流体出口处。还涉及一种控制方法,用于对储能单元热失控实验平台进行控制,以避免监测结果滞后,保证传感器组件正常工作。

Description

一种储能单元热失控实验平台及其控制方法 技术领域
本发明涉及热失控技术领域,尤其涉及一种储能单元热失控实验平台及其控制方法。
背景技术
锂电池、超级电容器在电动汽车、轨道交通、电动船舶等领域,得到了广泛的应用。随着电动汽车行业的发展,电池系统的安全性受到了越来越多的重视。储能单元的热失控实验,是对储能单元在热失控状态下的温度、压力、产生的气体成分等进行检测的实验,对动力电池系统的监控、风险评估、服役安全均具有重要的意义。
储能单元热失控时会喷出大量的烟雾,产生大量的热。检测气体成分的传感器不能适应温度过高的环境,其适宜工作的温度为60℃以下,显然不能适应热失控过程中的高温环境。如果为了避免传感器损坏,将其置于远离实验样品的环境中,就会存在信息滞后或者错位的情况,使实验结果存在很大的误差。
因此,亟需一种储能单元热失控实验平台及其控制方法,以解决上述问题。
发明内容
本发明的一个目的在于提供一种储能单元热失控实验平台,能够避免监测结果滞后的现象,保证结果的准确性,且能够保证传感器组件的正常工作,避免传感器组件损坏,延长使用寿命。
为达此目的,本发明采用以下技术方案:
一种储能单元热失控实验平台,包括:
箱体,所述箱体内设置有容置腔,实验样品放置在所述容置腔内;
加热平台,所述加热平台设置在所述容置腔内,能够加热所述实验样品;
充放电组件,所述充放电组件部分设置在所述容置腔内,能够对所述实验样品进行充放电;
检测模块,所述检测模块设置在所述容置腔内,所述检测模块包括检测盒、液冷多孔栅板、传感器组件和风机,所述液冷多孔栅板和所述传感器组件设置在所述检测盒内,且按照所述检测盒内的流体流动方向,所述液冷多孔栅板设置在所述传感器组件的上游,所述检测盒上设置有流体入口和流体出口,所述风机贯穿设置在所述流体入口或所述流体出口处。
可选地,所述检测模块还包括第一温度传感器,所述第一温度传感器按照所述检测盒内的流体方向,设置在所述传感器组件的上游。
可选地,所述检测模块还包括控制器,所述液冷多孔栅板的液冷管路上设置有流量控制阀,所述控制器与所述第一温度传感器、所述风机和所述流量控制阀均电连接,所述控制器能够根据所述第一温度传感器测得的温度,控制所述风机的转速和所述液冷多孔栅板内换热介质的流量。
可选地,还包括压力传感器和压力显示仪表,所述压力传感器用于测量所述容置腔内的压力,所述压力显示仪表用于显示所述压力。
可选地,所述压力传感器包括测压部,所述测压部设置在所述容置腔内,所述测压部上包裹有隔热材料。
可选地,还包括泄压管路和泄压阀,所述泄压管路与所述容置腔连通,所述泄压阀设置在所述泄压管路上,所述控制器与所述压力传感器、所述泄压阀均电连接。
可选地,还包括惰性气体单元和进气管路,所述进气管路的一端与所述惰性气体单元连通,另一端与所述容置腔连通。
可选地,还包括进气阀,所述进气阀设置在所述进气管路上,所述进气阀与所述控制器电连接。
可选地,还包括第二温度传感器,所述第二温度传感器用于测量所述实验样品的温度。
本发明的另一个目的在于提供一种控制方法,能够对储能单元热失控实验平台进行控制,在热失控实验过程中保证传感器的正常工作,避免传感器损坏,延长传感器的使用寿命。
为达此目的,本发明采用以下技术方案:
一种控制方法,用于对上述的储能单元热失控实验平台进行控制,包括以下步骤:
实验样品进行加热、过充电或过放电,当所述实验样品的温度达到第一预设温度T10时,开启实验箱液冷系统以冷却容置腔,控制其流量为第一预设流量L10,导通液冷多孔栅板,控制其流量为第二预设流量L20,控制风机的转速为第一转速K1,传感器组件开始测量;
当所述实验样品的温度升高速率达到第一升温速率A1,并持续第一时长B1时,停止加热、过充电或过放电;
当所述传感器组件的上游温度达到第二预设温度T20时,所述液冷多孔栅板内的换热介质流量增至第三预设流量L21,所述风机减速至第二转速K2,其中,K2=K1/k,k≥1;
当所述上游温度达到第三预设温度T21时,所述液冷多孔栅板内的换热介质流量增至第四预设流量L22,所述风机关闭,其中,T21>T20,L22大于L21;
当所述实验样品的温度达到临界温度Tmax,或所述容置腔内的压力达到临界压力Pmax时,打开泄压阀和进气阀,以使所述容置腔与惰性气体单元和外界均连通,关闭所述传感器组件。
本发明的有益效果:
本发明提供了一种储能单元热失控实验平台及其控制方法,其中,储能单元热失控实验平台包括箱体、加热平台、充放电组件和检测模块。实验样品放置在箱体内的加热平台上,可实现加热、过充电和过放电三种实验场景。检测模块设置在箱体内,传感器组件设置在检测模块的检测盒内,用于对热失控实验过程中,实验样品产生的气体成分和浓度进行实时监测。检测盒内还设置有风机和液冷多孔栅板,其中,风机设置在检测盒的流体入口处,以为容置腔内的气体抽吸至检测盒内提供动力,或风机设置在检测盒的流体出口处,以为检测盒内的气体排出提供动力。按照检测盒内的流体流动方向,液冷多孔栅板设置在传感器组件的上游,以对流至传感器组件处的流体进行降温,即可避免传感器组件在高温下 灵敏度降低,测量结果出现误差,甚至损坏的情况。该储能单元热失控实验平台的传感器组件与实验样品均设置在箱体内,即可保证监测结果的时效性和准确性,通过设置检测盒,以避免爆炸发生时颗粒物对传感器组件造成损坏,且通过液冷多孔栅板对传感器组件进行降温,即可保证传感器组件的正常工作,避免其损坏,延长其使用寿命。
本发明提供的控制方法能够对储能单元热失控实验平台进行控制,在热失控实验过程中保证传感器的正常工作,避免传感器损坏,延长传感器的使用寿命。
附图说明
图1是本发明实施例所提供的储能单元热失控实验平台的结构示意图;
图2是本发明实施例所提供的检测模块的结构示意图。
图中:
1、箱体;11、快拆上盖;2、加热平台;3、充放电组件;4、检测模块;41、检测盒;42、液冷多孔栅板;43、风机;44、第一温度传感器;45、传感器布置区域;5、压力显示仪表;6、进气管路;7、排气管路;8、滚轮;9、实验样品。
具体实施方式
下面结合附图和实施方式进一步说明本发明的技术方案。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
储能单元热失控时会喷出大量的烟雾,产生大量的热。检测气体成分的传感器不能适应温度过高的环境,其适宜工作的温度为60℃以下,显然不能适应热失控过程中的高温环境。如果为了避免传感器损坏,将其置于远离实验样品9的环境中,就会存在信息滞后或者错位的情况,使实验结果存在很大的误差。因此,本实施例提供了一种储能单元热失控实验平台,以解决上述问题。该热失控实验的实验样品9,即储能单元,包括超级电容单体、超级电容模块、锂电池单体、锂电池模块、镍氢电池单体、镍氢电池模块等。
如图1所示,该储能单元热失控实验平台包括箱体1、加热平台2、充放电组件3和检测模块4。
其中,箱体1内设置有容置腔,实验样品9放置在容置腔内。为了便于放置或收取实 验样品9,可选地,箱体1的上盖为快拆上盖11,即上盖与箱体1的侧壁之间为可拆卸结构。具体地,通过卡扣实现上盖与箱体1的侧壁之间的快速密封连接和拆卸。可知的是,当箱体1内发生燃烧时,可快速拆卸上盖,进行灭火处理。为了便于观察,箱体1包含一个观察窗(图中未示出)。且为了便于移动和固定,该箱体1的下方还设置有滚轮8,滚轮8带有刹车装置。
加热平台2设置在容置腔内,加热平台2能够对放置于其上的实验样品9进行加热。充放电组件3部分设置在容置腔内,充放电组件3的一端与实验样品9电连接,以对实验样品9进行充放电。可知的是,实验样品9放置在箱体1内即可实现加热、过充电和过放电三种实验场景。
可选地,充放电组件3设置在容置腔内的部分包裹有隔热防护层,以对其内部的电缆进行保护。可选地,箱体1上设置有充放电通孔,充放电组件3的另一端通过充放电通孔,与外界电连接。且为了保证充放电通孔处不发生气体置换,影响监测结果的准确性,可选地,充放电通孔处设置有密封圈,以保证此处的密封性。
检测模块4设置在容置腔内,以保证检测模块4与实验样品9在同一个气氛环境下,保证检测的时效性和准确性。如图2所示,检测模块4包括检测盒41、液冷多孔栅板42、传感器组件(图中未示出)和风机43。
其中,传感器组件设置在检测模块4的检测盒41的传感器布置区域45内,用于对热失控实验过程中,实验样品9产生的气体成分和浓度进行实时监测。可选地,传感器组件包括用于烟雾检测、CO检测、CO 2检测、H 2检测、HF检测、C xH y检测、湿度检测和压力检测的多个传感器。当然,传感器组件的构成可根据实验需要进行调整,在此不做限定。
液冷多孔栅板42也设置在检测盒41内,且按照检测盒41内的流体流动方向,液冷多孔栅板42设置在传感器组件的上游,以对流至传感器组件处的流体进行降温,即可避免传感器组件在高温下灵敏度降低,测量结果出现误差,甚至损坏的情况。
检测盒41上设置有流体入口和流体出口,风机43贯穿设置在流体入口或流体出口处。即风机43设置在检测盒41的流体入口处,以为容置腔内的气体抽吸至检测盒41内提供动力,或风机43设置在检测盒41的流体出口处,以为检测盒41内的气体排出提供动力。
因此,该储能单元热失控实验平台的传感器组件与实验样品9均设置在箱体1内,即可保证监测结果的时效性和准确性,通过设置检测盒41,以避免爆炸发生时颗粒物对传感器组件造成损坏,且通过液冷多孔栅板42对传感器组件进行降温,即可保证传感器组件的正常工作,避免其损坏,延长其使用寿命。
为了对传感器组件上游的气流温度进行实时监测,可选地,检测模块4还包括第一温度传感器44,第一温度传感器44按照检测盒41内的流体方向,设置在传感器组件的上游。
为了根据传感器组件上游处的温度,实时调整进入检测盒41内的流体的流速,从而控制进入检测盒41内的热量,同时调整液冷多孔栅板42内换热介质的流速,从而调整换热效率,可选地,检测模块4还包括控制器(图中未示出),液冷多孔栅板42的液冷管路上设置有流量控制阀(图中未示出),控制器与第一温度传感器44、风机43和流量控制阀均电连接,控制器能够根据第一温度传感器44测得的温度,控制风机43的转速和液冷多孔栅板42内的换热介质的流量。具体的控制方案将在后续进行详细的介绍。
一般情况下,储能单元常放置在相对密闭的环境中进行工作,一旦储能单元发生热失控,会短时间内产生大量气体,必然会造成密闭环境内的压力升高,很容易引起爆炸。 所以检测实验样品9在热失控过程中箱体1内的压力极为重要,可选地,该储能单元热失控实验平台还包括压力传感器(图中未示出)和压力显示仪表5,压力传感器用于测量容置腔内的压力,压力显示仪表5用于显示压力。
为了防止高温对压力传感器造成损坏,可选地,压力传感器包括测压部,测压部设置在容置腔内,测压部上包裹有隔热材料。
为了保证热失控实验过程的安全性,当箱体1内的压力达到临界值压力值的时候,需要对箱体1进行快速泄压,可选地,该储能单元热失控实验平台还包括泄压管路(图中未示出)和泄压阀(图中未示出),泄压管路与容置腔连通,泄压阀设置在泄压管路上,控制器与压力传感器、泄压阀均电连接。控制器能够根据压力传感器测量得到的箱体1内的压力值,判断是否需要打开泄压阀进行泄压。
为了避免高温环境下实验样品9或产生的气体发生燃烧,可在实验前选用惰性气体对箱体1内腔环境进行吹扫。可选地,该储能单元热失控实验平台还包括惰性气体单元(图中未示出)和进气管路6,进气管路6的一端与惰性气体单元连通,另一端与容置腔连通。
为了进一步对惰性气体的流量进行控制,可选地,该储能单元热失控实验平台还包括进气阀(图中未示出),进气阀设置在进气管路6上,进气阀与控制器电连接。
在热失控实验过程中,还需要对实验样品9的温度进行实时监测,可选地,该储能单元热失控实验平台还包括第二温度传感器(图中未示出),第二温度传感器用于测量实验样品9的温度。且为了实现智能协同调控,第二温度传感器与控制器电连接。
为了进一步降低箱体1内温度,该储能单元热失控实验平台还包括设置在箱体1内的实验箱液冷系统(图中未示出)。该实验箱液冷系统包括流量调节阀,以对内部的换热介质的流量进行调节,从而调节该实验箱液冷系统的换热效率。
本实施例还提供了一种控制方法,能够对上述的储能单元热失控实验平台进行控制,在热失控实验过程中保证传感器的正常工作,避免传感器损坏,延长传感器的使用寿命。该控制方法包括以下步骤:
首先将实验样品9放置在加热平台2上,根据实验场景选择对实验样品9进行加热、过充电或过放电。
实验样品9在加热、过充电或过放电过程中温度不断升高,第二温度传感器实时监测实验样品9的温度,且将温度数值实时传输至控制器,以便控制器发出相应的控制命令。当实验样品9的温度达到第一预设温度T10时,控制器控制实验箱液冷系统开启,以降低容置腔内的温度,防止高温燃烧,并控制其流量为第一预设流量L10。与此同时,为了进一步有针对性的预防传感器组件上游流体的温度过高,对传感器组件造成冲击,控制器控制液冷多孔栅板42的流量控制阀开启换热管路,调节内部换热介质的流量为第二预设流量L20。
降温一段预设时间或实验样品9的温度落回预设安全温度时,控制器控制风机43开启,风机43的转速调节为第一转速K1,一段时间气流流速稳定后,开启传感器组件测量气体成分和浓度等数据。
在此过程中,一旦实验样品9的温度升高速率达到第一升温速率A1,并持续第一时长B1,即认为储能单元发生热失控,控制器控制加热平台2或充放电组件3,停止加热、过充电或过放电。
无论是否发生热失控,均需要对传感器组件进行实时的降温保护。即当传感器组 件的上游温度达到第二预设温度T20时,控制器控制液冷多孔栅板42的流量控制阀,使液冷多孔栅板42内的换热介质流量增至第三预设流量L21,L21>L20,以增大降温效率。控制器控制风机43减速至第二转速K2,其中,K2=K1/k,k≥1,以降低进入检测盒41的流体的流量,从而降低检测盒41内每时刻增加的热量。
当传感器组件的上游温度进一步升高至第三预设温度T21时,其中,T21>T20,控制器控制液冷多孔栅板42内的换热介质流量进一步增至第四预设流量L22,并控制风机43关闭。风机43关闭状态下,传感器组件的测量结果具有一定的滞后性。一段时间后若传感器组件的上游温度降至第二预设温度T20,即按照上述方案调节风机43的转速和液冷多孔栅板42内换热介质的流量,传感器组件继续进行检测。
一旦实验样品9的温度达到临界温度Tmax,或容置腔内的压力达到临界压力Pmax时,即实验的安全性受到威胁,控制器控制泄压阀和进气阀均开启,以使容置腔与惰性气体单元和外界均连通,在泄压的同时,输入惰性气体以避免发生燃烧,同时关闭传感器组件,实验结束。若实验过程中,实验样品9的温度始终未达到临界温度Tmax,且容置腔内的压力始终未达到临界压力Pmax,即可根据气体成分和浓度变化小,且实验样品9的温度降低至第四预设温度T11,作为实验结束的标志。
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种储能单元热失控实验平台,其特征在于,包括:
    箱体(1),所述箱体(1)内设置有容置腔,实验样品(9)放置在所述容置腔内;
    加热平台(2),所述加热平台(2)设置在所述容置腔内,能够加热所述实验样品(9);
    充放电组件(3),所述充放电组件(3)部分设置在所述容置腔内,能够对所述实验样品(9)进行充放电;
    检测模块(4),所述检测模块(4)设置在所述容置腔内,所述检测模块(4)包括检测盒(41)、液冷多孔栅板(42)、传感器组件和风机(43),所述液冷多孔栅板(42)和所述传感器组件设置在所述检测盒(41)内,且按照所述检测盒(41)内的流体流动方向,所述液冷多孔栅板(42)设置在所述传感器组件的上游,所述检测盒(41)上设置有流体入口和流体出口,所述风机(43)贯穿设置在所述流体入口或所述流体出口处。
  2. 根据权利要求1所述的储能单元热失控实验平台,其特征在于,所述检测模块(4)还包括第一温度传感器(44),所述第一温度传感器(44)按照所述检测盒(41)内的流体方向,设置在所述传感器组件的上游。
  3. 根据权利要求2所述的储能单元热失控实验平台,其特征在于,所述检测模块(4)还包括控制器,所述液冷多孔栅板(42)的液冷管路上设置有流量控制阀,所述控制器与所述第一温度传感器(44)、所述风机(43)和所述流量控制阀均电连接,所述控制器能够根据所述第一温度传感器(44)测得的温度,控制所述风机(43)的转速和所述液冷多孔栅板(42)内换热介质的流量。
  4. 根据权利要求3所述的储能单元热失控实验平台,其特征在于,还包括压力传感器和压力显示仪表(5),所述压力传感器用于测量所述容置腔内的压力,所述压力显示仪表(5)用于显示所述压力。
  5. 根据权利要求4所述的储能单元热失控实验平台,其特征在于,所述压力传感器包括测压部,所述测压部设置在所述容置腔内,所述测压部上包裹有隔热材料。
  6. 根据权利要求5所述的储能单元热失控实验平台,其特征在于,还包括泄压管路和泄压阀,所述泄压管路与所述容置腔连通,所述泄压阀设置在所述泄压管路上,所述控制器与所述压力传感器、所述泄压阀均电连接。
  7. 根据权利要求3所述的储能单元热失控实验平台,其特征在于,还包括惰性气体单元和进气管路(6),所述进气管路(6)的一端与所述惰性气体单元连通,另一端与所述容置腔连通。
  8. 根据权利要求7所述的储能单元热失控实验平台,其特征在于,还包括进气阀,所述进气阀设置在所述进气管路(6)上,所述进气阀与所述控制器电连接。
  9. 根据权利要求1所述的储能单元热失控实验平台,其特征在于,还包括第二温度传感器,所述第二温度传感器用于测量所述实验样品(9)的温度。
  10. 一种控制方法,用于对如权利要求1-9任一项所述的储能单元热失控实验平台进行控制,其特征在于,包括以下步骤:
    实验样品(9)进行加热、过充电或过放电,当所述实验样品(9)的温度达到第一预设温度T10时,开启实验箱液冷系统以冷却容置腔,控制其流量为第一预设流量L10,导通液冷多孔栅板(42),控制其流量为第二预设流量L20,控制风机(43)的转速为第一转速K1,传感器组件开始测量;
    当所述实验样品(9)的温度升高速率达到第一升温速率A1,并持续第一时长B1时,停止加热、过充电或过放电;
    当所述传感器组件的上游温度达到第二预设温度T20时,所述液冷多孔栅板(42)内的换热介质流量增至第三预设流量L21,所述风机(43)减速至第二转速K2,其中,K2=K1/k,k≥1;
    当所述上游温度达到第三预设温度T21时,所述液冷多孔栅板(42)内的换热介质流量增至第四预设流量L22,所述风机(43)关闭,其中,T21>T20,L22大于L21;
    当所述实验样品(9)的温度达到临界温度Tmax,或所述容置腔内的压力达到临界压力Pmax时,打开泄压阀和进气阀,以使所述容置腔与惰性气体单元和外界均连通,关闭所述传感器组件。
PCT/CN2022/120529 2021-10-22 2022-09-22 一种储能单元热失控实验平台及其控制方法 WO2023065951A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111232574.8A CN113985299A (zh) 2021-10-22 2021-10-22 一种储能单元热失控实验平台及其控制方法
CN202111232574.8 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023065951A1 true WO2023065951A1 (zh) 2023-04-27

Family

ID=79740319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120529 WO2023065951A1 (zh) 2021-10-22 2022-09-22 一种储能单元热失控实验平台及其控制方法

Country Status (2)

Country Link
CN (1) CN113985299A (zh)
WO (1) WO2023065951A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117691221A (zh) * 2024-02-02 2024-03-12 山东电工时代能源科技有限公司 一种阻燃型储能装置及其阻燃方法
CN118112427A (zh) * 2024-04-25 2024-05-31 江苏讯汇科技股份有限公司 一种储能电池热失控实验装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985299A (zh) * 2021-10-22 2022-01-28 上海奥威科技开发有限公司 一种储能单元热失控实验平台及其控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203211A1 (de) * 2002-01-28 2003-08-14 Siemens Ag Mikrofluidikprobenmodul mit Mitteln zur Temperaturbeeinflussung
CN105445320A (zh) * 2015-11-18 2016-03-30 王建刚 动力电池热失控可视化测试分析系统
CN107132487A (zh) * 2017-06-22 2017-09-05 广州中国科学院工业技术研究院 二次电池热失控传播测试系统
CN107677495A (zh) * 2017-09-13 2018-02-09 中国舰船研究设计中心 一种电源设备液冷式散热试验系统及方法
JP2018063765A (ja) * 2016-10-11 2018-04-19 日本ドライケミカル株式会社 二次電池の熱暴走抑止システム
CN108152756A (zh) * 2018-02-08 2018-06-12 中国石油大学(华东) 一种电池组热管理系统热失控抑制效能的测试装置
CN108704675A (zh) * 2018-07-02 2018-10-26 苏州市计量测试院 一种空气温度试验箱
CN109946634A (zh) * 2019-03-14 2019-06-28 南京能启能电子科技有限公司 一种锂离子电池热失控环境模拟设备及方法
CN111487538A (zh) * 2019-01-29 2020-08-04 南京理工大学 一种锂离子电池或电池组热失控综合检测系统及方法
CN213091539U (zh) * 2020-08-11 2021-04-30 大连捷华船舶科技有限公司 一种热冲击可变可控的绝热爆炸仓装置
CN113985299A (zh) * 2021-10-22 2022-01-28 上海奥威科技开发有限公司 一种储能单元热失控实验平台及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205154261U (zh) * 2015-12-01 2016-04-13 山西中煤西沙河煤业有限公司 一种矿井顶板用瓦斯传感器吊挂装置
CN109270111A (zh) * 2018-09-13 2019-01-25 南京工业大学 锂离子电池热失控产物收集及测试方法
CN209589202U (zh) * 2019-01-24 2019-11-05 江苏天宏机械工业有限公司 激光传感器高温保护装置
CN109959579A (zh) * 2019-03-27 2019-07-02 中国北方车辆研究所 锂离子电池热失控过程产气量测量及气体收集装置
CN212162024U (zh) * 2020-05-14 2020-12-15 优普联科(天津)电子科技有限公司 一种应用于电池包液冷系统的温度传感器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203211A1 (de) * 2002-01-28 2003-08-14 Siemens Ag Mikrofluidikprobenmodul mit Mitteln zur Temperaturbeeinflussung
CN105445320A (zh) * 2015-11-18 2016-03-30 王建刚 动力电池热失控可视化测试分析系统
JP2018063765A (ja) * 2016-10-11 2018-04-19 日本ドライケミカル株式会社 二次電池の熱暴走抑止システム
CN107132487A (zh) * 2017-06-22 2017-09-05 广州中国科学院工业技术研究院 二次电池热失控传播测试系统
CN107677495A (zh) * 2017-09-13 2018-02-09 中国舰船研究设计中心 一种电源设备液冷式散热试验系统及方法
CN108152756A (zh) * 2018-02-08 2018-06-12 中国石油大学(华东) 一种电池组热管理系统热失控抑制效能的测试装置
CN108704675A (zh) * 2018-07-02 2018-10-26 苏州市计量测试院 一种空气温度试验箱
CN111487538A (zh) * 2019-01-29 2020-08-04 南京理工大学 一种锂离子电池或电池组热失控综合检测系统及方法
CN109946634A (zh) * 2019-03-14 2019-06-28 南京能启能电子科技有限公司 一种锂离子电池热失控环境模拟设备及方法
CN213091539U (zh) * 2020-08-11 2021-04-30 大连捷华船舶科技有限公司 一种热冲击可变可控的绝热爆炸仓装置
CN113985299A (zh) * 2021-10-22 2022-01-28 上海奥威科技开发有限公司 一种储能单元热失控实验平台及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117691221A (zh) * 2024-02-02 2024-03-12 山东电工时代能源科技有限公司 一种阻燃型储能装置及其阻燃方法
CN118112427A (zh) * 2024-04-25 2024-05-31 江苏讯汇科技股份有限公司 一种储能电池热失控实验装置

Also Published As

Publication number Publication date
CN113985299A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2023065951A1 (zh) 一种储能单元热失控实验平台及其控制方法
CN107579308B (zh) 一种电动汽车电池包热管理及温度均衡控制方法
WO2019101029A1 (zh) 用于充换电站电池包的隔离系统、充换电站及隔离方法
EP4116691A1 (en) Leakage detection method and leakage detection system for box
WO2022233278A1 (zh) 氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车
CN207067364U (zh) 锂电池试验箱
US20110232302A1 (en) Battery test rig
US7087151B2 (en) Hydrogen sensor for use in battery overcharge/overdischarge detector and hydrogen leakage detector
CN115629327B (zh) 一种电池包热失控检测方法、装置及检测电池包
CN110542861A (zh) 一种动力电池泄气量测试装置及方法
CN112290147B (zh) 阻止锂离子电池组热失控传播的箱体盒及控制方法
EP4345979A1 (en) Battery cell, battery module, battery pack, energy storage system, and electric vehicle
CN114545248A (zh) 一种锂离子电池热失控特性表征方法及检测装置
CN109164395A (zh) 电动汽车用动力蓄电池安全试验方法
CN209841087U (zh) 一种电公交密闭电池舱气体监测装置
CN211554252U (zh) 一种动力电池泄气量测试装置
CN212459986U (zh) 一种精准定位新型锂离子电池热失控的检测装置
CN216436054U (zh) 一种气体保护式锂电池储能集装箱
CN114441977B (zh) 一种机器人电池安全监测系统及监测方法
CN216956296U (zh) 一种锂离子电池热失控特性测试装置
CN113707918B (zh) 燃料电池模块及其腔室吹扫控制方法
CN110314304A (zh) 一种动力锂电池箱自适应火灾防控装置
CN114397529A (zh) 绝热实验仓以及热失控实验方法
CN111948564A (zh) 一种精准定位新型锂离子电池热失控的检测装置
CN114204178A (zh) 一种集空调通风与消防排烟于一体的船用锂电池箱柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE