WO2022233278A1 - 氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车 - Google Patents

氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车 Download PDF

Info

Publication number
WO2022233278A1
WO2022233278A1 PCT/CN2022/090377 CN2022090377W WO2022233278A1 WO 2022233278 A1 WO2022233278 A1 WO 2022233278A1 CN 2022090377 W CN2022090377 W CN 2022090377W WO 2022233278 A1 WO2022233278 A1 WO 2022233278A1
Authority
WO
WIPO (PCT)
Prior art keywords
real
time
voltage
fuel cell
preset
Prior art date
Application number
PCT/CN2022/090377
Other languages
English (en)
French (fr)
Inventor
黄浩
孙祥
Original Assignee
永安行科技股份有限公司
永安行常州氢能动力技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永安行科技股份有限公司, 永安行常州氢能动力技术有限公司 filed Critical 永安行科技股份有限公司
Publication of WO2022233278A1 publication Critical patent/WO2022233278A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of hydrogen fuel cell stacks, in particular to an on-line monitoring method and system for hydrogen fuel cell stacks and a hydrogen fuel electric vehicle using the monitoring method.
  • the fuel cell stack provides power output for the hydrogen-fueled electric bicycle.
  • the applicant of the present invention found that the fuel cell stack of the prior art has the following technical problems:
  • the reverse polarity phenomenon refers to the negative value of the single cell voltage. It is mainly caused by gas leakage or impurities, and the reverse polarity phenomenon will cause irreversible damage to the stack, so the reverse polarity phenomenon is absolutely not allowed during the operation of the stack;
  • the exhaust strategy of the air-cooled stack affects the performance and hydrogen utilization of the stack during operation.
  • the fuel inside the stack will be insufficient, which may cause the battery to form a reverse polarity phenomenon, and may cause the stack to catch fire;
  • the exhaust time is too long and the exhaust interval is too short, It will cause a large amount of unreacted hydrogen to be discharged to the outside of the stack, resulting in low hydrogen utilization and poor economic effect of hydrogen;
  • the present invention provides A fault diagnosis method for an air-cooled fuel cell stack.
  • the purpose of the present invention is to provide an on-line monitoring method and system of a hydrogen fuel cell stack for real-time monitoring, fault diagnosis and processing of the single cell voltage of a vehicle-mounted hydrogen fuel cell, and a hydrogen fuel cell using the monitoring method.
  • Fuel Electric Vehicles Fuel Electric Vehicles.
  • the invention discloses an on-line monitoring method for a hydrogen fuel cell stack.
  • a hydrogen cylinder is connected to the hydrogen fuel cell stack for supplying hydrogen to the hydrogen fuel cell stack, and the hydrogen fuel cell stack includes exhaust gas.
  • the exhaust port is provided with an exhaust valve, the hydrogen fuel cell stack includes several single cells, and the hydrogen fuel cell stack is continuously obtained at intervals of a first preset time period during the operation of the hydrogen fuel cell stack. Real-time voltage of single battery, and make voltage judgment:
  • the hydrogen fuel cell stack stops running, and receives a fault signal or a fault elimination signal at a second preset time interval; if the fault signal is received, the hydrogen fuel The battery stack continues to stop running; if the fault elimination signal is received, the hydrogen fuel cell stack starts to run; when the real-time voltage is not negative, it continues to judge whether the real-time voltage is at the first preset voltage Within the range: if so, obtain the real-time voltage of the single cell again, and make the voltage judgment; if not, adjust the opening duration and opening interval duration of the exhaust valve, and obtain the real-time voltage of the single cell again. voltage, and perform the voltage judgment; the first preset voltage range is located in the positive threshold range.
  • the opening duration and opening interval duration of the exhaust valve Preferably, if no, adjust the opening duration and opening interval duration of the exhaust valve, and obtain the real-time voltage of the single cell again, and the voltage judgment includes: the real-time voltage is still not at the first Within the preset voltage range, the alarm prompts exhaust failure.
  • the first preset time period is 0; when the real-time voltage is not negative, continuing to determine whether the real-time voltage is within the first preset voltage range further includes: when the real-time voltage is not negative is negative, continue to judge whether the real-time voltage is within the first preset voltage range, and whether the maximum value of the absolute value of the difference between the real-time voltages of the current single cell and other single cells is less than the first preset voltage threshold: if yes, Then obtain the real-time voltage of the single cell again, and carry out the voltage judgment; if not, adjust the opening duration and the opening interval of the exhaust valve, and obtain the real-time voltage of the single cell again, and carry out the described Voltage judgment.
  • continuing to determine whether the real-time voltage is within the first preset voltage range further includes: when the real-time voltage is not negative, obtaining the hydrogen fuel cell voltage the real-time temperature of the stack, and perform temperature judgment: if the real-time temperature is within the first preset temperature range, continue to judge whether the real-time voltage is within the first preset voltage range; if the real-time temperature is not within the first preset temperature range Within the preset temperature range, the temperature control component is adjusted to change the temperature of the hydrogen fuel cell stack; after the adjusted temperature control component runs for a third preset time period, the temperature control component of the hydrogen fuel cell stack is obtained again. Real-time temperature, and make temperature judgment.
  • the real-time temperature of the hydrogen fuel cell stack is obtained again, and the temperature judgment includes: if the real-time temperature is still not within the third preset time period Within a preset temperature range, an alarm will prompt the hydrogen fuel cell temperature failure.
  • continuing to determine whether the real-time voltage is within the first preset voltage range further includes: if the real-time temperature is within the first preset temperature range If the real-time air pressure is within the first preset pressure range, continue to judge whether the real-time voltage is within the first preset voltage range; If the real-time air pressure is not within the first preset air pressure range, the heating component heats the hydrogen cylinder, and after heating for a fourth preset time period, the real-time air pressure of the hydrogen cylinder is obtained again, and the air pressure judgment is performed.
  • the heating assembly heats the hydrogen cylinder, and after heating the hydrogen cylinder for a fourth preset time period, the real-time air pressure of the hydrogen cylinder is obtained again, and the air pressure judgment includes: heating the hydrogen cylinder by the heating assembly, And the count is 1; after the fourth preset time period is heated, the real-time air pressure of the hydrogen cylinder is obtained again, and the air pressure judgment is performed: if the real-time air pressure is still not within the first preset air pressure range, then the heating component Heating the hydrogen cylinder again, and adding 1 to the count; after heating for a fourth preset time period, obtain the real-time air pressure of the hydrogen cylinder again, and perform the air pressure judgment: when the count is a preset value x , the alarm prompts to replace the hydrogen cylinder; x ⁇ 3.
  • the invention also discloses an on-line monitoring system for a hydrogen fuel cell stack, comprising a hydrogen cylinder connected to the hydrogen fuel cell stack for supplying hydrogen to the hydrogen fuel cell stack, and the hydrogen cylinder is connected to the hydrogen fuel cell stack.
  • the fuel cell stack includes an exhaust port, and the exhaust port is provided with an exhaust valve;
  • the hydrogen fuel cell stack includes a plurality of single cells;
  • control module continuously obtains the real-time voltage of the single cell at intervals of a first preset time period through the voltage detection unit, and obtains the real-time temperature of the hydrogen fuel cell stack through the temperature detection unit, and Obtain the real-time air pressure of the hydrogen cylinder through the air pressure detection module;
  • the hydrogen fuel cell stack stops running; when the real-time voltage is not negative, the real-time temperature of the hydrogen fuel cell stack is acquired, and temperature judgment is performed:
  • the temperature control assembly is adjusted to change the temperature of the hydrogen fuel cell stack; after the adjusted temperature control assembly runs for a third preset time period, the temperature control assembly is adjusted again Obtain the real-time temperature of the hydrogen fuel cell stack, and perform temperature judgment;
  • the real-time temperature is within the first preset temperature range, obtain the real-time air pressure of the hydrogen cylinder, and perform air pressure judgment: if the real-time air pressure is not within the first preset air pressure range, the heating component The hydrogen cylinder is heated, and after heating for a fourth preset time period, the real-time air pressure of the hydrogen cylinder is obtained again, and the air pressure judgment is performed; if the real-time air pressure is within the first preset air pressure range, the judgment is continued. Whether the real-time voltage is within the first preset voltage range;
  • the real-time voltage is within the first preset voltage range, obtain the real-time voltage of the single cell again, and perform voltage judgment; if the real-time voltage is not within the first preset voltage range, adjust the row The opening duration and the opening interval duration of the air valve are determined, and the real-time voltage of the single battery is obtained again, and the voltage is judged; the first preset voltage range is located in the positive threshold range.
  • the invention also discloses a hydrogen fuel electric vehicle, which is powered by a hydrogen fuel cell stack, and the above-mentioned on-line monitoring method is used to monitor the hydrogen fuel cell stack.
  • the real-time voltage of each single cell of the hydrogen fuel cell stack can be monitored, the working status of the hydrogen fuel cell stack can be known in time, and the reverse polarity phenomenon of the single cell can be avoided; and the voltage of the hydrogen fuel cell stack can be detected online. faults and implement online control based on the detected faults.
  • FIG. 1 is a flowchart of an on-line monitoring method for a hydrogen fuel cell stack provided by the present invention
  • FIG. 2 is a schematic structural principle diagram of an on-line monitoring system for a hydrogen fuel cell stack provided by the present invention.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the present invention discloses an on-line monitoring method for a hydrogen fuel cell stack.
  • the hydrogen cylinder is connected to the hydrogen fuel cell stack for supplying hydrogen to the hydrogen fuel cell stack, and the hydrogen fuel cell stack includes an exhaust port.
  • the hydrogen fuel cell stack includes an exhaust port.
  • the hydrogen fuel cell stack is composed of several single cell stacks, and the working condition of the single cell reflects the reaction status of the entire hydrogen fuel cell stack. Therefore, the present invention continuously obtains the real-time voltage of the single cell at the interval of the first preset time period during the operation of the hydrogen fuel cell stack, and judges whether the real-time voltage is negative, that is, whether the reverse polarity phenomenon occurs:
  • the hydrogen fuel cell stack stops running, and a fault signal or a fault elimination signal is received at intervals of the second preset time period; if a fault signal is received, the hydrogen fuel cell stack continues to stop running; if After receiving the fault elimination signal, the hydrogen fuel cell stack starts to operate;
  • the first preset voltage range is within the positive threshold range, and the voltage judgment means that the current voltage is only within the preset range suitable for reaction only when the voltage of the single cell has no reverse polarity.
  • the battery stack When it is judged that the real-time voltage is negative and the hydrogen fuel cell stack stops running, there are usually maintenance personnel to check and repair to eliminate the fault, or the system automatically repairs and eliminates the fault after a period of shutdown.
  • the battery stack also needs to receive a fault signal or a fault elimination signal at intervals of a second preset time period; if a fault signal is received, it indicates that the fault still exists, and the hydrogen fuel cell stack continues to stop running; if a fault is received When the signal is removed, the hydrogen fuel cell stack resumes operation.
  • both the first preset time period and the second preset time period are adjustable. If the setting is smaller, the detection will be more sensitive, and if the setting is longer, the detection will be more insensitive. Depends on actual needs.
  • an alarm is issued to prompt exhaust. Fault. That is, when the real-time voltage obtained twice is not within the first preset voltage range, an alarm will be prompted.
  • the alarm information is not limited to exhaust failure, but can be called warning information such as abnormal voltage.
  • the first preset time period is 0, that is to say, when the obtained real-time voltage is analyzed and judged and the corresponding action is performed, the voltage of the single cell is obtained again immediately, the detection sensitivity is extremely high, and the real-time detection and response are performed.
  • the temperature control component adjusts the temperature control component to change the temperature of the hydrogen fuel cell stack; after the adjusted temperature control component runs for a third preset time period, obtain the hydrogen fuel cell stack again real-time temperature, and make temperature judgment.
  • the temperature control component is usually a fan, and turning on the fan can cool the battery.
  • the temperature control assembly may also include a heat dissipation assembly other than a fan.
  • the third preset time period is adjustable. After the default temperature control component runs for the third preset time, the temperature of the battery can be reduced to the required temperature threshold, that is, the first preset temperature range. temperature and judge.
  • the real-time temperature of the hydrogen fuel cell stack is obtained again, and the temperature is judged to find that the real-time temperature is still not within the first preset temperature range, and an alarm is issued. Indicates a hydrogen fuel cell temperature failure. That is, when the real-time temperature obtained twice is not within the first preset temperature range, an alarm will be prompted.
  • it can also be set to 3 or more times, which is not limited here.
  • the alarm information is not limited to temperature faults.
  • Set voltage range is set to:
  • the real-time air pressure of the hydrogen cylinder is obtained, and the air pressure is judged:
  • the heating component heats the hydrogen cylinder, and after heating for a fourth preset time period, obtains the real-time air pressure of the hydrogen cylinder again, and performs air pressure judgment.
  • the fourth preset time period is adjustable. After the default heating component runs for the fourth preset time, the pressure of the hydrogen cylinder can be adjusted to be within the required pressure threshold, that is, the first preset pressure range. At this time, the hydrogen gas is obtained again. The air pressure of the bottle and judge.
  • the count is 1; after the heating for the fourth preset time period, the real-time air pressure of the hydrogen cylinder is obtained again, and the air pressure is judged: if the real-time air pressure is still not in the first Within a preset pressure range, the heating component heats the hydrogen cylinder again, and the count increases by 1; after heating for a fourth preset time period, the real-time pressure of the hydrogen cylinder is obtained again, and the pressure judgment is performed: when the count is the preset value When x, the alarm prompts to replace the hydrogen bottle; x ⁇ 3.
  • the accumulated count is counted.
  • the number of heating times is greater than or equal to 3 times, it is considered that the hydrogen cylinder is faulty, and an alarm prompts the replacement of the hydrogen cylinder.
  • the alarm information is not limited to the replacement of hydrogen cylinders, but can be called warning information such as gas cylinder pressure failure.
  • the present invention timely knows the working state of the hydrogen fuel cell stack by judging the voltage state of the single cell of the hydrogen fuel cell stack.
  • the relevant online fault diagnosis strategy can be performed on the stack before the reverse polarity phenomenon occurs in the single cell of the hydrogen fuel cell, which can prevent the hydrogen fuel cell stack from starting the shutdown protection process, and play an online fault handling function for the hydrogen fuel cell stack.
  • by monitoring the single cell voltage of the hydrogen fuel cell stack it can be judged whether the operating temperature of the hydrogen fuel cell stack and whether the exhaust strategy is in an optimal working state, which can further improve the output performance and performance of the hydrogen fuel cell stack. Improving the utilization rate of hydrogen can indirectly reduce the operating cost of hydrogen fuel cell stacks and improve economic benefits.
  • the present invention also discloses an on-line monitoring system for a hydrogen fuel cell stack, including a hydrogen cylinder, the hydrogen cylinder is connected to the hydrogen fuel cell stack for supplying hydrogen to the hydrogen fuel cell stack, and the hydrogen fuel cell electricity
  • the stack includes an exhaust port, and an exhaust valve is arranged on the exhaust port, and the hydrogen fuel cell stack is composed of a plurality of single cells stacked.
  • the control module is usually an MCU.
  • the control module continuously obtains the real-time voltage of the single cell at intervals of the first preset time period through the voltage detection unit, and obtains the real-time temperature and hydrogen gas of the hydrogen fuel cell stack through the sensing module.
  • the real-time air pressure of the bottle, the sensing module includes a temperature detection unit and an air pressure detection module.
  • the control module is also connected with the temperature control component, the heating component and the exhaust valve.
  • the hydrogen fuel cell stack When the real-time voltage is negative, the hydrogen fuel cell stack is controlled to stop running; when the real-time voltage is not negative, the real-time temperature of the hydrogen fuel cell stack is obtained, and the temperature is judged:
  • the temperature control component is usually a fan;
  • the real-time air pressure of the hydrogen cylinder is obtained through the air pressure detection module, and the air pressure is judged: if the real-time air pressure is not within the first preset air pressure range, the heating component heats the hydrogen cylinder , after heating for a fourth preset time period, obtain the real-time air pressure of the hydrogen cylinder again, and perform air pressure judgment; if the real-time air pressure is within the first preset air pressure range, continue to judge whether the real-time voltage is within the first preset voltage range;
  • the real-time voltage is within the first preset voltage range, the real-time voltage of the single cell is obtained again, and the voltage judgment is performed; if the real-time voltage is not within the first preset voltage range, the opening duration and opening interval of the exhaust valve are adjusted. and the real-time voltage of the single battery is obtained again, and the voltage is judged; the first preset voltage range is in the positive threshold range.
  • the control module is also connected with a storage module and a communication module.
  • the storage module stores relevant detection and analysis data, and communicates with external equipment and the central control system through the communication module, and transmits information to each other.
  • the invention also discloses a hydrogen fuel electric vehicle, which is powered by the hydrogen fuel cell stack, and uses the above-mentioned on-line monitoring method to monitor the hydrogen fuel cell stack.

Abstract

一种氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车,通过判断氢燃料电池电堆的单电池电压状态,及时知晓氢燃料电池电堆的工作状态。一方面,可以在氢燃料电池单电池出现反极现象之前对电堆执行相关的在线故障诊断策略,可避免氢燃料电池电堆启动关机保护流程,对氢燃料电池电堆起到在线故障处理功能;另一方面,通过监测氢燃料电池电堆的单电池电压,可以判断出氢燃料电池电堆的运行温度以及排气策略是否处于最优的工作状态,可进一步提升氢燃料电池电堆输出性能和提升氢气的利用率,间接降低氢燃料电池电堆的运行成本,提升经济效益。

Description

氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车 技术领域
本发明涉及氢燃料电池电堆技术领域,尤其涉及一种氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车。
背景技术
燃料电池电堆给氢燃料电动自行车提供动力输出,本发明的申请人在研发过程中发现现有技术的燃料电池电堆存在如下技术问题:
1)电堆在运行过程中,电堆会因气体密封失效以及散热和排水不畅,致使电堆的电压下降更甚者出现单电池反极现象,反极现象指单电池电压出现负值,主要是漏气或杂质等原因导致,而反极现象会导致电堆形成不可逆的损害,故反极现象在电堆运行过程中是绝对不能允许存在的;
2)在车用环境下,空冷型电堆排气策略影响电堆运行中的性能以及氢气利用率。当排气时间过短和排气间隔过长,会造成电堆内部燃料不足,从而可能导致电池形成反极现象,并可能引起电堆起火;当排气时间过长和排气间隔过短,会造成大量未被反应的氢气被排放到电堆外部,造成氢气利用率低下,氢气的经济效应较差;
3)在车用环境下,监测单电池电压保证燃料电池系统的可靠性、安全性和耐久性是十分必要的,尤其是故障状态下,维持氢燃料电动自行车系统的动力输出,本发明提供了一种空冷型燃料电池电堆故障诊断方法。
发明内容
为了克服上述技术缺陷,本发明的目的在于提供一种对车载氢燃料电池的单电池电压进行实时监测、故障诊断和处理的氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车。
本发明公开了一种氢燃料电池电堆的在线监测方法,氢气瓶与所述氢燃料电池电堆 连接用于向所述氢燃料电池电堆供氢,所述氢燃料电池电堆包括排气口,所述排气口上设有排气阀,所述氢燃料电池电堆包括若干个单电池,在所述氢燃料电池电堆的运行期间以第一预设时间段为间隔持续获取所述单电池的实时电压,并进行电压判断:
当所述实时电压为负,则所述氢燃料电池电堆停止运行,并以第二预设时间段为间隔收取故障信号或故障消除信号;若接收到了所述故障信号,则所述氢燃料电池电堆继续停止运行;若接收到了所述故障消除信号,则所述氢燃料电池电堆开始运行;当所述实时电压不为负,则继续判断所述实时电压是否位于第一预设电压范围内:若是,则再次获取所述单电池的实时电压,并进行所述电压判断;若否,则调整所述排气阀的开启时长与打开间隔时长,并再次获取所述单电池的实时电压,进行所述电压判断;所述第一预设电压范围位于正阈值区间。
优选的,所述若否,则调整所述排气阀的开启时长与打开间隔时长,并再次获取所述单电池的实时电压,进行所述电压判断包括:所述实时电压依然不位于第一预设电压范围内,则报警提示排气故障。
优选的,所述第一预设时间段为0;所述当所述实时电压不为负,则继续判断所述实时电压是否位于第一预设电压范围内还包括:当所述实时电压不为负,则继续判断所述实时电压是否位于第一预设电压范围内、且当前单电池与其他单电池的实时电压之差的绝对值的最大值是否小于第一预设电压阈值:若是,则再次获取所述单电池的实时电压,并进行所述电压判断;若否,则调整所述排气阀的开启时长与打开间隔时长,并再次获取所述单电池的实时电压,进行所述电压判断。
优选的,所述当所述实时电压不为负,则继续判断所述实时电压是否位于第一预设电压范围内还包括:当所述实时电压不为负,则获取所述氢燃料电池电堆的实时温度,并进行温度判断:若所述实时温度位于第一预设温度范围内,则继续判断所述实时电压是否位于第一预设电压范围内;若所述实时温度不位于第一预设温度范围内,则调节温控组件以改变所述氢燃料电池电堆的温度;调节后的所述温控组件运行第三预设时间段后,再次获取所述氢燃料电池电堆的实时温度,并进行温度判断。
优选的,所述调节后的所述温控组件运行第三预设时间段后,再次获取所述氢燃料电池电堆的实时温度,并进行温度判断包括:若所述实时温度依然不位于第一预设温度范围内,则报警提示氢燃料电池温度故障。
优选的,所述若所述实时温度位于第一预设温度范围内,则继续判断所述实时电压是否位于第一预设电压范围内还包括:若所述实时温度位于第一预设温度范围内,则获 取所述氢气瓶的实时气压,并进行气压判断:若所述实时气压位于第一预设气压范围内,则继续判断所述实时电压是否位于第一预设电压范围内;若所述实时气压不位于第一预设气压范围内,则加热组件对所述氢气瓶进行加热,加热第四预设时间段后,再次获取所述氢气瓶的实时气压,并进行所述气压判断。
优选的,加热组件对所述氢气瓶进行加热,加热第四预设时间段后,再次获取所述氢气瓶的实时气压,并进行所述气压判断包括:加热组件对所述氢气瓶进行加热,并计数为1;加热第四预设时间段后,再次获取所述氢气瓶的实时气压,并进行所述气压判断:若所述实时气压依然不位于第一预设气压范围内,则加热组件再次对所述氢气瓶进行加热,并计数加1;加热第四预设时间段后,再次获取所述氢气瓶的实时气压,并进行所述气压判断:当所述计数为预设数值x时,报警提示更换氢气瓶;x≥3。
本发明还公开了一种氢燃料电池电堆的在线监测系统,包括氢气瓶,所述氢气瓶与所述氢燃料电池电堆连接用于向所述氢燃料电池电堆供氢,所述氢燃料电池电堆包括排气口,所述排气口上设有排气阀;所述氢燃料电池电堆包括若干个单电池;
还包括控制模块,所述控制模块通过电压检测单元以第一预设时间段为间隔持续获取所述单电池的实时电压,并通过温度检测单元获取所述氢燃料电池电堆的实时温度,并通过气压检测模块获取所述氢气瓶实时气压;
当所述实时电压为负,则所述氢燃料电池电堆停止运行;当所述实时电压不为负,则获取所述氢燃料电池电堆的实时温度,并进行温度判断:
若所述实时温度不位于第一预设温度范围内,则调节温控组件以改变所述氢燃料电池电堆的温度;调节后的所述温控组件运行第三预设时间段后,再次获取所述氢燃料电池电堆的实时温度,并进行温度判断;
若所述实时温度位于第一预设温度范围内,则获取所述氢气瓶的实时气压,并进行气压判断:若所述实时气压不位于第一预设气压范围内,则加热组件对所述氢气瓶进行加热,加热第四预设时间段后,再次获取所述氢气瓶的实时气压,并进行所述气压判断;若所述实时气压位于第一预设气压范围内,则继续判断所述实时电压是否位于第一预设电压范围内;
若所述实时电压位于第一预设电压范围内,则再次获取所述单电池的实时电压,并进行电压判断;若所述实时电压不位于第一预设电压范围内,则调整所述排气阀的开启时长与打开间隔时长,并再次获取所述单电池的实时电压,进行电压判断;所述第一预设电压范围位于正阈值区间。
本发明还公开了一种氢燃料电动车,通过氢燃料电池电堆进行供电,并使用上述的在线监测方法对所述氢燃料电池电堆进行监测。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.可以监控氢燃料电池电堆的每个所述单电池的实时电压,及时知晓氢燃料电池电堆的工作状态,避免了单电池的反极现象;并可以在线检测氢燃料电池电堆的故障并根据所检测的故障实施在线控制。
附图说明
图1为本发明提供的氢燃料电池电堆的在线监测方法的流程图;
图2为本发明提供的氢燃料电池电堆的在线监测系统的结构原理示意图。
具体实施方式
以下结合附图与具体实施例进一步阐述本发明的优点。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位 构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,“模块”与“部件”可以混合地使用。
参见附图1,本发明公开了一种氢燃料电池电堆的在线监测方法,氢气瓶与氢燃料电池电堆连接用于向氢燃料电池电堆供氢,氢燃料电池电堆包括排气口,排气口上设有排气阀。调整排气阀的开启时间段、本次开启与下次开启之间的时间间隔、以及排气阀的开度。
氢燃料电池电堆由若干个单电池堆叠组成,单电池的工作状况反映了整个氢燃料电池电堆的反应状况。故本发明在氢燃料电池电堆的运行期间以第一预设时间段为间隔持续获取单电池的实时电压,并判断实时电压是否为负,即是否出现反极现象:
当实时电压为负,则氢燃料电池电堆停止运行,并以第二预设时间段为间隔收取故障信号或故障消除信号;若接收到了故障信号,则氢燃料电池电堆继续停止运行;若接收到了故障消除信号,则氢燃料电池电堆开始运行;
当实时电压不为负,则继续判断该实时电压是否位于第一预设电压范围内:
若是,则完成本次实时电压的分析判断,再次获取单电池的实时电压,并进行电压判断;
若否,则调整排气阀的开启时长与打开间隔时长,完成本次实时电压的分析判断和应对动作,再次获取单电池的实时电压,进行电压判断。
第一预设电压范围位于正阈值区间,电压判断即意为在单电池电压没有出现反极的情况下,才继续判断当前电压是否位于预设的适合于反应的区间内。通过实时的、连续的获取单电池的电压,相比获取整个氢燃料电池电堆的电压,可以更加准确的检测氢燃料电池电堆的电压,且能避免单电池的反极现象。
当判断为实时电压为负,氢燃料电池电堆停止运行后,通常会有维修人员进行检查维修以排除故障、或是停机一段时间后系统自动修复后排除了故障,故对于已停机的氢燃料电池电堆,还需要以第二预设时间段为间隔收取故障信号或故障消除信号;若接收到了故障信号,则表明故障任然存在,则氢燃料电池电堆继续停止运行;若接收到了故 障消除信号,则氢燃料电池电堆重新开始运行。
需要说明的是,第一预设时间段和第二预设时间段都是可调的,若设置的较小,则检测更加灵敏,若设置的较长,则检测钝感较大,具体根据实际需求而定。
较佳的,当调整排气阀的开启时长与打开间隔时长后,并再次获取单电池的实时电压,进行电压判断发现实时电压依然不位于第一预设电压范围内,则发起报警提示排气故障。即当两次获取的实时电压都不位于第一预设电压范围内,则报警提示。
在其他实施例中,也可设置为3次或是更多次,此处并不限制。且关于报警信息,也不限制为排气故障,可以称为电压异常等警示性信息。
较佳的,第一预设时间段为0,也就是说,当对获取的实时电压进行分析判断完毕且实行应对动作后立即再次获取单电池的电压,检测灵敏度极高,实时检测并反应。
除了在已经出现反极现象后立即停止氢燃料电池电堆的运行,为了进一步保证电池的安全,还需要对反极现象进行预测,故将“当实时电压不为负,则继续判断实时电压是否位于第一预设电压范围内”设置为:
当实时电压不为负,则继续判断实时电压是否位于第一预设电压范围内、且当前单电池与其他单电池的实时电压之差的绝对值的最大值是否小于第一预设电压阈值:
若是,则再次获取单电池的实时电压,并进行电压判断;
若否,则调整排气阀的开启时长与打开间隔时长,完成本次实时电压的分析判断和应对动作,并再次获取单电池的实时电压,进行电压判断。
除了判断电压是否位于正常阈值,还需要判断有没有与其他单电池的电压相差极大的单电池,若有则视为该但电池有趋势将会出现反极现象,此时需要停机进行排气调节来预见性的避免反极现象。
较佳的,除了判断电压还需要判断电池的温度,进一步预防电池故障,具体的,将“当实时电压不为负,则继续判断实时电压是否位于第一预设电压范围内”设置为:
当实时电压不为负,则获取氢燃料电池电堆的实时温度,并进行温度判断:
若实时温度位于第一预设温度范围内,则继续判断实时电压是否位于第一预设电压范围内;
若实时温度不位于第一预设温度范围内,则调节温控组件以改变氢燃料电池电堆的温度;调节后的温控组件运行第三预设时间段后,再次获取氢燃料电池电堆的实时温度,并进行温度判断。
温控组件通常为风扇,开启风扇则可以为电池进行降温。在其他实施例中,温控组 件还可以包括除风扇以外的散热组件。
第三预设时间段为可调的,默认温控组件运行第三预设时间后即可使电池的温度降为至所需的温度阈值内,即第一预设温度范围,此时再次获取温度并进行判断。
较佳的,调节后的温控组件运行第三预设时间段后,再次获取氢燃料电池电堆的实时温度,并进行温度判断发现实时温度依然不位于第一预设温度范围内,则报警提示氢燃料电池温度故障。即当两次获取的实时温度都不位于第一预设温度范围内,则报警提示。
在其他实施例中,也可设置为3次或是更多次,此处并不限制。且关于报警信息,也不限制为温度故障。
较佳的,除了判断电压和温度还需要判断氢气瓶的气压,进一步预防充电过程的故障,具体的,将“实时温度位于第一预设温度范围内,则继续判断实时电压是否位于第一预设电压范围内”设置为:
若实时温度位于第一预设温度范围内,则获取氢气瓶的实时气压,并进行气压判断:
若实时气压位于第一预设气压范围内,则继续判断实时电压是否位于第一预设电压范围内;
若实时气压不位于第一预设气压范围内,则加热组件对氢气瓶进行加热,加热第四预设时间段后,再次获取氢气瓶的实时气压,并进行气压判断。
第四预设时间段为可调的,默认加热组件运行第四预设时间后即可使氢气瓶的气压调整为所需的气压阈值内,即第一预设气压范围,此时再次获取氢气瓶的气压并进行判断。
较佳的,第一次使用加热组件对氢气瓶进行加热时,计数为1;加热第四预设时间段后,再次获取氢气瓶的实时气压,并进行气压判断:若实时气压依然不位于第一预设气压范围内,则加热组件再次对氢气瓶进行加热,并计数加1;加热第四预设时间段后,再次获取氢气瓶的实时气压,并进行气压判断:当计数为预设数值x时,报警提示更换氢气瓶;x≥3。
即,每次通过加热组件对氢气瓶进行加热,累计计数,当加热次数大于等于3次,则认为氢气瓶出现故障,才报警提示更换氢气瓶。
在其他实施例中,也可设置为是更多次,此处并不限制。且关于报警信息,也不限制为更换氢气瓶,可以称为气瓶气压故障等警示性信息。
需要说明的是,在上述的每个实施例中,除了判断电压是否位于正常阈值,还可以 加入判断有没有与其他单电池的电压相差极大的单电池。即将“当实时电压不为负,则继续判断实时电压是否位于第一预设电压范围内”设置为,“当实时电压不为负,则继续判断实时电压是否位于第一预设电压范围内、且当前单电池与其他单电池的实时电压之差的绝对值的最大值是否小于第一预设电压阈值”。
本发明通过判断氢燃料电池电堆的单电池电压状态,及时知晓氢燃料电池电堆的工作状态。一方面,可以在氢燃料电池单电池出现反极现象之前对电堆执行相关的在线故障诊断策略,可避免氢燃料电池电堆启动关机保护流程,对氢燃料电池电堆起到在线故障处理功能;另一方,通过监测氢燃料电池电堆的单电池电压,可以判断出氢燃料电池电堆的运行温度以及排气策略是否处于最优的工作状态,可进一步提升氢燃料电池电堆输出性能和提升氢气的利用率,起到间接降低氢燃料电池电堆的运行成本,提升经济效益。
参见附图2,本发明还公开了一种氢燃料电池电堆的在线监测系统,包括氢气瓶,氢气瓶与氢燃料电池电堆连接用于向氢燃料电池电堆供氢,氢燃料电池电堆包括排气口,排气口上设有排气阀,氢燃料电池电堆由若干个单电池堆叠组成。
还包括控制模块,控制模块通常为MCU,控制模块通过电压检测单元以第一预设时间段为间隔持续获取单电池的实时电压,并通过传感模块获取氢燃料电池电堆的实时温度和氢气瓶实时气压,传感模块包括温度检测单元和气压检测模块。控制模块还与温控组件、加热组件、排气阀连接。
当实时电压为负,则控制氢燃料电池电堆停止运行;当实时电压不为负,则获取氢燃料电池电堆的实时温度,并进行温度判断:
若实时温度不位于第一预设温度范围内,则调节温控组件以改变氢燃料电池电堆的温度;调节后的温控组件运行第三预设时间段后,再次获取氢燃料电池电堆的实时温度,并进行温度判断;温控组件通常为风扇;
若实时温度位于第一预设温度范围内,则通过气压检测模块获取氢气瓶的实时气压,并进行气压判断:若实时气压不位于第一预设气压范围内,则加热组件对氢气瓶进行加热,加热第四预设时间段后,再次获取氢气瓶的实时气压,并进行气压判断;若实时气压位于第一预设气压范围内,则继续判断实时电压是否位于第一预设电压范围内;
若实时电压位于第一预设电压范围内,则再次获取单电池的实时电压,并进行电压判断;若实时电压不位于第一预设电压范围内,则调整排气阀的开启时长与打开间隔时长,并再次获取单电池的实时电压,进行电压判断;第一预设电压范围位于正阈值区间。
控制模块还连接有储存模块和通讯模块,通过储存模块对相关检测和分析数据进行存储,通过通讯模块与外部设备和中控系统进行通讯、信息互传等。
本发明还公开了一种氢燃料电动车,通过氢燃料电池电堆进行供电,并使用上述的在线监测方法对氢燃料电池电堆进行监测。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (9)

  1. 一种氢燃料电池电堆的在线监测方法,氢气瓶与所述氢燃料电池电堆连接用于向所述氢燃料电池电堆供氢,所述氢燃料电池电堆包括排气口,所述排气口上设有排气阀,其特征在于,
    所述氢燃料电池电堆包括若干个单电池,在所述氢燃料电池电堆的运行期间以第一预设时间段为间隔持续获取所述单电池的实时电压,并进行电压判断:
    当所述实时电压为负,则所述氢燃料电池电堆停止运行,并以第二预设时间段为间隔收取故障信号或故障消除信号;若接收到了所述故障信号,则所述氢燃料电池电堆继续停止运行;若接收到了所述故障消除信号,则所述氢燃料电池电堆开始运行;
    当所述实时电压不为负,则继续判断所述实时电压是否位于第一预设电压范围内:若是,则再次获取所述单电池的实时电压,并进行所述电压判断;若否,则调整所述排气阀的开启时长与打开间隔时长,并再次获取所述单电池的实时电压,进行所述电压判断;所述第一预设电压范围位于正阈值区间。
  2. 根据权利要求1所述的在线监测方法,其特征在于,所述若否,则调整所述排气阀的开启时长与打开间隔时长,并再次获取所述单电池的实时电压,进行所述电压判断包括:
    所述实时电压依然不位于第一预设电压范围内,则报警提示排气故障。
  3. 根据权利要求1所述的在线监测方法,其特征在于,所述第一预设时间段为0;
    所述当所述实时电压不为负,则继续判断所述实时电压是否位于第一预设电压范围内还包括:
    当所述实时电压不为负,则继续判断所述实时电压是否位于第一预设电压范围内、且当前单电池与其他单电池的实时电压之差的绝对值的最大值是否小于第一预设电压阈值:
    若是,则再次获取所述单电池的实时电压,并进行所述电压判断;若否,则调整所述排气阀的开启时长与打开间隔时长,并再次获取所述单电池的实时电压,进行所述电压判断。
  4. 根据权利要求1所述的在线监测方法,其特征在于,所述当所述实时电压不为负, 则继续判断所述实时电压是否位于第一预设电压范围内还包括:
    当所述实时电压不为负,则获取所述氢燃料电池电堆的实时温度,并进行温度判断:
    若所述实时温度位于第一预设温度范围内,则继续判断所述实时电压是否位于第一预设电压范围内;
    若所述实时温度不位于第一预设温度范围内,则调节温控组件以改变所述氢燃料电池电堆的温度;调节后的所述温控组件运行第三预设时间段后,再次获取所述氢燃料电池电堆的实时温度,并进行温度判断。
  5. 根据权利要求4所述的在线监测方法,其特征在于,所述调节后的所述温控组件运行第三预设时间段后,再次获取所述氢燃料电池电堆的实时温度,并进行温度判断包括:
    若所述实时温度依然不位于第一预设温度范围内,则报警提示氢燃料电池温度故障。
  6. 根据权利要求4所述的在线监测方法,其特征在于,所述若所述实时温度位于第一预设温度范围内,则继续判断所述实时电压是否位于第一预设电压范围内还包括:
    若所述实时温度位于第一预设温度范围内,则获取所述氢气瓶的实时气压,并进行气压判断:
    若所述实时气压位于第一预设气压范围内,则继续判断所述实时电压是否位于第一预设电压范围内;
    若所述实时气压不位于第一预设气压范围内,则加热组件对所述氢气瓶进行加热,加热第四预设时间段后,再次获取所述氢气瓶的实时气压,并进行所述气压判断。
  7. 根据权利要求6所述的在线监测方法,其特征在于,加热组件对所述氢气瓶进行加热,加热第四预设时间段后,再次获取所述氢气瓶的实时气压,并进行所述气压判断包括:
    加热组件对所述氢气瓶进行加热,并计数为1;加热第四预设时间段后,再次获取所述氢气瓶的实时气压,并进行所述气压判断:
    若所述实时气压依然不位于第一预设气压范围内,则加热组件再次对所述氢气瓶进行加热,并计数加1;加热第四预设时间段后,再次获取所述氢气瓶的实时气压,并进行所述气压判断:
    当所述计数为预设数值x时,报警提示更换氢气瓶;x≥3。
  8. 一种氢燃料电池电堆的在线监测系统,其特征在于,包括氢气瓶,所述氢气瓶与所述氢燃料电池电堆连接用于向所述氢燃料电池电堆供氢,所述氢燃料电池电堆包括排气口,所述排气口上设有排气阀;所述氢燃料电池电堆包括若干个单电池;
    还包括控制模块,所述控制模块通过电压检测单元以第一预设时间段为间隔持续获取所述单电池的实时电压,并通过温度检测单元获取所述氢燃料电池电堆的实时温度,并通过气压检测模块获取所述氢气瓶实时气压;
    当所述实时电压为负,则所述氢燃料电池电堆停止运行;
    当所述实时电压不为负,则获取所述氢燃料电池电堆的实时温度,并进行温度判断:
    若所述实时温度不位于第一预设温度范围内,则调节温控组件以改变所述氢燃料电池电堆的温度;调节后的所述温控组件运行第三预设时间段后,再次获取所述氢燃料电池电堆的实时温度,并进行温度判断;
    若所述实时温度位于第一预设温度范围内,则获取所述氢气瓶的实时气压,并进行气压判断:若所述实时气压不位于第一预设气压范围内,则加热组件对所述氢气瓶进行加热,加热第四预设时间段后,再次获取所述氢气瓶的实时气压,并进行所述气压判断;若所述实时气压位于第一预设气压范围内,则继续判断所述实时电压是否位于第一预设电压范围内;
    若所述实时电压位于第一预设电压范围内,则再次获取所述单电池的实时电压,并进行电压判断;若所述实时电压不位于第一预设电压范围内,则调整所述排气阀的开启时长与打开间隔时长,并再次获取所述单电池的实时电压,进行所述电压判断;所述第一预设电压范围位于正阈值区间。
  9. 一种氢燃料电动车,其特征在于,通过氢燃料电池电堆进行供电,并使用上述权利要求1-7任一所述的在线监测方法对所述氢燃料电池电堆进行监测。
PCT/CN2022/090377 2021-05-06 2022-04-29 氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车 WO2022233278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110491566.9A CN113224355B (zh) 2021-05-06 2021-05-06 氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车
CN202110491566.9 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022233278A1 true WO2022233278A1 (zh) 2022-11-10

Family

ID=77091062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090377 WO2022233278A1 (zh) 2021-05-06 2022-04-29 氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车

Country Status (2)

Country Link
CN (1) CN113224355B (zh)
WO (1) WO2022233278A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663242A (zh) * 2022-11-11 2023-01-31 苏州氢辀新能源科技有限公司 一种燃料电池检测方法和系统
CN115832364A (zh) * 2023-02-15 2023-03-21 海卓动力(青岛)能源科技有限公司 一种氢气燃料电池发动机启动控制方法
CN115911460A (zh) * 2023-01-06 2023-04-04 国家电投集团氢能科技发展有限公司 氢燃料电池系统的停机方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224355B (zh) * 2021-05-06 2022-04-22 永安行科技股份有限公司 氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车
CN113547919B (zh) * 2021-08-26 2023-03-24 武汉海亿新能源科技有限公司 一种燃料电池车远程故障监测方法及系统
CN114678560B (zh) * 2022-03-31 2022-11-11 永安行科技股份有限公司 一种燃料电池电堆控制系统、控制方法
CN117080506B (zh) * 2023-10-19 2024-01-23 上海重塑能源科技有限公司 一种燃料电池电堆的保护方法、系统及膜电极温度测算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040072042A1 (en) * 2002-10-15 2004-04-15 Soo-Whan Kim Fuel cell system
US20060057447A1 (en) * 2004-09-16 2006-03-16 Norimasa Yamase Fuel cell system
CN102918694A (zh) * 2010-05-25 2013-02-06 丰田自动车株式会社 燃料电池系统及其控制方法
CN105047965A (zh) * 2015-07-03 2015-11-11 西南交通大学 一种计及电压均衡的pemfc电堆停机策略
CN107946614A (zh) * 2017-11-13 2018-04-20 天津大学 质子交换膜燃料电池阳极氮气吹扫策略的设计方法
CN110021769A (zh) * 2018-01-10 2019-07-16 通用汽车环球科技运作有限责任公司 用于燃料电池堆的电池反极诊断
CN113224355A (zh) * 2021-05-06 2021-08-06 永安行科技股份有限公司 氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109677300A (zh) * 2019-01-30 2019-04-26 永安行科技股份有限公司 氢燃料电池管理系统及其控制方法
CN110021765A (zh) * 2019-03-15 2019-07-16 深圳国氢新能源科技有限公司 燃料电池系统及燃料电池系统的控制方法
CN112086666A (zh) * 2020-09-18 2020-12-15 全球能源互联网研究院有限公司 一种燃料电池发电系统的控制方法及控制系统
CN112213370B (zh) * 2020-09-29 2023-02-24 武汉海亿新能源科技有限公司 一种氢燃料电池电堆的化学计量灵敏度的检测方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040072042A1 (en) * 2002-10-15 2004-04-15 Soo-Whan Kim Fuel cell system
US20060057447A1 (en) * 2004-09-16 2006-03-16 Norimasa Yamase Fuel cell system
CN102918694A (zh) * 2010-05-25 2013-02-06 丰田自动车株式会社 燃料电池系统及其控制方法
CN105047965A (zh) * 2015-07-03 2015-11-11 西南交通大学 一种计及电压均衡的pemfc电堆停机策略
CN107946614A (zh) * 2017-11-13 2018-04-20 天津大学 质子交换膜燃料电池阳极氮气吹扫策略的设计方法
CN110021769A (zh) * 2018-01-10 2019-07-16 通用汽车环球科技运作有限责任公司 用于燃料电池堆的电池反极诊断
CN113224355A (zh) * 2021-05-06 2021-08-06 永安行科技股份有限公司 氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663242A (zh) * 2022-11-11 2023-01-31 苏州氢辀新能源科技有限公司 一种燃料电池检测方法和系统
CN115663242B (zh) * 2022-11-11 2023-12-19 苏州氢辀新能源科技有限公司 一种燃料电池检测方法和系统
CN115911460A (zh) * 2023-01-06 2023-04-04 国家电投集团氢能科技发展有限公司 氢燃料电池系统的停机方法及系统
CN115911460B (zh) * 2023-01-06 2023-05-23 国家电投集团氢能科技发展有限公司 氢燃料电池系统的停机方法及系统
CN115832364A (zh) * 2023-02-15 2023-03-21 海卓动力(青岛)能源科技有限公司 一种氢气燃料电池发动机启动控制方法
CN115832364B (zh) * 2023-02-15 2023-05-05 海卓动力(青岛)能源科技有限公司 一种氢气燃料电池发动机启动控制方法

Also Published As

Publication number Publication date
CN113224355B (zh) 2022-04-22
CN113224355A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2022233278A1 (zh) 氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车
EP3557269B1 (en) Online detection method for internal short-circuit of battery
CN110600773B (zh) 燃料电池系统中空气供给系统的故障诊断方法及装置
WO2021129274A1 (zh) 一种燃料电池系统及其氢系统瓶阀故障检测方法、装置
US7581431B2 (en) Gas leak detection device and method for same
US10971745B2 (en) Cell reversal diagnostics for a fuel cell stack
KR101679971B1 (ko) 연료전지시스템의 공기공급계 고장진단장치 및 그 고장진단방법
US8623567B2 (en) Method to detect gross loss in coolant based on current feedback from the high temperature pump
CN109878485A (zh) 电动汽车行车制动助力系统及其控制策略和故障诊断方法
CN106443490B (zh) 一种电池短路的故障诊断系统
CN113571745B (zh) 一种氢燃料电池的故障诊断处理方法及装置
CN114520351B (zh) 一种燃料电池系统及其故障检测方法、氢气泄漏检测方法
JP5194827B2 (ja) 燃料電池システム
CN109975711A (zh) 电池组故障检测方法及装置
CN113782778B (zh) 基于定频阻抗和气体压降的电堆水管理调控方法及装置
CN108321415A (zh) 融合通讯信息的燃料电池状态监测与预警系统及方法
CN114914488B (zh) 一种燃料电池缺氢检测与诊断方法
CN103579649A (zh) 以可变时间间隔来检测阳极压力传感器卡住故障的算法
CN103698727A (zh) 一种电动车电池电流传感器短路故障监控方法
CN116404213A (zh) 一种燃料电池系统电压一致性的故障诊断方法
JP5077723B2 (ja) 燃料電池劣化診断装置
CN109782184A (zh) Pack系统的非安全失效形式诊断方法及其电子设备
US20190081338A1 (en) Fuel cell system and abnormality diagnosis method for fuel cell system
CN207743335U (zh) 一种燃料电池系统
CN112682159B (zh) 水泵的故障诊断方法、发动机的控制方法和发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE