WO2021129274A1 - 一种燃料电池系统及其氢系统瓶阀故障检测方法、装置 - Google Patents

一种燃料电池系统及其氢系统瓶阀故障检测方法、装置 Download PDF

Info

Publication number
WO2021129274A1
WO2021129274A1 PCT/CN2020/131001 CN2020131001W WO2021129274A1 WO 2021129274 A1 WO2021129274 A1 WO 2021129274A1 CN 2020131001 W CN2020131001 W CN 2020131001W WO 2021129274 A1 WO2021129274 A1 WO 2021129274A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
fuel cell
hydrogen system
bottle valve
bottle
Prior art date
Application number
PCT/CN2020/131001
Other languages
English (en)
French (fr)
Inventor
李江川
张金亮
司耀辉
李进
张龙海
Original Assignee
郑州宇通客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州宇通客车股份有限公司 filed Critical 郑州宇通客车股份有限公司
Priority to EP20905648.0A priority Critical patent/EP4084165A4/en
Publication of WO2021129274A1 publication Critical patent/WO2021129274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of fuel cells, and in particular relates to a fuel cell system and a method and device for detecting a failure of a hydrogen system bottle valve.
  • a fuel cell is a device that directly converts the chemical energy of fuel into electrical energy. It can continuously output electrical energy only by passing in fuel and oxidizer. It has the advantages of high energy conversion rate, cleanliness and environmental protection. Fuel cell vehicles have become an important direction for the development of new energy vehicles due to their high efficiency and zero emission advantages.
  • the fuel cell system uses more hydrogen.
  • the current hydrogen storage method uses high-pressure hydrogen cylinders.
  • the end of the hydrogen cylinder is equipped with a bottle valve, built-in solenoid valve, manual shut-off valve, temperature sensor and pressure release device (PRD).
  • PRD temperature sensor and pressure release device
  • the valve is normally closed and is used to control the supply of hydrogen.
  • a bottle valve is installed at the end of each hydrogen bottle to control the hydrogen supply. All the bottle valves in the hydrogen system are powered by the same circuit. They are opened and closed at the same time according to the hydrogen demand of the fuel cell, and cannot be controlled separately. Therefore, this solution has the following problems: the solenoid valve in the bottle valve has no switch feedback signal.
  • a Chinese invention patent application with application publication number CN108177527A discloses a method for detecting the valve status of a fuel cell vehicle's hydrogen cylinder. This method is for the vehicle controller to control the fuel cell for a period of time before the vehicle stops or stops supplying hydrogen. Continue to work in the fuel cell, and at the same time, carry out the detection of a hydrogen bottle valve in the fuel cell to determine the working state of the hydrogen bottle valve of the road. After the detection is completed, the pressure value of the high-pressure pipeline is restored to the value before the monitoring, and the hydrogen bottle of the road is completed.
  • Bottle valve detection wait for the next vehicle controller to issue an instruction to stop or stop hydrogen supply, and then take turns to cycle through the other bottle valves in the hydrogen system to determine the status of the bottle valve.
  • This method requires the vehicle controller to send an instruction to stop or stop hydrogen supply to the hydrogen management system to detect whether the bottle valve is faulty. It cannot detect whether the bottle valve is faulty in real time during the operation of the fuel cell, resulting in untimely detection. ; Moreover, this method requires detection all the way, that is, one bottle valve and one bottle valve detection, each time you have to wait for the next vehicle controller to issue an instruction to stop or stop hydrogen supply, which makes the detection time longer and more efficient low.
  • the invention provides a fuel cell system and its hydrogen system bottle valve fault detection method and device, which are used to solve the problems of the prior art that the bottle valve fault detection is not timely and the efficiency is low.
  • the technical solution of the present invention includes:
  • the present invention provides a fuel cell hydrogen system bottle valve fault detection method, which includes the following steps:
  • the beneficial effects of the above technical solution are: in the fuel cell working process of the present invention, based on the real gas state equation, the theoretical consumption of the hydrogen system supplied to the fuel cell within a set time can be calculated, based on the actual hydrogen consumption during the fuel cell system working process. Consumption rate, can calculate the actual consumption of hydrogen within a set time, compare the two, in the case of eliminating hydrogen leakage, according to the difference between the two can be real-time and effectively judge whether the bottle valve is faulty
  • the hydrogen cylinder cannot be supplied with gas, the judgment efficiency is high, the safety and reliability of the hydrogen system are ensured, and the safe and reliable operation of the fuel cell system is ensured.
  • the present invention utilizes the existing temperature sensor, pressure sensor, hydrogen leakage sensor, etc. on the fuel cell vehicle to determine whether the bottle valve is malfunctioning, and the cost is low.
  • the difference is the ratio of the theoretical consumption to the actual consumption, and the corresponding set value is n/(n-1), where n is the hydrogen bottle in the hydrogen system Quantity.
  • the method in order to reduce the time for troubleshooting the faulty bottle valve, it also includes the step of judging the number of faulty bottle valves based on the ratio and the number of hydrogen bottles in the hydrogen system: Then it is determined that x bottle valves in the hydrogen system are faulty; K is the ratio, and n is the number of hydrogen bottles in the hydrogen system.
  • the number of failed bottle valves is determined according to the size of the set time: if the selected set time is greater than the set time threshold, the hydrogen system is determined Among the n-1 bottle valves, there is a fault; if the selected set time is less than or equal to the set time threshold, it is determined that the n bottle valves in the hydrogen system are faulty.
  • the actual hydrogen consumption rate is determined by detecting the actual operating power of the fuel cell, and each operating power corresponds to a corresponding hydrogen consumption rate.
  • a temperature sensor is set on each bottle valve to realize the temperature collection of each bottle valve, and the average value of the temperature value collected by each temperature sensor is used as the temperature of the hydrogen system value.
  • the present invention also provides a fuel cell hydrogen system bottle valve fault detection device, including a memory and a processor, the processor is used to execute instructions stored in the memory to implement the above fuel cell hydrogen system bottle valve fault detection method, and achieve The same effect as the above-mentioned fuel cell hydrogen system bottle valve fault detection method.
  • the present invention also provides a fuel cell system, including a fuel cell, a hydrogen system, and a control device.
  • the hydrogen system includes a temperature sensor, a pressure sensor, and a hydrogen leakage sensor; the temperature sensor is arranged at the bottle valve of the hydrogen system for use.
  • the pressure sensor is arranged on the hydrogen supply pipeline between the hydrogen system and the fuel cell, and is used to detect the pressure value of the hydrogen system;
  • the hydrogen leakage sensor is used to detect whether the hydrogen system is Hydrogen leakage failure;
  • the control device samples and connects the temperature sensor, pressure sensor and hydrogen leakage sensor, and implements the above-mentioned fuel cell hydrogen system bottle valve fault detection method, and achieves the same as the above-mentioned fuel cell hydrogen system bottle valve fault detection method effect.
  • Figure 1 is a control diagram of a bottle valve of a hydrogen system in the prior art
  • FIG. 2 is a flowchart of a method for detecting a failure of a fuel cell hydrogen system bottle valve in an embodiment of the fuel cell system of the present invention.
  • This embodiment provides a fuel cell system, including a hydrogen system, a fuel cell (generally a fuel cell stack), a thermal management system, etc., to realize the conversion of the chemical energy of the hydrogen fuel into electrical energy.
  • the fuel cell system can be applied to fuel cell vehicles to provide the required power for the vehicle load.
  • the hydrogen system is a device related to hydrogen filling, storage, transportation, supply and control from the hydrogen filling port to the fuel cell inlet, including hydrogen cylinders, hydrogen filling ports, solenoid valves, temperature sensors, pressure sensors, and hydrogen leakage Sensors and hydrogen system controllers are used to realize the storage, processing and delivery of hydrogen.
  • only one pressure sensor is provided, which is set on the hydrogen supply pipeline between the hydrogen system and the fuel cell, and detects the pressure value of the hydrogen system with a deviation accuracy of 0.3% fs; it is installed at each bottle valve.
  • the temperature sensor can choose NTC type thermistor, and its deviation accuracy is 2% fs.
  • the hydrogen leakage sensor is generally a hydrogen concentration detection sensor, which can be set at the hydrogen bottle mouth, pressure reducing valve, or fuel cell hydrogen inlet.
  • Step 1 Determine whether the fuel cell is started, and then perform the subsequent real-time calculation processing of the present invention after starting, and at the same time, it can prevent false alarms in the case of venting overhaul.
  • Step 2 Determine whether the temperature value detected by the temperature sensor is abnormal, that is, whether the temperature sensor is faulty. Since the sensor used is an NTC thermistor, in order to avoid the influence of a single temperature sensor failure on the temperature value of the hydrogen system, combined with the situation that the voltage across the thermistor exceeds the normal range when the temperature sensor is short-circuited or open, whether the temperature sensor fails Make judgments. When one or some temperature sensors fail, the data collected by the faulty temperature sensor is excluded, and the data collected by the remaining normal temperature sensors are calculated and processed according to the method of step 3 to obtain the temperature value of the hydrogen system.
  • Step 3 In the case of fuel cell startup, combined with the slow temperature change of the hydrogen system in a short period of time, the hydrogen system controller obtains each normal and trouble-free temperature sensor at the set time (the initial time is t 0 , and the end time is t 1 )
  • the temperature value in the initial time period and the temperature value in the end time period, the temperature value in the initial time period is calculated using the median average filtering method, and the obtained value is used as the temperature value of the temperature sensor at t 0
  • the temperature value in the end time period is calculated using the median average filtering method, and the obtained value is used as the temperature value of the temperature sensor at time t 1 to eliminate the temperature sensor collection deviation.
  • the respective temperature sensors t temperature value at time zero using median average filtering method is calculated, a value obtained as t a temperature of 0 time the hydrogen system value T 0; the respective temperature sensors t temperature value of a time using a value of the average median
  • the filtering method is used for calculation, and the obtained value is used as the temperature value T 1 of the hydrogen system at time t 1 to eliminate the influence of individual temperature sensors.
  • the median value average filtering method is, for example, N consecutive sampling in ⁇ t, removing the maximum value and the minimum value, and performing arithmetic average on the remaining N-2 data.
  • Step four the hydrogen pressure sensor by the system controller acquires the time t 0 the hydrogen system pressure value P 0 and time t 1 the hydrogen system value P 1.
  • the pressure value in the initial time period of the set time is calculated by the median average filtering method, and the final value is used as the pressure value of the hydrogen system at time t 0 P 0 , in order to reduce the influence of pressure sensor signal acquisition deviation.
  • the pressure value of the set time period ends also used median average filter is calculated, the final value obtained as the time t 1 the hydrogen system pressure value P 1.
  • Step five the temperature of the hydrogen system controller according to the system time t 0 the hydrogen value T 0, t a temperature of the hydrogen system time value T 1, time t 0 the hydrogen system pressure value P 0, t 1 time the hydrogen system pressure value P 1.
  • Hydrogen system total water volume V namely hydrogen system nominal volume
  • PV ZnRT derivation and calculation to obtain the hydrogen system to supply fuel cell theoretical consumption m HMS :
  • m HMS is the theoretical consumption
  • M is the molar mass of hydrogen, which is 2.016g/mol
  • n 0 is the amount of hydrogen in the hydrogen system at t 0
  • n 1 is the amount of hydrogen in the hydrogen system at t 1, in units Both are mol
  • R is the gas constant, which is 0.008314MpagL/(molgK)
  • P 0 and P 1 are the pressure values of the hydrogen system at t 0 and t 1 respectively, in Mpa
  • T 0 and T 1 are respectively t 0
  • Z 0 is the hydrogen compression coefficient under the conditions of P 0 and T 0
  • Z 1 is the hydrogen compression coefficient under the conditions of P 1 and T 1.
  • Step 6 Since the hydrogen consumption rate of the fuel cell system is different for different power conditions, the hydrogen system controller can obtain the actual hydrogen consumption rate m s of the fuel cell system according to the corresponding relationship and the actual operating power of the fuel cell.
  • the real hydrogen consumption m FC in the time period t 0 -t 1 is calculated by the formula:
  • Step 7 Since the theoretical consumption m HMS calculation uses the total water volume V of the hydrogen system, all hydrogen cylinders are taken into account. Therefore, if the bottle valve fails to supply gas, the theoretical consumption m will be caused. Compared with the actual consumption of HMS, m FC is significantly increased. However, in the case of hydrogen leakage, the theoretical consumption m HMS may be greater than the actual consumption m FC .
  • K m HMS /m FC , judge Whether K is greater than the set value, that is, whether K ⁇ n/(n-1) is satisfied, n is the number of hydrogen cylinders in the hydrogen system, if it is satisfied, it is necessary to judge whether there is a hydrogen leakage failure, if there is no hydrogen leakage in the hydrogen system Failure, it can be determined that part or all of the bottle valves of the hydrogen system are malfunctioning.
  • a hydrogen leak sensor is used to detect whether there is a hydrogen leak.
  • Step 8 After judging that the hydrogen system bottle valve is malfunctioning, the number of malfunctioning bottle valves can also be judged based on K and the number of hydrogen cylinders in the hydrogen system:
  • the selected set time is greater than the set time threshold (it can be 10s), it is determined that n-1 bottle valves in the hydrogen system are faulty;
  • the selected set time is less than or equal to the set time threshold, it is determined that the n bottle valves in the hydrogen system are faulty.
  • the time for troubleshooting can be shortened. For example, there are a total of five hydrogen cylinders, and when five bottle valves are correspondingly provided, if it is only known that a bottle valve is malfunctioning, it is necessary to check the bottle valve one by one to determine which one or which of the bottle valves are malfunctioning. When it is determined that two bottle valves have failed, it may be determined that two bottle valves have failed when the third bottle valve is checked. At this time, there is no need to check the last two bottle valves.
  • the calculation of the initial time and the end of the calculation of the temperature value/pressure value of the hydrogen system the calculation of the actual consumption of hydrogen, the calculation of the theoretical consumption of hydrogen, and whether the hydrogen system bottle valve is malfunctioning All judgments are calculated in the hydrogen system controller.
  • calculations can also be performed in the fuel cell controller, and since the fuel cell controller and the hydrogen system controller can exchange data, it can also be calculated partly in the hydrogen system controller and partly in the fuel cell controller. Calculated in the controller.
  • the median average filtering method is used to calculate the temperature value and pressure value of the hydrogen system.
  • other existing filtering methods can be used to eliminate the influence.
  • the difference between the real consumption m FC and the theoretical consumption m HMS is characterized by the ratio K of the theoretical consumption to the real consumption.
  • the ratio of real consumption to theoretical consumption can be used to characterize, or the difference between the two can be directly used to characterize, or even the ratio of the difference between the two and the real consumption can be used for characterization.
  • Each characterization method The corresponding setting values are all different.
  • This embodiment provides a fuel cell hydrogen system bottle valve fault detection device.
  • the device includes a memory and a processor, and the memory and the processor are directly or indirectly electrically connected to achieve data transmission or interaction.
  • the processor here can be a general-purpose processor, such as a central processing unit CPU, or other programmable logic devices, such as a digital signal processor DSP, which can be a hydrogen system controller, or a complete vehicle controller in a complete vehicle.
  • DSP digital signal processor
  • the processor is used to execute instructions stored in the memory to implement a fuel cell hydrogen system bottle valve fault detection method introduced in the fuel cell system embodiment. Since the method has been described in detail in the fuel cell system embodiment, here No longer.
  • This embodiment provides a fuel cell hydrogen system bottle valve fault detection method, which has been described in detail in the fuel cell system embodiment, and will not be repeated here.

Abstract

一种燃料电池系统及其氢系统瓶阀故障检测方法、装置。该方法首先获取燃料电池系统工作过程中氢气的实际消耗速率,确定设定时间内氢气的真实消耗量;并获取设定时间的初始时刻和结束时刻氢系统的压力值和温度值,并结合氢系统总水容积,确定氢系统供给燃料电池的理论消耗量;然后比较真实消耗量和理论消耗量,若理论消耗量与真实消耗量之间的差异大于设定值,且判定氢系统无氢气泄漏故障时,则判定氢系统的瓶阀发生故障。该方法可实时、有效地判断瓶阀是否存在故障而使氢瓶无法供气,判断效率较高,保证了氢系统的安全性和可靠性,确保燃料电池系统的安全可靠运行。

Description

一种燃料电池系统及其氢系统瓶阀故障检测方法、装置 技术领域
本发明属于燃料电池技术领域,具体涉及一种燃料电池系统及其氢系统瓶阀故障检测方法、装置。
背景技术
燃料电池是一种将燃料的化学能直接转化为电能的装置,只需通入燃料和氧化剂就可以连续输出电能,具有能量转换率高、清洁环保的优点。燃料电池汽车因其高效率,零排放等优势,已成为新能源汽车发展的重要方向。
燃料电池系统使用较多的是氢气,目前氢储存方式为采用高压氢瓶进行储存,氢瓶端部安装瓶阀,内置电磁阀、手动截止阀、温度传感器和压力释放装置(PRD),其中电磁阀为常闭式,用于控制氢气的供应。如图1所示,每个氢瓶端部安装一个瓶阀控制氢气供应,氢系统中所有瓶阀为同一路供电,根据燃料电池氢气需求同时开闭,无法单独控制。故该方案存在以下问题:瓶阀中电磁阀无开关反馈信号,若供电后某个瓶阀发生故障电磁阀无法打开氢瓶无法供气时无故障提示,同时由于其他氢瓶可正常供气,不影响燃料电池的正常工作,因此无法判断瓶阀是否存在故障,从而影响氢系统可靠性和燃料电池汽车的续航里程,故需对燃料电池氢系统中的瓶阀是否发生故障进行检测。
例如,申请公布号为CN108177527A的中国发明专利申请公开了一种燃料电池汽车氢瓶阀门状态的检测方法,该方法为整车控制器控制燃料电池在整车停车或停止供氢前的这一段时间内继续工作,同时进行燃料电池中的一路氢瓶瓶阀的检测,判断该路氢瓶瓶阀的工作状态,检测完毕后重新使高压管路压力值恢复到监测前值,完成该路氢瓶瓶阀的检测;等待下次整车控制器发出即将停车或停止供氢的指令,然后依次轮流循环对氢系统其它各路瓶阀进行检测,判断瓶阀状态。该方法需要整车控制器向氢管理系统发出即将停车或停止供氢的指令才能进行瓶阀是否故障的检测,无法在燃料电池工作过程中对瓶阀是否故障进行实时的检测,致使检测不及时;而且,该方法需一路一路的检测,也即一个瓶阀一个瓶阀的检测,每次都要等待下次整车控制器发出即将停车或停止供氢的指令,使得检测时间较长,效率低。
发明内容
本发明提供了一种燃料电池系统及其氢系统瓶阀故障检测方法、装置,用以解决现有技术对瓶阀故障检测不及时、效率低的问题。
为解决上述技术问题,本发明的技术方案包括:
本发明提供了一种燃料电池氢系统瓶阀故障检测方法,包括如下步骤:
获取燃料电池系统工作过程中氢气的实际消耗速率,确定设定时间内氢气的真实消耗量;获取设定时间的初始时刻和结束时刻氢系统的压力值和温度值,并结合氢系统总水容积,确定氢系统供给燃料电池的理论消耗量;比较真实消耗量和理论消耗量,若理论消耗量与真实消耗量之间的差异大于设定值,且氢系统无氢气泄漏故障时,则判定氢系统的瓶阀发生故障。
上述技术方案的有益效果为:本发明在燃料电池工作过程中,基于真实气体状态方程,可计算出设定时间内氢系统供给燃料电池的理论消耗量,基于燃料电池系统工作过程中氢气的实际消耗速率,可计算出设定时间内氢气的真实消耗量,将两者进行比较,在排除氢气泄漏故障的情况下,根据两者之间的差异便可实时、有效地判断瓶阀是否存在故障而使氢瓶无法供气,判断效率较高,保证了氢系统的安全性和可靠性,确保燃料电池系统的安全可靠运行。而且,本发明利用燃料电池车辆上已有的温度传感器、压力传感器、氢泄漏传感器等便可判断瓶阀是否出现故障,成本较低。
作为方法的进一步改进,为了准确判定氢阀是否发生故障,所述差异为理论消耗量与真实消耗量的比值,对应的设定值为n/(n-1),n为氢系统中氢瓶数量。
作为方法的进一步改进,为了减少排查故障瓶阀的时间,还包括根据所述比值和氢系统中氢瓶数量,判断故障的瓶阀数量的步骤:若
Figure PCTCN2020131001-appb-000001
则判定氢系统中x个瓶阀存在故障;K为所述比值,n为氢系统中氢瓶数量。
作为方法的进一步改进,若所述比值K大于等于氢系统中氢瓶数量n,根据设定时间的大小判断故障的瓶阀数量:若选择的设定时间大于设定时间阈值,则判定氢系统中n-1个瓶阀存在故障;若选择的设定时间小于等于设定时间阈值,则判定氢系统中n个瓶阀存在故障。
作为方法的进一步改进,为了快速、准确获得氢气的实际消耗速率,所述氢气的实际消耗速率通过检测燃料电池的实际运行功率确定,各运行功率均对应有相应的氢气消耗速率。
作为方法的进一步改进,为了提高氢系统的温度值的准确性,通过在各瓶阀上设置温度传感器实现对各瓶阀的温度采集,将各温度传感器采集的温度值的均值作为氢系统 的温度值。
作为方法的进一步改进,为了排除故障的温度传感器的影响以提高故障检测的准确性,在计算氢系统的温度值前,需检测各温度传感器是否故障,对发生故障的温度传感器采集的温度值不再用来计算氢系统的温度值。
本发明还提供了一种燃料电池氢系统瓶阀故障检测装置,包括存储器和处理器,所述处理器用于执行存储在存储器中的指令以实现上述燃料电池氢系统瓶阀故障检测方法,并达到与上述燃料电池氢系统瓶阀故障检测方法相同的效果。
本发明还提供了一种燃料电池系统,包括燃料电池、氢系统和控制装置,所述氢系统包括温度传感器、压力传感器和氢泄漏传感器;所述温度传感器设置在氢系统的瓶阀处,用于检测氢系统瓶阀的温度值;所述压力传感器设置在氢系统与燃料电池之间的供氢管路上,用于检测氢系统的压力值;所述氢泄漏传感器用于检测氢系统是否发生氢气泄漏故障;所述控制装置采样连接所述温度传感器、压力传感器和氢泄漏传感器,并实现上述燃料电池氢系统瓶阀故障检测方法,并达到与上述燃料电池氢系统瓶阀故障检测方法相同的效果。
附图说明
图1是现有技术的氢系统的瓶阀控制图;
图2是本发明的燃料电池系统实施例中的燃料电池氢系统瓶阀故障检测方法的流程图。
具体实施方式
燃料电池系统实施例:
该实施例提供了一种燃料电池系统,包括氢系统、燃料电池(一般为燃料电池堆)、热管理系统等,以实现将氢燃料的化学能转化为电能。该燃料电池系统可运用到燃料电池汽车上来,为整车负载提供所需的动力。
其中,氢系统是从氢气加注口至燃料电池进口,与氢气加注、储存、输送、供给和控制有关的装置,包括氢瓶、加氢口、电磁阀、温度传感器、压力传感器、氢泄漏传感器和氢系统控制器等,用于实现氢气的存储、处理和输送。该实施例中的压力传感器只设置一个,设置在氢系统与燃料电池之间的供氢管路上,检测的为氢系统的压力值,其偏差精度为0.3%fs;在每个瓶阀处均设置一个温度传感器,以对每个瓶阀的温度进行检测,温度传感器可选择NTC型热敏电阻,其偏差精度为2%fs。氢泄漏传感器一般为氢浓度检测传感器,可设置在氢瓶口、减压阀、或者燃料电池氢气入口等位置。
基于上述结构的燃料电池系统,可实现一种燃料电池氢系统瓶阀故障检测方法。下面结合图2对该方法进行详细说明。
步骤一,判断燃料电池是否启动,启动后才进行本发明后续的实时计算处理,同时可以防止放空检修情况下误报。
步骤二,判断温度传感器检测的温度值是否异常,即温度传感器是否故障。由于使用的传感器为NTC型热敏电阻,为避免单一温度传感器失效对氢系统温度值的影响,结合温度传感器短路或开路情况时热敏电阻两端电压超出正常范围的情况,对温度传感器是否故障进行判断。在某一或某些温度传感器发生故障时,将故障的温度传感器采集的数据排除在外,将剩余的正常的温度传感器采集的数据按照步骤三的方法进行计算处理以得到氢系统的温度值。
步骤三,在燃料电池启动的情况下,结合氢系统短时间内温度变化缓慢的特点,氢系统控制器获取各个正常无故障的温度传感器在设定时间(初始时刻为t 0,结束时刻为t 1)的初始时间段内的温度值以及结束时间段内的温度值,将初始时间段内的温度值采用中位值平均滤波方法进行计算,得到的值作为该温度传感器t 0时刻的温度值,将结束时间段内的温度值采用中位值平均滤波方法进行计算,得到的值作为该温度传感器t 1时刻的温度值,以消除温度传感器采集偏差。将各个温度传感器t 0时刻的温度值采用中位值平均滤波方法进行计算,得到的值作为t 0时刻氢系统的温度值T 0;将各个温度传感器t 1时刻的温度值采用中位值平均滤波方法进行计算,得到的值作为t 1时刻氢系统的温度值T 1,以消除个别温度传感器影响。
其中,中位值平均滤波方法为,例如Δt内连续采样N次,去除最大值和最小值后对剩余的N-2个数据进行算术平均。
步骤四,氢系统控制器通过压力传感器获取t 0时刻氢系统的压力值P 0和t 1时刻氢系统的压力值P 1。其中,结合氢系统短时间内压力变化缓慢的特点,对设定时间的初始时间段内的压力值采用中位值平均滤波法进行计算,将最终得到的值作为t 0时刻氢系统的压力值P 0,以减少压力传感器信号采集偏差影响。同样的,对设定时间的结束时间段内的压力值也采用中位值平均滤波法进行计算,将最终得到的值作为t 1时刻氢系统的压力值P 1
步骤五,氢系统控制器根据t 0时刻氢系统的温度值T 0、t 1时刻氢系统的温度值T 1、t 0时刻氢系统的压力值P 0、t 1时刻氢系统的压力值P 1、氢系统总水容积V(即氢系统公称容积)等参数,通过真实气体状态方程PV=ZnRT推导计算得到氢系统供给燃料电池的理论消耗量m HMS
Figure PCTCN2020131001-appb-000002
式中,m HMS为理论消耗量;M为氢气的摩尔质量,为2.016g/mol;n 0为t 0时刻氢系统内氢气的量,n 1为t 1时刻氢系统内氢气的量,单位均为mol;R为气体常数,为0.008314MpagL/(molgK);P 0、P 1分别为t 0、t 1时刻氢系统的压力值,单位为Mpa;T 0、T 1分别为t 0、t 1时刻氢系统的温度值,单位为K;Z 0为P 0、T 0条件下的氢气压缩系数,Z 1为P 1、T 1条件下的氢气压缩系数。
步骤六,由于燃料电池系统不同功率条件对应氢气的消耗速率不同,氢系统控制器根据该对应关系以及燃料电池的实际运行功率,可得到燃料电池系统消耗氢气的实际消耗速率m s,从而根据下式计算得到t 0-t 1时间段内氢气的真实消耗量m FC
Figure PCTCN2020131001-appb-000003
步骤七,由于理论消耗量m HMS计算中使用的是氢系统总水容积V,将所有的氢瓶均考虑在内,故在瓶阀发生故障无法供气的情况下,会导致理论消耗量m HMS较真实消耗量m FC明显增加。但是,在氢气泄漏的情况下也会导致理论消耗量m HMS大于真实消耗量m FC。故先比较真实消耗量m FC和理论消耗量m HMS之间的差异,针对两者之间的差异采用理论消耗量与真实消耗量的比值K来表征,即K=m HMS/m FC,判断K是否大于设定值,即是否满足K≥n/(n-1),n为氢系统中氢瓶数量,若满足的情况下还需判断是否发生氢气泄漏故障,若目前氢系统无氢气泄漏故障,则可判定氢系统的部分或全部瓶阀发生故障。其中,通过氢泄漏传感器来检测是否出现氢气泄漏的情况。
步骤八,在判定氢系统瓶阀发生故障后,还可根据K与氢系统中氢瓶数量,来判 断故障的瓶阀数量:
Figure PCTCN2020131001-appb-000004
则判定氢系统中x个瓶阀存在故障;
若n≤K,则根据设定时间的大小判断故障的瓶阀数量:
若选择的设定时间大于设定时间阈值(可为10s),则判定氢系统中n-1个瓶阀存在故障;
若选择的设定时间小于等于设定时间阈值,则判定氢系统中n个瓶阀存在故障。
在判断得到故障的瓶阀数量后,可缩短排查故障的时间。例如,总共有五个氢瓶,对应设置有五个瓶阀时,若只是知道有瓶阀发生故障,此时需要一个一个的检测瓶阀,以判断具体哪个或哪些瓶阀发生故障。当确定有两个瓶阀发生故障时,可能检查到第三个瓶阀的时候便已确定有两个瓶阀发生故障,此时无需再检查最后两个瓶阀。
在该实施例中,关于计算设定时间的初始时刻和结束时刻氢系统的温度值/压力值、氢气的真实消耗量的计算、氢气的理论消耗量的计算、氢系统瓶阀是否发生故障的判断均在氢系统控制器中进行计算的。作为其他实施方式,还可在燃料电池控制器中进行计算,且由于燃料电池控制器和氢系统控制器是能够进行数据交互的,故也可部分在氢系统控制器中计算、部分在燃料电池控制器中计算。
在该实施例中,为了消除压力传感器和温度传感器精度偏差的影响,采用中值平均滤波方法计算氢系统的温度值和压力值。作为其他实施方式,可采用现有的其他滤波方法来消除该影响。
在该实施例中,为了判断氢系统中的瓶阀是否发生故障,将真实消耗量m FC和理论消耗量m HMS之间的差异使用理论消耗量与真实消耗量的比值K来表征。作为其他实施方法,可采用真实消耗量与理论消耗量的比值来表征,或者直接采用两者的差值来表征,甚至采用两者的差值与真实消耗量的比值来表征,每种表征方式对应的设定值均不同。
装置实施例:
该实施例提供了一种燃料电池氢系统瓶阀故障检测装置,该装置包括存储器和处理器,存储器和处理器之间直接或间接地电性连接以实现数据的传输或交互。这里的处理器可以是通用处理器,例如中央处理器CPU,也可以是其他可编程逻辑器件,例如数字信号处理器DSP,可为氢系统控制器,在整车中也可以是整车控制器,处理器用于执行存储在存储器中的指令以实现燃料电池系统实施例中介绍的一种燃料电池氢系统瓶阀故 障检测方法,由于燃料电池系统实施例中已对该方法做了详细说明,这里不再赘述。
方法实施例:
该实施例提供了一种燃料电池氢系统瓶阀故障检测方法,在燃料电池系统实施例中已对该方法做了详细介绍,这里不再赘述。

Claims (9)

  1. 一种燃料电池氢系统瓶阀故障检测方法,其特征在于,包括如下步骤:
    获取燃料电池系统工作过程中氢气的实际消耗速率,确定设定时间内氢气的真实消耗量;
    获取设定时间的初始时刻和结束时刻氢系统的压力值和温度值,并结合氢系统总水容积,确定氢系统供给燃料电池的理论消耗量;
    比较真实消耗量和理论消耗量,若理论消耗量与真实消耗量之间的差异大于设定值,且氢系统无氢气泄漏故障时,则判定氢系统的瓶阀发生故障。
  2. 根据权利要求1所述的燃料电池氢系统瓶阀故障检测方法,其特征在于,所述差异为理论消耗量与真实消耗量的比值,对应的设定值为n/(n-1),n为氢系统中氢瓶数量。
  3. 根据权利要求2所述的燃料电池氢系统瓶阀故障检测方法,其特征在于,还包括根据所述比值和氢系统中氢瓶数量,判断故障的瓶阀数量的步骤:若
    Figure PCTCN2020131001-appb-100001
    1≤x≤n-2,则判定氢系统中x个瓶阀存在故障;K为所述比值,n为氢系统中氢瓶数量。
  4. 根据权利要求2所述的燃料电池氢系统瓶阀故障检测方法,其特征在于,若所述比值K大于等于氢系统中氢瓶数量n,根据设定时间的大小判断故障的瓶阀数量:若选择的设定时间大于设定时间阈值,则判定氢系统中n-1个瓶阀存在故障;若选择的设定时间小于等于设定时间阈值,则判定氢系统中n个瓶阀存在故障。
  5. 根据权利要求1所述的燃料电池氢系统瓶阀故障检测方法,其特征在于,所述氢气的实际消耗速率通过检测燃料电池的实际运行功率确定,各运行功率均对应有相应的氢气消耗速率。
  6. 根据权利要求1所述的燃料电池氢系统瓶阀故障检测方法,其特征在于,通过在各瓶阀上设置温度传感器实现对各瓶阀的温度采集,将各温度传感器采集的温度值的均值作为氢系统的温度值。
  7. 根据权利要求6所述的燃料电池氢系统瓶阀故障检测方法,其特征在于,在计算氢系统的温度值前,需检测各温度传感器是否故障,对发生故障的温度传感器采集的温度值不再用来计算氢系统的温度值。
  8. 一种燃料电池氢系统瓶阀故障检测装置,其特征在于,包括存储器和处理器,所述处理器用于执行存储在存储器中的指令以实现如权利要求1~7任一项所述的燃料电池氢系统瓶阀故障检测方法。
  9. 一种燃料电池系统,其特征在于,包括燃料电池、氢系统和控制装置,所述氢系统包括温度传感器、压力传感器和氢泄漏传感器;所述温度传感器设置在氢系统的瓶阀处,用于检测氢系统瓶阀的温度值;所述压力传感器设置在氢系统与燃料电池之间的供氢管路上,用于检测氢系统的压力值;所述氢泄漏传感器用于检测氢系统是否发生氢气泄漏故障;所述控制装置采样连接所述温度传感器、压力传感器和氢泄漏传感器,控制装置包括存储器和处理器,处理器用于执行存储在存储器中的指令以实现如权利要求1~7任一项所述的燃料电池氢系统瓶阀故障检测方法。
PCT/CN2020/131001 2019-12-25 2020-11-24 一种燃料电池系统及其氢系统瓶阀故障检测方法、装置 WO2021129274A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20905648.0A EP4084165A4 (en) 2019-12-25 2020-11-24 FUEL CELL SYSTEM, METHOD AND APPARATUS FOR DETECTING TANK VALVE MALFUNCTION IN AN ASSOCIATED HYDROGEN SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911358672.9A CN113036186B (zh) 2019-12-25 2019-12-25 一种燃料电池系统及其氢系统瓶阀故障检测方法、装置
CN201911358672.9 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021129274A1 true WO2021129274A1 (zh) 2021-07-01

Family

ID=76458547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131001 WO2021129274A1 (zh) 2019-12-25 2020-11-24 一种燃料电池系统及其氢系统瓶阀故障检测方法、装置

Country Status (3)

Country Link
EP (1) EP4084165A4 (zh)
CN (1) CN113036186B (zh)
WO (1) WO2021129274A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114865022A (zh) * 2022-06-02 2022-08-05 上海捷氢科技股份有限公司 一种车载储氢系统中瓶阀故障检测方法及车载储氢系统
CN116706157A (zh) * 2022-04-29 2023-09-05 宇通客车股份有限公司 燃料电池车辆及排氢阀/排水阀故障诊断方法和装置
CN117525508A (zh) * 2023-12-25 2024-02-06 卓品智能科技无锡股份有限公司 一种管道氢泄漏识别方法、装置、设备及存储介质
DE102022209697A1 (de) 2022-09-15 2024-03-21 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und System zum Detektieren einer Fehlfunktion in einem Brennstoffzellensystem

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447212B (zh) * 2021-06-29 2023-01-06 潍柴动力股份有限公司 氢气泄漏检测方法及其检测系统、氢能源车辆
CN113447213B (zh) * 2021-07-08 2022-05-17 成都亿华通动力科技有限公司 一种检测储氢系统泄露的方法和远程数据平台
CN113594510B (zh) * 2021-08-09 2022-06-10 北京亿华通科技股份有限公司 一种基于云平台的燃料电池系统的故障诊断方法
CN113809360B (zh) * 2021-09-08 2023-04-07 中车株洲电力机车有限公司 氢燃料电池系统氢气泄漏检测方法与系统、轨道交通车辆
CN114001864A (zh) * 2021-09-13 2022-02-01 东风汽车集团股份有限公司 一种氢泄漏检测装置
CN115218124B (zh) * 2021-12-09 2024-03-26 广州汽车集团股份有限公司 多瓶阀状态异常的检测方法、检测装置及存储介质
CN114234038B (zh) * 2021-12-21 2023-06-23 潍柴动力股份有限公司 一种氢管理系统及其氢气瓶阀状态检测方法
CN114161935B (zh) * 2021-12-27 2023-12-15 潍柴动力股份有限公司 一种电磁阀异常的判断方法及装置
CN114497649B (zh) * 2022-01-11 2024-04-09 一汽解放汽车有限公司 进堆氢气压力传感器的故障识别装置及故障识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552410A (zh) * 2014-10-24 2016-05-04 丰田自动车株式会社 燃料电池系统、车辆及开闭阀的驱动不良判定方法
CN107275660A (zh) * 2016-04-08 2017-10-20 现代自动车株式会社 燃料电池系统和用于控制燃料电池系统的方法
CN107464945A (zh) * 2016-06-03 2017-12-12 本田技研工业株式会社 燃料电池系统及燃料电池系统的故障判定方法
CN108177527A (zh) 2018-01-16 2018-06-19 厦门金龙联合汽车工业有限公司 一种燃料电池汽车氢瓶阀门状态的检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108916653B (zh) * 2018-07-10 2020-08-18 北京交通大学 一种氢气供给与调控系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552410A (zh) * 2014-10-24 2016-05-04 丰田自动车株式会社 燃料电池系统、车辆及开闭阀的驱动不良判定方法
CN107275660A (zh) * 2016-04-08 2017-10-20 现代自动车株式会社 燃料电池系统和用于控制燃料电池系统的方法
CN107464945A (zh) * 2016-06-03 2017-12-12 本田技研工业株式会社 燃料电池系统及燃料电池系统的故障判定方法
CN108177527A (zh) 2018-01-16 2018-06-19 厦门金龙联合汽车工业有限公司 一种燃料电池汽车氢瓶阀门状态的检测方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116706157A (zh) * 2022-04-29 2023-09-05 宇通客车股份有限公司 燃料电池车辆及排氢阀/排水阀故障诊断方法和装置
CN114865022A (zh) * 2022-06-02 2022-08-05 上海捷氢科技股份有限公司 一种车载储氢系统中瓶阀故障检测方法及车载储氢系统
CN114865022B (zh) * 2022-06-02 2024-01-12 上海捷氢科技股份有限公司 一种车载储氢系统中瓶阀故障检测方法及车载储氢系统
DE102022209697A1 (de) 2022-09-15 2024-03-21 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und System zum Detektieren einer Fehlfunktion in einem Brennstoffzellensystem
CN117525508A (zh) * 2023-12-25 2024-02-06 卓品智能科技无锡股份有限公司 一种管道氢泄漏识别方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113036186A (zh) 2021-06-25
EP4084165A1 (en) 2022-11-02
CN113036186B (zh) 2023-08-04
EP4084165A4 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
WO2021129274A1 (zh) 一种燃料电池系统及其氢系统瓶阀故障检测方法、装置
CN110600773B (zh) 燃料电池系统中空气供给系统的故障诊断方法及装置
WO2022233278A1 (zh) 氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车
CN108091908B (zh) 一种燃料电池供氢系统及其控制方法
CN105609820B (zh) 燃料电池系统及氢气泄漏检测方法
CN112389277A (zh) 一种燃料电池车辆及其氢安全控制方法、装置和系统
US9960437B2 (en) Fuel cell system and air system abnormality determination method
CN114520351B (zh) 一种燃料电池系统及其故障检测方法、氢气泄漏检测方法
CN207229359U (zh) 一种燃料电池空气压缩机系统测试装置
JP2004079451A (ja) ガス利用機関の停止方法
JP4609630B2 (ja) 燃料電池のバルブ異常判定制御装置
JP4747513B2 (ja) ガス供給装置
US8387559B2 (en) Semiconductor manufacturing plant
CN111853753A (zh) 一种基于soec的蒸汽发生系统及其控制方法
WO2023207635A1 (zh) 燃料电池车辆及排氢阀/排水阀故障诊断方法和装置
CN202712816U (zh) 一种换流站阀冷系统控制系统
CN208522039U (zh) 质子交换膜氢燃料电池堆输出保护装置
WO2009024206A1 (en) Method and apparatus for diagnosis of a separator module in a fuel cell system
CN113937324B (zh) 一种燃料电池车辆空气泄露诊断方法及装置
KR20230088157A (ko) 연료전지차량의 수소 누출 감지 장치 및 방법
JP4211000B2 (ja) ガス漏れ判定装置
JP6805786B2 (ja) 燃料貯蔵システム及びその診断方法
Quan et al. Study on fault tree analysis of fuel cell stack malfunction
CN212319678U (zh) 一种基于soec的蒸汽发生系统
CN213177709U (zh) 一种管道排气应急阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020905648

Country of ref document: EP

Effective date: 20220725