WO2024077936A1 - 自检测的消防进排风控制系统及控制方法 - Google Patents

自检测的消防进排风控制系统及控制方法 Download PDF

Info

Publication number
WO2024077936A1
WO2024077936A1 PCT/CN2023/091619 CN2023091619W WO2024077936A1 WO 2024077936 A1 WO2024077936 A1 WO 2024077936A1 CN 2023091619 W CN2023091619 W CN 2023091619W WO 2024077936 A1 WO2024077936 A1 WO 2024077936A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
air intake
exhaust
control
fire
Prior art date
Application number
PCT/CN2023/091619
Other languages
English (en)
French (fr)
Inventor
刘钟琦
陈飞
王林
严加斌
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Publication of WO2024077936A1 publication Critical patent/WO2024077936A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24024Safety, surveillance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of fire-fighting air intake and exhaust control, for example, to a self-detecting fire-fighting air intake and exhaust control system and control method.
  • Electrochemical energy storage is a method of storing energy by using chemical elements as energy storage media through chemical reactions or changes in the energy storage media.
  • electrochemical energy storage mainly uses batteries as energy carriers, and lithium batteries represented by lithium iron phosphate are one of the main choices in the energy storage industry, with broad application prospects.
  • the battery cells are assembled and stacked (mainly in the form of battery cabinets or containers).
  • the NFPA855 fixed energy storage system installation standard requires that the flammable gas concentration should be lower than 25% of the flammable gas concentration limit allowed in the space, so a fire-fighting air intake and exhaust device needs to be installed. When the flammable gas concentration in the container reaches a certain range, the fire extinguisher will be turned on. Open the fire-fighting ventilation system to discharge the flammable gas out of the container in time.
  • the mainstream solution on the market is to install combustible gas detectors and fire-fighting air intake and exhaust devices in the energy storage container, and the two are linked.
  • the combustible gas detector detects that the concentration of combustible gas is too high, it will issue an alarm message.
  • the air intake and exhaust device After receiving (or indirectly receiving) the information, the air intake and exhaust device will start to operate until the combustible gas concentration reaches the standard.
  • Open loop system The mainstream fire-fighting air intake and exhaust devices on the market are mainly composed of automatic shutters, fans, and control panels (the air intake and exhaust components are the same).
  • the control system can control the operation and stop of the device, but cannot monitor the operating status of the device.
  • the system is running, if the fan is blocked, the automatic shutter cannot be opened, or other control problems occur, the system cannot perform related protection actions. This will cause the device to fail and even cause more serious safety hazards.
  • the fire air intake and exhaust device is not a long-term stable operation device after installation. In most cases, the device may not be used during the entire life cycle of the energy storage system. Whether the system can still operate stably after being placed for a long time is an uncontrollable risk point.
  • the present application provides a fire protection air intake and exhaust control system and control method which can automatically detect system faults and provide timely feedback, while detecting a variety of environmental factors and is applicable to most container air intake and exhaust equipment.
  • the present application provides a self-detecting fire-fighting exhaust
  • the wind control system is applied to the combustible gas detection of the energy storage container, including: gas detection
  • the fire-fighting air intake and exhaust control system includes: a gas detection module, used to detect the combustible gas concentration in the energy storage container; an air intake and exhaust module, used to control the gas circulation in the energy storage container; a control module, used to control the operation of the gas detection module and the air intake and exhaust module, and when the combustible gas concentration exceeds a preset concentration threshold, control the air intake and exhaust module to discharge the combustible gas.
  • the fire-fighting air intake and exhaust control system also includes: an action detection module and an alarm module; the action detection module is used to detect the working status of the air intake and exhaust module; the control module is also used to control the alarm module to alarm when the air intake and exhaust module has an abnormal working state.
  • the air intake and exhaust module is installed inside the energy storage container, and includes: a shutter device and a fan device.
  • the action detection module includes: a louver detection sub-module and a fan detection sub-module; the louver detection sub-module determines the working state of the air intake and exhaust module by detecting the louver state of the louver device; the fan detection sub-module determines the working state of the air intake and exhaust module by detecting the current information and speed information of the fan device.
  • the shutter detection submodule detects the movable distance of the shutter connecting rod of the shutter device through a position sensor to determine the open or closed state of the shutter.
  • the fan detection submodule monitors the current value change and the speed change of the fan device by setting a current sensor on the fan power line and setting a speed feedback wire between the fan controller and the fan to determine whether the fan device is operating normally.
  • a temperature detection module used to detect the temperature inside the energy storage container
  • a humidity detection module used to detect the humidity inside the energy storage container
  • the control module is also used to control the air intake and exhaust module to operate when the temperature exceeds a preset temperature threshold and/or the humidity exceeds a preset humidity range.
  • the present application also includes: a communication module, the control module receives external instructions through the communication module, and sends the status information of the energy storage container to the outside; wherein the external instructions include: working instructions for controlling the air intake and exhaust modules, and controlling the Working instructions of the gas detection module, motion detection module, temperature detection module and/or humidity detection module; the status information includes the concentration of combustible gas, the temperature inside the energy storage container, the humidity inside the energy storage container and the working status of the air inlet and exhaust module.
  • control module is further used to control the alarm module to alarm when a communication abnormality occurs in the communication module.
  • control module controls the operation of the air intake and exhaust module, the gas detection module, the motion detection module, the temperature detection module and/or the humidity detection module according to the external instructions received by the communication module; or, controls the operation of the air intake and exhaust module, the gas detection module, the motion detection module, the temperature detection module and/or the humidity detection module according to a preset interval time.
  • a control method for a self-detecting fire-fighting air intake and exhaust system as described in any of the above items comprising: obtaining real-time data on the concentration of combustible gas collected by a gas detection module; when the concentration of the combustible gas is higher than a preset concentration threshold, the control module sends a control instruction to the air intake and exhaust module to control the air intake and exhaust module to exhaust the combustible gas; obtaining real-time data on the working status of the air intake and exhaust module collected by an action detection module; if the working status is abnormal, an alarm is issued through an alarm module.
  • it also includes: acquiring real-time data of ambient temperature collected by a temperature detection module; when the ambient temperature is lower than a preset temperature threshold and the combustible gas concentration is higher than a preset concentration threshold, the control module sends a control instruction to the air intake and exhaust module to control the air intake and exhaust module to discharge the combustible gas; when the ambient temperature is higher than the preset temperature value, the control module sends a control instruction to the fire extinguishing module to control the fire extinguishing module to cool down or extinguish the fire, and issues an alarm through the alarm module.
  • it also includes: acquiring real-time data of ambient humidity collected by a humidity detection module; when the ambient humidity is higher than a preset humidity threshold, the control module sends a control instruction to the air intake and exhaust module to control the air intake and exhaust module to circulate air.
  • the present application also provides a control method for a self-detecting fire-fighting air intake and exhaust control system, which realizes the control of the air intake and exhaust modules and the real-time monitoring of the operating status of the air intake and exhaust modules, so that the system can operate more stably and reliably.
  • the fire-fighting air intake and exhaust control system of the present application is safer, more reliable, more versatile, and more cost-effective. This aspect will also be more advantageous than the existing fans on the market.
  • FIG1 is a schematic structural diagram of an embodiment of a fire-fighting air intake and exhaust control system provided by the present application in a specific application;
  • FIG2 is a schematic structural diagram of a specific embodiment of the fire-fighting air intake and exhaust control system provided by the present application applied to an energy storage container;
  • FIG3 is another structural schematic diagram of a specific embodiment of the fire-fighting air intake and exhaust control system provided by the present application applied to an energy storage container;
  • FIG4 is a flow chart of a control method of a fire-fighting air intake and exhaust control system according to a specific embodiment of the present application.
  • a self-detecting fire-fighting air intake and exhaust control system is applied to the combustible gas detection of the energy storage container, including: a gas detection module 11, installed in the energy storage container 40, the gas detection module 11 is electrically connected to the control module 10, and is used to detect the combustible gas concentration in the energy storage container 40; an air intake and exhaust module 12, installed on the box body of the energy storage container 40, the air intake and exhaust module 12 is electrically connected to the control module 10, and is used to control the gas flow in the energy storage container 40; the control module 10, It is used to control the operation of the gas detection module 11 and the air intake and exhaust module 12, and when the concentration of the combustible gas exceeds a preset concentration threshold, control the air intake and exhaust module 12 to exhaust the combustible gas.
  • an action detection module 121 which is arranged between the control module 10 and the air intake and exhaust module 12 and is configured to monitor the working state of the air intake and exhaust module 12 in real time.
  • the control module 10, the gas detection module 11, the air intake and exhaust module 12 and the action detection module 121 form a closed-loop fire-fighting air intake and exhaust control system, which realizes self-detection of system failures to improve the reliability of the fire-fighting air intake and exhaust control system.
  • an alarm module 16 is provided, which is installed on the box body of the energy storage container 40.
  • the control module 10 is also used to control the alarm module 16 to alarm when the air intake and exhaust module 12 works abnormally. Under normal circumstances, the system will not work. If the gas detection module 11 detects that the concentration of combustible gas reaches the preset concentration threshold, the system will start and control the air intake and exhaust module 12 to start. When the air intake and exhaust module 12 is in action, the current time, the concentration value of the combustible gas, the control command signal of the control module 10, and the working status of the air intake and exhaust module 12 will be recorded and uploaded to ensure that the on-site maintenance personnel can understand the system status data information in real time.
  • the air intake and exhaust module 12 is installed inside the energy storage container 40, and includes: a louver device 1201, a fan device (not shown in the figure), and the louver device 1201 and the fan device cooperate with each other for air circulation.
  • the action detection module 121 includes: a louver detection submodule (not shown in the figure) and a fan detection submodule (not shown in the figure); the louver detection submodule determines the working state of the air intake and exhaust module 12 by detecting the louver state of the louver device 1201; the fan detection submodule determines the working state of the air intake and exhaust module 12 by detecting the current information and speed information of the fan device.
  • the louver detection submodule detects the active distance of the louver connecting rod of the louver device 1201 through the position sensor to determine the open or closed state of the louver.
  • the position sensor is set above and below the louver connecting rod. When the louver moves, it will identify the distance between the louver connecting rod and the position sensor. If the distance between the louver connecting rod and the position sensor is less than the preset distance threshold, the position sensor identifies that the louver is in a closed state. If the distance between the louver connecting rod and the position sensor is greater than the preset distance threshold, the sensor identifies that the louver is in an open state.
  • the number and position of the position sensors are not limited to those mentioned in this embodiment. According to the actual use environment, the position sensor can be one, or multiple.
  • the fan detection submodule monitors the current value change and speed change of the fan device by setting a current sensor on the fan power line and setting a speed feedback wire between the fan controller and the fan to determine whether the fan device is working properly. Specifically, in the application, when the system is running, the fan can feedback the speed signal to the fan detection submodule through the speed feedback wire, and the current sensor can feedback the current signal when the fan is running to the fan detection submodule.
  • the fan detection submodule determines whether the fan is running normally according to the speed and wind current of the fan. When the fan is running normally, the fan blade resistance is large, the fan speed is low, and the fan current is large at this time. When the fan is blocked, the current is the largest. The fan detection submodule will determine whether the fan is normal based on the pre-set speed threshold and current threshold. When a single detection value is too high or too low, or the current and speed cannot match, the fan detection submodule determines that the fan is faulty.
  • the self-detecting fire-fighting air intake and exhaust control system also includes: a temperature detection module 13, which is installed in the energy storage container 40, and the temperature detection module 13 is electrically connected to the control module 10, and is used to monitor the ambient temperature of the energy storage container 40 in real time; wherein, when the ambient temperature monitored by the temperature detection module 13 does not exceed the preset temperature threshold, and the concentration of the combustible gas monitored by the gas detection module 11 exceeds the preset concentration threshold, the control module 10 controls the air intake and exhaust module 12 to start operating and discharge the combustible gas. Further, a fire extinguishing module 15 is provided, which is installed in the energy storage container 40, and the fire extinguishing module 15 is connected to the control module 10.
  • the control module 10 controls the fire extinguishing module 15 to start operating to cool down or extinguish the fire. wherein, when the ambient temperature monitored by the temperature detection module 13 exceeds the preset temperature threshold, and the concentration of the combustible gas monitored by the gas detection module 11 exceeds the preset concentration threshold, the control module 10 controls the fire extinguishing module 15 to start operating to cool down or extinguish the fire.
  • the humidity detection module 14 is installed in the energy storage container 40.
  • the humidity detection module 14 is electrically connected to the control module 10 and is used to monitor the ambient humidity of the energy storage container 40 in real time.
  • the control module 10 controls the air intake and exhaust module 12 to start operating for ventilation.
  • the self-detecting fire-fighting air intake and exhaust control system further includes: a communication module 20 connected to the control module 10, the control module 10 receives the control command of the EMS system 30 through the communication module 20, and sends the status information of the energy storage container to the EMS system 30 and the cloud.
  • the control module 10 is also used to control the alarm module 16 to alarm when a communication abnormality occurs in the communication module 20; wherein, the control module 10
  • the instructions include: working instructions for controlling the air intake and exhaust module 12, and working instructions for controlling the gas detection module 11, the motion detection module 121, the temperature detection module 13 and/or the humidity detection module 14; the status information includes the concentration of combustible gas, the temperature in the energy storage container 40, the humidity in the energy storage container 40 and the working status of the air intake and exhaust module 12.
  • the EMS system 30 can control the air intake and exhaust module 12, and when the combustible gas concentration monitored by the gas detection module 11 does not exceed the preset concentration value, the EMS system 30 can control the air intake and exhaust module 12 to be turned on or off.
  • the control module 10 will also alarm through the alarm module 16, and promptly report the status information to the EMS system 30.
  • the alarm module 16 will use different alarm methods according to different fault types. Even if the maintenance personnel on site do not see the fault status information reported in the EMS system 30, they can simply judge the fault type according to the alarm method of the alarm module 16.
  • the communication module 20 uses the TCPIP protocol for data transmission.
  • the upper-level management system will actively communicate with the fire air intake and exhaust control system, and detect whether the system is in an abnormal state in the form of heartbeat. If the system cannot normally reply to the heartbeat information after a certain time limit, it is judged that the system communication is abnormal. The fire air intake and exhaust control system will transmit fault information to the upper-level management system.
  • the fire-fighting air intake and exhaust control system is also provided with an operation indication device (not shown in the figure).
  • the operation indication device displays normally. If the system has problems such as freezing, the operation indication device will give a reminder.
  • control module 10 is provided with a timing detection function.
  • the control module 10 will open and close the air intake and exhaust module 12 within a certain period of time.
  • the action detection module 121 will monitor various status information. If an abnormality is found (for example, the automatic shutter cannot be opened, the fan is blocked, the input and output signal are abnormal, etc.), the status of the air intake and exhaust control system at that moment will be recorded and the data information will be transmitted to the EMS system 30, and an alarm will be issued through the alarm module 16, thereby avoiding the problem of possible failure of the shutter device 1201 and the fan device and the system information transmission due to long-term non-use, thereby increasing safety and reliability.
  • an abnormality for example, the automatic shutter cannot be opened, the fan is blocked, the input and output signal are abnormal, etc.
  • the louver device 1201 includes an air inlet louver 12011 and an air outlet louver 12012; the air inlet louver 12011 is arranged on the side of the energy storage container 40 and close to the bottom surface.
  • the exhaust louvers 12012 are arranged on the top or side of the energy storage container 40 and relatively close to the top surface.
  • the combustible gas inside the energy storage container 40 mainly includes CO 2 , CO, H 2 , C 2 H 4 , CH 4 , C 2 H 6 and C 3 H 6 , among which the main gases produced are H 2 and CO, and the proportion of the two gases reaches more than 70%.
  • the density of these two gases is less than that of air, so once produced, they will float on the upper layer of the energy storage container 40, so the exhaust louver 12012 is installed on the upper part of the energy storage container 40, and the air intake louver 12011 is installed on the lower part of the energy storage container 40.
  • the corresponding gas detection module 11 is also arranged on the upper part of the container.
  • the exhaust louver 12012 can also be installed on the side of the battery compartment 41 at a position corresponding to the body of the energy storage container 40.
  • the number of input and output ports and fan devices of the louver device 1201 can be customized according to needs. If the number of input and output ports is large, the control module 10 will be larger in size, so it can be independently set inside or outside the energy storage container 40; if the number of input and output ports is small, the control module 10 will be smaller in size, so it can be installed inside the louver device 1201 or the fan device.
  • the present application also provides a control method for a self-detecting fire-fighting air intake and exhaust control system, including:
  • Step S10 obtaining real-time data of combustible gas concentration collected by the gas detection module
  • Step S20 when the combustible gas concentration is higher than a preset concentration threshold, the control module sends a control instruction to the air intake and exhaust module to control the air intake and exhaust module to exhaust the combustible gas;
  • Step S30 obtaining real-time data of the working status of the air intake and exhaust modules collected by the motion detection module
  • Step S40 If an abnormality occurs in the working state, an alarm is generated through the alarm module.
  • it also includes:
  • Step S21 obtain the real-time data of the ambient temperature collected by the temperature detection module; when the ambient temperature is lower than the preset temperature threshold and the combustible gas concentration is higher than the preset concentration threshold, the control module sends a control instruction to the air intake and exhaust module to control the air intake and exhaust module to exhaust the combustible gas; when the ambient temperature is higher than the preset temperature threshold, the control module sends a control instruction to the air intake and exhaust module to control the air intake and exhaust module to exhaust the combustible gas; When the temperature reaches the preset value, the control module sends a control instruction to the fire extinguishing module to control the fire extinguishing module to cool down or extinguish the fire, and alarms through the alarm module.
  • Step S22 obtaining real-time data of ambient humidity collected by the humidity detection module; when the ambient humidity is higher than a preset humidity threshold, the control module sends a control instruction to the air intake and exhaust module to control the air intake and exhaust module to circulate air.
  • the fire-fighting air intake and exhaust control system is a closed-loop system, which is composed of a control module, a detection module, an air intake and exhaust module and an action detection module, and has higher reliability than the air intake and exhaust systems currently on the market; it records the environmental factors of the energy storage container in real time, and records the temperature, gas concentration, humidity and other environmental conditions of the energy storage container regardless of whether the system is in action.
  • the maintenance personnel can find the corresponding air intake and exhaust module status according to the action time, so as to simply judge the fault situation in advance.
  • a communication module is added to upload the environmental information of the energy storage container and the action information of the air intake and exhaust modules to the cloud, so that maintenance personnel can observe the situation inside the connected energy storage container at any time, providing more reliable protection for the safety of the energy storage container.
  • a fire extinguishing module is also provided to cool down or extinguish the energy storage container in time to avoid causing greater losses.
  • the system is suitable for a variety of containers and has higher compatibility.
  • the present application also provides a control method for a self-detecting fire-fighting air intake and exhaust control system, which realizes the control of the air intake and exhaust modules and the real-time monitoring of the operating status of the air intake and exhaust modules, so that the system can operate more stably and reliably.
  • the fire-fighting air intake and exhaust control system of the present application is safer, more reliable, more versatile, and has a cost advantage over existing fans on the market.
  • any marking arrows in the drawings should be regarded as exemplary only and not limiting.
  • the term “or” used herein is generally intended to mean “and/or”. In the case where the term is not clear because it is anticipated that the ability to separate or combine is provided, the combination of components or steps will also be regarded as indicated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Ventilation (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

一种自检测的消防进排风控制系统,应用于储能集装箱(40)的可燃气体检测,消防进排风控制系统包括:气体检测模块(11),用于检测储能集装箱(40)内的可燃气体浓度;进排风模块(12),用于控制储能集装箱(40)内的气体流通;控制模块(10),用于控制气体检测模块(11)和进排风模块(12)的工作,并在可燃气体浓度超过预设浓度阈值时,控制进排风模块(12)排出可燃气体。消防进排风控制系统能够自动检测系统存在的故障问题并及时反馈,同时检测多种环境因素,系统会定期进行自检,并将数据保存上传,运维人员可以调取运行数据,预先判断现场的运行情况,对系统和设备进行维护。

Description

自检测的消防进排风控制系统及控制方法
本申请要求于2022年10月11日提交中国专利局的申请号为202211241728.4、发明名称为“一种自检测的消防进排风控制系统及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及消防进排风控制领域,例如涉及一种自检测的消防进排风控制系统及控制方法。
背景技术
随着储能的快速发展,电芯安全越来越受关注,热失控是电芯安全中最严重的风险,而过充过放也是电芯故障中最常见的诱因。以当前的技术水平,是无法完全避免的。现有的储能系统中,电芯的温度检测已经普及,但是降温是被动手段,不能阻止可燃气体的产生,从而也无法阻止可燃气体浓度过高时产生的爆炸。
电化学储能是一种利用化学元素作为储能介质,通过储能介质的化学反应或变价,来存储能量。市场上电化学储能主要是以电池作为能量载体,而以磷酸铁锂为代表的锂电池是储能行业的主要选择之一,应用前景十分广阔。
而锂离子电池在过充或热失控的条件中,由于温度过高,会导致负极SEI膜分解、正极活性物质分解和电解液的氧化分解,出现大量的气体。研究表明CO2、CO、H2、C2H4、CH4、C2H6和C3H6是锂离子电池热失控中最常见的七种气体。其中H2(氢气)和CO(一氧化碳)两种气体的占比达到了70%以上。
在储能系统中,为了达到相应的储能容量,因此会对电芯进行组装、堆叠(主流是以电池柜或集装箱的形式存在)。电池容量越大,电芯的个数会越多,出现热失控的风险就越大。NFPA855固定式储能系统安装标准要求,可燃气体浓度应低于空间内允许的可燃气体浓度限值的25%,因此需要安装消防进排风装置。当集装箱中的可燃气体浓度达到一定范围时,打 开消防进排风系统,将可燃气体及时排到集装箱外。
目前市场上的主流方案是在储能集装箱内安装可燃气体探测器和消防进排风装置,二者联动。当可燃气体探测器检测到可燃气体浓度过高时,会发出产生告警信息,进排风装置接收到(或间接收到)该信息后就会启动运行,直到可燃气体浓度达标为止。
目前大都技术存在以下问题:系统开环:市面上主流的消防进排风装置主要由自动百叶、风扇、控制板组成(进风排风组成相同),控制系统可以控制装置运行和停止,但不能监测装置的运行状态,系统运行时,如果出现风扇堵转、自动百叶不能开启或其他控制问题,系统不能进行相关的保护动作。从而引起装置失效,甚至会引起更严重的安全隐患。
无法实时记录现环境信息:在现场应用环境中,如果消防进排风系统动作,那么储能集装箱内可能存在了一定的安全隐患,相关的运维人员会到现场进行故障排查。但运维人员到达时,很可能消防风机已经关闭,故障也暂时消失。此时则需要重新排查来找到故障所在。
鲁棒性低:消防进排风装置在安装过后并不是一个长期稳定运行的设备,在多数情况下,该设备可能在储能系统全生命周期都不会被使用。那么长时间放置后,该系统是否还可以稳定运行是一个不可控的风险点。
检测种类单一:现有进排风机大多只可以检测可燃气体,但对集装箱内的湿度状态并没有检测。大多数条件下储能集装箱内部并不能做到完全防水,如果内部湿度过大也会造成一定的安全隐患。
通用性低:市场上应用于集装箱上的进排风系统,大多是一种集装箱一种进排风设备,不同的集装箱需要定制不同的系统大小和功能,除了安装维护不便外,还会增加使用成本。
发明内容
本申请提供一种能自动检测系统存在的故障问题并及时反馈,同时检测多种环境因素且适用于大多集装箱进排风设备的消防进排风控制系统及控制方法。
为实现上述目的及其他相关目的,本申请提供一种自检测的消防进排 风控制系统,应用于储能集装箱的可燃气体检测,包括:气体检测,所述消防进排风控制系统包括:气体检测模块,用于检测所述储能集装箱内的可燃气体浓度;进排风模块,用于控制所述储能集装箱内的气体流通;控制模块,用于控制所述气体检测模块和进排风模块的工作,并在所述可燃气体浓度超过预设浓度阈值时,控制所述进排风模块排出可燃气体。
根据本申请一具体实施例,所述消防进排风控制系统还包括:动作检测模块和报警模块;动作检测模块,用于检测所述进排风模块的工作状态;所述控制模块,还用于在所述进排风模块出现工作异常时控制所述报警模块进行报警。
根据本申请一具体实施例,所述进排风模块安装在所述储能集装箱的内部,包括:百叶装置、风扇装置。
根据本申请一具体实施例,所述动作检测模块包括:百叶检测子模块和风扇检测子模块;所述百叶检测子模块通过检测所述百叶装置的百叶状态判断所述进排风模块的工作状态;所述风扇检测子模块通过检测所述风扇装置的电流信息和转速信息判断所述进排风模块的工作状态。
根据本申请一具体实施例,所述百叶检测子模块,通过位置传感器检测所述百叶装置的百叶连杆活动距离,以判断所述百叶的开启或者关闭状态。
根据本申请一具体实施例,所述风扇检测子模块,通过在风扇电源线上设置电流传感器,以及在风扇控制器和风扇之间设置转速反馈导线,监测所述风扇装置的电流值变化情况和转速变化情况,以判断所述风扇装置是否工作正常。
根据本申请一具体实施例,还包括:温度检测模块,用于检测所述储能集装箱内的温度;湿度检测模块,用于检测所述储能集装箱内的湿度;所述控制模块,还用于在所述温度超过预设温度阈值,和/或所述湿度超出预设湿度范围时,控制所述进排风模块工作。
根据本申请一具体实施例,还包括:通信模块,所述控制模块通过所述通信模块接收外部指令,并向外部发送所述储能集装箱的状态信息;其中,所述外部指令包括:控制所述进排风模块的工作指令,以及控制所述 气体检测模块、动作检测模块、温度检测模块和/或湿度检测模块的工作指令;所述状态信息包括可燃气体浓度、储能集装箱内温度、储能集装箱内湿度和所述进排风模块的工作状态。
根据本申请一具体实施例,所述控制模块,还用于在所述通信模块出现通信异常时,控制所述报警模块报警。
根据本申请一具体实施例,所述控制模块依据所述通信模块接收到的所述外部指令控制所述进排风模块、所述气体检测模块、动作检测模块、温度检测模块和/或湿度检测模块的工作;或者,按照预设间隔时间,控制所述进排风模块、所述气体检测模块、动作检测模块、温度检测模块和/或湿度检测模块工作。
一种上述任意一项所述自检测的消防进排风系统的控制方法,包括:获取气体检测模块采集的可燃气体浓度的实时数据;当所述可燃气体浓度高于预设浓度阈值时,控制模块向进排风模块发送控制指令,控制所述进排风模块将可燃气体排出;获取动作检测模块采集的所述进排风模块的工作状态的实时数据;若所述工作状态出现异常情况,并通过报警模块进行报警。
根据本申请一具体实施例,还包括:获取温度检测模块采集的环境温度的实时数据;当所述环境温度低于预设温度阈值,且所述可燃气体浓度高于预设浓度阈值时,控制模块向进排风模块发送控制指令,控制所述进排风模块将可燃气体排出;当所述环境温度高于预设温度值时,控制模块向灭火模块发送控制指令,控制所述灭火模块进行降温或灭火,并通过报警模块进行报警。
根据本申请一具体实施例,还包括:获取湿度检测模块采集的环境湿度的实时数据;当所述环境湿度高于预设湿度阈值时,控制模块向进排风模块发送控制指令,控制所述进排风模块进行空气流通。
本申请还提供了一种自检测的消防进排风控制系统的控制方法,实现对进排风模块的控制以及进排风模块动作状态的实时监测,从而使系统可以更稳定、可靠的运行。
本申请的消防进排风控制系统更加安全、可靠,通用性也会更好,成 本方面也会比当前市场上现有的风机更有优势。
附图说明
图1为本申请所提供的消防进排风控制系统在具体应用中一实施例的结构示意图;
图2为本申请所提供的消防进排风控制系统在储能集装箱应用的一具体实施例的结构示意图;
图3为本申请所提供的消防进排风控制系统在储能集装箱应用的一具体实施例的另一结构示意图;
图4为本申请所提供的一具体实施例消防进排风控制系统的控制方法的流程示意图。
具体实施方式
以下通过特定的具体实例说明本申请的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本申请的其他优点与功效。本申请还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本申请的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本申请的基本构想,遂图示中仅显示与本申请中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
请参见图1-3所示,一种自检测的消防进排风控制系统,应用于储能集装箱的可燃气体检测,包括:气体检测模块11,安装在储能集装箱40内,气体检测模块11与控制模块10电连接,用于检测储能集装箱40内的可燃气体浓度;进排风模块12,安装在储能集装箱40的箱体上,进排风模块12与控制模块10电连接,用于控制储能集装箱40内的气体流通;控制模块10, 用于控制气体检测模块11和进排风模块12的工作,并在可燃气体浓度超过预设浓度阈值时,控制进排风模块12排出可燃气体。
其中,还包括:动作检测模块121,设置在控制模块10与进排风模块12之间,被装配为实时监测进排风模块12的工作状态。控制模块10、气体检测模块11、进排风模块12以及动作检测模块121组成了闭环的消防进排风控制系统,实现了系统故障的自检测,以提高消防进排风控制系统的可靠性。
进一步的,还设有报警模块16,安装在储能集装箱40的箱体上,控制模块10,还用于在进排风模块12出现工作异常时控制报警模块16进行报警。其中,正常情况下系统不会动作,如果气体检测模块11检测到可燃气体浓度达到预设浓度阈值时,系统开启,同时控制进排风模块12启动。进排风模块12动作时,同时会记录当前时间、可燃气体的浓度值、控制模块10的控制指令信号、进排风模块12的工作状态并上传,以保证现场维护人员可以实时了解到系统的状态数据信息。
在一具体实施例中,进排风模块12安装在储能集装箱40的内部,包括:百叶装置1201、风扇装置(图中未示出),百叶装置1201与风扇装置相互配合用于空气流通循环。进一步的,动作检测模块121包括:百叶检测子模块(图中未示出)和风扇检测子模块(图中未示出);百叶检测子模块通过检测百叶装置1201的百叶状态判断进排风模块12的工作状态;风扇检测子模块通过检测风扇装置的电流信息和转速信息判断进排风模块12的工作状态。
其中,百叶检测子模块通过位置传感器检测百叶装置1201的百叶连杆活动距离,以判断百叶的开启或者关闭状态。具体的,在应用中,位置传感器设置百叶连杆的上下方,当百叶动作时,会识别百叶连杆与位置传感器之间的距离,若百叶连杆与位置传感器之间的距离小于预设距离阈值时,位置传感器识别百叶处于关闭状态,若百叶连杆与位置传感器之间的距离大于预设距离阈值时,传感器识别百叶处于打开状态。在实际使用中,位置传感器的数量个数和位置并不仅限于本实施例所提到的,根据实际使用环境,位置传感器可以1个,或增加多个。
风扇检测子模块,通过在风扇电源线上设置电流传感器,以及在风扇控制器和风扇之间设置转速反馈导线,监测风扇装置的电流值变化情况和转速变化情况,以判断风扇装置是否工作正常。具体的,在应用中,在系统运行时,风扇可以通过转速反馈导线给风扇检测子模块反馈转速信号,同时电流传感器给风扇检测子模块反馈风扇运行时的电流信号。风扇检测子模块跟风扇的转速和风电流的大小来判断风扇运行是否正常。当风扇正常运行时,扇叶阻力大时,风扇转速小,此时风扇电流大,风扇堵转时,电流最大。风扇检测子模块会根据预先设定的转速阈值和电流阈值来判断风扇是否正常,单个检测值过高过低,或电流和转速不能匹配时,风扇检测子模块判断风扇故障。
在一具体实施例中,自检测的消防进排风控制系统还包括:温度检测模块13,安装在储能集装箱40内,温度检测模块13与控制模块10电连接,用于实时监测储能集装箱40的环境温度;其中,当温度检测模块13监测的环境温度未超过预设温度阈值,且气体检测模块11监测的可燃气体的浓度超过预设浓度阈值时,控制模块10控制进排风模块12开始运作,排出可燃气体。进一步的还设有灭火模块15,安装在储能集装箱40内,灭火模块15与控制模块10连接,当温度检测模块13出现检测异常时,控制模块10控制灭火模块15开始运作,进行降温或灭火。其中,当温度检测模块13监测的环境温度超过预设温度阈值,且气体检测模块11监测的可燃气体的浓度超过预设浓度阈值时,控制模块10控制灭火模块15开始运作,进行降温或灭火。
湿度检测模块14,安装在储能集装箱40内,湿度检测模块14与控制模块10电连接,用于实时监测储能集装箱40的环境湿度;其中,当湿度检测模块14监测的环境湿度超过预设湿度阈值时,控制模块10控制进排风模块12开始运作,进行通风。
在一具体实施例中,自检测的消防进排风控制系统还包括:通信模块20,与控制模块10连接,控制模块10通过通信模块20接收EMS系统30的控制指令,并向EMS系统30和云端发送储能集装箱的状态信息,控制模块10还用于在通信模块20出现通信异常时,控制报警模块16报警;其中,控制 指令包括:控制进排风模块12的工作指令,以及控制气体检测模块11、动作检测模块121、温度检测模块13和/或湿度检测模块14的工作指令;状态信息包括可燃气体浓度、储能集装箱40内温度、储能集装箱40内湿度和进排风模块12的工作状态。进一步的,EMS系统30能够控制进排风模块12,当气体检测模块11监测的可燃气体浓度未超过预设浓度值时,EMS系统30能够控制进排风模块12开启或关闭。
其中,一旦进排风模块12不能正常动作,控制模块10也会通过报警模块16进行报警,并及时将该状态信息上报至EMS系统30中。报警模块16会根据不同的故障类别进行不同的报警方式,即便现场的维护人员并没有看到EMS系统30中上报的故障状态信息,也可以根据报警模块16的报警方式来简单的判断故障类型。
在一具体实施例中,通信模块20采用tcpip协议进行数据传输。具体的,在应用中,上层的管理系统会主动与消防进排风控制系统通信,以心跳的形式检测系统的运行是否存在异常状态,如果超过一定时限,系统不能正常回复心跳信息,则判断系统通信异常。消防进排风控制系统会向上层额管理系统传递故障信息。
在一具体实施例中,消防进排风控制系统中还设有运行指示装置(图中未示出),当系统正常运行时,运行指示装置正常显示,如果系统存在死机等问题,运行指示装置会进行提醒。
在一具体实施例中,控制模块10被设置有定时检测功能,控制模块10会在一定的时间段内开启和关闭进排风模块12,当百叶装置1201和风扇装置动作时,通过动作检测模块121会监测各个状态信息,若发现异常(例如包括自动百叶窗不能打开、风机堵转、输入输出信号异常等),则会记录该时刻进排风控制系统的状态并将数据信息传输至EMS系统30中,并通过报警模块16进行报警,从而避免了百叶装置1201和风扇装置以及系统信息传输长时间不使用可能出现故障的问题,增加了安全可靠性。
在一具体实施例中,百叶装置1201包括进风百叶12011和排风百叶12012;进风百叶12011设置在储能集装箱40箱体的侧面且靠近底面的位置, 排风百叶12012设置在储能集装箱40箱体的顶部或侧面且相对靠近顶面的位置。
具体的,在应用中,由于消防进排风控制系统的最基本的功能是将储能集装箱40内部的可燃气体排出,而储能集装箱40内部存在的可燃性气体主要包含CO2、CO、H2、C2H4、CH4、C2H6和C3H6,其中主要产生的气体是H2和CO,两种气体的占比达到了70%以上。且这两种气体的密度小于空气,因此一旦产生,会漂浮在储能集装箱40的上层,因此排风百叶12012安装在储能集装箱40的上部,进风百叶12011安装在储能集装箱40的下部。同时,相应的气体检测模块11也设置在集装箱的上部分。
还考虑到有些储能集装箱40为了防止安装电池包的位置进水,会有单独的电池仓41,因此排风百叶12012也可以安装在电池仓41侧面对应储能集装箱40箱体的位置。
在一具体实施例中,百叶装置1201的输入输出端口和风扇装置的数量可根据需求自定义,若输入输出端口的数量较多,则控制模块10体积会较大,因此可以独立设置在储能集装箱40内部或外部;若输入输出端口较少,则控制模块10体积较小,因此可以安装在百叶装置1201或风扇装置内部。
请参见图4所示,本申请还提供一种自检测的消防进排风控制系统的控制方法,包括:
步骤S10,获取气体检测模块采集的可燃气体浓度的实时数据;
步骤S20,当可燃气体浓度高于预设浓度阈值时,控制模块向进排风模块发送控制指令,控制进排风模块将可燃气体排出;
步骤S30,获取动作检测模块采集的进排风模块的工作状态的实时数据;
步骤S40,若工作状态出现异常情况,并通过报警模块进行报警。
在一具体实施例中,还包括:
步骤S21,获取温度检测模块采集的环境温度的实时数据;当环境温度低于预设温度阈值,且可燃气体浓度高于预设浓度阈值时,控制模块向进排风模块发送控制指令,控制进排风模块将可燃气体排出;当环境温度高 于预设温度值时,控制模块向灭火模块发送控制指令,控制灭火模块进行降温或灭火,并通过报警模块进行报警。
步骤S22,获取湿度检测模块采集的环境湿度的实时数据;当环境湿度高于预设湿度阈值时,控制模块向进排风模块发送控制指令,控制进排风模块进行空气流通。
综上,本申请的技术效果在于:消防进排风控制系统为闭环系统,由控制模块、检测模块、进排风模块以及动作检测模块组成,与当前市场上的进排风系统相比具有更高的可靠性;实时记录储能集装箱的环境因素,无论系统是否动作,都会记录储能集装箱的温度、气体浓度、湿度等环境状态,一旦进排风模块动作,维护人员可以根据动作时间查找相应的进排风模块状态,从而预先简单的判断故障情况,即便因为各类突发事件的产生,不能及时看到故障信息,也不影响后续对故障的判断;系统会以固定的时间间隔进行自检,大大增加了系统的可靠性。目前市场上的进排风系统完全没有此项功能,装置长时间搁置,系统长时间不运行,即使出现问题也不能及时了解,一旦系统需要动作,而设备因故障无法动作时,很可能会对储能集装箱造成更大的危险;与现有进排风系统相比,添加了通讯模块,将储能集装箱的环境信息以及进排风模块动作信息上传至云端,供维护人员随时观察连接储能集装箱内部的情况,为储能集装箱我的安全提供了更可靠的保护;同时还设有灭火模块,及时对储能集装箱进行降温或灭火,以避免造成更大的损失;且系统适用多种集装箱,具有更高的兼容性。
本申请还提供了一种自检测的消防进排风控制系统的控制方法,实现对进排风模块的控制以及进排风模块动作状态的实时监测,从而使系统可以更稳定、可靠的运行。
本申请的消防进排风控制系统更加安全、可靠,通用性也会更好,成本方面也会比当前市场上现有的风机更有优势。
上述实施例仅例示性说明本申请的原理及其功效,而非用于限制本申请。任何熟悉此技术的人士皆可在不违背本申请的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未 脱离本申请所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本申请的权利要求所涵盖。
在本文的描述中,提供了许多特定细节,诸如部件和/或方法的实例,以提供对本申请实施例的完全理解。然而,本领域技术人员将认识到可以在没有一项或多项具体细节的情况下或通过其他设备、系统、组件、方法、部件、材料、零件等等来实践本申请的实施例。在其他情况下,未具体示出或详细描述公知的结构、材料或操作,以避免使本申请实施例的方面变模糊。
在整篇说明书中提到“一个实施例”、“实施例”或“具体实施例”意指与结合实施例描述的特定特征、结构或特性包括在本申请的至少一个实施例中,并且不一定在所有实施例中。因而,在整篇说明书中不同地方的短语“在一个实施例中”、“在实施例中”或“在具体实施例中”的各个表象不一定是指相同的实施例。此外,本申请的任何具体实施例的特定特征、结构或特性可以按任何合适的方式与一个或多个其他实施例结合。应当理解本文所述和所示的发明实施例的其他变型和修改可能是根据本文教导的,并将被视作本申请精神和范围的一部分。
还应当理解还可以以更分离或更整合的方式实施附图所示元件中的一个或多个,或者甚至因为在某些情况下不能操作而被移除或因为可以根据特定应用是有用的而被提供。
另外,除非另外明确指明,附图中的任何标志箭头应当仅被视为示例性的,而并非限制。此外,除非另外指明,本文所用的术语“或”一般意在表示“和/或”。在术语因提供分离或组合能力是不清楚的而被预见的情况下,部件或步骤的组合也将视为已被指明。
如在本文的描述和在下面整篇权利要求书中所用,除非另外指明,“一个”、和“该”包括复数参考物。同样,如在本文的描述和在下面整篇权利要求书中所用,除非另外指明,“在…中”的意思包括“在…中”和“在…上”。
本申请所示实施例的上述描述(包括在说明书摘要中所述的内容)并非意在详尽列举或将本申请限制到本文所公开的精确形式。尽管在本文仅为 说明的目的而描述了本申请的具体实施例和本申请的实例,但是正如本领域技术人员将认识和理解的,各种等效修改是可以在本申请的精神和范围内的。如所指出的,可以按照本申请实施例的上述描述来对本申请进行这些修改,并且这些修改将在本申请的精神和范围内。
本文已经在总体上将系统和方法描述为有助于理解本申请的细节。此外,已经给出了各种具体细节以提供本申请实施例的总体理解。然而,相关领域的技术人员将会认识到,本申请的实施例可以在没有一个或多个具体细节的情况下进行实践,或者利用其它装置、系统、配件、方法、组件、材料、部分等进行实践。在其它情况下,并未特别示出或详细描述公知结构、材料和/或操作以避免对本申请实施例的各方面造成混淆。
因而,尽管本申请在本文已参照其具体实施例进行描述,但是修改自由、各种改变和替换亦在上述公开内,并且应当理解,在某些情况下,在未背离所提出发明的范围和精神的前提下,在没有对应使用其他特征的情况下将采用本申请的一些特征。因此,可以进行许多修改,以使特定环境或材料适应本申请的实质范围和精神。本申请并非意在限制到在下面权利要求书中使用的特定术语和/或作为设想用以执行本申请的最佳方式公开的具体实施例,但是本申请将包括落入所附权利要求书范围内的任何和所有实施例及等同物。因而,本申请的范围将只由所附的权利要求书进行确定。

Claims (13)

  1. 一种自检测的消防进排风控制系统,其特征在于,应用于储能集装箱的可燃气体检测,所述消防进排风控制系统包括:
    气体检测模块,用于检测所述储能集装箱内的可燃气体浓度;
    进排风模块,用于控制所述储能集装箱内的气体流通;
    控制模块,用于控制所述气体检测模块和进排风模块的工作,并在所述可燃气体浓度超过预设浓度阈值时,控制所述进排风模块排出可燃气体。
  2. 根据权利要求1所述的消防进排风控制系统,其特征在于,所述消防进排风控制系统还包括:动作检测模块和报警模块;
    动作检测模块,用于检测所述进排风模块的工作状态;
    所述控制模块,还用于在所述进排风模块出现工作异常时控制所述报警模块进行报警。
  3. 根据权利要求2所述的消防进排风控制系统,其特征在于,所述进排风模块安装在所述储能集装箱的内部,包括:百叶装置、风扇装置。
  4. 根据权利要求3所述的消防进排风控制系统,其特征在于,所述动作检测模块包括:百叶检测子模块和风扇检测子模块;
    所述百叶检测子模块通过检测所述百叶装置的百叶状态判断所述进排风模块的工作状态;
    所述风扇检测子模块通过检测所述风扇装置的电流信息和转速信息判断所述进排风模块的工作状态。
  5. 根据权利要求4所述的消防进排风控制系统,其特征在于,所述百叶检测子模块,通过位置传感器检测所述百叶装置的百叶连杆活动距离,以判断所述百叶的开启或者关闭状态。
  6. 根据权利要求4所述的消防进排风控制系统,其特征在于,所述风扇检测子模块,通过在风扇电源线上设置电流传感器,以及在风扇控制器和风扇之间设置转速反馈导线,监测所述风扇装置的电流值变化情况和转速变化情况,以判断所述风扇装置是否工作正常。
  7. 根据权利要求2所述的消防进排风控制系统,其特征在于,还包括:
    温度检测模块,用于检测所述储能集装箱内的温度;
    湿度检测模块,用于检测所述储能集装箱内的湿度;
    所述控制模块,还用于在所述温度超过预设温度阈值,和/或所述湿度超出预设湿度范围时,控制所述进排风模块工作。
  8. 根据权利要求2所述的消防进排风控制系统,其特征在于,还包括:
    通信模块,所述控制模块通过所述通信模块接收外部指令,并向外部发送所述储能集装箱的状态信息;其中,所述外部指令包括:控制所述进排风模块的工作指令,以及控制所述气体检测模块、动作检测模块、温度检测模块和/或湿度检测模块的工作指令;所述状态信息包括可燃气体浓度、储能集装箱内温度、储能集装箱内湿度和所述进排风模块的工作状态。
  9. 根据权利要求8所述的消防进排风控制系统,其特征在于,所述控制模块,还用于在所述通信模块出现通信异常时,控制所述报警模块报警。
  10. 根据权利要求8所述的消防进排风控制系统,其特征在于,所述控制模块依据所述通信模块接收到的所述外部指令控制所述进排风模块、所述气体检测模块、动作检测模块、温度检测模块和/或湿度检测模块的工作;或者,按照预设间隔时间,控制所述进排风模块、所述气体检测模块、动作检测模块、温度检测模块和/或湿度检测模块工作。
  11. 一种权利要求1至10任意一项所述自检测的消防进排风系统的控制方法,其特征在于,包括:
    获取气体检测模块采集的可燃气体浓度的实时数据;
    当所述可燃气体浓度高于预设浓度阈值时,控制模块向进排风模块发送控制指令,控制所述进排风模块将可燃气体排出;
    获取动作检测模块采集的所述进排风模块的工作状态的实时数据;
    若所述工作状态出现异常情况,并通过报警模块进行报警。
  12. 根据权利要求11所述的控制方法,其特征在于,还包括:
    获取温度检测模块采集的环境温度的实时数据;
    当所述环境温度低于预设温度阈值,且所述可燃气体浓度高于预设浓度阈值时,控制模块向进排风模块发送控制指令,控制所述进排风模块将可燃气体排出;
    当所述环境温度高于预设温度值时,控制模块向灭火模块发送控制指令,控制所述灭火模块进行降温或灭火,并通过报警模块进行报警。
  13. 根据权利要求11所述的控制方法,其特征在于,还包括:
    获取湿度检测模块采集的环境湿度的实时数据;
    当所述环境湿度高于预设湿度阈值时,控制模块向进排风模块发送控制指令,控制所述进排风模块进行空气流通。
PCT/CN2023/091619 2022-10-11 2023-04-28 自检测的消防进排风控制系统及控制方法 WO2024077936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211241728.4 2022-10-11
CN202211241728.4A CN115576245A (zh) 2022-10-11 2022-10-11 一种自检测的消防进排风控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2024077936A1 true WO2024077936A1 (zh) 2024-04-18

Family

ID=84585121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091619 WO2024077936A1 (zh) 2022-10-11 2023-04-28 自检测的消防进排风控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN115576245A (zh)
WO (1) WO2024077936A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115576245A (zh) * 2022-10-11 2023-01-06 阳光储能技术有限公司 一种自检测的消防进排风控制系统及控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782851A (zh) * 2021-09-29 2021-12-10 深圳市科陆电子科技股份有限公司 保护装置、电池储能系统及电子设备
CN114284614A (zh) * 2021-12-27 2022-04-05 华为数字能源技术有限公司 储能系统及其控制方法
CN114648849A (zh) * 2022-03-18 2022-06-21 阳光新能源开发股份有限公司 一种消防联动装置、控制方法和储能电站
CN114665404A (zh) * 2022-04-29 2022-06-24 宁波市北仑融电新能源有限公司 具有本地环境监控功能的集装箱储能系统
CN114768142A (zh) * 2022-03-11 2022-07-22 阳光电源股份有限公司 一种储能系统的控制方法及储能系统
WO2022155892A1 (zh) * 2021-01-22 2022-07-28 华为数字能源技术有限公司 一种储能集装箱及温控方法
CN217366957U (zh) * 2022-02-09 2022-09-06 珠海格力钛电器有限公司 储能集装箱
CN115025422A (zh) * 2022-06-24 2022-09-09 中国华能集团清洁能源技术研究院有限公司 一种应用于规模化储能系统的集中排风方法及设备
CN115576245A (zh) * 2022-10-11 2023-01-06 阳光储能技术有限公司 一种自检测的消防进排风控制系统及控制方法
CN115823006A (zh) * 2022-11-30 2023-03-21 厦门海辰储能科技股份有限公司 排风控制的方法以及相关装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022155892A1 (zh) * 2021-01-22 2022-07-28 华为数字能源技术有限公司 一种储能集装箱及温控方法
CN113782851A (zh) * 2021-09-29 2021-12-10 深圳市科陆电子科技股份有限公司 保护装置、电池储能系统及电子设备
CN114284614A (zh) * 2021-12-27 2022-04-05 华为数字能源技术有限公司 储能系统及其控制方法
CN217366957U (zh) * 2022-02-09 2022-09-06 珠海格力钛电器有限公司 储能集装箱
CN114768142A (zh) * 2022-03-11 2022-07-22 阳光电源股份有限公司 一种储能系统的控制方法及储能系统
CN114648849A (zh) * 2022-03-18 2022-06-21 阳光新能源开发股份有限公司 一种消防联动装置、控制方法和储能电站
CN114665404A (zh) * 2022-04-29 2022-06-24 宁波市北仑融电新能源有限公司 具有本地环境监控功能的集装箱储能系统
CN115025422A (zh) * 2022-06-24 2022-09-09 中国华能集团清洁能源技术研究院有限公司 一种应用于规模化储能系统的集中排风方法及设备
CN115576245A (zh) * 2022-10-11 2023-01-06 阳光储能技术有限公司 一种自检测的消防进排风控制系统及控制方法
CN115823006A (zh) * 2022-11-30 2023-03-21 厦门海辰储能科技股份有限公司 排风控制的方法以及相关装置

Also Published As

Publication number Publication date
CN115576245A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
CN111060821B (zh) 具备锂电池故障早期预警功能的电池管理系统及方法
KR102086842B1 (ko) Ess 배터리랙 화재확산방지 장치
US20200313245A1 (en) Power battery pack safety prevention and control system for electric vehicle and control method
WO2023124436A1 (zh) 储能系统及其控制方法
WO2024077936A1 (zh) 自检测的消防进排风控制系统及控制方法
CN110038241B (zh) 一种大容量锂离子电池储能箱火灾防控系统
CN111613842A (zh) 一种船舶锂离子动力电池安全保障系统及方法
CN115531778B (zh) 一种基于标准集装箱的拼装式液冷储能系统
CN217448772U (zh) 一种风光储能电站电池火灾监控预警系统
KR20220049357A (ko) 복수의 화재인자 검출에 기반한 에너지저장장치용 배터리팩 화재 모니터링 방법 및 에너지저장장치용 배터리팩 화재 모니터링 시스템
CN114522363A (zh) 一种适用于变电站磷酸铁锂电池直流系统的三级防火策略
EP4310987A2 (en) Battery safety monitoring system and method, and energy storage system
CN112964305A (zh) 一种锂离子储能电池火灾在线监测装置
CN117198008A (zh) 电池热失控预警方法及其装置
CN117134010A (zh) 一种用于储能多层安全防护的控制方法
CN115770370A (zh) 一种抑制储能电站火灾爆炸的灭火系统
He et al. Thermal runaway warning based on safety management system of lithium iron phosphate battery for energy storage
CN114259666A (zh) 一种中高压直挂储能系统的液冷pack
CN113870516A (zh) 一种通讯基站火灾探测系统
CN214333880U (zh) 一种锂离子储能电池火灾在线监测装置
CN114470570B (zh) 灭火系统
CN218980305U (zh) 一种电池包及电池包消防系统
CN117277516B (zh) 一种多层次多方位船用电池电气保护系统
CN216148905U (zh) 灭火系统
KR102624555B1 (ko) 이동식 스마트 냉동 컨테이너

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876147

Country of ref document: EP

Kind code of ref document: A1