WO2023178555A1 - 电池失效处理方法、装置、系统、电子设备和存储介质 - Google Patents

电池失效处理方法、装置、系统、电子设备和存储介质 Download PDF

Info

Publication number
WO2023178555A1
WO2023178555A1 PCT/CN2022/082502 CN2022082502W WO2023178555A1 WO 2023178555 A1 WO2023178555 A1 WO 2023178555A1 CN 2022082502 W CN2022082502 W CN 2022082502W WO 2023178555 A1 WO2023178555 A1 WO 2023178555A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
thermal runaway
failure
information
verification
Prior art date
Application number
PCT/CN2022/082502
Other languages
English (en)
French (fr)
Inventor
陈伟峰
Original Assignee
时代电服科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 时代电服科技有限公司 filed Critical 时代电服科技有限公司
Priority to PCT/CN2022/082502 priority Critical patent/WO2023178555A1/zh
Priority to CN202280028905.2A priority patent/CN117178454A/zh
Publication of WO2023178555A1 publication Critical patent/WO2023178555A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This application relates to the field of battery safety technology, and in particular to a battery failure processing method, device, system, electronic equipment, storage medium and computer program product.
  • Electric vehicles mainly electric vehicles
  • Electric vehicles are powered by batteries. Due to the limitation of the electric energy stored in the battery, the distance that can be traveled on a single charge is limited. Therefore, battery swap stations that provide charging and swapping functions for electric vehicles have emerged.
  • a large number of batteries are often stored in power swap stations, and the storage safety of batteries is an important indicator to ensure the safe operation of the power swap station.
  • the battery storage process in traditional power swap stations they are often scrapped due to detection of thermal runaway, resulting in a waste of battery costs.
  • this application provides a battery failure processing method, device, system, electronic equipment, storage medium and computer program product. It can alleviate the problem of thermal runaway being detected during battery storage and being scrapped, resulting in a fundamental waste of batteries.
  • this application provides a battery failure processing method, including:
  • the battery information of each battery is obtained.
  • the battery status detection parameters obtained by detecting the status of the thermal runaway battery by the battery status detector are used.
  • Thermal runaway batteries undergo further line failure verification. And only when the failure verification is passed, the thermal runaway battery will be further disabled.
  • the step of verifying the failure of the thermal runaway battery through battery status detection parameters includes: if the thermal runaway battery is found to exist according to the battery information. battery, obtain the location information of the thermal runaway battery; take the thermal runaway battery out of the battery compartment according to the location information, and perform failure verification on the thermal runaway battery through battery status detection parameters.
  • determining that a thermal runaway battery exists based on the battery information includes: if the battery information carries thermal runaway fault alarm information, then a thermal runaway battery exists. This solution directly obtains the detection result of whether thermal runaway occurs based on the battery information fed back after the battery self-test. The specific detection operation of thermal runaway does not need to be performed on the control device, reducing the data processing volume of the control device and effectively improving the efficiency of battery failure processing. .
  • obtaining a thermal runaway battery based on the battery information includes: if the battery information carries thermal runaway fault alarm information, analyzing whether the battery temperature of the battery corresponding to the thermal runaway fault alarm information is greater than a predetermined value. Set a temperature threshold; if the battery temperature is greater than the preset temperature threshold, there is a thermal runaway battery.
  • This solution also determines the thermal runaway battery based on whether the battery information carries thermal runaway fault alarm information and whether the battery temperature corresponding to the battery carrying thermal runaway fault alarm information is greater than the preset temperature threshold, which can effectively improve detection accuracy.
  • removing the thermal runaway battery from the battery compartment based on the location information includes: controlling a transfer device to remove the thermal runaway battery from the battery compartment based on the location information.
  • the battery status detection parameters include smoke detection parameters
  • the battery status detector includes a smoke detection device
  • the thermal runaway battery is taken out from the battery compartment according to the location information
  • the battery status detection The step of verifying the failure of the thermal runaway battery using parameters includes: transferring the thermal runaway battery from the battery compartment to a failure processing device according to the location information; performing failure verification on the thermal runaway battery through smoke detection parameters;
  • the smoke detection parameters are obtained by detecting smoke on the thermal runaway battery through a smoke detection device provided in the failure processing device. This solution verifies the failure of thermal runaway batteries by detecting smoke.
  • the smoke detection device is directly set at the failure processing device, and the thermal runaway battery is directly transferred to the failure processing device for failure analysis, which facilitates timely failure processing when a failure is detected. , which can effectively reduce the safety risks caused by thermal runaway batteries.
  • the smoke detection parameters include smoke concentration data
  • performing failure verification on the thermal runaway battery through the smoke detection parameters includes: if the smoke concentration data is greater than a preset smoke concentration threshold, then Thermal runaway battery failure verification passed.
  • This solution uses comparative analysis of smoke concentration data to verify the failure of thermal runaway batteries, which has the advantage of high verification accuracy.
  • the smoke detection parameters include a detection result of whether there is smoke
  • the failure verification of the thermal runaway battery through the smoke detection parameters includes: if the detection result is that smoke is present, then the thermal runaway battery The verification of runaway battery failure was passed.
  • the step of performing failure treatment on the thermal runaway battery includes: if the failure verification is passed, the control transfer device transfers the thermal runaway battery to a failure processing device for failure. deal with.
  • the control device realizes the transfer of the failed thermal runaway battery through the transfer device, and performs failure verification at the failure processing device, which has high failure processing efficiency. At the same time, it can also perform timely failure when the thermal runaway battery is verified to be failed. processing, effectively reducing the safety hazards caused by thermal runaway batteries.
  • removing the thermal runaway battery from the battery compartment according to the location information includes: if the number of location information is more than two, then removing each of the thermal runaway batteries in sequence according to a preset priority relationship. The thermal runaway battery is removed from the battery compartment.
  • this solution can quickly remove all thermally runaway batteries for failure verification when two thermally runaway batteries occur, thereby avoiding the impact of thermally runaway batteries on the safety of the power swap station.
  • this application also provides a battery failure processing device, including:
  • Battery information acquisition module used to obtain battery information
  • a failure verification module used to perform failure verification on the thermal runaway battery through battery status detection parameters if a thermal runaway battery is obtained according to the battery information; the battery status detection parameters use a battery status detector to verify the thermal runaway battery. The battery status is detected;
  • a failure processing module is used to perform failure processing on the thermal runaway battery if the verification result of the failure verification module is that the failure verification is passed.
  • this application also provides a battery failure processing system, including:
  • a control device a battery status detector and a failure processing device.
  • the battery status detector and the failure processing device are respectively connected in communication with the control device.
  • the battery status detector is provided in the failure processing device.
  • the control device The device is used to perform failure treatment on the thermal runaway battery according to the above-mentioned battery failure treatment method.
  • this application also provides an electronic device.
  • the electronic device includes a memory and a processor.
  • the memory stores a computer program.
  • the processor executes the computer program, it implements the following steps:
  • this application also provides a computer-readable storage medium.
  • the computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by the processor, the following steps are implemented:
  • this application also provides a computer program product.
  • the computer program product includes a computer program that implements the following steps when executed by a processor:
  • Figure 1 is a schematic flow chart of a battery failure processing method in some embodiments of the present application.
  • FIG. 2 is a schematic flowchart of a battery failure processing method in some embodiments of the present application.
  • FIG. 3 is a schematic flowchart of a battery failure processing method in some embodiments of the present application.
  • Figure 4 is a schematic flowchart of a battery failure processing method in some embodiments of the present application.
  • FIG. 5 is a schematic flowchart of a battery failure processing method in some embodiments of the present application.
  • Figure 6 is a schematic flowchart of a battery failure processing method in some embodiments of the present application.
  • Figure 7 is a schematic diagram of the application scenario of the battery failure processing method in some embodiments of the present application.
  • FIG. 8 is a block diagram of a battery failure processing device in some embodiments of the present application.
  • Figure 9 is a schematic structural diagram of a failure verification module in some embodiments of the present application.
  • Figure 10 is a schematic structural diagram of a battery failure processing system in some embodiments of the present application.
  • Figure 11 is a schematic structural diagram of a battery failure processing system in some embodiments of the present application.
  • Figure 12 is a schematic structural diagram of a battery failure processing system in some embodiments of the present application.
  • Figure 13 is a block diagram of an electronic device in some embodiments of the present application.
  • Control device 142 transfer device 144, failure processing device 146;
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the inventor found that further failure verification can be performed on batteries detected as thermal runaway, and when the failure verification passes, the thermal runaway battery will fail and be scrapped. After detecting thermal runaway in the battery, the battery can be taken out for further failure verification.
  • a smoke detection device can be used to detect whether smoke is produced in the battery. If smoke is produced, it means that the thermal runaway battery has burned. At this time, it means that the thermal runaway battery has failed. If there is no smoke, it means that the thermal runaway battery has not burned. The thermal runaway battery may have been misdetected. In this case Batteries detected as thermal runaway have not actually experienced thermal runaway and can still be put into use.
  • the batteries disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the battery failure treatment method provided in this application can be used, but is not limited to, in battery swapping stations for electrical devices such as vehicles, ships, or aircraft, as long as there is a possibility of thermal runaway during battery storage.
  • this application takes the application of the battery failure treatment method to a battery swap station as an example.
  • thermal runaway refers to the phenomenon that during the storage or charging process of the battery, due to its own failure or improper charging operation, the current and battery temperature have a cumulative enhancement effect and gradually damage the battery.
  • a thermal runaway battery refers to a battery that is a thermal runaway type based on battery information analysis.
  • the thermal runaway battery in this application is not a battery that has actually experienced thermal runaway. It may also be a thermal runaway detection due to a misdetection. result.
  • Battery information is the information obtained by the battery's own BMS (Battery Management System) that performs self-tests on the battery to represent the battery's operating status, storage location, etc.
  • BMS Battery Management System
  • the control device is a terminal device used to analyze whether each battery stored in the battery compartment has a thermal runaway battery based on the received battery information, conduct further failure verification on the thermal runaway battery, and perform failure processing after the failure verification is passed.
  • the transfer device refers to the device that, under the control of the control device, can take out the thermally runaway battery from the battery compartment and other locations (the specific location will vary depending on the battery storage location), and transfer the thermally runaway battery determined to have failed to the failure processing device device.
  • the failure processing device is a device that invalidates and scraps the thermal runaway battery transferred to its interior.
  • Step 102 Obtain battery information.
  • the battery swapping station is mainly used for battery replacement in electric vehicles (such as electric vehicles), and the replaced batteries of electric vehicles are stored in the battery swapping station for charging. After being fully charged, they can be used for battery swapping in subsequent electric vehicles. . Therefore, battery swapping stations need to store a large number of batteries and charge these batteries. How to ensure the safe storage of these batteries is particularly important.
  • the batteries stored in the battery compartment of the battery swap station all have self-test functions. Through the battery's own BMS system, real-time monitoring of battery physical parameters, battery status estimation, online diagnosis and early warning, charge and discharge and precharge control, equalization management and thermal management are realized. , thereby obtaining battery information related to the battery itself. After the battery self-test obtains its own battery information, it is transmitted to the control device.
  • battery information obtained through battery self-test can be transmitted to the control device through the battery's own communication device.
  • a communication device may be provided in the battery compartment of the battery swap station. The communication device is communicatively connected to the control device and is also communicatively connected to the communication device. After the battery self-test obtains the battery information, the communication device first transmits the battery information to the communication device, and then forwards it to the control device via the communication device. It can be understood that the communication device and the specific type of the communication device are not unique.
  • both the communication device and the communication device can be implemented using a Bluetooth communicator, and the corresponding battery information is ultimately transmitted to the control device through Bluetooth.
  • the battery BMS system has a wireless communication function, and the battery BMS system communicates with the control device. After the battery BMS system obtains the battery information through self-test, it can directly send the battery information to the control device through wireless communication. .
  • Step 104 If it is found that there is a thermal runaway battery based on the battery information, perform failure verification on the thermal runaway battery through the battery status detection parameters.
  • the battery status detection parameters are obtained by detecting the status of the thermal runaway battery with a battery status detector. Failure verification refers to testing whether the thermal runaway battery cannot work properly due to thermal runaway. Through failure verification, batteries that are actually damaged due to thermal runaway can be screened out. After obtaining the battery information, the control device can further determine which batteries have experienced thermal runaway based on the battery information. The control device then receives the battery status detection parameters obtained by detecting the status of such batteries by the battery status detector, and further confirms whether the thermal runaway battery has failed based on the battery status detection parameters.
  • the battery status detector is not the only way to detect the status of a thermal runaway battery.
  • a battery status detector can be set for each battery. When a certain battery is identified as a thermal runaway battery, At this time, you only need to control the battery status detector corresponding to the thermal runaway battery to turn on, perform status detection on the thermal runaway battery, obtain the corresponding battery status detection parameters, and send them to the control device to achieve failure verification.
  • a battery status detector may not be provided for each battery.
  • a battery status detector may be installed at a specific location. When any battery is determined to be a thermal runaway battery, the battery status detector only needs to be The thermally runaway battery can be moved to this specific location for status detection.
  • the type of battery status detector is not unique, as long as the detected parameters can be used to verify whether the battery is truly unable to operate normally due to thermal runaway. Since thermal runaway of a battery is often accompanied by battery combustion, the corresponding battery status detector can be set to a detector that detects whether the battery produces smoke due to combustion, or a detector that detects whether the light intensity changes around the battery due to combustion. Detector.
  • the verification point where the control device performs failure verification on the thermal runaway battery is not unique. In one embodiment, it may be on the path where the thermal runaway battery is taken out and transferred. In another embodiment, the thermal runaway battery can also be moved to a designated location, and then the failure verification can be performed. The specific method used can be selected based on actual needs.
  • Step 106 If the failure verification is passed, perform failure processing on the thermal runaway battery.
  • Passing the failure verification refers to the result that when testing whether the thermal runaway battery is unable to operate normally due to thermal runaway, it is detected that the thermal runaway battery is damaged due to thermal runaway and cannot operate normally.
  • Failure verification refers to the result that when testing whether the thermal runaway battery cannot work normally due to thermal runaway, it is detected that the thermal runaway battery is not damaged due to thermal runaway and can still operate normally. Failure to pass the failure verification at this time is often caused by misdetection of the battery as thermal runaway.
  • Failure treatment refers to the disposal of thermal runaway batteries that are determined to be unable to operate normally due to thermal runaway (that is, thermal runaway batteries that have passed failure verification).
  • the failure verification is implemented through the battery status detection parameters after the battery status detector detects the status of the thermal runaway battery.
  • the control device determines that the thermal runaway battery is damaged due to thermal runaway and cannot be used based on the received battery status detection parameters. There are two different test results: working normally or no damage.
  • Failure treatment can specifically include scrapping the batteries that have been thermally determined to have failed.
  • the specific scrapping treatments include but are not limited to water immersion treatment and sand burial treatment.
  • Water immersion treatment also means soaking the thermally runaway battery that has passed the failure verification with water for cooling, extinguishing, etc., and burying it.
  • Sand treatment can also extinguish fires in thermally runaway batteries that have passed failure verification.
  • the specific method to choose for failure processing should be selected based on the actual needs of the actual power swap station.
  • a prompt message may also be output to inform relevant staff to intervene, and the thermal runaway battery that has failed may be manually scrapped, etc.
  • control device to output prompt information to inform relevant staff is not unique.
  • a sound, light or other type of information prompt device may be provided at the battery swap station, and the control device is connected to the information prompt device. , control the operation of the information prompt device through the output prompt information, and finally inform relevant staff in the form of sound and light signals.
  • control device may also be connected through communication with the terminal device.
  • the control device may push prompt information to the terminal device to inform relevant staff.
  • the specific type of terminal device is not unique. It can be a mobile phone, a computer, or a wearable device such as a bracelet.
  • the control device when the failure verification fails, can output a signal different from that when the failure verification passes through the above information prompt device or terminal equipment, and inform the staff of the failure verification status, which facilitates work. Personnel intervened to dispose of this type of battery. Failure to pass the failure verification is often caused by the misdetection of the battery as thermal runaway. Therefore, at this time, the staff intervenes and can decide to recycle, scrap or do other processing after further testing the battery.
  • the control device obtains the battery information of each battery.
  • the battery status detection parameters obtained by detecting the status of the thermal runaway battery by the battery status detector are used to detect the thermal runaway battery.
  • the runaway battery undergoes further line failure verification. And only when the failure verification is passed, the thermal runaway battery will be further disabled.
  • control device can be a station control host that controls the entire power replacement process in a power swap station that charges and swaps electric vehicles and other electric vehicles.
  • station control host directly interacts with the battery stored in the battery compartment to obtain battery information of the battery, and implements failure verification and failure processing operations based on the obtained battery information.
  • control device can also be implemented using two different control devices, one of which is a station control host, and the other is a programmable logic controller (PLC).
  • station control host interacts with the batteries stored in the battery compartment to obtain the battery information of the battery, and combines the battery information to obtain the location information of the thermal runaway battery, and then sends the location information of the thermal runaway battery to the programmable logic controller.
  • the failure verification and failure handling operations of thermal runaway batteries are all implemented through programmable logic controllers.
  • control device can also be directly implemented by using a programmable logic controller.
  • the programmable logic controller interacts with the battery in the battery compartment through information interaction. After obtaining the battery information of the thermal runaway battery, further combination Battery information performs failure verification and failure processing on thermal runaway batteries. In actual application scenarios, which device in the battery swap station is used to perform the above battery failure processing method can be selected based on the actual needs of the battery swap station.
  • the control device may also include a cloud platform (cloud server).
  • a cloud platform cloud server
  • information can be directly interacted with the battery stored in the battery compartment through the cloud platform to obtain battery information of the battery, and according to The obtained battery information enables failure verification and failure processing operations.
  • the control device may also include a station control host and a cloud platform, in which case the station control host is communicatively connected to the cloud platform; or it may include a PLC and a cloud platform, in which case the PLC is communicatively connected to the cloud platform; Or it includes the station control host, PLC and cloud platform. At this time, the PLC and cloud platform are communicated and connected with the station control host respectively; as long as the various components in the control device cooperate, the entire process of the above battery failure processing method can be realized.
  • step 104 includes step 202 and step 204 .
  • Step 202 If it is found that a thermal runaway battery exists based on the battery information, obtain the location information of the thermal runaway battery.
  • Step 204 Take out the thermal runaway battery from the battery compartment according to the location information, and perform failure verification on the thermal runaway battery through battery status detection parameters.
  • the battery swap station takes the battery swap station as an example.
  • the batteries in the battery swap station are all stored in the battery compartment.
  • the batteries stored in the battery compartment of the battery swap station all have self-test functions.
  • the battery information can be obtained through the BMS.
  • the system communicates wirelessly with the control device and ultimately transmits battery information to the control device. Or the BMS system does not have wireless communication function.
  • the BMS system obtains the battery information through self-test, it sends the battery information through the communication device set by the battery, and finally transmits it to the control device.
  • Battery information includes fault information. After the control device receives the battery information, it only needs to know whether the battery is a thermal runaway battery based on the fault information carried by the battery information. That is, the battery thermal runaway is directly obtained through battery self-test, and the control device only needs to Whether there is a thermal runaway battery can be determined based on the different fault information carried in the received battery information.
  • the location information of the thermal runaway battery is the battery that has thermal runaway, and the location information is stored in the battery compartment of the battery swap station.
  • the technical solution of this application can monitor the batteries stored in the battery compartment in real time. When these batteries experience thermal runaway, the control device can obtain the location information of this type of battery in time. There is no unique way for the control device to obtain the location information of the thermal runaway battery. It can be carried directly in the battery information obtained by the control device, or it can be obtained by locating the thermal runaway battery through an external device or device and then sending the location information. to the control device.
  • battery information In addition to fault information that can be used to analyze whether thermal runaway occurs, battery information also carries location information of each battery.
  • the battery information of each battery includes fault information and location information.
  • the fault information and location information carried in the battery information of each battery are bound one by one. After obtaining the fault information of a certain battery, the battery can be directly determined through its binding relationship. location information.
  • fault information and position information are sent to the control device simultaneously.
  • the control device analyzes the fault information in the obtained battery information and determines that there is a thermal runaway battery, it only needs to read the location information carried in the battery information of the thermal runaway battery to complete the thermal runaway battery. Positioning operation to obtain the location information of the thermal runaway battery.
  • the fault information and the location information may also be sent separately.
  • the battery information sent by the battery to the control device through its own communication device includes fault information, but does not include location information. Only when the control device analyzes the presence of a thermally runaway battery based on the fault information, will it send a request to the thermally runaway battery again, through the thermal control device.
  • the communication device of the runaway battery or the BMS system sends the location information to the control device.
  • the control device when the control device obtains a thermally runaway battery among all batteries stored in the battery compartment, it can locate the thermally runaway battery and obtain the location information, thereby accurately and quickly removing the thermally runaway battery from the battery compartment. , and then conduct failure verification to effectively avoid thermal runaway batteries from continuing to be stored in the battery compartment, causing hidden dangers.
  • obtaining a thermal runaway battery based on battery information includes: if the battery information carries thermal runaway fault alarm information, then a thermal runaway battery exists.
  • the battery has a self-test function, which can detect its own operating status in real time and output different fault information according to its different operating status.
  • the communication device specifically, it can be Bluetooth
  • the communication device specifically Bluetooth
  • the communication device at the battery compartment communicates, and battery information such as fault information is sent to the Bluetooth device at the battery compartment, and finally the Bluetooth device at the battery compartment sends it to the control device.
  • the control device can intuitively obtain whether the battery corresponding to the battery information has experienced thermal runaway.
  • the fault information in the battery information received by the battery is thermal runaway fault alarm information. If there is thermal runaway fault alarm information in the battery information received by the control device, it means that at least one battery has experienced thermal runaway. , based on the number of thermal runaway fault alarm messages received, the number of batteries that have experienced thermal runaway can be determined.
  • the solution of this embodiment directly obtains the detection result of whether thermal runaway occurs based on the battery information fed back after the battery self-test.
  • the specific detection operation of thermal runaway does not need to be performed on the control device, which reduces the data processing amount of the control device and effectively improves the efficiency of thermal runaway. Battery failure handling efficiency.
  • the type of battery information is not unique.
  • the battery information in addition to fault information representing the battery operating status, the battery information also includes battery voltage, battery temperature, and battery state of charge (State of Charge, SOC). . That is to say, in addition to receiving fault information to analyze the thermal runaway battery, the control device will also receive battery voltage, battery temperature and battery state of charge for storage and recording to facilitate subsequent inquiries by staff.
  • control device can also analyze the corresponding parameters based on the received battery current, battery voltage, battery temperature and other parameters. Whether the battery has thermal runaway.
  • obtaining a battery with thermal runaway based on battery information includes: if the battery information carries thermal runaway fault alarm information, analyzing whether the battery temperature of the battery corresponding to the thermal runaway fault alarm information is greater than a preset temperature threshold.
  • the battery information received by the control device also includes the battery temperature. At this time, it is also necessary to perform a position analysis operation of the thermal runaway battery in conjunction with the battery temperature. .
  • the control device analyzes the received battery information and determines that there are batteries carrying thermal runaway fault alarm information, it locates the battery corresponding to the thermal runaway fault alarm information. The control device then compares and analyzes the battery temperature of this type of battery with the preset temperature threshold. Only batteries whose battery information carries thermal runaway fault alarm information and whose battery temperature is greater than the preset temperature threshold will be identified as thermal runaway batteries. Finally, the control device locates the identified thermally runaway battery to obtain the location information of the thermally runaway battery. The specific positioning is as shown in the above embodiment and will not be described again.
  • the solution of this embodiment simultaneously determines the thermal runaway battery based on whether the battery information carries thermal runaway fault alarm information and whether the battery temperature corresponding to the battery carrying thermal runaway fault alarm information is greater than the preset temperature threshold, which can effectively improve detection accuracy. sex.
  • removing the thermally runaway battery from the battery compartment based on the location information includes: controlling the transfer device to remove the thermally runaway battery from the battery compartment based on the location information.
  • the control device is not the only way to take out the thermal runaway battery based on the position information.
  • the control device controls the operation of the transfer device and uses the transfer device to realize the removal operation of the thermal runaway battery.
  • the transfer device refers to a mechanical device with certain carrying capacity and grabbing ability, which is communicated with the control device. After the control device obtains the position information of the thermal runaway battery, it can control the operation of the transfer device based on the position information, so that the transfer device moves to the position of the thermal runaway battery, and the thermal runaway battery is taken out of the battery compartment.
  • the solution of this embodiment implements the removal and transfer operations of the thermal runaway battery by setting up a special transfer device, which can achieve accurate and stable transfer of the thermal runaway battery and has strong transfer reliability.
  • the transfer device may be a palletizer (Palletizer).
  • a palletizer is a device that automatically stacks bags, cartons or other materials delivered by a conveyor into stacks according to a set working method, and transports the stacked materials.
  • the transport function of the palletizer is used to remove the thermally runaway battery from the battery compartment and transport it to a specific location for failure analysis.
  • the transfer device can also be a RGV (Rail Guided Vehicle), etc., as long as the battery that has experienced thermal runaway can be taken out from the battery compartment and transferred to a specific location for failure analysis.
  • the transfer device can also be a manipulator that imitates certain action functions of a human arm and is used to grab and carry objects or operate tools according to fixed procedures. It can also transfer the transfer device under the action of the control device. Batteries that have experienced thermal runaway are removed from the battery compartment and moved to a specific location for failure analysis.
  • the battery status detection parameters include smoke detection parameters
  • the battery status detector includes a smoke detection device.
  • Step 204 includes step 302 and step 304.
  • Step 302 Transfer the thermal runaway battery from the battery compartment to the failure processing device according to the location information.
  • Step 304 Perform failure verification on the thermal runaway battery through smoke detection parameters.
  • the smoke detection parameters are obtained by detecting smoke on the thermal runaway battery through a smoke detection device provided in the failure processing device.
  • the failure processing device is a device for processing failed batteries. Specific processing may include scrapping the batteries.
  • Thermal runaway battery As the degree of thermal runaway increases, the battery temperature will continue to rise, eventually causing the battery to burn, and battery burning will produce smoke. Therefore, in the technical solution of this embodiment, failure verification is performed through smoke detection parameters at the thermal runaway battery.
  • the failure verification of the thermal runaway battery is performed by detecting smoke, and the battery failure verification of the thermal runaway battery is combined with the battery combustion, which has the advantage of high failure verification accuracy.
  • the smoke detection device is set directly at the failure processing device, and the thermal runaway battery is directly transferred to the failure processing device for failure analysis, which facilitates timely failure processing when a failure is detected, and can effectively reduce the safety hazards caused by thermal runaway batteries.
  • the smoke detection device is a device used to detect whether there are changes in smoke around the thermal runaway battery.
  • the smoke detection device can detect smoke parameters around the thermal runaway battery, and then send the smoke detection parameters to the control device (station control host and/or cloud platform and/or PLC), which is implemented through analysis and judgment by the control device. Failure verification, that is, the smoke detection device only collects smoke detection parameters, and the specific failure verification is implemented by the control device.
  • the smoke detection device can also analyze the smoke detection parameters after detecting the thermal runaway battery to obtain the failure verification results, and then send the failure verification results to the control device, that is, the specific operation of the failure verification is performed by Smoke detection device implemented.
  • the specific type of smoke detection device is not unique, as long as it is a device that can detect smoke changes in a thermal runaway battery.
  • the smoke detection device may be any one of a smoke sensor, a visual detector, or an optical detector.
  • the smoke detection device does not operate in real time.
  • the smoke detection can be combined with whether there is a thermal runaway battery.
  • the smoke detection device is communicatively connected to the control device. Only when the control device analyzes the existence of a thermally runaway battery based on the received battery information, will it issue an operation command to the smoke detection device and control the smoke detection device to turn on. Smoke detection of thermally runaway batteries.
  • the smoke detection parameter is smoke concentration data
  • step 304 includes step 402 .
  • Step 402 If the smoke concentration data is greater than the preset smoke concentration threshold, the thermal runaway battery failure verification is passed.
  • the smoke detection device has a detection function of detailed smoke concentration parameters.
  • the control device controls the transfer device to transfer the thermal runaway battery to the failure processing device
  • the smoke detection device will detect the thermal runaway battery. Carry out smoke detection and send the detected smoke concentration data to the control device.
  • the control device compares and analyzes the received smoke concentration data with the preset smoke concentration threshold. When the smoke concentration data is greater than the preset smoke concentration threshold, the battery is considered to be thermally out of control. Invalid, that is, the failure verification is passed. On the contrary, when the smoke concentration data is less than or equal to the preset smoke concentration threshold, it is considered that the thermal runaway battery has not failed, that is, the failure verification has not passed.
  • the solution of this embodiment uses smoke concentration data comparison and analysis to realize the failure verification of the thermal runaway battery, which has the advantage of high verification accuracy.
  • the size of the preset smoke concentration threshold is not unique.
  • the preset smoke concentration threshold can be set to 0. When the smoke concentration data is greater than 0, the failure verification is considered passed, and when the smoke concentration data is equal to 0, the failure verification is considered failed.
  • the smoke detection parameters include a detection result of whether smoke exists, and step 304 includes step 502 .
  • Step 502 If the detection result is that smoke exists, the thermal runaway battery failure verification is passed.
  • the failure verification is also performed by detecting the smoke of the thermal runaway battery.
  • the smoke detection device used in this embodiment does not simply collect the smoke concentration data of the thermal runaway battery. , but determines whether the thermal runaway battery itself produces smoke, directly sends the detection result of whether smoke is detected to the control device, and uses different results to characterize the failure verification results.
  • the smoke detection device detects the presence of smoke around the thermal runaway battery and sends the detection result of the presence of smoke to the control device, it means that the control device has received the information that the failure verification has been passed.
  • the control device only needs to trigger the thermal runaway battery. Just transfer it to the failure processing device for failure processing operations.
  • the smoke detection device outputs a detection result that there is no smoke to the control device, it means that the control device has received information that the failure verification has not passed.
  • the solution of this embodiment directly obtains the verification result of whether the failure verification is passed through different outputs of the smoke detection device. There is no need for the control device to receive data for comparison, which reduces the processing flow of the control device and effectively improves the efficiency of battery failure processing.
  • step 106 includes step 602 .
  • Step 602 if the failure verification is passed, the control transfer device transfers the thermal runaway battery to the failure processing device for failure processing.
  • a transfer device and a failure processing device are provided at the same time.
  • the thermal runaway battery determined to be failed can be transferred and entered into the failure processing device for failure processing, and will eventually fail.
  • the thermal runaway battery is scrapped.
  • control device realizes the transfer of the failed thermal runaway battery through the transfer device, and performs failure verification at the failure processing device, which has high failure processing efficiency. At the same time, when the thermal runaway battery is verified to be failed, Carry out failure treatment in a timely manner to effectively reduce safety risks caused by thermal runaway batteries.
  • the failure treatment device can be configured as a fire water tank, which is used to immerse and scrap the thermally runaway battery.
  • the control device when the control device obtains the verification result that the failure verification is passed, it will control the transfer device to grab the thermal runaway battery, transfer the thermal runaway battery from the entrance of the fire water tank to the fire water tank, and use the water in the fire water tank to Water soaks the thermal runaway battery, thereby scrapping the thermal runaway battery and avoiding safety hazards caused by thermal runaway.
  • the failure treatment device is configured as a sand burying device, and the sand burying device is used to bury and scrap the thermal runaway battery.
  • the control device when the control device obtains the verification result that the failure verification is passed, it will control the transfer device to grab the thermal runaway battery, transfer the thermal runaway battery from the entrance of the sand burial device to the sand burial device, and use the sand burial device to The device transports sand to the thermal runaway battery for landfill, scrapping the thermal runaway battery and avoiding safety hazards caused by thermal runaway.
  • removing thermally runaway batteries from the battery compartment based on location information includes: if the number of location information is more than two, removing each thermally runaway battery from the battery compartment in sequence according to a preset priority relationship.
  • the control device determines the order of failure verification of all thermal runaway batteries that undergo thermal runaway at the same time based on the preset priority relationship, and then takes out each thermal runaway battery in turn for failure verification.
  • the solution of the above embodiment through the preset priority setting, can quickly remove all thermally runaway batteries for failure verification when two thermally runaway batteries occur, thereby avoiding the impact of thermally runaway batteries on the safety of the power swap station.
  • the way to establish the preset priority relationship is not unique.
  • the preset priority is established based on any one of the distance between the battery and the failure processing device, the battery compartment number, and the battery model. Specifically, when the preset priority is established based on the distance between the battery and the failure processing device, during the actual failure processing process, the thermal runaway battery that is closer to the failure processing device can be taken out first for failure verification. When a preset priority is established based on the battery compartment number, during the actual failure processing process, the thermal runaway batteries stored in the battery compartment with a larger or lower number can be taken out first for failure verification. By establishing priorities based on battery models, thermal runaway batteries with larger battery capacities can be taken out first for failure verification.
  • the batteries S102 are stored in the battery compartment S10 of the battery swap station.
  • Each battery S102 is equipped with a Bluetooth device as a communication device.
  • each battery S102 can Through the self-test, the battery information obtained by the self-test is sent to the Bluetooth device installed in the battery compartment S10 using its own Bluetooth communication device.
  • the Bluetooth device reports the battery information carrying fault information and location information to the station control host 1422.
  • the control host 1422 obtains the thermal runaway battery by analyzing the fault information, and at the same time locates and obtains the location information corresponding to the thermal runaway battery.
  • the station control host 1422 sends the location information to the programmable logic controller 1424.
  • the programmable logic controller 1424 uses the location information and the pre-stored location information of the failure handling device 146 (specifically, the fire water tank) (which can also be controlled by the station control host 1422). issued), control the transfer device 144 (specifically, the palletizer) to operate, and transfer the thermally runaway batteries in the battery compartment S10 to the failure processing device 146. Then the programmable logic controller 1424 triggers the smoke detection device provided in the failure processing device 146 to start running, and detects whether there is smoke in the thermal runaway battery placed in the failure processing device 146 at this time. If there is smoke, the programmable logic controller 1424 Feedback the detection result of smoke.
  • the programmable logic controller 1424 When the programmable logic controller 1424 receives the detection result of the presence of smoke, the failure verification of the thermal runaway battery is passed. At this time, the programmable logic controller 1424 further controls the action of the transfer device 144 to put the thermal runaway battery into the failure processing device 146. Failure and scrapping. When the programmable logic controller 1424 receives the detection result that there is no smoke, it only needs to output a prompt message to inform the staff to intervene for processing.
  • this application provides a battery failure processing device, including: a battery information acquisition module 110, a failure verification module 112 and a failure processing module 114, wherein:
  • the battery information acquisition module 110 is used to obtain battery information; the failure verification module 112 is used to perform failure verification on the thermal runaway battery through battery status detection parameters if a thermal runaway battery is obtained according to the battery information; the failure processing module 114 is used to verify if it fails If the verification result of module 112 is that the failure verification is passed, the thermal runaway battery will be disabled.
  • the failure verification module 112 includes a positioning unit 1104 and a verification unit 1106.
  • the positioning unit 1104 is used to obtain the location information of the thermally runaway battery if it is determined based on the battery information that there is a thermally runaway battery.
  • the verification unit 1106 is used to take out the thermal runaway battery from the battery compartment according to the location information, and perform failure verification on the thermal runaway battery through battery status detection parameters.
  • the positioning unit 1104 is also used to indicate that a thermal runaway battery exists if the battery information carries thermal runaway fault alarm information.
  • the positioning unit 1104 is also used to analyze whether the battery temperature of the battery corresponding to the thermal runaway fault alarm information is greater than the preset temperature threshold if the battery information carries thermal runaway fault alarm information; if the battery temperature is greater than the preset temperature threshold, there is a thermal runaway battery.
  • the verification unit 1106 is also used to control the transfer device to remove the thermal runaway battery from the battery compartment according to the location information.
  • the battery status detection parameters include smoke detection parameters
  • the battery status detector includes a smoke detection device
  • the verification unit 1106 is also used to transfer the thermally runaway battery from the battery compartment to the failure treatment device according to the location information; through smoke Detection parameters are used to verify the failure of thermal runaway batteries.
  • the verification unit 1106 is also configured to pass the thermal runaway battery failure verification if the smoke concentration data is greater than the preset smoke concentration threshold.
  • the verification unit 1106 is also configured to pass the thermal runaway battery failure verification if the detection result is the presence of smoke.
  • the failure processing module 114 is also used to: if the failure verification is passed, control the transfer device to transfer the thermal runaway battery to the failure processing device for failure processing.
  • the verification unit 1106 is also used to remove each thermal runaway battery from the battery compartment in sequence according to a preset priority relationship if the number of location information is more than two.
  • the above-mentioned battery failure processing device obtains the battery information of each battery.
  • the battery status detection parameters obtained by detecting the status of the thermal runaway battery by the battery status detector are used to detect the thermal runaway battery. Perform further row invalidation verification. And only when the failure verification is passed, the thermal runaway battery will be further disabled.
  • Each module in the above-mentioned battery failure processing device can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • the present application also provides a battery failure processing system, including a control device 142, a battery status detector 162 and a failure processing device 146.
  • the battery status detector 162 and the failure processing device 146 are respectively communicatively connected with the control device 142.
  • the control device 142 is used to perform failure processing on the thermal runaway battery according to the above battery failure processing method.
  • the battery swapping station is mainly used for battery replacement in electric vehicles (such as electric vehicles), and the replaced batteries of electric vehicles are stored in the battery swapping station for charging. After being fully charged, they can be used for battery swapping in subsequent electric vehicles. . Therefore, battery swapping stations need to store a large number of batteries and charge these batteries. How to ensure the safe storage of these batteries is particularly important.
  • the batteries stored in the battery compartment of the battery swap station all have self-test functions. Through the battery's own BMS system, real-time monitoring of battery physical parameters, battery status estimation, online diagnosis and early warning, charge and discharge and precharge control, equalization management and thermal management are realized. , thereby obtaining battery information related to the battery itself. After the battery self-tests, the battery information related to itself is obtained and then transmitted to the control device 142 .
  • Failure verification refers to testing whether the thermal runaway battery cannot work properly due to thermal runaway. Through failure verification, batteries that are actually damaged due to thermal runaway can be screened out. After obtaining the battery information, the control device 142 can further determine which batteries have experienced thermal runaway based on the battery information. Then, the control device 142 receives the battery status detection parameters obtained by detecting the status of such batteries by the battery status detector 162, and further confirms whether the thermal runaway battery has failed based on the battery status detection parameters.
  • the failure verification is specifically implemented through the battery status detection parameters after the battery status detector 162 detects the status of the thermal runaway battery.
  • the control device 142 determines that the thermal runaway battery is damaged due to thermal runaway and cannot operate normally based on the received battery status detection parameters. There are two different test results: working or no damage.
  • Failure treatment can specifically include scrapping the batteries that have been thermally determined to have failed.
  • the specific scrapping treatments include but are not limited to water immersion treatment and sand burial treatment.
  • Water immersion treatment also means soaking the thermally runaway battery that has passed the failure verification with water for cooling, extinguishing, etc., and burying it. Sand treatment can also extinguish fires in thermally runaway batteries that have passed failure verification.
  • the specific method chosen for failure processing will vary depending on the failure processing device 146 of the actual power swap station.
  • the location and number of the battery status detectors 162 are not unique.
  • a battery status detector 162 may be provided in each battery compartment. In this case, the status of the thermally runaway battery is detected at the battery compartment. accomplish.
  • a battery status detector 162 may be provided only at the failure processing device 146. In this case, the thermally runaway battery needs to be transferred to the failure processing device 146 for status detection.
  • the control device 142 obtains the battery information of each battery.
  • the battery status detection parameters obtained by detecting the status of the thermal runaway battery by the battery status detector 162 are used. Conduct further failure verification on thermal runaway batteries. And only when the failure verification is passed, the thermal runaway battery will be further disabled.
  • the battery can be effectively prevented from thermal runaway due to misdetection, but its performance is still good and can continue to be used, but it will directly fail and be scrapped, thereby alleviating the waste of battery costs.
  • the battery failure processing system also includes a communication device 152.
  • the communication device 152 is disposed in the battery compartment.
  • the communication device 152 is communicatively connected to the control device 142.
  • the communication device 152 is used to obtain battery compartment storage. battery information of the battery, and sends the battery information to the control device 142 .
  • the batteries stored in the battery compartment of the battery swap station all have self-test functions, and are also equipped with communication devices. After the battery self-tests, it obtains its own relevant battery information. The battery information is sent through the communication device and finally transmitted to the control device. 142.
  • a communication device 152 may also be provided in the battery compartment of the battery swap station, and the communication device 152 is communicatively connected to the control device 142 .
  • the communication device After the battery self-test obtains the battery information, the communication device first transmits the battery information to the communication device 152 and forwards it to the control device 142 via the communication device 152 .
  • the control device 142 analyzes the battery information to directly obtain the fault status of each battery. When the fault status of a certain battery is thermal runaway, it can be quickly detected.
  • both the communication device and the communication device 152 can be implemented using a Bluetooth communicator, and the corresponding battery information is ultimately transmitted to the control unit through Bluetooth.
  • Device 142 can be implemented using a Bluetooth communicator, and the corresponding battery information is ultimately transmitted to the control unit through Bluetooth.
  • battery information In addition to fault information that can be used to analyze whether thermal runaway occurs, battery information also carries location information of each battery.
  • the fault information and location information of each battery correspond one to one.
  • fault information and location information are sent to the control device 142 simultaneously.
  • the control device 142 analyzes the fault information in the obtained battery information and determines that there is a thermal runaway battery, it only needs to read the location information carried in the battery information of the thermal runaway battery to complete the thermal runaway battery. Positioning operation to obtain the location information of the thermal runaway battery.
  • the fault information and the location information may also be sent separately.
  • the battery information sent by the battery to the control device 142 through its own communication device includes fault information. If it does not include location information, only when the control device 142 analyzes that there is a thermal runaway battery based on the fault information, will it send a request to the thermal runaway battery again. The position information is sent to the control device 142 through the communication device of the thermal runaway battery.
  • control device 142 can receive the battery information of all batteries at the same time through the communication device 152 for analysis, and quickly obtain whether there are thermally runaway batteries in all the batteries stored in the battery compartment, thereby achieving accurate and accurate detection of thermally runaway batteries. It is fast and has high thermal runaway detection efficiency, which can effectively improve the efficiency of battery failure processing.
  • the battery failure processing system also includes a transfer device 144.
  • the transfer device 144 is communicatively connected to the control device 142.
  • the transfer device 144 is used to transfer the thermally runaway battery under the control of the control device 142. Remove the failed battery from the battery compartment and transfer the failed battery to the failure handling device 146 .
  • the transfer device 144 refers to a mechanical device with certain carrying capacity and grasping capacity, which is communicatively connected with the control device 142 .
  • the control device 142 can finally control the operation of the transfer device 144 according to the battery information, so that the transfer device 144 moves to the position of the thermal runaway battery and removes the thermal runaway battery from the battery compartment. Avoid storing them in the battery compartment. Thermal runaway will continue, seriously affecting the storage of other batteries in the battery compartment that have not experienced thermal runaway.
  • This solution realizes the removal and transfer operations of the thermal runaway battery by setting up a dedicated transfer device 144, which can achieve accurate and stable transfer of the thermal runaway battery and has strong transfer reliability.
  • the battery status detector 162 is provided in the failure processing device 146 .
  • the thermal runaway battery is directly transferred to the failure processing device 144 for failure analysis, which facilitates timely failure processing when a failure is detected, and can effectively reduce the effects of thermal runaway batteries. safety hazards.
  • the battery status detector 162 does not run in real time. In order to ensure the accuracy of status detection, the status detection can be combined with whether there is a thermal runaway battery.
  • the battery status detector 162 is communicatively connected to the control device. Only when the control device 142 analyzes the existence of a thermal runaway battery based on the received battery information will it send an operation message to the battery status detector 162. The instruction controls the battery status detector 162 to start detecting the status of the thermal runaway battery.
  • the failure treatment device 146 can be configured as a fire water tank, which is used for immersing and scrapping the thermally runaway battery.
  • the control device 142 when the control device 142 obtains the verification result that the failure verification is passed, it will control the transfer device 144 to grab the thermal runaway battery, transfer the thermal runaway battery from the entrance of the fire water tank to the fire water tank, and use the fire water tank to The water in the battery soaks the thermal runaway battery, thereby scrapping the thermal runaway battery and avoiding safety hazards caused by thermal runaway.
  • the solution of this embodiment uses a fire-fighting water tank to handle the failure and scrapping of failed batteries, which has the advantages of low cost and high scrapping efficiency.
  • the failure treatment device 146 is configured as a sand burying device, and the sand burying device is used to bury and scrap the thermal runaway battery.
  • the control device 142 when the control device 142 obtains the verification result that the failure verification is passed, it will control the transfer device 144 to grab the thermal runaway battery, and transfer the thermal runaway battery from the entrance of the sand burial device to the sand burial device, using The sand burial device transports sand to the thermal runaway battery for landfill, scrapping the thermal runaway battery and avoiding safety hazards caused by thermal runaway.
  • the solution of this embodiment adopts the method of burying sand to dispose of battery failure and scrapping. Compared with fire water tanks, it can effectively avoid the pollution and waste of water resources.
  • the transfer device 144 may be a palletizer.
  • a palletizer is a device that automatically stacks bags, cartons or other materials delivered by a conveyor into stacks according to a set working method, and transports the stacked materials.
  • the transport function of the palletizer is used to take out the thermally runaway battery from the battery compartment and transfer it to the failure processing device 146 for failure analysis.
  • the transfer device 144 can also be an RGV, etc., as long as it can remove the thermally runaway battery at a specific location from the battery compartment and transfer it to the failure processing device 146 .
  • Removing thermal runaway batteries through a palletizer or rail-guided vehicle has the advantages of high intelligence and efficiency, and the process does not require human participation. It can also alleviate the safety hazards caused by thermal runaway batteries to a certain extent. .
  • the specific type of the battery status detector 162 is not unique, as long as the detected parameters can be used to verify whether the battery is truly unable to operate normally due to thermal runaway. Since thermal runaway of the battery is often accompanied by battery combustion, the corresponding battery status detector 162 can be set as a detector that detects whether the battery generates smoke due to combustion, that is, a smoke detection device, or detects whether the surrounding area of the battery is due to smoke. Detectors of the type where light intensity changes due to combustion, etc.
  • the electronic device includes a processor, memory, communication interface, display screen and input device connected through a system bus.
  • the processor of the electronic device is used to provide computing and control capabilities.
  • the memory of the electronic device includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores operating systems and computer programs.
  • This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media.
  • the communication interface of the electronic device is used for wired or wireless communication with external terminals.
  • the wireless mode can be through Bluetooth, WIFI (wireless fidelity, wireless network communication technology), mobile cellular network, NFC (Near Field Communication, near field communication) ) or other technical implementation.
  • the computer program implements a battery failure processing method when executed by the processor.
  • the display screen of the electronic device may be a liquid crystal display or an electronic ink display.
  • the input device of the electronic device may be a touch layer covered on the display screen, or may be a button, trackball or touch pad provided on the housing of the electronic device. , it can also be an external keyboard, trackpad or mouse, etc.
  • FIG. 13 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the electronic equipment to which the solution of the present application is applied.
  • Specific electronic devices can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • An electronic device includes a memory and one or more processors.
  • Computer-readable instructions are stored in the memory. When the computer-readable instructions are executed by the processor, they cause one or more processors to perform the following steps:
  • the processor also performs the following steps when executing the computer readable instructions:
  • the location information of the thermal runaway battery is obtained; the thermal runaway battery is taken out of the battery compartment according to the location information, and the thermal runaway battery is verified for failure through the battery status detection parameters.
  • the processor also performs the following steps when executing the computer readable instructions:
  • the battery information carries thermal runaway fault alarm information, there is a thermal runaway battery.
  • the processor also performs the following steps when executing the computer readable instructions:
  • the battery information carries thermal runaway fault alarm information, analyze whether the battery temperature of the battery corresponding to the thermal runaway fault alarm information is greater than the preset temperature threshold.
  • the processor also performs the following steps when executing the computer readable instructions:
  • the transfer device is controlled according to the position information to take out the thermal runaway battery from the battery compartment.
  • the processor also performs the following steps when executing the computer readable instructions:
  • the thermal runaway battery is transferred from the battery compartment to the failure treatment device based on the location information; the thermal runaway battery is verified for failure through smoke detection parameters.
  • the processor also performs the following steps when executing the computer readable instructions:
  • the thermal runaway battery failure verification is passed.
  • the processor also performs the following steps when executing the computer readable instructions:
  • the processor also performs the following steps when executing the computer readable instructions:
  • control transfer device transfers the thermal runaway battery to the failure processing device for failure processing.
  • the processor also performs the following steps when executing the computer readable instructions:
  • each thermal runaway battery will be taken out from the battery compartment in sequence according to the preset priority relationship.
  • One or more non-volatile storage media storing computer-readable instructions. When executed by one or more processors, the computer-readable instructions cause one or more processors to perform the following steps:
  • the computer readable instructions when executed by the processor, also implement the following steps:
  • the location information of the thermal runaway battery is obtained; the thermal runaway battery is taken out of the battery compartment according to the location information, and the thermal runaway battery is verified for failure through the battery status detection parameters.
  • the computer readable instructions when executed by the processor, also implement the following steps:
  • the battery information carries thermal runaway fault alarm information, there is a thermal runaway battery.
  • the computer readable instructions when executed by the processor, also implement the following steps:
  • the battery information carries thermal runaway fault alarm information, analyze whether the battery temperature of the battery corresponding to the thermal runaway fault alarm information is greater than the preset temperature threshold.
  • the computer readable instructions when executed by the processor, also implement the following steps:
  • the transfer device is controlled according to the position information to take out the thermal runaway battery from the battery compartment.
  • the computer readable instructions when executed by the processor, also implement the following steps:
  • the thermal runaway battery is transferred from the battery compartment to the failure treatment device based on the location information; the thermal runaway battery is verified for failure through smoke detection parameters.
  • the computer readable instructions when executed by the processor, also implement the following steps:
  • the thermal runaway battery failure verification is passed.
  • the computer readable instructions when executed by the processor, also implement the following steps:
  • the computer readable instructions when executed by the processor, also implement the following steps:
  • control transfer device transfers the thermal runaway battery to the failure processing device for failure processing.
  • the computer readable instructions when executed by the processor, also implement the following steps:
  • each thermal runaway battery will be taken out from the battery compartment in sequence according to the preset priority relationship.
  • This application also provides a computer program product, including a computer program that implements the following steps when executed by a processor:
  • the location information of the thermal runaway battery is obtained; the thermal runaway battery is taken out of the battery compartment according to the location information, and the thermal runaway battery is verified for failure through the battery status detection parameters.
  • the battery information carries thermal runaway fault alarm information, there is a thermal runaway battery.
  • the battery information carries thermal runaway fault alarm information, analyze whether the battery temperature of the battery corresponding to the thermal runaway fault alarm information is greater than the preset temperature threshold.
  • the transfer device is controlled according to the position information to take out the thermal runaway battery from the battery compartment.
  • the thermal runaway battery is transferred from the battery compartment to the failure treatment device based on the location information; the thermal runaway battery is verified for failure through smoke detection parameters.
  • the thermal runaway battery failure verification is passed.
  • control transfer device transfers the thermal runaway battery to the failure processing device for failure processing.
  • each thermal runaway battery will be taken out from the battery compartment in sequence according to the preset priority relationship.
  • the above-mentioned electronic equipment, storage media and computer program products obtain the battery information of each battery.
  • the battery status detection parameters are obtained by detecting the status of the thermal runaway battery based on the battery status detector. , conduct further failure verification on thermal runaway batteries. And only when the failure verification is passed, the thermal runaway battery will be further disabled.
  • the battery can effectively avoid thermal runaway due to misdetection, but its performance is still good and can continue to be used, but it will directly fail and be scrapped, thereby alleviating the waste of battery costs.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Abstract

本申请公开了一种电池失效处理方法、装置、系统、电子设备、存储介质和计算机程序产品,获取各个电池的电池信息,在根据电池信息得到各个电池中存在热失控电池时,根据电池状态检测器对热失控电池进行状态检测得到的电池状态检测参数,对热失控电池进行进一步的行失效验证。且在失效验证通过的情况下,才会进一步对热失控电池进行失效处理。通过上述方案,可有效避免电池在误检发生热失控,但其性能仍良好,可继续使用的情况下,直接失效报废的情况发生,从而缓解电池成本的浪费。

Description

电池失效处理方法、装置、系统、电子设备和存储介质 技术领域
本申请涉及电池安全技术领域,特别是涉及一种电池失效处理方法、装置、系统、电子设备、存储介质和计算机程序产品。
背景技术
随着科学技术的发展,以电动汽车为主的电动交通工具在人们日常生活中使用越来越广泛,给人们日常出行带来了极大的便利。电动交通工具靠电池提供动力,由于电池储存的电能限制,一次充电所能行驶的距离有限,因此,为电动交通工具提供充换电功能的换电站应运而生。
换电站中往往存储有大量的电池,电池的存储安全是换电站中保证换电站安全运行的重要指标。传统换电站的电池存储过程中,经常会由于检测到发生热失控而进行报废,导致电池成本浪费。
发明内容
鉴于上述问题,本申请提供一种电池失效处理方法、装置、系统、电子设备、存储介质和计算机程序产品。能够缓解电池存储过程中检测到发生热失控而进行报废,导致电池根本浪费的问题。
第一方面,本申请提供一种电池失效处理方法,包括:
获取电池信息;若根据所述电池信息得到存在热失控电池,则通过电池状态检测参数对所述热失控电池进行失效验证;所述电池状态检测参数通过电池状态检测器对所述热失控电池进行状态检测得到;若失效验证通过,则对所述热失控电池进行失效处理。
本申请实施例的技术方案中,获取各个电池的电池信息,在根据电池信息得到各个电池中存在热失控电池时,根据电池状态检测器对热失控电池进行状态检测得到的电池状态检测参数,对热失控电池进行进一步的行失效验证。且在失效验证通过的情况下,才会进一步对热失控电池进行失效处理。通过上述方案,可有效避免电池在误检发生热失控,但其性能仍良好,可继续使用的情况下,直接失效报废的情况发生,从而缓解电池成本的浪费。
在一些实施例中,所述若根据所述电池信息得到存在热失控电池,则通过电池状态检测参数对所述热失控电池进行失效验证的步骤,包括:若根据所述电池信息得到存在热失控电池,则获取所述热失控电池的位置信息;根据所述位置信息将所述热失控电池从电池仓取出,通过电池状态检测参数对所述热失控电池进行失效验证。通过该方案,在得到电池仓所存储的所有电池中存在热失控的电池时,能够热失控电池进行定位得到位置信息,从而精准、快速将热失控电池从电池仓中取出,之后再进行失效验证,有效避免热失控电池继续存储在电池仓,导致隐患的发生。
在一些实施例中,所述根据所述电池信息得到存在热失控电池,包括:若所述电池信息携带热失控故障报警信息,则存在热失控电池。该方案直接根据电池自检之后反馈的电池信息,得到是否发生热失控的检测结果,热失控的具体检测操作不需要在控制装置上进行,减少控制装置的数据处理量,有效提高电池失效处理效率。
在一些实施例中,所述根据所述电池信息得到存在热失控电池,包括:若所述电池信息携带热失控故障报警信息,则分析所述热失控故障报警信息对应电池的电池温度是否大于预设温度阈值;若所述电池温度大于所述预设温度阈值,则存在热失控电 池。该方案同时根据电池信息是否携带热失控故障报警信息,以及携带热失控故障报警信息对应电池的电池温度是否大于预设温度阈值,来进行热失控电池的确定,能够有效提高检测准确性。
在一些实施例中,所述根据所述位置信息将所述热失控电池从电池仓取出,包括:根据所述位置信息控制转移装置将所述热失控电池从电池仓取出。该方案通过设置专用的转移装置来实现热失控电池的取出、转移操作,能够实现热失控电池的精确、稳定转移,具有较强的转移可靠性。
在一些实施例中,所述电池状态检测参数包括烟雾检测参数,所述电池状态检测器包括烟雾检测装置,所述根据所述位置信息将所述热失控电池从电池仓取出,通过电池状态检测参数对所述热失控电池进行失效验证的步骤,包括:根据所述位置信息将所述热失控电池从电池仓转移至失效处理装置;通过烟雾检测参数对所述热失控电池进行失效验证;所述烟雾检测参数通过设置于所述失效处理装置的烟雾检测装置对所述热失控电池进行烟雾检测得到。该方案通过检测烟雾的形式对热失控电池进行失效验证,烟雾检测装置直接设置在失效处理装置处,热失控电池直接转移到失效处理装置处进行失效分析,便于检测到失效时能够及时进行失效处理,能够有效降低热失控电池带来的安全隐患。
在一些实施例中,所述烟雾检测参数包括烟雾浓度数据,所述通过烟雾检测参数对所述热失控电池进行失效验证,包括:若所述烟雾浓度数据大于预设烟雾浓度阈值,则所述热失控电池失效验证通过。该方案采用烟雾浓度数据比较分析的方式实现热失控电池的失效验证,具有验证精度高的优点。
在一些实施例中,所述烟雾检测参数包括是否存在烟雾的检测结果,所述通过烟雾检测参数对所述热失控电池进行失效验证,包括:若所述检测结果为存在烟雾,则所述热失控电池失效验证通过。该方案直接通过烟雾检测装置的不同输出,得到失效验证是否通过的验证结果,不需要控制装置接收数据进行比对,减少控制装置的处理流程,有效提高电池失效处理效率。
在一些实施例中,所述若失效验证通过,则对所述热失控电池进行失效处理的步骤,包括:若失效验证通过,则控制转移装置将所述热失控电池转移至失效处理装置进行失效处理。该方案中控制装置通过转移装置实现对失效热失控电池的转移,并在失效处理装置处进行失效验证,具有较高的失效处理效率,同时还能在热失控电池验证为失效时,及时进行失效处理,有效降低热失控电池带来的安全隐患。
在一些实施例中,所述根据所述位置信息将所述热失控电池从电池仓取出,包括:若所述位置信息的数量为两个以上,则根据预设优先级关系依次将各所述热失控电池从的电池仓取出。该方案通过预设优先级的设置,能够在出现两个热失控电池的情况下,快速将所有热失控电池取出进行失效验证,从而避免热失控电池对换电站安全造成影响。
第二方面,本申请还提供了一种电池失效处理装置,包括:
电池信息获取模块,用于获取电池信息;
失效验证模块,用于若根据所述电池信息得到存在热失控电池,则通过电池状态检测参数对所述热失控电池进行失效验证;所述电池状态检测参数通过电池状态检测器对所述热失控电池进行状态检测得到;
失效处理模块,用于若失效验证模块的验证结果为失效验证通过,对所述热失控电池进行失效处理。
第三方面,本申请还提供了一种电池失效处理系统,包括:
控制装置、电池状态检测器和失效处理装置,所述电池状态检测器和所述失效处理装置分别与所述控制装置通信连接,所述电池状态检测器设置于所述失效处理装置,所述控制装置用于根据上述的电池失效处理方法对所述热失控电池进行失效处理。
第四方面,本申请还提供了一种电子设备。所述电子设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取电池信息;若根据所述电池信息得到存在热失控电池,则通过电池状态检测参数对所述热失控电池进行失效验证;所述电池状态检测参数通过电池状态检测器对所述热失控电池进行状态检测得到;若失效验证通过,则对所述热失控电池进行失效处理。
第五方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取电池信息;若根据所述电池信息得到存在热失控电池,则通过电池状态检测参数对所述热失控电池进行失效验证;所述电池状态检测参数通过电池状态检测器对所述热失控电池进行状态检测得到;若失效验证通过,则对所述热失控电池进行失效处理。
第六方面,本申请还提供了一种计算机程序产品。所述计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:
获取电池信息;若根据所述电池信息得到存在热失控电池,则通过电池状态检测参数对所述热失控电池进行失效验证;所述电池状态检测参数通过电池状态检测器对所述热失控电池进行状态检测得到;若失效验证通过,则对所述热失控电池进行失效处理。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例中电池失效处理方法的流程示意图;
图2为本申请一些实施例中电池失效处理方法的流程示意图;
图3为本申请一些实施例中电池失效处理方法的流程示意图;
图4为本申请一些实施例中电池失效处理方法的流程示意图;
图5为本申请一些实施例中电池失效处理方法的流程示意图;
图6为本申请一些实施例中电池失效处理方法的流程示意图;
图7为本申请一些实施例中电池失效处理方法的应用场景示意图;
图8本申请一些实施例中电池失效处理装置的框图;
图9为本申请一些实施例中失效验证模块的结构示意图;
图10为本申请一些实施例中电池失效处理系统结构示意图;
图11为本申请一些实施例中电池失效处理系统结构示意图;
图12为本申请一些实施例中电池失效处理系统结构示意图;
图13为本申请一些实施例中电子设备的框图。
具体实施方式中的附图标号如下:
控制装置142,转移装置144,失效处理装置146;
通信装置152;
电池状态检测器162。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,电动汽车的应用越加广泛。为了保证电动汽车具有强有力的续航能力,电动汽车在使用过程中,往往需要对电量用尽或即将用尽的电池进行更换,为电动汽车提供电量充足的电池。基于此,为电动汽车进行充换电的场所(也即换电站)应运而生。换电站在运行过程中,需要将电动汽车换下的低电量电池存放到指定位置(也即电池仓)进行充电,以保证电池的循环使用。电池在存放或者是充电过程中,可能由于电池故障或充电操作不当,发生热失控现象,随着热失控的逐步发生,电池最终会发生自燃而彻底损坏。
本发明人注意到,目前换电站中,对于检测到热失控的电池,往往直接进行失效报废处理,很容易导致某些误检为热失控的电池也被直接失效报废,最终导致电池成本的浪费。
为了缓解误检热失控而直接失效报废,电池成本浪费的问题,发明人研究发现,可对检测为热失控的电池进行进一步的失效验证,在失效验证通过时,将热失控电池失效报废。可以在检测到电池发生热失控后,将电池取出进行进一步的失效验证,在 失效验证时,可结合烟雾检测装置对电池进行是否有烟雾产生的检测。若有烟雾产生,则说明热失控电池发生燃烧,此时即表征该热失控电池已经失效,若没有烟雾产生,则说明热失控电池未发生燃烧,热失控电池可能是误检,该种情况下检测为热失控的电池实质并未发生热失控,仍能继续投入使用。
本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电装置中。对应的,本申请所提供的电池失效处理方法,可以但不限用于车辆、船舶或飞行器等用电装置的换电站中,只要是电池存放过程中有发生热失控可能的场所均可。以下实施例为了方便说明,本申请均以电池失效处理方法应用到换电站为例进行说明。
本申请的技术方案中,热失控指的是电池在存放或者充电过程中,由于自身故障或者是充电操作不当,使得电流和电池温度发生一种积累性的增强作用并逐步损坏电池的现象。热失控电池指的是根据电池信息分析,得到分析结果为发生热失控类型的电池,本申请中的热失控电池并非电池真正发生了热失控,还有可能是由于误检而得到热失控的检测结果。电池信息即为电池自身的BMS(Battery Management System,电池管理系统)对电池进行自检,得到的表征电池运行状态、存储位置等的信息。
控制装置即为用来根据接收的电池信息,分析电池仓中存储的各个电池是否存在热失控电池,并对热失控电池进行进一步失效验证,以及失效验证通过后进行失效处理的终端设备。转移装置指的是在控制装置的控制下,能够将热失控电池从电池仓等位置取出(具体根据电池存放位置不同也会有所区别),以及将判定失效的热失控电池转移到失效处理装置的器件。失效处理装置则为对转移到其内部的热失控电池进行失效报废的器件。
本申请提供的电池失效处理方法,请参阅图1,以该方法应用于换电站的控制装置为例进行说明,包括以下步骤:
步骤102,获取电池信息。
具体地,换电站主要用于电动交通工具(例如电动汽车)进行电池更换,而电动交通工具更换之后的电池则存放在换电站进行充电处理,充满电之后再用于后续电动交通工具的换电。因此,换电站需要存储大量的电池,并对这些电池进行充电,如何保证这些电池的安全存放显得格外重要。
换电站的电池仓中存储的电池均具备自检功能,通过电池自身BMS系统实现对电池物理参数实时监测、电池状态估计、在线诊断与预警、充放电与预充控制、均衡管理和热管理等,从而得到电池自身相关的电池信息。电池自检得到自身相关的电池信息之后,传输至控制装置。
应当指出的是,电池自检得到电池信息,可以通过电池自身通信器件传输至控制装置。在一个实施例中,可以是在换电站的电池仓也设置通信装置,通信装置与控制装置通信连接,同时通信装置还与通信器件通信连接。在电池自检得到电池信息之后,通信器件首先将电池信息传输至通信装置,经由通信装置转发至控制装置。可以理解,通信装置以及通信器件的具体类型均不是唯一的,在一个较为详细的实施例中,通信器件和通信装置均可采用蓝牙通信器实现,对应的电池信息通过蓝牙最终传输至控制装置。
在另一个实施例中,电池BMS系统具备无线通信功能,电池BMS系统与控制装置进行通信,当电池BMS系统通过自检得到电池信息之后,可直接通过无线通信的方式将电池信息发送至控制装置。
步骤104,若根据电池信息得到存在热失控电池,则通过电池状态检测参数对热失控电池进行失效验证。
具体地,电池状态检测参数通过电池状态检测器对热失控电池进行状态检测得到。失效验证指的是对热失控电池进行是否由于热失控而导致无法正常工作的检测。通过失效验证,可将真正发生热失控导致损坏的电池筛选出来。当得到电池信息之后, 控制装置可根据电池信息进一步确定哪些电池发生了热失控。之后在控制装置接收电池状态检测器对这类电池进行状态检测得到的电池状态检测参数,根据电池状态检测参数进一步确认热失控电池是否失效。
可以理解,电池状态检测器对热失控电池的状态检测实现方式并不是唯一的,在一个实施例中,可对每一个电池均设置一电池状态检测器,当某一个电池被认定为热失控电池时,只需控制该热失控电池对应的电池状态检测器开启,对该热失控电池进行状态检测,得到相应的电池状态检测参数,并发送至控制装置以实现失效验证。在另一个实施例中,还可以不是对每一个电池均设置电池状态检测器,例如在某一特定位置设置一个电池状态检测器,当任意一电池被认定为热失控电池时,只需将该热失控电池转移到这一特定位置进行状态检测即可。
可选地,电池状态检测器的类型也并不是唯一的,只要能够通过检测得到的参数进行电池是否真正由于热失控而导致无法正常工作的验证均可。由于电池在真正发生热失控时,往往伴随着电池燃烧,对应的电池状态检测器可以设置为检测电池是否由于燃烧产生烟雾类型的检测器,或者是检测电池周围是否由于燃烧发生光强变化类型的检测器。
应当指出的是,控制装置对热失控电池进行失效验证的验证位置点并不是唯一的,在一个实施例中,可以是在将热失控电池取出进行转移的路径上进行。在另一个实施例中,还可以是将热失控电池转移至指定位置点之后,再进行失效验证,具体采用何种方式,可结合实际需求进行不同选择。
步骤106,若失效验证通过,则对热失控电池进行失效处理。
失效验证通过是指在对热失控电池进行是否由于热失控而导致无法正常工作的检测时,检测到热失控电池由于发生热失控导致损坏,无法正常工作这一结果。失效验证未通过则指在对热失控电池进行是否由于热失控而导致无法正常工作的检测时,检测到热失控电池未因为热失控而损坏,其仍能正常工作这一结果。此时失效验证未通过往往是由于将电池误检为热失控所引发的。失效处理是指对判定由于热失控而导致无法正常工作的热失控电池(也即失效验证通过的热失控电池),进行报废的处理动作。
具体地,失效验证具体通过电池状态检测器对热失控电池进行状态检测后的电池状态检测参数实现,控制装置根据接收的电池状态检测参数的不同,得到热失控电池由于发生热失控导致损坏,无法正常工作,或者未发生损坏两种不同检测结果。在控制装置根据电池状态检测参数分析得到热失控电池已经发生损坏,也即失效验证通过时,将会对该热失控电池进行进一步的失效处理。失效处理具体可以是对热定为失效的电池进行报废处理,具体报废处理包括但不限于浸水处理、埋沙处理,浸水处理也即将失效验证通过的热失控电池用水浸泡进行降温、灭火等,埋沙处理同样能够对失效验证通过的热失控电池进行灭火。具体选择何种方式进行失效处理,结合实际换电站的实际需求进行不同选择。
可以理解,在其它实施例中,还可以是输出提示信息告诉相关工作人员介入,对已经失效的热失控电池进行人工报废处理等。
应当指出的是,控制装置输出提示信息告诉相关工作人员的方式并不是唯一的,在一个实施例中,可以是在换电站设置有声、光等类型的信息提示装置,控制装置与信息提示装置连接,通过输出的提示信息控制信息提示装置运行,最终以声、光信号的形式告知相关工作人员。
在另一个实施例中,还可以是控制装置与终端设备通信连接,当控制装置得到失效验证通过的结果时,向终端设备推送提示信息,以告知相关工作人员。可以理解,终端设备的具体类型并不是唯一的,可以是手机、电脑,还可以是手环等可穿戴设备。
在其它实施例中,当失效验证未通过时,控制装置通过可以通过上述信息提示装 置或者终端设备,输出与失效验证通过时不同的信号,将失效验证未通过这一状态告知工作人员,便于工作人员介入对这一类电池进行处理。失效验证未通过往往是由于电池误检为热失控所引发的,故此时工作人员介入,可通过对电池进行进一步的检测之后,决定将其回收、报废或做其它处理。
上述电池失效处理方法,控制装置获取各个电池的电池信息,在根据电池信息得到各个电池中存在热失控电池时,根据电池状态检测器对热失控电池进行状态检测得到的电池状态检测参数,对热失控电池进行进一步的行失效验证。且在失效验证通过的情况下,才会进一步对热失控电池进行失效处理。通过上述方案,可有效避免电池在误检发生热失控,但其性能仍良好,可继续使用的情况下,直接失效报废的情况发生,从而缓解电池成本的浪费。
应当指出的是,控制装置的具体类型并不是唯一的,在一个实施例中,其可以是对电动汽车等电动交通工具进行充换电的换电站中,实现整个换电流程控制的站控主机。该实施例的方案中,站控主机直接与电池仓中存储的电池进行信息交互,实现电池的电池信息获取,以及根据获取的电池信息实现失效验证、失效处理操作。
在另一个实施例中,控制装置还可以采用两个不同的控制器件实现,其一为站控主机,其二为可编程逻辑控制器(Programmable Logic Controller,PLC)。其中站控主机与电池仓存储的电池进行信息交互,实现电池的电池信息获取,并结合电池信息得到热失控电池的位置信息,之后将热失控电池的位置信息发送至可编程逻辑控制器,后续的热失控电池的失效验证以及失效处理操作,均通过可编程逻辑控制器实现。
进一步地,在一个实施例中,控制装置还可以是直接采用可编程逻辑控制器实现,通过可编程逻辑控制器与电池仓的电池进行信息交互,得到热失控电池的电池信息之后,对进一步结合电池信息对热失控电池进行失效验证以及失效处理等操作。在实际应用场景中,具体采用换电站中的哪一个器件执行上述电池失效处理方法,具体可结合实际换电站需求进行不同的选择。
可选得,在其他实施例中,控制装置还可以包括云平台(云服务器),此时可直接通过云平台直接与电池仓中存储的电池进行信息交互,实现电池的电池信息获取,以及根据获取的电池信息实现失效验证、失效处理操作。相应的,在一些实施例中,控制装置还可以是包括站控主机和云平台,此时站控主机与云平台通信连接;或者是包括PLC和云平台,此时PLC与云平台通信连接;或是包括站控主机、PLC和云平台,此时PLC和云平台分别与站控主机通信连接;只要控制装置中各个器件配合,能够实现上述电池失效处理方法的全部流程均可。
根据本申请的一些实施例,请参阅图2,步骤104包括步骤202和步骤204。
步骤202,若根据电池信息得到存在热失控电池,则获取热失控电池的位置信息。步骤204,根据位置信息将热失控电池从电池仓取出,通过电池状态检测参数对热失控电池进行失效验证。
具体地,以换电站为例,换电站的电池均存储与电池仓中,换电站的电池仓中存储的电池均具备自检功能,通过电池的BMS系统自检得到电池信息之后,可通过BMS系统与控制装置无线通信,最终将电池信息传输至控制装置。或者是BMS系统不具备无线通信功能,BMS系统自检得到电池信息之后,通过电池设置的通信器件进行电池信息的发送,最终传输至控制装置。
电池信息包括故障信息,当控制装置接收电池信息之后,只需根据电池信息携带的故障信息,即可得知电池是否为热失控电池,也即电池热失控直接通过电池自检得到,控制装置只需根据接收的电池信息中携带的故障信息不同,就能确定是否存在热失控电池。
热失控电池的位置信息即为发生热失控的电池,在换电站的电池仓中存储位置的信息。本申请的技术方案,能够实时对存储于电池仓的电池进行监控,当这些电池发 生热失控时,控制装置能够及时获取这一类电池的位置信息。控制装置获取热失控电池的位置信息的方式并不是唯一的,可以是控制装置获取的电池信息中直接携带,也可以是由外部装置或器件对热失控电池进行定位得到后,再将位置信息发送至控制装置。
电池信息除了能够用来进行是否发生热失控分析的故障信息之外,还携带各个电池的位置信息,每一个电池的电池信息中,均包括故障信息和位置信息,为了便于检测到存在热失控电池时,实现对热失控电池的定位,每一个电池的电池信息中携带的故障信息和位置信息一一绑定,在得到某一个电池的故障信息之后,通过其绑定关系可直接确定这一电池的位置信息。在一个实施例中,故障信息和位置信息同时发送至控制装置。当控制装置通过获取的电池信息中的故障信息进行分析,得到存在热失控电池的情况下,对只需读取该热失控电池的电池信息中携带的位置信息,即可完成对热失控电池的定位操作,得到热失控电池的位置信息。
在另一个实施例中,故障信息和位置信息还可以是分别发送。首先电池通过自身通信器件发送至控制装置的电池信息包括故障信息,而不包括位置信息,只有在控制装置根据故障信息分析存在热失控电池时,才会再次向给热失控电池发送请求,通过热失控电池的通信器件或者是BMS系统将位置信息发送至控制装置。
通过上述方案,通过该方案,控制装置在得到电池仓所存储的所有电池中存在热失控的电池时,能够热失控电池进行定位得到位置信息,从而精准、快速将热失控电池从电池仓中取出,之后再进行失效验证,有效避免热失控电池继续存储在电池仓,导致隐患的发生。
根据本申请的一些实施例,根据电池信息得到存在热失控电池,包括:若电池信息携带热失控故障报警信息,则存在热失控电池。
可选地,在一些实施例的技术方案中,电池具备自检功能,能够实时检测器自身运行状态,根据其运行状态不同,输出不同的故障信息,自身通信器件(具体可为蓝牙)与电池仓处的通信装置(具体为蓝牙)通信,将故障信息等电池信息发送至电池仓处的蓝牙装置,最终由电池仓处的蓝牙装置发送至控制装置。
控制装置通过对接收的电池信息中的故障信息进行分析,即可直观得到该电池信息对应的电池是否发生热失控。在电池发生热失控时,所接收的该电池的电池信息中故障信息为热失控故障报警信息,若控制装置接收的电池信息中,存在热失控故障报警信息,即表征至少一个电池发生了热失控,根据接收的热失控故障报警信息的数量,可以确定发生热失控的电池的数量。
本实施例的方案,直接根据电池自检之后反馈的电池信息,得到是否发生热失控的检测结果,热失控的具体检测操作不需要在控制装置上进行,减少控制装置的数据处理量,有效提高电池失效处理效率。
可以理解,电池信息的种类并不是唯一的,在一个实施例中,电池信息除了表征电池运行状态的故障信息之外,还包括电池电压、电池温度以及电池荷电状态(State of Charge,SOC)。也即控制装置除了接收故障信息进行热失控电池的分析之外,还会接收电池电压、电池温度以及电池荷电状态进行存储、记录,便于工作人员后续查询。
应当指出的是,除了上述根据电池信息是否携带热失控故障报警信息的方式进行是否存在热失控电池的分析之外,控制装置还可根据接收的电池电流、电池电压以及电池温度等参数,分析对应电池是否发生热失控。
根据本申请的一些实施例,根据电池信息得到存在热失控电池,包括:若电池信息携带热失控故障报警信息,则分析热失控故障报警信息对应电池的电池温度是否大于预设温度阈值。
可选地,若电池温度大于预设温度阈值,则存在热失控电池。在一些实施例的方案中,在上述根据故障信息进行热失控电池分析的基础上,控制装置所接收的电池信 息中还包括电池温度,此时还需结合电池温度进行热失控电池的位置分析操作。在控制装置根据接收的电池信息分析得到存在携带热失控故障报警信息的电池之后,定位到热失控故障报警信息所对应的电池。之后控制装置再将这类电池的电池温度与预设温度阈值进行比较分析,只有电池信息中携带热失控故障报警信息,且电池温度大于预设温度阈值的电池,才会认定为热失控电池。最终,控制装置对所认定的热失控该电池进行定位得到热失控电池的位置信息,具体定位如上实施例所示,不再赘述。
该实施例的方案,同时根据电池信息是否携带热失控故障报警信息,以及携带热失控故障报警信息对应电池的电池温度是否大于预设温度阈值,来进行热失控电池的确定,能够有效提高检测准确性。
根据本申请的一些实施例,根据位置信息将热失控电池从电池仓取出,包括:根据位置信息控制转移装置将热失控电池从电池仓取出。
具体地,控制装置根据位置信息将热失控电池取出的方式并不是唯一的,在该实施例的技术方案中,控制装置通过控制转移装置运行,利用转移装置来实现热失控电池的取出操作。转移装置指的是具备一定运载能力和抓取能力的机械装置,其与控制装置通信连接。当控制装置获取到热失控电池的位置信息之后,能够根据该位置信息控制转移装置运行,使得转移装置运动至热失控电池位置处,将热失控电池从电池仓中取出。
本实施例的方案,通过设置专用的转移装置来实现热失控电池的取出、转移操作,能够实现热失控电池的精确、稳定转移,具有较强的转移可靠性。
应当指出的是,转移装置的具体类型并不是唯一的,在一个实施例中,转移装置可以是码垛机(Palletizer)。码垛机是一种对输送机输送来的料袋、纸箱或是其它材料,按照设定的工作方式自动堆叠成垛,并将成垛的物料进行输送的设备。在该实施例的技术方案中,利用码垛机的输送功能,即可将热失控电池从电池仓中取出,传输至某一特定位置进行失效分析。在其它实施例中,转移装置还可以是RGV(Rail Guided Vehicle,有轨制导车辆)等,只要能够实现将发生热失控的电池从电池仓取出,并转移至特定位置处进行失效分析均可。进一步地,在一个实施例中,转移装置还可以为模仿人手臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的机械手,其同样可在控制装置的作用下,将发生热失控的电池从电池仓取出,并转移至特定位置处进行失效分析。
根据本申请的一些实施例,电池状态检测参数包括烟雾检测参数,电池状态检测器包括烟雾检测装置,请参阅图3,步骤204包括步骤302和步骤304。
步骤302,根据位置信息将热失控电池从电池仓转移至失效处理装置。步骤304,通过烟雾检测参数对热失控电池进行失效验证。
具体地,烟雾检测参数通过设置于失效处理装置的烟雾检测装置对热失控电池进行烟雾检测得到。失效处理装置即为对失效电池进行处理的装置,具体处理可包括对电池进行报废等。热失控电池随着热失控程度的增加,电池温度会持续上升,最终会导致电池燃烧,而电池燃烧则会产生烟雾。因此,在该实施例的技术方案中,通过热失控电池的处的烟雾检测参数进行失效验证。
在该实施例的技术方案中,通过检测烟雾的形式对热失控电池进行失效验证,将热失控电池的电池失效验证与电池燃烧结合起来,具有失效验证准确性高的优点。同时,烟雾检测装置直接设置在失效处理装置处,热失控电池直接转移到失效处理装置处进行失效分析,便于检测到失效时能够及时进行失效处理,能够有效降低热失控电池带来的安全隐患。
烟雾检测装置即为用来检测热失控电池周围是否有烟雾变化的器件。在一个实施例中,烟雾检测装置可以对热失控电池周围进行烟雾参数检测后,将烟雾检测参数发送至控制装置(站控主机和/或云平台和/或PLC),经由控制装置分析判断实现失效验 证,也即烟雾检测装置仅进行烟雾检测参数采集,具体失效验证由控制装置实现。另一个实施例中,烟雾检测装置还可以通过对热失控电池进行检测后,对烟雾检测参数进行分析,得到失效验证结果,再将失效验证结果发送至控制装置,也即失效验证的具体操作由烟雾检测装置实现。
应当指出的是,烟雾检测装置的具体类型并不是唯一的,只要是能够实现热失控电池的烟雾变化检测的器件均可。例如,在一个较为详细的实施例中,烟雾检测装置可以是烟雾传感器、视觉检测器或者光学检测器中的任意一种。
可以理解,烟雾检测装置并非实时运行的,为了保证烟雾检测的准确性,可将烟雾检测与是否存在热失控电池相结合。在该实施例的方案中,烟雾检测装置与控制装置通信连接,在控制装置根据接收的电池信息分析存在热失控电池的情况下,才会向烟雾检测装置下发运行指令,控制烟雾检测装置开启对热失控电池进行烟雾检测。
根据本申请的一些实施例,请参阅图4,烟雾检测参数为烟雾浓度数据,步骤304包括步骤402。
步骤402,若烟雾浓度数据大于预设烟雾浓度阈值,则热失控电池失效验证通过。
可选地,在一些实施例的方案中,烟雾检测装置具备详细烟雾浓度参数的检测功能,当控制装置控制转移装置将热失控电池转移至失效处理装置之后,烟雾检测装置将会对热失控电池进行烟雾检测,将检测得到的烟雾浓度数据发送至控制装置,控制装置根据接收的烟雾浓度数据与预设烟雾浓度阈值进行比较分析,在烟雾浓度数据大于预设烟雾浓度阈值时,认为热失控电池失效,也即失效验证通过。相反的,当烟雾浓度数据小于或等于预设烟雾浓度阈值时,认为热失控电池并未失效,也即失效验证未通过。
本实施例的方案,采用烟雾浓度数据比较分析的方式实现热失控电池的失效验证,具有验证精度高的优点。
可以理解,预设烟雾浓度阈值的大小并不是唯一的,在一个较为详细的实施例中,可将预设烟雾浓度阈值设置为0。当烟雾浓度数据大于0时,认为失效验证通过,而当烟雾浓度数据等于0时,认为失效验证未通过。
根据本申请的一些实施例,请参阅图5,烟雾检测参数包括是否存在烟雾的检测结果,步骤304包括步骤502。
步骤502,若检测结果为存在烟雾,则热失控电池失效验证通过。
可选地,在一些实施例的方案,同样以检测热失控电池的烟雾的方式进行失效验证,所不同的是,本实施例所采用的烟雾检测装置并非简单的采集热失控电池的烟雾浓度数据,而是对热失控电池自身是否产生烟雾进行判断,直接向控制装置发送是否检测到烟雾的检测结果,以不同的结果来表征失效验证结果。当烟雾检测装置检测到热失控电池周围存在烟雾的检测结果,向控制装置发送存在烟雾的检测结果时,即表征控制装置接收到失效验证通过的信息,此时控制装置只需触发将热失控电池转移到失效处理装置进行失效处理的操作即可。而当烟雾检测装置向控制装置输出不存在烟雾的检测结果,即表征此时控制装置接收到失效验证未通过的信息。
该实施例的方案,直接通过烟雾检测装置的不同输出,得到失效验证是否通过的验证结果,不需要控制装置接收数据进行比对,减少控制装置的处理流程,有效提高电池失效处理效率。
根据本申请的一些实施例,请参阅图6,步骤106包括步骤602。
步骤602,若失效验证通过,则控制转移装置将热失控电池转移至失效处理装置进行失效处理。
具体地,在该实施例的技术方案中,同时设置有转移装置和失效处理装置,通过转移装置能够对判定为失效的热失控电池进行转移,使其进入失效处理装置进行失效处理,最终将失效的热失控电池报废。
本实施例的方案,控制装置通过转移装置实现对失效热失控电池的转移,并在失效处理装置处进行失效验证,具有较高的失效处理效率,同时还能在热失控电池验证为失效时,及时进行失效处理,有效降低热失控电池带来的安全隐患。
可以理解,根据失效报废处理的实现方式不同,失效处理装置的具体形式也会有所区别。例如,在一个实施例中,可将失效处理装置设置为消防水箱,该消防水箱用于对热失控电池进行浸水报废处理。该实施例的方案中,当控制装置得到失效验证通过的验证结果时,将会控制转移装置抓取热失控电池,从消防水箱的入口处将热失控电池转移到消防水箱,利用消防水箱中的水对热失控电池进行浸泡,从而将热失控电池报废,避免热失控带来安全隐患。
在另一个实施例中,失效处理装置设置为埋沙装置,埋沙装置用于对热失控电池进行埋沙报废处理。该实施例的方案中,当控制装置得到失效验证通过的验证结果时,将会控制转移装置抓取热失控电池,从埋沙装置的入口处将热失控电池转移到埋沙装置,利用埋沙装置向热失控电池输送沙子进行填埋的方式,将热失控电池报废,避免热失控带来安全隐患。
根据本申请的一些实施例,根据位置信息将热失控电池从电池仓取出,包括:若位置信息的数量为两个以上,则根据预设优先级关系依次将各热失控电池从电池仓取出。
具体地,换电站中存放的电池数量往往有多个,在对这些电池进行充电的过程中,可能会出现热失控电池的数量并不唯一的情况,此时为了保证换电站的安全运行,需要对所有热失控电池进行失效验证。在该过程中,控制装置根据预设优先级关系,确定同时发生热失控的所有热失控电池的失效验证顺序,之后依次将各个热失控电池取出进行失效验证即可。
上述实施例的方案,通过预设优先级的设置,能够在出现两个热失控电池的情况下,快速将所有热失控电池取出进行失效验证,从而避免热失控电池对换电站安全造成影响。
可以理解,预设优先级关系的建立方式并不是唯一的,根据本申请的一些实施例,预设优先级根据电池与失效处理装置的距离、电池仓编号和电池型号中的任意一种建立。具体地,当预设优先级根据电池与失效处理装置的距离建立时,在实际失效处理过程中,可优先将距离失效处理装置较近的热失控电池取出进行失效验证。而当根据电池仓编号建立预设优先级时,在实际失效处理过程中,可优先将编号较大或者较低的电池仓存储的热失控电池取出进行失效验证。而根据电池型号建立优先级,则可将电池容量较大类型的热失控电池优先取出进行失效验证。
为了便于理解本申请的技术方案,下面结合最详细的实施例对本申请的技术方案进行解释说明。请结合参阅图7,该实施例的技术方案中,电池S102均存放于换电站的电池仓S10,各个电池S102均设置有蓝牙装置作为通信器件,在换电站运行过程中,各个电池S102均能通过自检,利用自身的蓝牙通信器件将自检得到的电池信息发送至设置于电池仓S10的蓝牙装置,最终由蓝牙装置将携带故障信息、位置信息的电池信息上报至站控主机1422,站控主机1422通过对故障信息分析得到热失控电池,同时定位得到该热失控电池对应的位置信息。
之后站控主机1422将位置信息发送给可编程逻辑控制器1424,可编程逻辑控制器1424根据位置信息以及预存的失效处理装置146(具体为消防水箱)的位置信息(也可以由站控主机1422下发),控制转移装置144(具体为码垛机)运行,将电池仓S10中热失控的电池转移到失效处理装置146处。然后可编程逻辑控制器1424触发设置于失效处理装置146的烟雾检测装置开启运行,检测此时放置在失效处理装置146的热失控电池是否有烟雾,若有烟雾,则向可编程逻辑控制器1424反馈存在烟雾的检测结果。当可编程逻辑控制器1424接收到存在烟雾的检测结果时,热失控电池的失效验证 通过,此时可编程逻辑控制器1424进一步控制转移装置144动作,将热失控电池投入失效处理装置146中进行失效报废处理。而当可编程逻辑控制器1424接收到不存在烟雾的检测结果时,则只需输出提示信息告知工作人员介入进行处理。
应该理解的是,虽然图1-6的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-6中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
如图8所示,本申请提供了一种电池失效处理装置,包括:电池信息获取模块110、失效验证模块112和失效处理模块114,其中:
电池信息获取模块110用于获取电池信息;失效验证模块112用于若根据电池信息得到存在热失控电池,则通过电池状态检测参数对热失控电池进行失效验证;失效处理模块114用于若失效验证模块112的验证结果为失效验证通过,则对热失控电池进行失效处理。
根据本申请的一些实施例,请参阅图9,失效验证模块112包括定位单元1104和验证单元1106。
定位单元1104用于若根据电池信息得到存在热失控电池,则获取热失控电池的位置信息。验证单元1106用于根据位置信息将热失控电池从电池仓取出,通过电池状态检测参数对热失控电池进行失效验证。
根据本申请的一些实施例,定位单元1104还用于若电池信息携带热失控故障报警信息,则存在热失控电池。
根据本申请的一些实施例,定位单元1104还用于若电池信息携带热失控故障报警信息,则分析热失控故障报警信息对应电池的电池温度是否大于预设温度阈值;若电池温度大于预设温度阈值,则存在热失控电池。
根据本申请的一些实施例,验证单元1106还用于根据位置信息控制转移装置将热失控电池从电池仓取出。
根据本申请的一些实施例,电池状态检测参数包括烟雾检测参数,电池状态检测器包括烟雾检测装置,验证单元1106还用于根据位置信息将热失控电池从电池仓转移至失效处理装置;通过烟雾检测参数对热失控电池进行失效验证。
根据本申请的一些实施例,验证单元1106还用于若烟雾浓度数据大于预设烟雾浓度阈值,则热失控电池失效验证通过。
根据本申请的一些实施例,验证单元1106还用于若检测结果为存在烟雾,则热失控电池失效验证通过。
根据本申请的一些实施例,失效处理模块114还用于:若失效验证通过,则控制转移装置将热失控电池转移至失效处理装置进行失效处理。
根据本申请的一些实施例,验证单元1106还用于若位置信息的数量为两个以上,则根据预设优先级关系依次将各热失控电池从电池仓取出。
上述电池失效处理装置,获取各个电池的电池信息,在根据电池信息得到各个电池中存在热失控电池时,根据电池状态检测器对热失控电池进行状态检测得到的电池状态检测参数,对热失控电池进行进一步的行失效验证。且在失效验证通过的情况下,才会进一步对热失控电池进行失效处理。通过上述方案,可有效避免电池在误检发生热失控,但其性能仍良好,可继续使用的情况下,直接失效报废的情况发生,从而缓解电池成本的浪费。
关于电池失效处理装置的具体限定可以参见上文中对于电池失效处理方法的限 定,在此不再赘述。上述电池失效处理装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
请参阅图10,本申请还提供一种电池失效处理系统,包括控制装置142、电池状态检测器162和失效处理装置146,电池状态检测器162和失效处理装置146分别与控制装置142通信连接,控制装置142用于根据上述电池失效处理方法对热失控电池进行失效处理。
具体地,换电站主要用于电动交通工具(例如电动汽车)进行电池更换,而电动交通工具更换之后的电池则存放在换电站进行充电处理,充满电之后再用于后续电动交通工具的换电。因此,换电站需要存储大量的电池,并对这些电池进行充电,如何保证这些电池的安全存放显得格外重要。
换电站的电池仓中存储的电池均具备自检功能,通过电池自身BMS系统实现对电池物理参数实时监测、电池状态估计、在线诊断与预警、充放电与预充控制、均衡管理和热管理等,从而得到电池自身相关的电池信息。电池自检之后得到自身相关的电池信息之后,传输至控制装置142。
失效验证指的是对热失控电池进行是否由于热失控而导致无法正常工作的检测。通过失效验证,可将真正发生热失控导致损坏的电池筛选出来。当得到电池信息之后,控制装置142可根据电池信息进一步确定哪些电池发生了热失控。之后在控制装置142接收电池状态检测器162对这类电池进行状态检测得到的电池状态检测参数,根据电池状态检测参数进一步确认热失控电池是否失效。
失效验证具体通过电池状态检测器162对热失控电池进行状态检测后的电池状态检测参数实现,控制装置142根据接收的电池状态检测参数的不同,得到热失控电池由于发生热失控导致损坏,无法正常工作,或者未发生损坏两种不同检测结果。在控制装置142根据电池状态检测参数分析得到热失控电池已经发生损坏,也即失效验证通过时,将会对该热失控电池进行进一步的失效处理。失效处理具体可以是对热定为失效的电池进行报废处理,具体报废处理包括但不限于浸水处理、埋沙处理,浸水处理也即将失效验证通过的热失控电池用水浸泡进行降温、灭火等,埋沙处理同样能够对失效验证通过的热失控电池进行灭火。具体选择何种方式进行失效处理,结合实际换电站的失效处理装置146不同而会有所区别。
电池状态检测器162的设置位置以及数量并不是唯一的,在一个实施例中,可以是在每一电池仓均设置一个电池状态检测器162,此时对热失控电池的状态检测在电池仓处实现。在另一个实施例中,还可以是仅在失效处理装置146处设置一个电池状态检测器162,此时需要将热失控电池转移到失效处理装置146再进行状态检测。
上述电池失效处理系统,控制装置142获取各个电池的电池信息,在根据电池信息得到各个电池中存在热失控电池时,根据电池状态检测器162对热失控电池进行状态检测得到的电池状态检测参数,对热失控电池进行进一步的行失效验证。且在失效验证通过的情况下,才会进一步对热失控电池进行失效处理。通过上述方案,可有效避免电池在误检发生热失控,但其性能仍良好,可继续使用的情况下,直接失效报废的情况发生,从而缓解电池成本的浪费。
请参阅图11,根据本申请的一些实施例,电池失效处理系统还包括通信装置152,通信装置152设置于电池仓,通信装置152和控制装置142通信连接,通信装置152用于获取电池仓存储电池的电池信息,并将电池信息发送至控制装置142。
具体地,换电站的电池仓中存储的电池均具备自检功能,同时其还设置有通信器件,电池自检之后得到自身相关的电池信息,该电池信息通过通信器件发送,最终传输至控制装置142。
应当指出的是,电池自检得到电池信息,通过自身通信器件将电池信息传输至控制装置142的方式并不是唯一的。在一个实施例中,可以是在换电站的电池仓也设置通信装置152,通信装置152与控制装置142通信连接。在电池自检得到电池信息之后,通信器件首先将电池信息传输至通信装置152,经由通信装置152转发至控制装置142。控制装置142在得到电池信息之后,结合电池信息进行分析,即可直接得到各个电池的故障状态,当某一个电池的故障状态为热失控时,能够被快速检测得到。可以理解,通信装置152以及通信器件的具体类型均不是唯一的,在一个较为详细的实施例中,通信器件和通信装置152均可采用蓝牙通信器实现,对应的电池信息通过蓝牙最终传输至控制装置142。
电池信息除了能够用来进行是否发生热失控分析的故障信息之外,还携带各个电池的位置信息,每一个电池的故障信息和位置信息一一对应。在一个实施例中,故障信息和位置信息同时发送至控制装置142。当控制装置142通过获取的电池信息中的故障信息进行分析,得到存在热失控电池的情况下,对只需读取该热失控电池的电池信息中携带的位置信息,即可完成对热失控电池的定位操作,得到热失控电池的位置信息。
在另一个实施例中,故障信息和位置信息还可以是分别发送。首先电池通过自身通信器件发送至控制装置142的电池信息包括故障信息,当不包括位置信息,只有在控制装置142根据故障信息分析存在热失控电池时,才会再次向给热失控电池发送请求,通过热失控电池的通信器件将位置信息发送至控制装置142。
通过本实施例的方案,通过通信装置152控制装置142可同时接收所有电池的电池信息进行分析,快速得到电池仓所存储的所有电池中是否存在热失控的电池,实现对热失控电池的精准、快速,具有较高的热失控检测效率,能够有效提高电池失效处理效率。
请参阅图12,根据本申请的一些实施例,电池失效处理系统还包括转移装置144,转移装置144和控制装置142通信连接,转移装置144用于在控制装置142的控制下,将热失控电池从电池仓取出,以及将失效电池转移到失效处理装置146。
具体地,转移装置144指的是具备一定运载能力和抓取能力的机械装置,其与控制装置142通信连接。当控制装置142获取到热失控电池的电池信息之后,能够根据该电池信息最终控制转移装置144运行,使得转移装置144运动至热失控电池位置处,将热失控电池从电池仓中取出。避免其在电池仓中存放,热失控会持续进行,严重影响电池仓中其它未发生热失控的电池的存放。
该方案通过设置专用的转移装置144来实现热失控电池的取出、转移操作,能够实现热失控电池的精确、稳定转移,具有较强的转移可靠性。
可选地,在一个较为详细的实施例中,电池状态检测器162设置于失效处理装置146。通过将电池状态检测器162直接设置在失效处理装置144处,热失控电池直接转移到失效处理装置144处进行失效分析,便于检测到失效时能够及时进行失效处理,能够有效降低热失控电池带来的安全隐患。
可以理解,电池状态检测器162并非实时运行的,为了保证状态检测的准确性,可将状态检测与是否存在热失控电池相结合。在该实施例的方案中,电池状态检测器162与控制装置通142信连接,在控制装置142根据接收的电池信息分析存在热失控电池的情况下,才会向电池状态检测器162下发运行指令,控制电池状态检测器162开启对热失控电池进行状态检测。
应当指出的是,根据失效报废处理的实现方式不同,失效处理装置146的具体形式也会有所区别。例如,在一个实施例中,可将失效处理装置146设置为消防水箱,该消防水箱用于对热失控电池进行浸水报废处理。该实施例的方案中,当控制装置142得到失效验证通过的验证结果时,将会控制转移装置144抓取热失控电池,从消防水 箱的入口处将热失控电池转移到消防水箱,利用消防水箱中的水对热失控电池进行浸泡,从而将热失控电池报废,避免热失控带来安全隐患。本实施例的方案,采用消防水箱进行失效电池的失效报废处理,具有成本低和报废效率高的优点。
在另一个实施例中,失效处理装置146设置为埋沙装置,埋沙装置用于对热失控电池进行埋沙报废处理。该实施例的方案中,当控制装置142得到失效验证通过的验证结果时,将会控制转移装置144抓取热失控电池,从埋沙装置的入口处将热失控电池转移到埋沙装置,利用埋沙装置向热失控电池输送沙子进行填埋的方式,将热失控电池报废,避免热失控带来安全隐患。本实施例的方案,采用埋沙的方式进行电池失效报废处理,相对消防水箱,可有效避免水资源的污染和浪费。
应当指出的是,转移装置144的具体类型并不是唯一的,在一个实施例中,转移装置144可以是码垛机。码垛机是一种对输送机输送来的料袋、纸箱或是其它材料,按照设定的工作方式自动堆叠成垛,并将成垛的物料进行输送的设备。在该实施例的技术方案中,利用码垛机的输送功能,即可将热失控电池从电池仓中取出,传输至失效处理装置146进行失效分析。在其它实施例中,转移装置144还可以是RGV等,只要能够实现将特定位置的热失控电池从电池仓取出,并转移至失效处理装置146处均可。通过码垛机或有轨制导车辆进行热失控电池的取出,既具有智能化程度高和效率高的优点,且该过程不需要人力参与,还能在一定程度上缓解热失控电池带来安全隐患。
可以理解,电池状态检测器162的具体类型并不是唯一的,只要能够通过检测得到的参数进行电池是否真正由于热失控而导致无法正常工作的验证均可。由于电池在真正发生热失控时,往往伴随着电池燃烧,对应的电池状态检测器162可以设置为检测电池是否由于燃烧产生烟雾类型的检测器,也即烟雾检测装置,或者是检测电池周围是否由于燃烧发生光强变化类型的检测器等。
本申请还提供了一种电子设备,该电子设备可以是终端,其内部结构图可以如图13所示。该电子设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该电子设备的处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过蓝牙、WIFI(wireless fidelity,无线网络通信技术)、移动蜂窝网络、NFC(Near Field Communication,近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种电池失效处理方法。该电子设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该电子设备的输入装置可以是显示屏上覆盖的触摸层,也可以是电子设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图13中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的电子设备的限定,具体的电子设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
一种电子设备,包括存储器和一个或多个处理器,存储器中储存有计算机可读指令,计算机可读指令被处理器执行时,使得一个或多个处理器执行以下步骤:
获取电池信息;若根据电池信息得到存在热失控电池,则通过电池状态检测参数对热失控电池进行失效验证;若失效验证通过,则对热失控电池进行失效处理。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:
若根据电池信息得到存在热失控电池,则获取热失控电池的位置信息;根据位置信息将热失控电池从电池仓取出,通过电池状态检测参数对热失控电池进行失效验证。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:
若电池信息携带热失控故障报警信息,则存在热失控电池。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:
若电池信息携带热失控故障报警信息,则分析热失控故障报警信息对应电池的电池温度是否大于预设温度阈值。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:
根据位置信息控制转移装置将热失控电池从电池仓取出。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:
根据位置信息将热失控电池从电池仓转移至失效处理装置;通过烟雾检测参数对热失控电池进行失效验证。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:
若烟雾浓度数据大于预设烟雾浓度阈值,则热失控电池失效验证通过。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:
若检测结果为存在烟雾,则热失控电池失效验证通过。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:
若失效验证通过,则控制转移装置将热失控电池转移至失效处理装置进行失效处理。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:
若位置信息的数量为两个以上,则根据预设优先级关系依次将各热失控电池从电池仓取出。
一个或多个存储有计算机可读指令的非易失性存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行以下步骤:
获取电池信息;若根据电池信息得到存在热失控电池,则通过电池状态检测参数对热失控电池进行失效验证;若失效验证通过,则对热失控电池进行失效处理。
根据本申请的一些实施例,计算机可读指令被处理器执行时还实现以下步骤:
若根据电池信息得到存在热失控电池,则获取热失控电池的位置信息;根据位置信息将热失控电池从电池仓取出,通过电池状态检测参数对热失控电池进行失效验证。
根据本申请的一些实施例,计算机可读指令被处理器执行时还实现以下步骤:
若电池信息携带热失控故障报警信息,则存在热失控电池。
根据本申请的一些实施例,计算机可读指令被处理器执行时还实现以下步骤:
若电池信息携带热失控故障报警信息,则分析热失控故障报警信息对应电池的电池温度是否大于预设温度阈值。
根据本申请的一些实施例,计算机可读指令被处理器执行时还实现以下步骤:
根据位置信息控制转移装置将热失控电池从电池仓取出。
根据本申请的一些实施例,计算机可读指令被处理器执行时还实现以下步骤:
根据位置信息将热失控电池从电池仓转移至失效处理装置;通过烟雾检测参数对热失控电池进行失效验证。
根据本申请的一些实施例,计算机可读指令被处理器执行时还实现以下步骤:
若烟雾浓度数据大于预设烟雾浓度阈值,则热失控电池失效验证通过。
根据本申请的一些实施例,计算机可读指令被处理器执行时还实现以下步骤:
若检测结果为存在烟雾,则热失控电池失效验证通过。
根据本申请的一些实施例,计算机可读指令被处理器执行时还实现以下步骤:
若失效验证通过,则控制转移装置将热失控电池转移至失效处理装置进行失效处理。
根据本申请的一些实施例,计算机可读指令被处理器执行时还实现以下步骤:
若位置信息的数量为两个以上,则根据预设优先级关系依次将各热失控电池从电 池仓取出。
本申请还提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:
获取电池信息;若根据电池信息得到存在热失控电池,则通过电池状态检测参数对热失控电池进行失效验证;若失效验证通过,则对热失控电池进行失效处理。
根据本申请的一些实施例,计算机程序被处理器执行时还实现以下步骤:
若根据电池信息得到存在热失控电池,则获取热失控电池的位置信息;根据位置信息将热失控电池从电池仓取出,通过电池状态检测参数对热失控电池进行失效验证。
根据本申请的一些实施例,计算机程序被处理器执行时还实现以下步骤:
若电池信息携带热失控故障报警信息,则存在热失控电池。
根据本申请的一些实施例,计算机程序被处理器执行时还实现以下步骤:
若电池信息携带热失控故障报警信息,则分析热失控故障报警信息对应电池的电池温度是否大于预设温度阈值。
根据本申请的一些实施例,计算机程序被处理器执行时还实现以下步骤:
根据位置信息控制转移装置将热失控电池从电池仓取出。
根据本申请的一些实施例,计算机程序被处理器执行时还实现以下步骤:
根据位置信息将热失控电池从电池仓转移至失效处理装置;通过烟雾检测参数对热失控电池进行失效验证。
根据本申请的一些实施例,计算机程序被处理器执行时还实现以下步骤:
若烟雾浓度数据大于预设烟雾浓度阈值,则热失控电池失效验证通过。
根据本申请的一些实施例,计算机程序被处理器执行时还实现以下步骤:
若检测结果为存在烟雾,则热失控电池失效验证通过。
根据本申请的一些实施例,计算机程序被处理器执行时还实现以下步骤:
若失效验证通过,则控制转移装置将热失控电池转移至失效处理装置进行失效处理。
根据本申请的一些实施例,计算机程序被处理器执行时还实现以下步骤:
若位置信息的数量为两个以上,则根据预设优先级关系依次将各热失控电池从电池仓取出。
上述电子设备、存储介质和计算机程序产品,获取各个电池的电池信息,在根据电池信息得到各个电池中存在热失控电池时,根据电池状态检测器对热失控电池进行状态检测得到的电池状态检测参数,对热失控电池进行进一步的行失效验证。且在失效验证通过的情况下,才会进一步对热失控电池进行失效处理。通过上述方案,可有效避免电池在误检发生热失控,但其性能仍良好,可继续使用的情况下,直接失效报废的情况发生,从而缓解电池成本的浪费。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种电池失效处理方法,其特征在于,包括步骤:
    获取电池信息;
    若根据所述电池信息得到存在热失控电池,则通过电池状态检测参数对所述热失控电池进行失效验证;所述电池状态检测参数通过电池状态检测器对所述热失控电池进行状态检测得到;
    若失效验证通过,则对所述热失控电池进行失效处理。
  2. 根据权利要求1所述的电池失效处理方法,其特征在于,所述若根据所述电池信息得到存在热失控电池,则通过电池状态检测参数对所述热失控电池进行失效验证的步骤,包括:
    若根据所述电池信息得到存在热失控电池,则获取所述热失控电池的位置信息;
    根据所述位置信息将所述热失控电池从电池仓取出,通过电池状态检测参数对所述热失控电池进行失效验证。
  3. 根据权利要求1或2所述的电池失效处理方法,其特征在于,所述根据所述电池信息得到存在热失控电池,包括:
    若所述电池信息携带热失控故障报警信息,则存在热失控电池。
  4. 根据权利要求1或2所述的电池失效处理方法,其特征在于,所述根据所述电池信息得到存在热失控电池,包括:
    若所述电池信息携带热失控故障报警信息,则分析所述热失控故障报警信息对应电池的电池温度是否大于预设温度阈值;若所述电池温度大于所述预设温度阈值,则存在热失控电池。
  5. 根据权利要求2所述的电池失效处理方法,其特征在于,所述根据所述位置信息将所述热失控电池从电池仓取出,包括:
    根据所述位置信息控制转移装置将所述热失控电池从电池仓取出。
  6. 根据权利要求2所述的电池失效处理方法,其特征在于,所述电池状态检测参数包括烟雾检测参数,所述电池状态检测器包括烟雾检测装置,所述根据所述位置信息将所述热失控电池从电池仓取出,通过电池状态检测参数对所述热失控电池进行失效验证的步骤,包括:
    根据所述位置信息将所述热失控电池从电池仓转移至失效处理装置;
    通过烟雾检测参数对所述热失控电池进行失效验证;所述烟雾检测参数通过设置于所述失效处理装置的烟雾检测装置对所述热失控电池进行烟雾检测得到。
  7. 根据权利要求6所述的电池失效处理方法,其特征在于,所述烟雾检测参数包括烟雾浓度数据,所述通过烟雾检测参数对所述热失控电池进行失效验证,包括:
    若所述烟雾浓度数据大于预设烟雾浓度阈值,则所述热失控电池失效验证通过。
  8. 根据权利要求6所述的电池失效处理方法,其特征在于,所述烟雾检测参数包括是否存在烟雾的检测结果,所述通过烟雾检测参数对所述热失控电池进行失效验证,包括:
    若所述检测结果为存在烟雾,则所述热失控电池失效验证通过。
  9. 根据权利要求1或2所述的电池失效处理方法,其特征在于,所述若失效验证通过,则对所述热失控电池进行失效处理的步骤,包括:
    若失效验证通过,则控制转移装置将所述热失控电池转移至失效处理装置进行失效处理。
  10. 根据权利要求2所述的电池失效处理方法,其特征在于,所述根据所述位置信息将所述热失控电池从电池仓取出,包括:
    若所述位置信息的数量为两个以上,则根据预设优先级关系依次将各所述热失控电池从的电池仓取出。
  11. 一种电池失效处理装置,其特征在于,包括:
    电池信息获取模块,用于获取电池信息;
    失效验证模块,用于若根据所述电池信息得到存在热失控电池,则通过电池状态检测参数对所述热失控电池进行失效验证;所述电池状态检测参数通过电池状态检测器对所述热失控电池进行状态检测得到;
    失效处理模块,用于若失效验证模块的验证结果为失效验证通过,对所述热失控电池进行失效处理。
  12. 一种电池失效处理系统,其特征在于,包括控制装置、电池状态检测器和失效处理装置,所述电池状态检测器和所述失效处理装置分别与所述控制装置通信连接,所述控制装置用于根据权利要求1-10任意一项所述的电池失效处理方法对所述热失控电池进行失效处理。
  13. 根据权利要求12所述的电池失效处理系统,其特征在于,还包括通信装置,所述通信装置设置于所述电池仓,所述通信装置和所述控制装置通信连接,所述通信装置用于获取电池仓存储电池的电池信息,并将所述电池信息发送至所述控制装置。
  14. 根据权利要求12所述的电池失效处理系统,其特征在于,还包括转移装置,所述转移装置和所述控制装置通信连接,所述转移装置用于在所述控制装置的控制下,将所述热失控电池从电池仓取出,以及将所述热失控电池转移到所述失效处理装置。
  15. 根据权利要求12所述的电池失效处理系统,其特征在于,所述失效处理装置包括消防水箱,所述消防水箱用于对所述热失控电池进行浸水报废处理。
  16. 根据权利要求12所述的电池失效处理系统,其特征在于,所述失效处理装置包括埋沙装置,所述埋沙装置用于对所述热失控电池进行埋沙报废处理。
  17. 根据权利要求12所述的电池失效处理系统,其特征在于,所述转移装置包括码垛机或有轨制导车辆。
  18. 一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至10中任一项所述的电池失效处理方法的步骤。
  19. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至10中任一项所述的电池失效处理方法的步骤。
  20. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1至10中任一项所述的电池失效处理方法的步骤。
PCT/CN2022/082502 2022-03-23 2022-03-23 电池失效处理方法、装置、系统、电子设备和存储介质 WO2023178555A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/082502 WO2023178555A1 (zh) 2022-03-23 2022-03-23 电池失效处理方法、装置、系统、电子设备和存储介质
CN202280028905.2A CN117178454A (zh) 2022-03-23 2022-03-23 电池失效处理方法、装置、系统、电子设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082502 WO2023178555A1 (zh) 2022-03-23 2022-03-23 电池失效处理方法、装置、系统、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023178555A1 true WO2023178555A1 (zh) 2023-09-28

Family

ID=88099653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082502 WO2023178555A1 (zh) 2022-03-23 2022-03-23 电池失效处理方法、装置、系统、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN117178454A (zh)
WO (1) WO2023178555A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117670315B (zh) * 2024-01-31 2024-04-26 天科新能源有限责任公司 一种基于大数据的半固态电池回收管理系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183516A (zh) * 2017-11-23 2018-06-19 蔚来汽车有限公司 用于充换电站电池包的隔离系统、充换电站及隔离方法
CN108248389A (zh) * 2017-12-18 2018-07-06 清华大学 电动车用动力电池组安全防控方法、系统和计算机可读存储介质
CN113452094A (zh) * 2020-03-24 2021-09-28 博众精工科技股份有限公司 充电仓消防隔离方法、充电仓电池包隔离结构
CN114211961A (zh) * 2020-09-18 2022-03-22 长城汽车股份有限公司 动力电池包热失控防护方法及防护系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183516A (zh) * 2017-11-23 2018-06-19 蔚来汽车有限公司 用于充换电站电池包的隔离系统、充换电站及隔离方法
CN108248389A (zh) * 2017-12-18 2018-07-06 清华大学 电动车用动力电池组安全防控方法、系统和计算机可读存储介质
CN113452094A (zh) * 2020-03-24 2021-09-28 博众精工科技股份有限公司 充电仓消防隔离方法、充电仓电池包隔离结构
CN114211961A (zh) * 2020-09-18 2022-03-22 长城汽车股份有限公司 动力电池包热失控防护方法及防护系统

Also Published As

Publication number Publication date
CN117178454A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
WO2019101029A1 (zh) 用于充换电站电池包的隔离系统、充换电站及隔离方法
CN209719310U (zh) 一种bms电池管理系统
WO2021249083A1 (zh) 车辆的电池管理方法和系统、车辆和服务器
CN110635182B (zh) 电池热失控的预警方法和装置、电子设备、存储介质
WO2023178555A1 (zh) 电池失效处理方法、装置、系统、电子设备和存储介质
WO2020098533A1 (zh) 一种电池健康监测方法、装置及电子烟
CN104597400A (zh) 智能蓄电池信息化检测管理方法及系统
CN109591645B (zh) 一种车桩充电管理方法、系统及终端设备
CN107791971A (zh) 汽车电瓶监测方法、计算机装置、计算机可读存储介质
CN111002830B (zh) 一种基于柔性热管的动力电池管理系统及方法
CN113521605A (zh) 一种电池仓储自动灭火装置及系统
CN111939500A (zh) 一种充换电站的火情预警及消防联控系统及其控制方法
CN111932839A (zh) 换电站的应急处理方法以及装置
CN105806785A (zh) 一种便携式激光甲烷检测装置及其检测方法
US20240139571A1 (en) Fire-protection detecting method and device, electronic device and medium
CN107017442B (zh) 动力电池回收过程中的处理方法
CN115799690B (zh) 一种储能设备的运行方法及系统
CN114913659B (zh) 一种电化学储能电站火灾智能预警预控方法及系统
Wang et al. Research on the early warning mechanism for thermal runaway of lithium-ion power batteries in electric vehicles
CN115684976A (zh) 储能电池故障在线诊断定位方法、电子设备及介质
CN115384351A (zh) 基于车云联合控制的电池安全预警方法、系统及存储介质
WO2023028850A1 (zh) 一种动力电池热失控的控制方法、装置及动力电池
CN206526428U (zh) 一种新能源汽车动力电池安全系统
CN114887255A (zh) 一种换电站的消防控制方法、装置及系统
CN207913049U (zh) 一种车用动力电池试验辅助灭火装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932622

Country of ref document: EP

Kind code of ref document: A1