WO2023028850A1 - 一种动力电池热失控的控制方法、装置及动力电池 - Google Patents

一种动力电池热失控的控制方法、装置及动力电池 Download PDF

Info

Publication number
WO2023028850A1
WO2023028850A1 PCT/CN2021/115737 CN2021115737W WO2023028850A1 WO 2023028850 A1 WO2023028850 A1 WO 2023028850A1 CN 2021115737 W CN2021115737 W CN 2021115737W WO 2023028850 A1 WO2023028850 A1 WO 2023028850A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
battery
cell
processor
data
Prior art date
Application number
PCT/CN2021/115737
Other languages
English (en)
French (fr)
Inventor
刘浩东
李琳
张亮
程翔
王勇
艾伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/115737 priority Critical patent/WO2023028850A1/zh
Priority to CN202180097251.4A priority patent/CN117157808A/zh
Publication of WO2023028850A1 publication Critical patent/WO2023028850A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of power batteries, in particular to a method and device for controlling thermal runaway of power batteries.
  • thermal runaway of power batteries account for a large proportion. Therefore, accurate prediction of thermal runaway is very important to ensure the safety of electric vehicles.
  • the main causes of thermal runaway of power batteries are electrical abuse, thermal abuse and mechanical abuse. Under different working conditions, due to micro-short circuit, lithium dendrite growth and other reasons, a large amount of heat will accumulate inside the power battery. If the generation and spread of heat cannot be controlled in time, thermal runaway will occur, which will cause the power battery to catch fire or even explode. .
  • the current technical solutions mainly focus on physical parameters that can reflect the health status of the power battery, such as physical parameters such as voltage, current, battery temperature, and gas generated by the power battery.
  • the health status of the power battery is judged by a single physical parameter or a combination of multiple physical parameters.
  • the assessment of the state of health of the power battery in the prior art cannot accurately warn of the thermal runaway state of the power battery, and the state of health of the power battery cannot judge some real-time faults.
  • the health detection of the power battery can only be accurate to the granularity of the battery pack, and the detection granularity is relatively coarse.
  • the present application provides a power battery thermal runaway control method, device and power battery, which can timely and accurately warn the power battery of thermal runaway and ensure the safe operation of the power battery.
  • the first aspect of the present application provides a method for controlling thermal runaway of a power battery. layer structure. Based on the detection data, the working state of the battery is controlled.
  • the method for controlling thermal runaway of a power battery obtaineds detection data by performing shape detection on the cells in the power battery, so as to obtain the health status of the cells in the power battery through real-time analysis of the detection data, Thermal runaway detection at the single cell level can be achieved.
  • the change of the working state of the battery cell is controlled, and the thermal runaway control for the single cell level is realized, which can enable the battery cell to carry out corresponding safety control at the early stage of the problem, avoiding safety accidents and ensuring the safety of users. safety of life and property.
  • the detection data reflects at least one phase change of solid phase change, liquid phase change or gas phase change in at least one layer of the structure of the battery cell.
  • controlling the working state of the battery cell includes: when the detected data of the battery cell changes, the control battery cell is isolated from other battery cells in the power battery.
  • the change in the detection data means that the change range of the detection data exceeds a preset threshold.
  • the method further includes: when the detection data of the battery cell changes, displaying the position of the battery cell in the power battery.
  • the position of the battery cell whose detection data changes is displayed in the power battery, which can be used to locate the fault.
  • the detection data is obtained through ultrasonic detection of the electric core.
  • a specific method for obtaining detection data is provided, which can conveniently and quickly obtain the detection data of batteries, and the method has low cost and wide application range.
  • the first aspect also includes: acquiring environmental data of the power battery; the environmental data includes at least one of temperature data, atmospheric pressure data, or gas data generated by the power battery in the environment where the power battery is located.
  • One item Correct the detection data according to the environmental data.
  • the detection data of the battery cell can be corrected by the temperature signal in the environment where the power battery is located, the atmospheric pressure signal in the environment where the power battery is located, and the gas signal generated by the power battery, which can reflect the thermal runaway phenomenon more accurately. Improve the accuracy of battery thermal runaway detection, and then improve the accuracy of battery working state control.
  • the processor is coupled with the power battery through the interface circuit, and the thermal runaway control for the single cell in the power battery is realized.
  • the processor is further configured to: after the battery cell is controlled to be isolated from other battery cells in the power battery, maintain the isolation state of the battery cell from other battery cells in the power battery.
  • the ultrasonic sensors are respectively arranged on two opposite surfaces of the electric core.
  • the senor further includes: an environmental sensor, used to acquire environmental data of the power battery; the environmental data includes temperature data in the environment where the power battery is located, atmospheric pressure data, or data generated by the power battery At least one item of the gas data; the processor is used to correct the detection data according to the environmental data.
  • the environment sensor includes: at least one of a temperature sensor, a pressure sensor, or a gas sensor.
  • the second aspect further includes: a display screen, connected to the processor, for displaying the position of the battery cell in the power battery when the detected data of the battery cell changes.
  • an alarm device connected to the processor, configured to execute alarm prompt information when the detection data of the battery cell changes.
  • the third aspect of the present application provides a power battery, including: a battery cell and the power battery thermal runaway control device according to any one of the above second aspects; the power battery thermal runaway control device is used to control the battery cell.
  • a fourth aspect of the present application provides a vehicle, including the power battery provided in the above third aspect.
  • the fifth aspect of the present application provides an energy storage power station, including the power battery provided in the above third aspect.
  • the sixth aspect of the present application provides a computing device, including: a processor, and a memory; the memory stores program instructions on it, and when the program instructions are executed by the processor, the processor executes the power battery according to any one of the above first aspects Methods of controlling thermal runaway.
  • the seventh aspect of the present application provides a computing device, including: a processor, and an interface circuit; wherein, the processor is accessed through the interface circuit, and the processor is configured to call program instructions stored in the memory, and the program instructions when executed make The processor executes the method for controlling thermal runaway of a power battery according to any one of the above-mentioned first aspects.
  • the eighth aspect of the present application provides a computer-readable storage medium on which program instructions are stored.
  • the program instructions When the program instructions are executed by a computer, the computer executes the method for controlling thermal runaway of a power battery according to any one of the above-mentioned first aspects.
  • FIG. 1 is a scenario where the method for controlling thermal runaway of a power battery provided by the embodiment of the present application is applied;
  • FIG. 2 is a flow chart of a method for controlling thermal runaway of a power battery provided in an embodiment of the present application
  • Fig. 3 is the structure of a battery cell in the power battery provided by the embodiment of the present application.
  • Fig. 4 is a flow chart of controlling the change of the working state of the battery provided by the embodiment of the present application.
  • Fig. 5 is a schematic diagram of the connection between the batteries in the battery pack provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a display interface of a central control panel provided in an embodiment of the present application.
  • Fig. 7 is a structural schematic diagram of a power battery thermal runaway control device provided in an embodiment of the present application.
  • Fig. 8 is a structural schematic diagram of a power battery thermal runaway control system provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a computing device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another computing device provided by an embodiment of the present application.
  • Related technology 1 provides a method for detecting the state of health of a battery.
  • the scheme is realized based on Electrochemical Impedance Spectroscopy (EIS).
  • EIS Electrochemical Impedance Spectroscopy
  • the battery is regarded as an electrochemical system, and the equivalent circuit of the electrochemical system is established (the equivalent circuit includes basic components such as resistors, capacitors, and inductors and the connection relationship between the components).
  • the remaining battery percentage SOC
  • SOH Battery health
  • Related technology 2 provides a method for detecting the state of health of a battery.
  • the scheme is realized through a single physical quantity or based on the fusion of multiple physical quantities.
  • the health status of the battery is judged by setting a threshold value for at least one of multiple parameters such as battery voltage, current, gas generated by the reaction between various substances inside the battery, or battery temperature.
  • a gas sensor needs to be installed on the battery.
  • the installation of the gas sensor and the processing of the signal are relatively difficult.
  • the separation of the mixed gas generated during the reaction process between various substances inside the battery and the analysis of the gas concentration are easily affected by the intensity of the internal reaction of the battery and the composition ratio of the battery.
  • the supplier's core secrets are unavailable.
  • gas sensors also have the problem of misjudgment of similar gases, and the problem of "poisoning" when exposed to harsh environments for a long time.
  • the thermal conductivity of the battery is low, resulting in a huge difference in temperature at different locations of the battery. Therefore, it is difficult to measure the health of the entire battery system through the local temperature of the battery.
  • Related Art 3 provides a method for detecting the state of health of a battery. This solution is implemented based on the battery management system, but the current battery management system can only achieve coarse-grained management at the battery pack level, and cannot manage at the cell level. In addition, the existing battery management system cannot provide users with an intuitive and accurate battery failure warning.
  • the method for controlling the thermal runaway of the power battery provided in the embodiment of the present application can be applied to any scene where the thermal runaway of the power battery needs to be predicted and controlled.
  • the real-time and accuracy requirements of the control are high.
  • the application scenario may be a vehicle (such as an electric vehicle, an autonomous vehicle, etc.), and the application scenario may also be an energy storage power station.
  • the shape detection of the battery cell in the power battery is performed in real time to obtain the detection data of the battery cell. According to the detection data, it can be determined whether the thermal runaway state of the battery cell has occurred or is about to occur thermal runaway state, and control the working state of the cell based on the detection data.
  • the battery cell When the battery cell is about to go into a thermal runaway state, at this stage, the battery cell is isolated from other cells in the power battery in time, which can gradually cool the battery cell and prevent the battery cell from developing into a thermal runaway state, thereby effectively Avoid immeasurable safety accidents caused by the thermal runaway state of the battery cell.
  • the power battery thermal runaway control method provided by this application, it can accurately detect the cell particle size, accurately and timely detect the thermal runaway state of the battery cell in the power battery and control it accordingly, and realize single-cell level control. "Detectable, controllable, salvageable".
  • the method for controlling thermal runaway of a power battery can be stored in a local memory, and communicated through a bus. It should be understood that this is only a possible implementation manner, and is not intended as a special limitation on the storage location of the power battery thermal runaway control method in this embodiment.
  • FIG. 1 it is a scenario where the power battery thermal runaway control method provided by the embodiment of the present application is applied.
  • This scenario takes an autonomous vehicle as an example.
  • the ultrasonic sensor 20 arranged on the surface of the battery cell in the vehicle-mounted power battery 10 is used to perform ultrasonic detection on the shape of the battery cell, and the signal detected by the ultrasonic sensor 20 is transmitted to the local 30.
  • the local 30 processes it to obtain the detection data of the cell in the vehicle power battery 10, and controls the change of the working state of the cell based on the detection data.
  • the local 30 may be a local computer or a local processing chip (such as a car-machine chip) or the like.
  • FIG. 2 it is a flowchart of a method for controlling thermal runaway of a power battery provided in an embodiment of the present application.
  • the implementation process of the method mainly includes steps S110-S120, each step will be introduced in sequence below:
  • S110 Perform shape detection on at least one battery cell in the power battery, and acquire detection data of the battery cell.
  • the battery core may be a multi-layer structure.
  • the detection data may also be called topography data.
  • the structure of the cell in the power battery includes a positive electrode current collector layer 310, a positive electrode layer 320, a positive and negative electrode barrier layer 330, a negative electrode layer 340, and a negative electrode current collector layer 350, wherein the positive and negative electrodes
  • the barrier layer 330 may include an electrolyte solution 331 and a separator 332 .
  • a battery cell can be formed by making the above-mentioned layers into a thin sheet by pressing or other means. Then, a basic power battery is formed by arranging a plurality of batteries in a case by winding or stacking.
  • this embodiment refers to it as the shape data of the battery cell, that is, the detection data of the battery cell acquired in step S110.
  • the embodiment of the present application does not limit the type of physical changes and chemical changes that occur in a certain layer or layers in the battery structure, for example, it can be a solid phase change; or it can be a liquid phase change; or it can be a gas phase change ; Alternatively, some phase transitions can also be mixed.
  • an ultrasonic sensor can be used to perform ultrasonic detection on the shape of the electric core to obtain detection signals , by processing the detection signal to obtain the topography data of the cell.
  • the ultrasonic sensor is used to detect the shape of the battery core, which can be applied not only in the laboratory, but also in actual operating conditions.
  • the ultrasonic sensor is cheap and can be widely used in large areas. .
  • X-rays and terahertz-level electromagnetic waves can also be used to detect the shape of the battery core.
  • the temperature data of the environment where the power battery is located obtained by the temperature sensor
  • the atmospheric pressure data of the environment where the power battery is located obtained by the pressure sensor
  • the data obtained by the gas sensor is used to correct the detection data of the cell. To obtain more accurate detection data, thereby improving the accuracy of detection and control of the thermal runaway state of the battery cell.
  • the process may include step S121 and step S122, and each step will be described in detail below in turn:
  • the change in the detection data may refer to comparing the detection data with the data at the factory, and if the difference between the two exceeds a preset range, it means that the detection data has changed. For example, see Table 1 below:
  • the test data corresponding to the time point T0 is compared with the factory data, and the difference is within the preset range (that is, the morphology of the cell is still normal and porous, and the structure of the cell is still distinct). If the detection data does not change or the fluctuation of the change is small, the state of the corresponding battery cell is normal at this time.
  • the detection data corresponding to time point T1-time point T6 differs beyond the preset range (that is, the shape of the battery cell has changed greatly compared with the factory), which means that the detection data has changed, which means that the corresponding thermal runaway is about to occur or has already occurred.
  • the state of the cell corresponding to the detection data i.e.
  • topography data at the time point T1-time point T4 can be regarded as a state of thermal runaway.
  • the cell structure can follow the The reduction of temperature and other parameters gradually recovers (it should be understood that the gradual recovery here does not mean returning to the original state, but is relatively closer to the original state than the current state), which will not cause fire or even explosion.
  • the safe operation of the entire power battery can be ensured by corresponding control, such as controlling the isolation of the battery cell from other battery cells in the power battery.
  • the state of the cell corresponding to the detection data (i.e. topography data) from time point T5 to time point T6 can be regarded as a state where thermal runaway has occurred.
  • the structure of the cell cannot It will automatically recover with changes in temperature and other related parameters, which may cause the battery to catch fire or even explode.
  • the SEI film at the time point T1 is the substance produced when the cell is powered on for the first time.
  • FIG. 5 it is a schematic diagram of the connection between the cells in the battery pack provided by the embodiment of the present application.
  • the battery Cell 1, the switch S1, the battery Cell 2, the switch S2, the battery Cell 3, and the switch S3 are sequentially connected in series to form the first branch, and the battery Cell 4, the switch S4, the battery Cell 5, the switch S5,
  • the cell Cell 6 and the switch S6 are connected in series in sequence to form a second branch, and the first branch and the second branch are connected in parallel.
  • each battery cell is also provided with a thermal runaway detection module for detecting the thermal runaway state of each battery cell.
  • the switch S1 controls the on-off of the battery cell 1
  • the switch S2 controls the on-off of the battery cell 2
  • the switch S3 controls the on-off of the battery cell 3
  • the switch S4 controls the on-off of the battery cell 4
  • the switch S5 controls the battery cell.
  • the opening and closing of the core Cell 5 and the switch S6 controls the opening and closing of the battery cell 6.
  • the above-mentioned device for controlling the isolation of each cell is a switch is only an exemplary description, and is not the only device for controlling the isolation of each cell in this application. It may also be a relay, a transistor, such as an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor (Insulated Gate Bipolar Transistor). Gate Bipolar Transistor, IGBT), etc.
  • a transistor such as an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor (Insulated Gate Bipolar Transistor). Gate Bipolar Transistor, IGBT), etc.
  • the method for controlling thermal runaway of a power battery may further include step S130.
  • S130 When the detection data of the battery cell changes, perform an alarm prompt. It should be understood that the steps S110-S120 are the same as those in the previous embodiment, so they will not be described in detail in this embodiment. Next, step S130 will be described in detail.
  • the user may be prompted to escape, so as to ensure personal safety.
  • the method for controlling thermal runaway of a power battery may further include step S140.
  • S140 When the detected data of the electric cell changes, display the position of the electric cell in the power battery.
  • a display interface of a central control screen is provided as shown in FIG. 6 , each rectangle in the figure represents a battery cell, and the second cell in the second row in the figure indicates that the battery cell is about to generate heat.
  • the out-of-control state can be displayed to the user in the form of a diagram.
  • the device may be implemented by a software system, may also be implemented by a hardware device, and may also be implemented by a combination of a software system and a hardware device.
  • FIG. 7 is only an exemplary structural diagram showing a control device for thermal runaway of a power battery.
  • the control device for thermal runaway of a power battery includes an interface circuit 710 and a processor 720 .
  • the processor 720 is coupled to the cell 760 of the power battery through the interface circuit 710 .
  • the processor 720 is used to: obtain the detection data of at least one battery cell in the power battery through the interface circuit 710, and the battery cell is a multi-layer structure; The working status of the battery.
  • the processor 720 is configured to: when the detected data of the electric cell changes, control the electric cell to be isolated from other electric cells in the power battery.
  • the processor 720 is also configured to maintain the isolation state of the battery cell from other battery cells in the power battery after the battery cell is controlled to be isolated from other battery cells in the power battery.
  • control device for thermal runaway of the power battery further includes a sensor 730, the sensor 730 is arranged on the surface of the cell 760 in the power battery, and the processor 720 communicates with the power battery through the interface circuit 710 Sensor 730 is coupled.
  • the sensor 730 includes an ultrasonic sensor, which is used to obtain the detection data through ultrasonic detection of the battery cell 760 in the power battery.
  • the sensor 730 also includes an environmental sensor (at least one of a temperature sensor, a pressure sensor, or a gas sensor) for acquiring environmental data of the power battery.
  • the temperature sensor is used to obtain temperature data in the environment where the power battery is located.
  • the pressure sensor is used to obtain atmospheric pressure data in the environment where the power battery is located.
  • the gas sensor is used to obtain the gas data generated by the power battery.
  • control device for thermal runaway of the power battery may further include a display screen 740 and an alarm 750 .
  • the display screen 740 is connected with the processor 720, and is used to display the position of the battery cell in the power battery when the detection data of the battery cell changes.
  • the alarm device 750 is connected with the processor 720 and configured to execute alarm prompt information when the detection data of the battery cell changes.
  • the system may be realized by a software system, may also be realized by a hardware device, and may also be realized by a combination of a software system and a hardware device.
  • FIG. 8 is only an exemplary structural diagram showing a control system for thermal runaway of a power battery, and the present application does not limit the division of functional modules in the control system for thermal runaway of a power battery.
  • the power battery thermal runaway control system can be logically divided into multiple modules, each module can have different functions, and the functions of each module can be read and executed by the processor in the computing device. Instructions in to achieve.
  • the power battery thermal runaway control system includes an acquisition module 810 and a control module 820 .
  • the power battery thermal runaway control system is used to execute the content described in steps S110-S120 shown in FIG. 2 .
  • the acquisition module 810 is configured to perform shape detection on at least one battery cell in the power battery, and acquire detection data of the battery cell.
  • the control module 820 is used for controlling the working state of the battery cells based on the detection data.
  • the structure of the cell includes: a positive electrode layer, a positive and negative barrier layer, a negative electrode layer, a positive electrode current collector layer, and a negative electrode current collector layer; wherein, the positive electrode
  • the negative barrier layer includes electrolyte and separator.
  • the detection data reflects at least one phase change of solid phase change, liquid phase change or gas phase change in at least one layer of the structure of the battery cell.
  • control module 820 is specifically configured to control the isolation of the battery cell from other battery cells in the power battery when the detection data of the battery cell changes, and when the battery cell After being controlled to be isolated from other cells in the power battery, the isolation state of the cells from other cells in the power battery is maintained.
  • the power battery thermal runaway control system may further include a display module 830 .
  • the display module 830 is used for displaying the position of the battery cell in the power battery when the detection data of the battery cell changes.
  • the power battery thermal runaway control system may further include an alarm module 840 .
  • the alarm module 840 is used for performing an alarm prompt when the detection data of the battery cell changes.
  • the detection data in the thermal runaway control system of the power battery is obtained by ultrasonic detection of the electric core.
  • the environmental data of the power battery can also be acquired; the environmental data includes temperature data, atmospheric pressure data in the environment where the power battery is located, or is determined by the At least one of the gas data generated by the power battery; according to the environmental data, the detection data is corrected.
  • the embodiment of the present application also provides a vehicle with the above-mentioned power battery.
  • the vehicle can be any vehicle, such as a family car or a truck, or a special vehicle, such as an ambulance, a fire engine, a police car or an engineering rescue vehicle. car etc.
  • the modules of the control system for thermal runaway of the power battery mentioned above can be arranged in the vehicle system in the form of pre-installation or after-installation, wherein the data interaction between the modules can rely on the bus or interface circuit of the vehicle, or with the wireless
  • wireless communication can also be used between modules for data interaction to eliminate the inconvenience caused by wiring.
  • an embodiment of the present application also provides an energy storage power station having the above-mentioned power battery, and the present application does not limit the type of the energy storage power station.
  • the modules of the control system for thermal runaway of the above-mentioned power battery can be arranged in the energy storage power station in the form of pre-installation or post-installation, in which the modules can rely on the interface circuits of the energy storage power station for data interaction, and can also use Data exchange by means of wireless communication.
  • the embodiment of the present application also provides a computing device, including a processor and a memory.
  • Program instructions are stored in the memory, and when executed by the processor, the program instructions cause the processor to execute the method of the embodiment corresponding to FIG. 2 , or various optional embodiments therein.
  • FIG. 9 is a schematic structural diagram of a computing device 900 provided by an embodiment of the present application.
  • the computing device 900 includes: a processor 910 and a memory 920 .
  • computing device 900 shown in FIG. 9 may also include a communication interface 930, which may be used for communicating with other devices.
  • the processor 910 may be connected to the memory 920 .
  • the memory 920 can be used to store the program codes and data. Therefore, the memory 920 may be a storage unit inside the processor 910, or an external storage unit independent of the processor 910, or may include a storage unit inside the processor 910 and an external storage unit independent of the processor 910. part.
  • computing device 900 may further include a bus.
  • the memory 920 and the communication interface 930 may be connected to the processor 910 through a bus.
  • the bus may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus or the like.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the processor 910 may be a central processing unit (central processing unit, CPU).
  • the processor can also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (Application specific integrated circuits, ASICs), off-the-shelf programmable gate arrays (field programmable gate arrays, FPGAs) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the processor 910 adopts one or more integrated circuits for executing related programs, so as to implement the technical solutions provided by the embodiments of the present application.
  • the memory 920 may include read-only memory and random-access memory, and provides instructions and data to the processor 910 .
  • a portion of processor 910 may also include non-volatile random access memory.
  • processor 910 may also store device type information.
  • the processor 910 executes the computer-executed instructions in the memory 920 to perform the operation steps of the above method.
  • the computing device 900 may correspond to a corresponding body executing the methods according to the various embodiments of the present application, and the above-mentioned and other operations and/or functions of the modules in the computing device 900 are for realizing the present invention For the sake of brevity, the corresponding processes of the methods in the embodiments are not repeated here.
  • FIG. 10 is a schematic structural diagram of another computing device 1000 provided in this embodiment, including: a processor 1010, and an interface circuit 1020, wherein, The processor 1010 accesses the memory through the interface circuit 1020, and the memory stores program instructions, and when the program instructions are executed by the processor, the processor executes the method of the embodiment corresponding to FIG. 2 .
  • the computing device may further include a communication interface, a bus, etc.
  • the interface circuit 1020 may be a CAN bus or a LIN bus.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • a computer program When the program is executed by a processor, it is used to implement a method for controlling thermal runaway of a power battery. At least one of the described programs.
  • the computer storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer-readable storage media include: electrical connections with one or more leads, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional Procedural Programming Language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through the Internet using an Internet service provider). connect).
  • LAN local area network
  • WAN wide area network
  • connect such as AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请属于动力电池技术领域,涉及该技术领域下的动力电池健康状态监控技术。具体提供了一种动力电池热失控的控制方法,该方法包括:对动力电池中至少一个电芯进行形貌检测,获取电芯的检测数据。基于检测数据,控制电芯的工作状态。基于本申请提供的技术方案,可以及时且准确的对动力电池的热失控进行预警,保障动力电池安全工作。

Description

一种动力电池热失控的控制方法、装置及动力电池 技术领域
本申请涉及动力电池的技术领域,特别涉及一种动力电池热失控的控制方法和装置。
背景技术
近年来电动汽车普及的同时也导致安全事故频发。其中,由动力电池的热失控导致的安全事故占比极大。因此,准确的预测热失控对保证电动汽车的安全是很重要的。动力电池发生热失控的主要原因是电滥用、热滥用和机械滥用。在不同工况下,由于微短路、锂枝晶生长等原因导致动力电池内部发生热量的大量积累,如果不能及时控制热量的产生和传播,将会出现热失控现象,进而引发动力电池着火甚至爆炸。
目前的技术方案中主要集中在能够反应动力电池健康状态的物理参数上,例如,电压、电流、电池温度、动力电池产生的气体等物理参数。通过单个物理参数或者多个物理参数融合的方式来判断动力电池的健康状态。但是,现有技术中对动力电池的健康状态的评估不能准确地预警动力电池的热失控状态,动力电池的健康状态也不能对一些实时的故障进行判断。另外,现有的技术方案中对动力电池的健康检测只能精确到电池包粒度,检测粒度较粗。同时,由于现有技术中对动力电池热失控检测能力的缺失以及检测粒度较粗的问题,其相应的热失控控制粒度也无法做到精细粒度,进而影响对动力电池热失控控制的准确性,严重时甚至导致安全事故。
发明内容
鉴于现有技术的以上问题,本申请提供一种动力电池热失控的控制方法、装置及动力电池,可以及时且准确的对动力电池的热失控进行预警,保障动力电池安全工作。
为了达到上述目的,本申请第一方面提供了一种动力电池热失控的控制方法,该方法包括:对动力电池中至少一个电芯进行形貌检测,获取电芯的检测数据,电芯为多层结构。基于检测数据,控制电芯的工作状态。
本申请第一方面提供的一种动力电池热失控的控制方法,通过对动力电池中电芯进行形貌检测来获得检测数据,以通过对检测数据实时分析获得动力电池中电芯的健康状态,可以实现针对单电芯级别的热失控检测。另外,基于电芯的检测数据控制电芯的工作状态变化,实现针对单电芯级别的热失控控制,能够使电芯在出现问题初期就进行相应的安全控制,避免造成安全事故,保障了用户的生命财产安全。
作为第一方面的一种可能的实现方式,检测数据反映了电芯的结构中至少一层发生的固相变化、液相变化或气相变化中的至少一种相变。
作为第一方面的一种可能的实现方式,电芯的结构包括:正极层、正负极阻隔层、负极层、正极集流体层和负极集流体层;其中,正负极阻隔层包括电解液和隔膜。
由上,提供了一种动力电池中电芯的具体结构,并基于该电芯的具体结构提供了 对电芯的检测数据的具体解释。
作为第一方面的一种可能的实现方式,控制电芯的工作状态包括:当电芯的检测数据发生变化时,控制电芯与动力电池中其它的电芯隔离。
其中,检测数据发生变化是指检测数据的变化范围超过预设阈值。
由上,当电芯的检测数据发生变化时,表示该电芯出现问题,可以及时控制有问题的电芯与其它正常的电芯隔离,以保证动力电池其它电芯的正常工作。
作为第一方面的一种可能的实现方式,还包括:当电芯被控制与动力电池中其它的电芯隔离后,保持电芯与动力电池中其它的电芯的隔离状态,直到更换该电芯后,可接入更换后的电芯。
作为第一方面的一种可能的实现方式,还包括:当电芯的检测数据发生变化时,执行告警提示。
由上,当电芯的检测数据发生变化时,表示该电芯出现问题,存在引起动力电池着火或者爆炸等危险事故的风险,因此在此阶段设置告警提示在一定程度上能够保障用户生命财产安全,意义重大。
作为第一方面的一种可能的实现方式,还包括:当电芯的检测数据发生变化时,显示电芯在动力电池中的位置。
由上,显示检测数据发生变化的电芯在动力电池中的位置,可以用于定位故障。
作为第一方面的一种可能的实现方式,检测数据是通过对电芯进行超声波探测而获取的。
由上,提供了一种检测数据具体的获取方法,可以方便快速的获得电芯的检测数据,并且该方法成本低、适用范围广。
作为第一方面的一种可能的实现方式,还包括:获取动力电池的环境数据;环境数据包括动力电池所处的环境中的温度数据、大气压力数据或由动力电池产生的气体数据中的至少一项;根据环境数据,对检测数据进行修正。
由上,通过动力电池所处的环境中的温度信号、动力电池所处的环境中的大气压力信号和动力电池产生的气体信号来修正电芯的检测数据,可以更准确地反映热失控现象,提高电芯热失控检测的准确性,进而提高电芯工作状态控制的准确性。
本申请第二方面提供一种动力电池热失控的控制装置,包括:接口电路以及处理器,处理器通过接口电路耦合至动力电池。处理器用于:通过接口电路获取动力电池中至少一个电芯的检测数据,电芯为多层结构。以及基于检测数据,通过接口电路控制电芯的工作状态。
由上,本方面提供的技术方案中,通过接口电路将处理器与动力电池进行耦合,实现了针对动力电池中单电芯的热失控控制。
作为第二方面的一种可能的实现方式,处理器用于:当电芯的检测数据发生变化时,控制电芯与动力电池中其它的电芯隔离。
作为第二方面的一种可能的实现方式,处理器还用于:当电芯被控制与动力电池中其它的电芯隔离后,保持电芯与动力电池中其它的电芯的隔离状态。
作为第二方面的一种可能的实现方式,装置还包括:传感器,传感器设置于动力电池中电芯的表面,且处理器通过接口电路与传感器相耦合。
作为第二方面的一种可能的实现方式,传感器包括超声波传感器,用于通过对动力电池中电芯进行超声波探测获取检测数据。
作为第二方面的一种可能的实现方式,超声波传感器的数量至少为两个;超声波传感器分别设置于电芯的两个相对的表面。
作为第二方面的一种可能的实现方式,传感器还包括:环境传感器,用于获取动力电池的环境数据;环境数据包括动力电池所处的环境中的温度数据、大气压力数据或由动力电池产生的气体数据中的至少一项;处理器,用于根据环境数据,对检测数据进行修正。
作为第二方面的一种可能的实现方式,环境传感器包括:温度传感器,压力传感器,或气体传感器中的至少一种。
作为第二方面的一种可能的实现方式,还包括:显示屏,与处理器连接,用于在电芯的检测数据发生变化时,显示电芯在动力电池中的位置。
作为第二方面的一种可能的实现方式,还包括:告警器,与处理器连接,用于在电芯的检测数据发生变化时,执行告警提示信息。
本方面各项的有益效果可以参见与上述第一方面对应项中的有益效果描述。
本申请第三方面提供一种动力电池,包括:电芯和上述第二方面任一项的动力电池热失控的控制装置;动力电池热失控的控制装置用于控制电芯。
本申请第四方面提供一种车辆,包括上述第三方面提供的一种动力电池。
本申请第五方面提供一种储能电站,包括上述第三方面提供的一种动力电池。
本申请第六方面提供一种计算设备,包括:处理器,以及存储器;存储器,其上存储有程序指令,程序指令当被处理器执行时使得处理器执行上述第一方面任一项的动力电池热失控的控制方法。
本申请第七方面提供一种计算设备,包括:处理器,以及接口电路;其中,通过接口电路访问处理器,处理器被配置为调用存储在存储器中的程序指令,程序指令当被执行时使得处理器执行上述第一方面任一项的动力电池热失控的控制方法。
本申请第八方面提供一种计算机可读存储介质,其上存储有程序指令,程序指令当被计算机执行时,使得计算机执行上述第一方面任一项的动力电池热失控的控制方法。
本申请的这些和其它方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
以下参照附图来进一步说明本申请的各个特征和各个特征之间的联系。附图均为示例性的,一些特征并不以实际比例示出,并且一些附图中可能省略了本申请所涉及领域的惯常的且对于本申请非必要的特征,或是额外示出了对于本申请非必要的特征,附图所示的各个特征的组合并不用以限制本申请。另外,在本说明书全文中,相同的附图标记所指代的内容也是相同的。具体的附图说明如下:
图1为本申请实施例提供的动力电池热失控的控制方法所应用的一种场景;
图2为本申请实施例提供的动力电池热失控的控制方法的流程图;
图3为本申请实施例提供的动力电池中一种电芯的结构;
图4为本申请实施例提供的控制所述电芯的工作状态变化的流程图;
图5为本申请实施例提供的电池包中各电芯之间的连接示意图;
图6为本申请实施例提供的一种中控屏的显示界面示意图;
图7为本申请实施例提供的动力电池热失控的控制装置的一种结构化示意图;
图8为本申请实施例提供的动力电池热失控的控制系统的一种结构化示意图;
图9为本申请实施例提供的一种计算设备的结构示意图;
图10为本申请实施例提供的另一种计算设备的结构示意图。
具体实施方式
说明书和权利要求书中的词语“第一、第二、第三等”或模块A、模块B、模块C等类似用语,仅用于区别类似的对象,不代表针对对象的特定排序,可以理解地,在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
在以下的描述中,所涉及的表示步骤的标号,如S110、S120……等,并不表示一定会按此步骤执行,在允许的情况下可以互换前后步骤的顺序,或同时执行。
说明书和权利要求书中使用的术语“包括”不应解释为限制于其后列出的内容;它不排除其它的元件或步骤。因此,其应当诠释为指定所提到的所述特征、整体、步骤或部件的存在,但并不排除存在或添加一个或更多其它特征、整体、步骤或部件及其组群。因此,表述“包括装置A和B的设备”不应局限为仅由部件A和B组成的设备。
本说明书中提到的“一个实施例”或“实施例”意味着与该实施例结合描述的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在本说明书各处出现的用语“在一个实施例中”或“在实施例中”并不一定都指同一实施例,但可以指同一实施例。此外,在一个或多个实施例中,能够以任何适当的方式组合各特定特征、结构或特性,如从本公开对本领域的普通技术人员显而易见的那样。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。如有不一致,以本说明书中所说明的含义或者根据本说明书中记载的内容得出的含义为准。另外,本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
下面,首先对本申请的相关技术进行详细介绍,然后再对本申请的技术方案进行详细介绍。
相关技术一提供了一种电池健康状态的检测方法。该方案基于电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)实现。在该方案中,将电池视为一个电化学系统,建立该电化学系统的等效电路(该等效电路包括电阻、电容、电感等基本元器件以及各元器件之间的连接关系)。通过测量电池的电化学阻抗谱,来推算电池的剩余电量百分比(State Of Charge,SOC)或者电池健康度(State Of Health,SOH),以推断当前的电池健康状态,再试图进一步预测电池是否会出现热失控。
在该相关技术中,首先,不同的正负极材料、电解液、隔膜材料等均会改变电化学系统的性质,而大批量生产的动力电池的一致性问题,会很大程度上影响动力电池电芯的电化学阻抗特性,使建立的电化学系统不具备通用性。其次,电化学阻抗谱的化学定义来自于“电池已经处于稳态的电化学反应”,通常要求电池在工作状态过后 静置1~1.5个小时,因此,使得该方法不能实时测量电池的健康状态,无法及时对电池的热失控预警。另外,由于车载动力电池发生热失控的主要原因之一包括机械滥用,但是,电化学阻抗谱法对于瞬态变化的机械滥用(如撞击造成电芯凹陷20%)难以做到准确检测,可能会出现漏判的情形,因此,该方案无法做到真正的热失控预警,不适用于实时性及准确性要求较高的应用工况。
相关技术二提供了一种电池健康状态的检测方法。该方案通过单个物理量或者基多个物理量融合的方式实现。在该方案中,通过对电池的电压、电流、电池内部各物质之间反应产生的气体或电池的温度等多个参数中的至少一个设置阈值,来判断电池的健康状态。
首先,在该方案中,需要在电池上安装气体传感器,实际上气体传感器的安装和信号的处理较为困难。其次,电池内部各物质之间反应过程中所产生的混合气体的分离和气体浓度的分析容易受电池内部反应的剧烈程度、电池成分配比等的影响,再之,电池成分配比为各个电池供应商的核心机密,无从获得。同时,气体传感器还存在对同类气体误判的问题,以及长时间暴露在恶劣环境中的“中毒”问题。其次,电池的热导率较低,导致电池不同位置的温度相差巨大,因此,难以通过电池的局部温度衡量整个电池系统的健康状态。另外,若是在电池的不同位置大量且密集的布置温度传感器,将导致信号线、供电线过多,增加电池的厚度,增加实现成本。另外,若是仅依赖电压和电流来判断电池的健康状态,往往会导致判断的准确性较低。因此,无论从准确性、可行性等任意角度来考虑,该方案都不适用于实际应用工况。
相关技术三提供了一种电池健康状态的检测方法。该方案基于电池管理系统实现,但是当前的电池管理系统只能做到电池包级别的粗颗粒管理,无法做到电芯级别的管理。另外,现有的电池管理系统无法为用户提供直观准确的电池故障预警。
下面结合附图对本申请的实施例进行详细说明,首先,介绍本申请实施例提供的一种动力电池热失控的控制方法所应用的场景。
本申请实施例提供的一种动力电池热失控的控制方法可以应用于任意需要对动力电池的热失控进行预测以及控制的场景中,该应用的场景的典型特点为对动力电池热失控的预测及控制的实时性与准确性要求较高。例如,应用场景可以为车辆(例如:电动汽车、自动驾驶车辆等),应用场景还可以为储能电站等。具体为:当动力电池开始工作时,实时对动力电池中的电芯进行形貌检测,以获取电芯的检测数据,根据该检测数据可以确定该电芯的是否已经出现热失控状态或者即将出现热失控状态,并基于该检测数据控制电芯的工作状态。当电芯即将出现热失控状态时,在此阶段及时将该电芯与动力电池中其它电芯进行隔离,可以使该电芯逐渐冷却且可以避免该电芯发展为热失控状态,进而可以有效避免电芯进入热失控状态造成的不可估量的安全事故。基于本申请提供的动力电池热失控的控制方法,可以精确到电芯粒度的检测,准确且及时的检测动力电池中电芯的热失控状态并对其进行相应控制,实现了单电芯级别的“可检测、可控制、可挽救”。
示例性的,该动力电池热失控的控制方法可以存储于本地存储器中,通过总线实现通信。应理解,此处仅是给出一种可能的实现方式,并不作为对本实施例中该动力电池热失控的控制方法存储的位置的特殊限制。
如图1所示,为本申请实施例提供的动力电池热失控的控制方法所应用的一种场景。该场景以自动驾驶车辆为例。当该自动驾驶车辆的车载动力电池处于工作状态时,利用设置于车载动力电池10中电芯表面的超声波传感器20对电芯的形貌进行超声波探测,将超声波传感器20探测得到的信号传输至本地30,本地30收到该探测信号后对其处理得到该车载动力电池10中电芯的检测数据,并基于该检测数据控制该电芯的工作状态变化。其中,所述本地30可以为本地计算机或者本地处理芯片(例如车机芯片)等。
下面参见各图,对本申请实施例提供的一种动力电池热失控的控制方法进行详细说明。
如图2所示,为本申请实施例提供的动力电池热失控的控制方法的流程图。该方法的实现过程主要包括步骤S110-S120,下面对各个步骤依次进行介绍:
S110:对动力电池中至少一个电芯进行形貌检测,获取所述电芯的检测数据。其中,所述电芯可以为多层结构。在本实施例中,该检测数据也可以称为形貌数据。
示例性的,如图3所示,为本申请实施例提供的动力电池中一种电芯的结构。在本实施例中,动力电池中电芯的结构包括依次贴附的正极集流体层310、正极层320、正负极阻隔层330、负极层340和负极集流体层350,其中,正负极阻隔层330可以包括电解液331和隔膜332。将上述各层通过加压等方式做成一个薄片,即可形成一个电芯。然后,通过缠绕或者叠层等方式将多个电芯设置于一个外壳中,就形成了一个基本的动力电池。当动力电池内部发生短路或者温度上升至一定范围后,会引起上述电芯结构中某一层或者某几层发生物理和/或化学变化,从而造成电芯内部物质成分和/或形态的变化,即为电芯的形貌变化。对于反映电芯形貌变化的数据,本实施例将其称为电芯的形貌数据,即步骤S110中获取的电芯的检测数据。其中,本申请实施例不限制电芯结构中某一层或者某几层发生的物理变化以及化学变化的类型,例如,可以为固相变化;或者,可以液相变化;或者,可以为气相变化;再或者,还可以为某几种相变混合等。
在本实施例中,由于超声波可以从各个方向完全穿透电芯的结构,因此,作为一种可选的实现方式,可以利用超声波传感器来对电芯的形貌进行超声波探测,以获得探测信号,通过对该探测信号进行处理来获得电芯的形貌数据。在本实施例中,利用超声波传感器对电芯的形貌进行超声波探测,不仅可以适用于实验室中,还可以适用于实际运行工况中,另外,超声波传感器价格低廉,可以实现大面积普及使用。
在本实施例中,作为另外一种可选的实现方式,还可以利用X光、太赫兹级别的电磁波来对电芯的形貌进行探测。
作为一种可选的实现方式,还可以利用温度传感器获取到的动力电池所处的环境中的温度数据、压力传感器获取到的动力电池所处的环境中的大气压力数据或气体传感器获取到的动力电池中电芯产生的气体信号来修正所述电芯的检测数据。以获得更为准确的检测数据,进而提高电芯热失控状态检测及控制的准确性。
S120:基于所述检测数据,控制所述电芯的工作状态。
作为一种可选的实现方式,如图4所示,该过程可以包括步骤S121和步骤S122,下面对各个步骤依次进行详细介绍:
S121:当所述电芯的检测数据发生变化时,控制所述电芯与所述动力电池中其它 的电芯隔离。
作为一种可选的实现方式,所述检测数据发生变化可以指将该检测数据与出厂时的数据进行对比,若二者的相差超过预设范围,则表示检测数据发生变化。例如,可以参见下表1:
表1电芯的形貌数据与电芯的热失控状态对应表
Figure PCTCN2021115737-appb-000001
根据表1,时间点T0对应的检测数据同出厂数据相比,相差符合预设范围(即电芯的形貌仍是正常多孔隙、电芯的结构仍是各层分明的),此时表示检测数据未发生变化或者变化波动较小,此时对应的电芯的状态为正常态。时间点T1-时间点T6对应的检测数据同出厂数据相比,相差超过预设范围(即电芯的形貌与出厂时相比变化较大),此时表示检测数据发生变化,意味着相应的电芯即将发生或者已经发生热失控。在本实施例中,可以将时间点T1-时间点T4的检测数据(即形貌数据)对应的电芯的状态视为即将发生热失控的状态,在该状态下,电芯结构可以随着温度等参数的降低逐渐恢复(应理解,此处的逐渐恢复并不是恢复至原始状态,而是相对比目前状态较为接近原始状态),不会造成着火甚至爆炸现象,因此,当电芯在该状态下,可以通过相应控制,例如控制该电芯与动力电池中其它电芯隔离,来保证整个动力电池的安全运行。在本实施例中,可以将时间点T5-时间点T6的检测数据(即形貌数据)对应的电芯的状态视为已经发生热失控的状态,在该状态下,电芯的结构不能随着温度等相关参数的变化而自动恢复,进而可能会引起电芯着火甚至爆炸。另外,应理解,时间点T1中的SEI膜为电芯第一次上电产生的物质。
应理解,本申请实施例提供的技术方案,在电芯处于时间点T1-时间点T4的阶段,即可检测到电芯的异常,在该阶段,不会引起电芯的着火或爆炸,因此,在此阶段将电芯隔离可以使电芯不会发展到时间点T5-时间点T6对应的热失控阶段,保证了电池的安全运行。
作为一种可选的实现方式,控制电芯与所述动力电池中其它的电芯隔离可以为对该电芯进行断电处理,例如断开相应电芯的控制开关。作为另外一种可选的实现方式,控制电芯与所述动力电池中其它的电芯隔离还可以为不对相应电芯供电。
S122:当所述电芯被控制与所述动力电池中其它的电芯隔离后,保持所述电芯与所述动力电池中其它的电芯的隔离状态。
示例性的,如图5所示,为本申请实施例提供的电池包中各电芯之间的连接示意图。其中,电芯Cell 1、开关S1、电芯Cell 2、开关S2、电芯Cell 3、开关S3、依次串联形成第一支路,电芯Cell 4、开关S4、电芯Cell 5、开关S5、电芯Cell 6和开关S6、依次串联形成第二支路,第一支路与第二支路并联。另外,各个电芯上还设置有热失控检测模块,用于检测各个电芯的热失控状态。其中,开关S1控制电芯Cell 1的通断、开关S2控制电芯Cell 2的开断、开关S3控制电芯Cell 3的开断、开关S4控制电芯Cell 4的开断、开关S5控制电芯Cell 5的开断、开关S6控制电芯Cell 6的开断。例如,通过各个电芯的检测数据(形貌数据)判断出Cell 2的状态为即将发生热失控状态,此时需要控制电芯Cell 2隔离,即控制开关S2断开,相应的,由于电芯Cell 1和电芯Cell 3为与电芯Cell 2串联的电芯,因此,在该电池包中,第一支路中的电芯均不工作,第二支路中的电芯可以正常工作。直到Cell 2或该电池包被更换后,第一支路恢复正常工作,否则,将保持该支路的隔离状态。应理解,该实施例中电池包中各电芯之间的连接关系仅为一种可能的实现方式,并不构成对其连接关系的限制。例如,在其他实施例中,多个电芯串联形成的一条支路上,可以只设置一个开关开控制其接入或者隔离。具体的,当检测到Cell 2的状态为即将发生热失控状态时,此时控制Cell 2所在的支路中的开关断开,以实现该支路的隔离。
应理解,上述控制各电芯隔离的器件为开关仅是示例性描述,不作为限制本申请的控制各电芯隔离的唯一器件,还可以是继电器、晶体管,例如绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)等。
在本申请的另一实施例中,该动力电池热失控的控制方法还可以包括步骤S130。具体的,S130:当所述电芯的检测数据发生变化时,执行告警提示。应理解,步骤S110-S120与上一实施例相同,故本实施例不再对其进行赘述。下面,详细介绍步骤S130。
作为一种可选的实现方式,在步骤S130的告警提示步骤中,可以在上述表1中时间点T1出现时,即发出告警提示。该告警提示包括但不局限于通过文字、图像、或者声音等形式发出告警提示。另外,该告警可以设置为直到更换了正常电芯后自动结束,也可以设置为在执行告警提示后,用户可自主取消的形式。
作为另外一种可选的实现方式,若检测到电芯的状态为已经发生了热失控状态,此时可以提示用户进行逃生,从而保证人身安全。
在本申请的另一实施例中,该动力电池热失控的控制方法还可以包括步骤S140。具体的,S140:当所述电芯的检测数据发生变化时,显示所述电芯在所述动力电池中的位置。
作为一种可选的实现方式,可以通过不同颜色来显示相应电芯的位置和热失控状态。还可以通过文字提示来显示相应电芯的位置和热失控状态,例如直接在中控屏弹 出消息提示等。
示例性的,如图6所示提供了一种中控屏的显示界面,图中每个矩形表示一个电芯,其中,图中第二行第二个电芯表示该电芯出现即将发生热失控状态,可以以图示的形式向用户展示。
本申请的另一实施例提供一种动力电池热失控的控制装置,该装置可以由软件系统实现,也可以由硬件设备实现,还可以由软件系统和硬件设备结合来实现。
应理解,图7仅是示例性地展示了动力电池热失控的控制装置的一种结构化示意图,如图7所示,该动力电池热失控的控制装置包括接口电路710以及处理器720。其中,处理器720通过所述接口电路710耦合至动力电池的电芯760上。处理器720用于:通过所述接口电路710获取所述动力电池中至少一个电芯的检测数据,所述电芯为多层结构;以及基于所述检测数据,通过所述接口电路710控制所述电芯的工作状态。
具体的,所述处理器720用于:当所述电芯的检测数据发生变化时,控制所述电芯与所述动力电池中其它的电芯隔离。所述处理器720还用于当所述电芯被控制与所述动力电池中其它的电芯隔离后,保持所述电芯与所述动力电池中其它的电芯的隔离状态。
在本实施例中,该动力电池热失控的控制装置还包括传感器730,该传感器730设置于所述动力电池中电芯760的表面,且所述处理器720通过所述接口电路710与所述传感器730相耦合。
具体的,传感器730包括超声波传感器,用于通过对所述动力电池中电芯760进行超声波探测获取所述检测数据。传感器730还包括环境传感器(温度传感器、压力传感器,或气体传感器中的至少一种),用于获取所述动力电池的环境数据。温度传感器用于获取动力电池所处的环境中的温度数据。压力传感器用于获取动力电池所处的环境中的大气压力数据。气体传感器用于获取动力电池产生的气体数据。
在本实施例中,处理器720还用于根据所述环境数据,对所述检测数据进行修正。
在本实施例中,动力电池热失控的控制装置还可以包括显示屏740和告警器750。具体的,显示屏740与所述处理器720连接,用于在所述电芯的检测数据发生变化时,显示所述电芯在所述动力电池中的位置。告警器750与所述处理器720连接,用于在在所述电芯的检测数据发生变化时,执行告警提示信息。
本申请的另一实施例提供了一种动力电池。该动力电池包括上述实施例中的动力电池热失控的控制装置和电芯。该动力电池热失控的控制装置用于控制电芯。其中,动力电池热失控的控制装置中各部件的具体描述可以参见上一实施例,本实施例不再对其进行赘述。
本申请的另一实施例提供一种动力电池热失控的控制系统,该系统可以由软件系统实现,也可以由硬件设备实现,还可以由软件系统和硬件设备结合来实现。
应理解,图8仅是示例性地展示了一种动力电池热失控的控制系统的一种结构化示意图,本申请并不限定对该动力电池热失控的控制系统中功能模块的划分。如图8所示,该动力电池热失控的控制系统可以在逻辑上分成多个模块,每个模块可以具有不同的功能,每个模块的功能由可以计算设备中的处理器读取并执行存储器中的指令来实现。示例性的,该动力电池热失控的控制系统包括获取模块810和控制模块820。在一种可选的实现方式中,该动力电池热失控的控制系统用于执行图2示出的步骤 S110-S120中描述的内容。具体的,可以为:获取模块810用于对动力电池中至少一个电芯进行形貌检测,获取所述电芯的检测数据。控制模块820用于基于所述检测数据,控制所述电芯的工作状态。
可选的,在该动力电池热失控的控制系统中,所述电芯的结构包括:正极层、正负极阻隔层、负极层、正极集流体层和负极集流体层;其中,所述正负极阻隔层包括电解液和隔膜。所述检测数据反映了所述电芯的结构中至少一层发生的固相变化、液相变化或气相变化中的至少一种相变。
作为一种可选的实现方式,控制模块820具体用于当所述电芯的检测数据发生变化时,控制所述电芯与所述动力电池中其它的电芯隔离,且当所述电芯被控制与所述动力电池中其它的电芯隔离后,保持所述电芯与所述动力电池中其它的电芯的隔离状态。
在本实施例中,该动力电池热失控的控制系统还可以包括显示模块830。该显示模块830用于当所述电芯的检测数据发生变化时,显示所述电芯在所述动力电池中的位置。
在本实施例中,该动力电池热失控的控制系统还可以包括告警模块840。该告警模块840用于当所述电芯的检测数据发生变化时,执行告警提示。
作为一种可选的实现方式,该动力电池热失控的控制系统中的所述检测数据是通过对所述电芯进行超声波探测而获取的。
作为一种可选的实现方式,在该系统中,还可以获取所述动力电池的环境数据;所述环境数据包括所述动力电池所处的环境中的温度数据、大气压力数据或由所述动力电池产生的气体数据中的至少一项;根据所述环境数据,对所述检测数据进行修正。
其中,该实施例中各个功能模块的具体实现方式可以参见上述方法实施例中的介绍,本实施例不再对其进行赘述。
另外,本申请实施例还提供了具有上述动力电池的车辆,该车辆可以是任意车辆,例如:家用轿车或载货汽车等,还可以是特种车辆,例如救护车、消防车、警车或工程抢险车等。其中,上述动力电池热失控的控制系统的各模块可以采用预装或后装的形式布置于车辆系统中,其中各模块之间可依赖于车辆的总线或接口电路进行数据交互,或者随着无线技术的发展,各模块之间还可以采用无线的通信方式进行数据交互,以消除布线带来的不便。
另外,本申请实施例还提供了具有上述动力电池的储能电站,本申请不对储能电站的类型进行限制。上述动力电池热失控的控制系统的各模块可以采用采用预装或后装的形式布置于储能电站中,其中各模块之间可依赖于储能电站的各接口电路进行数据交互,还可以采用无线的通信方式进行数据交互。
本申请实施例还提供一种计算设备,包括处理器,以及存储器。存储器上存储有程序指令,程序指令当被处理器执行时使得处理器执行图2对应的实施例的方法,或其中的各可选实施例。
图9是本申请实施例提供的一种计算设备900的结构性示意性图。该计算设备900包括:处理器910、存储器920。
应理解,图9中所示的计算设备900中还可包括通信接口930,可以用于与其他 设备之间进行通信。
其中,该处理器910可以与存储器920连接。该存储器920可以用于存储该程序代码和数据。因此,该存储器920可以是处理器910内部的存储单元,也可以是与处理器910独立的外部存储单元,还可以是包括处理器910内部的存储单元和与处理器910独立的外部存储单元的部件。
可选的,计算设备900还可以包括总线。其中,存储器920、通信接口930可以通过总线与处理器910连接。总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。
应理解,在本申请实施例中,该处理器910可以采用中央处理单元(central processing unit,CPU)。该处理器还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(Application specific integrated circuit,ASIC)、现成可编程门矩阵(field programmable gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。或者该处理器910采用一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
该存储器920可以包括只读存储器和随机存取存储器,并向处理器910提供指令和数据。处理器910的一部分还可以包括非易失性随机存取存储器。例如,处理器910还可以存储设备类型的信息。
在计算设备900运行时,所述处理器910执行所述存储器920中的计算机执行指令执行上述方法的操作步骤。
应理解,根据本申请实施例的计算设备900可以对应于执行根据本申请各实施例的方法中的相应主体,并且计算设备900中的各个模块的上述和其它操作和/或功能分别为了实现本实施例各方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了另外一种计算设备,如图10所示为该实施例提供的另一种计算设备1000的结构性示意性图,包括:处理器1010,以及接口电路1020,其中,处理器1010通过接口电路1020访问存储器,存储器存储有程序指令,程序指令当被处理器执行时使得处理器执行图2对应的实施例的方法。另外,该计算设备还可包括通信接口、总线等,具体可参见图9所示的实施例中的介绍,不再赘述。示例性的,该接口电路1020可以为CAN总线或者LIN总线。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所 述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时用于执行一种动力电池热失控的控制方法,该方法包括上述各个实施例所描述的方案中的至少之一。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于,电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括、但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、 C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
注意,上述仅为本申请的较佳实施例及所运用的技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请的构思的情况下,还可以包括更多其他等效实施例,均属于本申请的保护范畴。

Claims (25)

  1. 一种动力电池热失控的控制方法,其特征在于,包括:
    对动力电池中至少一个电芯进行形貌检测,获取所述电芯的检测数据,所述电芯为多层结构;
    基于所述检测数据,控制所述电芯的工作状态。
  2. 根据权利要求1所述的方法,其特征在于,所述检测数据反映了所述电芯的结构中至少一层发生的固相变化、液相变化或气相变化中的至少一种相变。
  3. 根据权利要求1-2任一项所述的方法,其特征在于,所述电芯的结构包括:
    正极层、正负极阻隔层、负极层、正极集流体层和负极集流体层;
    其中,所述正负极阻隔层包括电解液和隔膜。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述控制所述电芯的工作状态包括:
    当所述电芯的检测数据发生变化时,控制所述电芯与所述动力电池中其它的电芯隔离。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    当所述电芯被控制与所述动力电池中其它的电芯隔离后,保持所述电芯与所述动力电池中其它的电芯的隔离状态。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,还包括:
    当所述电芯的检测数据发生变化时,执行告警提示。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,还包括:
    当所述电芯的检测数据发生变化时,显示所述电芯在所述动力电池中的位置。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述检测数据是通过对所述电芯进行超声波探测而获取的。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    获取所述动力电池的环境数据;所述环境数据包括所述动力电池所处的环境中的温度数据、大气压力数据或由所述动力电池产生的气体数据中的至少一项;
    根据所述环境数据,对所述检测数据进行修正。
  10. 一种动力电池热失控的控制装置,其特征在于,包括:
    接口电路以及处理器,所述处理器通过所述接口电路耦合至动力电池;
    所述处理器用于:
    通过所述接口电路获取所述动力电池中至少一个电芯的检测数据,所述电芯为多层结构;以及
    基于所述检测数据,通过所述接口电路控制所述电芯的工作状态。
  11. 根据权利要求10所述的装置,其特征在于,所述处理器用于:
    当所述电芯的检测数据发生变化时,控制所述电芯与所述动力电池中其它的电芯隔离。
  12. 根据权利要求11所述的装置,其特征在于,所述处理器还用于:
    当所述电芯被控制与所述动力电池中其它的电芯隔离后,保持所述电芯与所述动力电池中其它的电芯的隔离状态。
  13. 根据权利要求10-12任一项所述的装置,其特征在于,所述装置还包括:
    传感器,所述传感器设置于所述动力电池中电芯的表面,且所述处理器通过所述接口电路与所述传感器相耦合。
  14. 根据权利要求13所述的装置,其特征在于,所述传感器包括超声波传感器,用于通过对所述动力电池中电芯进行超声波探测获取所述检测数据。
  15. 根据权利要求14所述的装置,其特征在于,
    所述超声波传感器的数量至少为两个;所述超声波传感器分别设置于所述电芯的两个相对的表面。
  16. 根据权利要求14所述的装置,其特征在于,所述传感器还包括:
    环境传感器,用于获取所述动力电池的环境数据;所述环境数据包括所述动力电池所处的环境中的温度数据、大气压力数据或由所述动力电池产生的气体数据中的至少一项;
    所述处理器,用于根据所述环境数据,对所述检测数据进行修正。
  17. 根据权利要求16所述的装置,其特征在于,所述环境传感器包括:
    温度传感器,
    压力传感器,或
    气体传感器中的至少一种。
  18. 根据权利要求10-17任一项所述的装置,其特征在于,还包括:
    显示屏,与所述处理器连接,用于在所述电芯的检测数据发生变化时,显示所述电芯在所述动力电池中的位置。
  19. 根据权利要求10-18任一项所述的装置,其特征在于,还包括:
    告警器,与所述处理器连接,用于在所述电芯的检测数据发生变化时,执行告警提示信息。
  20. 一种动力电池,其特征在于,包括:
    电芯和权利要求10-19任一项所述的动力电池热失控的控制装置;
    所述动力电池热失控的控制装置用于控制所述电芯。
  21. 一种车辆,其特征在于,包括权利要求20所述的动力电池。
  22. 一种储能电站,其特征在于,包括权利要求20所述的动力电池。
  23. 一种计算设备,其特征在于,包括:
    处理器,以及存储器;
    所述存储器,其上存储有程序指令,所述程序指令当被所述处理器执行时使得所述处理器执行权利要求1-9任一项所述的动力电池热失控的控制方法。
  24. 一种计算设备,其特征在于,包括:
    处理器,以及接口电路;
    其中,通过所述接口电路访问处理器,所述处理器被配置为调用存储在存储器中的程序指令,所述程序指令当被执行时使得所述处理器执行权利要求1-9任一项所述的动力电池热失控的控制方法。
  25. 一种计算机可读存储介质,其上存储有程序指令,其特征在于,所述程序指令当被计算机执行时,使得所述计算机执行权利要求1-9任一项所述的动力电池热失控的控制方法。
PCT/CN2021/115737 2021-08-31 2021-08-31 一种动力电池热失控的控制方法、装置及动力电池 WO2023028850A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/115737 WO2023028850A1 (zh) 2021-08-31 2021-08-31 一种动力电池热失控的控制方法、装置及动力电池
CN202180097251.4A CN117157808A (zh) 2021-08-31 2021-08-31 一种动力电池热失控的控制方法、装置及动力电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115737 WO2023028850A1 (zh) 2021-08-31 2021-08-31 一种动力电池热失控的控制方法、装置及动力电池

Publications (1)

Publication Number Publication Date
WO2023028850A1 true WO2023028850A1 (zh) 2023-03-09

Family

ID=85410707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115737 WO2023028850A1 (zh) 2021-08-31 2021-08-31 一种动力电池热失控的控制方法、装置及动力电池

Country Status (2)

Country Link
CN (1) CN117157808A (zh)
WO (1) WO2023028850A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116878686A (zh) * 2023-07-10 2023-10-13 暨南大学 储能装置检测系统、方法、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205406679U (zh) * 2016-03-04 2016-07-27 成都雅骏新能源汽车科技股份有限公司 一种防止锂离子电池热失控蔓延的结构
US20170222276A1 (en) * 2016-02-03 2017-08-03 Contemporary Amperex Technology Co., Limited System and method for self-isolating abnormal battery
CN107134560A (zh) * 2017-03-06 2017-09-05 安普能源科技有限公司 一种锂离子动力电池热保护连接结构及其连接方法
CN108387594A (zh) * 2018-02-09 2018-08-10 中国电力科学研究院有限公司 一种无损检测叠片式锂离子电池的方法和系统
CN109633469A (zh) * 2019-01-08 2019-04-16 蜂巢能源科技有限公司 电池电芯故障检测电路及检测方法
CN109655098A (zh) * 2017-10-10 2019-04-19 中国科学院物理研究所 二次电池电芯的失效分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170222276A1 (en) * 2016-02-03 2017-08-03 Contemporary Amperex Technology Co., Limited System and method for self-isolating abnormal battery
CN205406679U (zh) * 2016-03-04 2016-07-27 成都雅骏新能源汽车科技股份有限公司 一种防止锂离子电池热失控蔓延的结构
CN107134560A (zh) * 2017-03-06 2017-09-05 安普能源科技有限公司 一种锂离子动力电池热保护连接结构及其连接方法
CN109655098A (zh) * 2017-10-10 2019-04-19 中国科学院物理研究所 二次电池电芯的失效分析方法
CN108387594A (zh) * 2018-02-09 2018-08-10 中国电力科学研究院有限公司 一种无损检测叠片式锂离子电池的方法和系统
CN109633469A (zh) * 2019-01-08 2019-04-16 蜂巢能源科技有限公司 电池电芯故障检测电路及检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116878686A (zh) * 2023-07-10 2023-10-13 暨南大学 储能装置检测系统、方法、设备及存储介质

Also Published As

Publication number Publication date
CN117157808A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
Xiong et al. Toward a safer battery management system: A critical review on diagnosis and prognosis of battery short circuit
CN111653840B (zh) 一种预警方法、装置、设备及存储介质
US10809302B2 (en) Online detection method for internal short-circuit of battery
WO2020220512A1 (zh) 电池热失控的检测方法、装置、系统和电池管理单元
KR101470553B1 (ko) 배터리의 절연 저항 측정 장치 및 방법
CN106159364B (zh) 方形锂离子电池内部温度的在线监测方法及装置
Huang et al. Understanding Li-ion cell internal short circuit and thermal runaway through small, slow and in situ sensing nail penetration
CN110635182A (zh) 电池热失控的预警方法和装置、电子设备、存储介质
CN108375544A (zh) 一种用于检测叠片式电池极耳弯折的方法
CN105762432A (zh) 一种电池模组爆喷状态的检测方法和装置
CN108511829A (zh) 一种锂电池
WO2023028850A1 (zh) 一种动力电池热失控的控制方法、装置及动力电池
CN108258340A (zh) 一种带气体监控装置的电池系统
CN106018904B (zh) 低压反窃电装置及其损耗功率快速和精确测算方法
CN111913113A (zh) 电芯内短路识别方法、装置、存储介质及电子设备
CN115020836A (zh) 电芯预警方法、装置、系统、设备、介质和程序产品
CN108832686A (zh) 充电回路及充电回路检测方法
CN206557352U (zh) 一种铅酸蓄电池电量监控装置以及车辆
CN113361128A (zh) 一种异常电芯筛选方法、系统、计算机设备及存储介质
JP2012079507A (ja) 電池システム
CN210326035U (zh) 一种蓄电池实时监测系统
CN218866061U (zh) 一种锂电池复合检测提前预警智能装置
CN216645664U (zh) 电子设备、电池模组及其膨胀力的测试系统、结构
CN114690058A (zh) 一种锂电池复合检测提前预警智能装置
CN108448184A (zh) 一种基于燃料电池的节能管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE