WO2019100999A1 - 有机发光元件 - Google Patents

有机发光元件 Download PDF

Info

Publication number
WO2019100999A1
WO2019100999A1 PCT/CN2018/115705 CN2018115705W WO2019100999A1 WO 2019100999 A1 WO2019100999 A1 WO 2019100999A1 CN 2018115705 W CN2018115705 W CN 2018115705W WO 2019100999 A1 WO2019100999 A1 WO 2019100999A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
layer
organic light
compound
Prior art date
Application number
PCT/CN2018/115705
Other languages
English (en)
French (fr)
Inventor
王鹏
金光男
池田武史
李进才
田中大作
Original Assignee
东丽先端材料研究开发(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽先端材料研究开发(中国)有限公司 filed Critical 东丽先端材料研究开发(中国)有限公司
Priority to CN201880058731.8A priority Critical patent/CN111316461B/zh
Priority to EP18881946.0A priority patent/EP3716348A4/en
Priority to KR1020207013199A priority patent/KR102413966B1/ko
Priority to JP2020521608A priority patent/JP7255592B2/ja
Priority to US16/761,553 priority patent/US11296304B2/en
Publication of WO2019100999A1 publication Critical patent/WO2019100999A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an organic light-emitting element, particularly an organic light-emitting element having greatly improved light extraction efficiency after application of a boron complex compound, and to a light-emitting element material for use in the above organic light-emitting element.
  • the organic light emitting device is a self-luminous display device, which has the characteristics of lightness, wide viewing angle, low power consumption, high contrast, and the like.
  • the principle of light emission of an organic light-emitting element is that light is generated when holes and electrons injected from an electrode return to a ground state via an excited state by recombination in a light-emitting layer.
  • This light-emitting element has a feature of being thin and capable of high-intensity light emission at a low driving voltage and capable of multi-color light emission by selecting a light-emitting material, and thus has attracted attention.
  • the organic light emitting element may be classified into a bottom emitting organic light emitting element and a top emitting organic light emitting element according to a direction in which light generated by the organic light emitting layer is emitted.
  • the bottom emission organic light-emitting element light is incident on the substrate side, a reflective electrode is formed on the upper portion of the organic light-emitting layer, and a transparent electrode is formed on the lower portion of the organic light-emitting layer.
  • the organic light-emitting element is an active matrix element, since the portion in which the thin film transistor is formed is opaque, the light-emitting area is reduced.
  • the transparent electrode is formed on the upper portion of the organic light-emitting layer, and the reflective electrode is formed on the lower portion of the organic light-emitting layer, so that the light is directed in a direction opposite to the substrate side, whereby the light is transmitted.
  • the area is increased and the brightness is increased.
  • an organic coating layer is formed on the upper translucent metal electrode that transmits light of the light-emitting layer, thereby adjusting the optical interference distance and suppressing the external interference.
  • Light reflection and extinction caused by surface plasmon energy movement see Patent Documents 1 to 5).
  • Patent Document 2 discloses that a refractive index of 1.7 or more is formed on an upper translucent metal electrode of a top emission organic light-emitting element.
  • the organic coating layer increases the luminous efficiency of the red and green light-emitting organic light-emitting elements by about 1.5 times.
  • the material of the organic coating layer used is an amine derivative, a quinolol complex or the like.
  • Patent Document 4 discloses that a material having an energy gap of less than 3.2 eV affects a blue wavelength and is not suitable for use in an organic coating layer, and an organic coating material used is an amine derivative having a specific chemical structure or the like.
  • Patent Document 5 discloses that, in order to realize a blue light-emitting element having a low CIEy value, the refractive index change amount of the organic cover layer material at a wavelength of 430 nm to 460 nm is ⁇ n>0.08, and the organic overcoat material used is an anthracene derivative having a specific chemical structure. Wait.
  • an amine derivative having a specific structure having a high refractive index or a material satisfying a specific parameter is used as an organic coating material to improve light extraction efficiency and color purity, but the luminous efficiency has not been solved yet. And the problem of color purity, especially in the case of preparing blue light-emitting elements.
  • Patent Document 1 WO2001/039554
  • Patent Document 2 JP2006-156390
  • Patent Document 3 JP2007-103303
  • Patent Document 4 JP2006-302878
  • Patent Document 5 WO2011/043083.
  • the inventors have found that when the covering layer is a laminate of a high refractive layer and a low refractive layer, and is formed using a material satisfying a specific parameter, especially the low refractive layer is satisfied by the specificity.
  • the parameter requirements and the material having a boron complex compound are formed, it is possible to solve the problem of improving the light extraction efficiency and improving the color purity.
  • the present invention it is possible to obtain an organic light-emitting element having greatly improved light extraction efficiency and excellent color purity.
  • the present invention provides an organic light-emitting device comprising a substrate, a first electrode, one or more organic layer films including a light-emitting layer, and a second electrode, the light-emitting element further having a cover layer; On the second electrode, the cover layer includes a high refractive layer and a low refractive layer; and the low refractive layer of the cover layer is formed of an organic small molecule compound.
  • the order of coverage is a high refractive layer and a low refractive layer in order from the second electrode, or a low refractive layer and a high refractive layer in this order.
  • the high refractive layer has a refractive index of 1.8 or more
  • the low refractive layer has a refractive index of 1.5 to 1.7.
  • the difference between the refractive index of the high refractive layer and the refractive index of the low refractive layer is 0.3 or more.
  • the high refractive layer is formed of at least one of an inorganic compound and an organic compound, wherein the inorganic compound is one or more of SiOx, SiNy, Zns, ZnSe, ZrO, or TiO 2 ; Y is an integer of 1 to 4.
  • the organic compound is one or more of an arylamine derivative, a carbazole derivative, a benzimidazole derivative or a triazole derivative. Since the inorganic compound requires a higher temperature in the evaporation process than the organic compound, it is preferred that the high refractive index material be an organic compound.
  • the low refractive layer of the present invention may be located between the first electrode and the second electrode, or between the second electrode and the cover layer, and may be located above the second electrode.
  • the cover layer Since the cover layer is disposed on the second electrode, it can effectively protect the second electrode and the organic light-emitting layer from the influence of moisture, oxygen, and contaminants on the outside, thereby preventing the life of the organic light-emitting element from deteriorating.
  • the top emission light-emitting element has an advantage of enlarging the light-emitting surface than the bottom-emitting light-emitting element, thereby improving light extraction efficiency.
  • the cover layer has a low refractive index layer.
  • long-chain alkane and inorganic fluoride are usually selected in the prior art, but long-chain alkane is easily decomposed at a high temperature, and it is difficult to use a vapor deposition method; and inorganic fluoride has a problem that a vapor deposition temperature is high.
  • the attenuation coefficient is proportional to the absorption coefficient, and therefore, the material having a high absorption coefficient has a high attenuation coefficient. Therefore, none of the above is suitable for low refractive index materials.
  • the inventors After intensive studies based on the above results, the inventors have found that boron complex compounds are suitable for low refractive index materials. Further, it has been found that since the boron complex compound has good transparency when used for the cover layer, the luminous efficiency can be improved and a high color purity element can be obtained.
  • the low refractive layer of the cover layer be formed of a material having a boron complex compound.
  • the boron coordination compound is specifically represented by the following formula 1:
  • R 1 to R 4 are the same or different and are each independently selected from the group consisting of hydrogen, deuterium, an alkyl group which may be substituted, a cycloalkyl group which may be substituted, a heterocyclic group which may be substituted, an alkenyl group which may be substituted, a cycloalkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, an alkylthio group which may be substituted, an aryl ether group which may be substituted, an arylthioether group which may be substituted, An aryl group which may be substituted, a heteroaryl group which may be substituted, a carbonyl group which may be substituted, a carboxyl group which may be substituted, an oxycarbonyl group which may be substituted, a carbamoyl group which may be substituted, an alkylamino group which may be substituted or may be One or more of the substituted
  • R 5 to R 6 are fluorine.
  • the alkyl group is preferably a C1-C20 alkyl group; further preferably a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group or a sec-butyl group.
  • a saturated aliphatic hydrocarbon group such as a phenyl group or a tert-butyl group.
  • the above alkyl group may have a substituent or may have no substituent.
  • the cycloalkyl group is preferably a C3-C20 cycloalkyl group; more preferably one or more of a cyclopropyl group, a cyclohexyl group, a norbornyl group, or a saturated alicyclic hydrocarbon group such as an adamantyl group.
  • the above cycloalkyl group may have a substituent or may have no substituent.
  • the heterocyclic group is preferably a C3-C20 heterocyclic group; more preferably one or more of an aliphatic ring having an atom other than carbon in a ring such as a pyran ring, a piperidine ring or a cyclic amide.
  • the above heterocyclic group may have a substituent or may have no substituent.
  • the alkenyl group is preferably a C2-C20 alkenyl group; more preferably one or more of an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group.
  • the above alkenyl group may have a substituent or may have no substituent.
  • the cycloalkenyl group is preferably a C3-C20 cycloalkenyl group; further preferably one of an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group; A variety.
  • the above cycloalkenyl group may have a substituent or may have no substituent.
  • the alkynyl group is preferably a C2-C20 alkynyl group; more preferably an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group.
  • the above alkynyl group may have a substituent or may have no substituent.
  • the alkoxy group is preferably a C1-C20 alkoxy group; more preferably one or more of a functional group such as a methoxy group, an ethoxy group, or a propoxy group bonded to an aliphatic hydrocarbon group via an ether bond.
  • the aliphatic hydrocarbon group may have a substituent or may have no substituent.
  • the alkylthio group is a group in which an oxygen atom of an alkoxy group is substituted with a sulfur atom. It is preferably a C1-C20 alkylthio group; the alkylthioalkyl group may have a substituent or may have no substituent.
  • the aryl ether group is preferably a C6-C60 aryl ether group; more preferably a functional group such as a phenoxy group bonded to an aromatic hydrocarbon group via an ether bond.
  • the aryl ether group may or may not have a substituent.
  • the aryl sulfide group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom. Preferred is a C6-C60 aryl sulfide group.
  • the aromatic hydrocarbon group in the aryl sulfide group may or may not have a substituent.
  • the aryl group is preferably a C6-C60 aryl group; more preferably one or more of an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a phenylterphenyl group or a fluorenyl group.
  • the aryl group may have a substituent or may have no substituent.
  • the heteroaryl group is preferably a C4-C60 aromatic heterocyclic group; further preferably a furyl group, a thienyl group, a pyrrole, a benzofuranyl group, a benzothienyl group, a dibenzofuranyl group, a dibenzophenylene group, One or more of a pyridyl group, a quinolyl group and the like.
  • the aromatic heterocyclic group may have a substituent or may have no substituent.
  • the halogen is selected from the group consisting of fluorine, chlorine, bromine, or iodine.
  • the carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, or alkylamino group may have a substituent or may have no substituent.
  • the number of carbon atoms of the alkylamino substituent is not particularly limited, and is usually in the range of 2 or more and 60 or less.
  • the silane group is represented by a functional group having a bond to a silicon atom such as a trimethylsilyl group, and the silane group may or may not have a substituent.
  • the carbon number of the silane group is not particularly limited, and is usually in the range of 3 or more and 20 or less. Further, the number of silicon is usually in the range of 1 or more and 6 or less.
  • the substituents are each independently selected from the group consisting of hydrazine, halogen, C1-C15 alkyl, C3-C15 cycloalkyl, C3-C15 heterocyclic, C2-C15 alkenyl, C4.
  • -C15 cycloalkenyl, C2-C15 alkynyl, C1-C15 alkoxy, C1-C15 alkylthio, C6-C55 aryl ether, C6-C55 aryl sulfide, C6 - an aryl group of C55, an aromatic heterocyclic group of C5-C55, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an alkylamino group of C1-C40 or a silane group having a silicon number of 1 to 5 of C3-C15; One or more.
  • the boron complex compound in the present invention is preferably represented by the following formula 2:
  • R 7 to R 14 are the same or different and are each independently selected from the group consisting of hydrogen, deuterium, an alkyl group which may be substituted, a cycloalkyl group which may be substituted, a heterocyclic group which may be substituted, an alkenyl group which may be substituted, a cycloalkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, an alkylthio group which may be substituted, an aryl ether group which may be substituted, an arylthioether group which may be substituted, An aryl group which may be substituted, a heteroaryl group which may be substituted, a carbonyl group which may be substituted, a carboxyl group which may be substituted, an oxycarbonyl group which may be substituted, a carbamoyl group which may be substituted, an alkylamino group which may be substituted or may be One or more of the substituted
  • the substituents are each independently selected from the group consisting of hydrazine, halogen, C1-C15 alkyl, C3-C15 cycloalkyl, C3-C15 heterocyclic, C2-C15 alkenyl, C4.
  • -C15 cycloalkenyl, C2-C15 alkynyl, C1-C15 alkoxy, C1-C15 alkylthio, C6-C55 aryl ether, C6-C55 aryl sulfide, C6 - an aryl group of C55, an aromatic heterocyclic group of C5-C55, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an alkylamino group of C1-C40 or a silane group having a silicon number of 1 to 5 of C3-C15; One or more.
  • R 15 to R 18 are fluorine.
  • the refractive index is proportional to the polarizability and density. For materials with low polarizability and density, the refractive index is smaller.
  • n refractive index
  • wavelength of illumination light
  • R ⁇ polarizability
  • V molecular volume
  • the boron complex compound represented by the above formula 2, wherein the alkylene group is bonded to the boron complex compound, can reduce the film density, thereby obtaining a low refractive index.
  • the boron complex compound in the present invention is further preferably represented by the following formula 3:
  • R 19 to R 30 are the same or different and are each independently selected from the group consisting of hydrogen, deuterium, an alkyl group which may be substituted, a cycloalkyl group which may be substituted, a heterocyclic group which may be substituted, an alkenyl group which may be substituted, a cycloalkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, an alkylthio group which may be substituted, an aryl ether group which may be substituted, an arylthioether group which may be substituted, An aryl group which may be substituted, a heteroaryl group which may be substituted, a carbonyl group which may be substituted, a carboxyl group which may be substituted, an oxycarbonyl group which may be substituted, a carbamoyl group which may be substituted, an alkylamino group which may be substituted or may be One or more of the substituted
  • the substituents are each independently selected from the group consisting of hydrazine, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C3-C6 heterocyclic, C2-C6 alkenyl, C4.
  • the boron coordination compound represented by the above formula 3 has an alkylene linkage, so that it has a steric hindrance effect, thereby having superior film stability, and the alkylene linkage structure can lower the absorption coefficient, so that the film is in the ultraviolet/visible range.
  • a lower refractive index can be obtained.
  • R 19 to R 30 are the same or different and are each independently selected from the group consisting of hydrogen, a substituted alkyl group, a cycloalkyl group which may be substituted, an alkoxy group which may be substituted or an alkylthio group which may be substituted.
  • the boron complex compound represented by the above formula 3 is preferred from the viewpoint of heat resistance at the time of film formation.
  • R 31 to R 34 are fluorine.
  • n is preferably 1 from the viewpoint of heat resistance at the time of film formation such as easy synthesis and resistance heating vapor deposition.
  • the substituent is preferably a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a t-butyl group, a methoxy group or an ethoxy group.
  • propoxy or n-butoxy is preferably a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a t-butyl group, a methoxy group or an ethoxy group.
  • propoxy or n-butoxy is preferably a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a t-butyl group, a methoxy group or an ethoxy group.
  • propoxy or n-butoxy is preferably a methyl group, an ethy
  • the above alkyl group is preferably a C1-C20 alkyl group; further preferably one of a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a sec-butyl group or a t-butyl group; A variety.
  • the above alkyl group may have a substituent or may have no substituent.
  • the above cycloalkyl group is preferably a C3-C20 cycloalkyl group; more preferably one or more of a cyclopropyl group, a cyclohexyl group, a norbornyl group, or a saturated alicyclic hydrocarbon group such as an adamantyl group.
  • the above cycloalkyl group may have a substituent or may have no substituent.
  • the heterocyclic group is preferably a C2-C20 heterocyclic group; more preferably one or more of an aliphatic ring having an atom other than carbon in a ring such as a pyran ring, a piperidine ring or a cyclic amide.
  • the above heterocyclic group may have a substituent or may have no substituent.
  • the above alkenyl group is preferably a C2-C20 alkenyl group; more preferably one or more of an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group or a butadienyl group.
  • the above alkenyl group may have a substituent or may have no substituent.
  • the above cycloalkenyl group is preferably a C3-C20 cycloalkenyl group; more preferably one or more of an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group; kind.
  • the above cycloalkenyl group may have a substituent or may have no substituent.
  • the alkynyl group is preferably a C2-C20 alkynyl group; more preferably an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group.
  • the above alkynyl group may have a substituent or may have no substituent.
  • the alkoxy group is preferably a C1-C20 alkoxy group; more preferably one or more of a functional group such as a methoxy group, an ethoxy group or a propoxy group bonded to an aliphatic hydrocarbon group via an ether bond.
  • the aliphatic hydrocarbon group may have a substituent or may have no substituent.
  • the above alkylthio group is a group in which an oxygen atom of an alkoxy group is substituted with a sulfur atom. It is preferably a C1-C20 alkylthio group; the alkylthioalkyl group may have a substituent or may have no substituent.
  • the above aryl group is preferably an C6-C60 aryl group; more preferably one or more of an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a benzene terphenyl group or a fluorenyl group.
  • the aryl group may have a substituent or may have no substituent.
  • the above heteroaryl group is preferably a C4-C60 aromatic heterocyclic group; further preferably a furyl group, a thienyl group, a pyrrole group, a benzofuranyl group, a benzothienyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a pyridine One or more of a group or a quinolinyl group or the like.
  • the aromatic heterocyclic group may have a substituent or may have no substituent.
  • the aryl ether group is preferably a C6-C40 aryl ether group; more preferably a functional group such as a phenoxy group bonded to an aromatic hydrocarbon group via an ether bond.
  • the aryl ether group may or may not have a substituent.
  • the above aryl sulfide group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom.
  • Preferred is a C6-C60 aryl sulfide group.
  • the aromatic hydrocarbon group in the aryl sulfide group may or may not have a substituent.
  • the above halogen is selected from fluorine, chlorine, bromine or iodine.
  • the above carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group or alkylamino group may have a substituent or may have no substituent.
  • the number of carbon atoms of the alkylamino substituent is not particularly limited, and is usually in the range of 2 or more and 60 or less.
  • the above silane group is represented by a functional group having a bond to a silicon atom such as a trimethylsilyl group, a triethylsilyl group, a dimethyl tert-butylsilane group or a triphenylsilyl group, and the silane group may have a substituent. It is also possible to have no substituents.
  • the number of carbon atoms of the silane group is not particularly limited, and is usually in the range of 1 or more and 40 or less.
  • the substituents are each independently selected from the group consisting of hydrazine, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C3-C6 heterocyclic, C2-C6 alkenyl, C4.
  • the boron coordination compound provided by the present invention can solve the problems of improving luminous efficiency and improving color purity due to superior film stability and refractive index.
  • the boron complex compound is not particularly limited, and specific examples thereof are as follows.
  • the synthesis of the boron complex represented by the above formulas 1, 2, and 3 can be carried out by a known method. For example, an organoboron reagent and an ethylenediamine (water-containing linyl) derivative are reacted, but are not limited to these methods.
  • the organic light-emitting device of the present invention has, in order, a substrate, a first electrode, one or more organic layer films including a light-emitting layer, a second electrode that transmits light emitted from the light-emitting layer, and a cover layer, and the light-emitting layer passes electric energy. Glowing.
  • the substrate to be used is preferably a glass substrate such as soda glass or alkali-free glass.
  • the thickness of the glass substrate is not particularly limited as long as it is sufficient to maintain mechanical strength. Therefore, 0.5 mm or more is sufficient.
  • the material of the glass is preferably as small as possible because the amount of ions eluted from the glass is as small as possible.
  • commercially available protective coatings such as SiO 2 may also be used.
  • the substrate does not have to be glass, and for example, an anode may be formed on the plastic substrate.
  • the material used in the first electrode is preferably a metal such as gold, silver or aluminum having a high refractive index property or a metal alloy such as an APC alloy. These metals or metal alloys may also be laminated in multiple layers. Further, a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO) may be laminated on the upper surface and/or the lower surface of the metal, the metal alloy or the laminate thereof.
  • a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO) may be laminated on the upper surface and/or the lower surface of the metal, the metal alloy or the laminate thereof.
  • the material used in the second electrode is preferably a material that forms a translucent or transparent film that transmits light.
  • a material that forms a translucent or transparent film that transmits light For example, silver, magnesium, aluminum, calcium or an alloy of these metals, a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO).
  • a transparent conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium oxide
  • IZO indium zinc oxide
  • the method for forming the above electrode may be, for example, resistance heating vapor deposition, electron beam evaporation, sputtering, ion plating, or gel coating, and the like, and is not particularly limited. Further, the first electrode and the second electrode function as an anode with respect to the organic film layer and the other as a cathode depending on the work function of the material used.
  • the organic layer may be composed of only a light-emitting layer, a hole transport layer/light-emitting layer, 2) a light-emitting layer/electron transport layer, and 3) a hole transport layer/light-emitting layer/electron transport layer, 4)
  • the hole injection layer/hole transport layer/light emitting layer/electron transport layer, and 5) a structure in which a hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer or the like is laminated.
  • each of the above layers may be either a single layer or a plurality of layers.
  • the anode side electrode is bonded to the hole input layer or the hole transport layer
  • the cathode side electrode is bonded to the electron input layer or the electron transport layer.
  • the hole transport layer can be formed by a method of laminating or mixing one or more kinds of hole transport materials, or by a method using a mixture of a hole transport material and a polymer binder.
  • the hole transporting material needs to efficiently transport holes from the positive electrode between the electrodes to which the electric field is applied. Therefore, it is desirable that the hole injection efficiency is high and the injected holes can be efficiently transported. Therefore, the hole transporting material is required to have an appropriate ion potential, and has a large hole mobility, and further, is excellent in stability, and is unlikely to cause impurities which may become traps during production and use.
  • the substance satisfying such conditions is not particularly limited, and may be, for example, 4,4'-bis(N-(3-methylphenyl)-N-phenylamino)biphenyl (TPD), 4,4'- Bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPD), 4,4'-bis(N,N-bis(4-biphenylyl)amino)biphenyl (TBDB), Biphenylamine such as bis(N,N-diphenyl-4-phenylamino)-N,N-diphenyl-4,4'-diamino-1,1'-biphenyl (TPD232), 4, 4 ',4"-tris(3-methylphenyl(phenyl)amino)triphenylamine (m-MTDATA), 4,4', 4"-tris(1-naphthyl(phenyl)amino)triphenylamine ( 1-TNATA
  • a heterocyclic compound such as an oxadiazole derivative, a phthalocyanine derivative or a porphyrin derivative, or a fullerene derivative
  • a polycarbonic acid having the above monomer in a side chain is also preferable.
  • styrene derivatives, polythiophene, polyaniline, polyfluorene, polyvinylcarbazole and polysilane is also preferable.
  • an inorganic compound such as P-type Si or P-type SiC can also be used.
  • a hole injecting layer may be provided between the anode and the hole transporting layer.
  • the organic light-emitting element can achieve a low driving voltage and improve the durability life.
  • the hole injection layer is generally preferably a material having a lower ion potential than the hole transport layer material.
  • a benzidine derivative or a star-type triarylamine material group such as the above TPD232 may be used, and a phthalocyanine derivative or the like may also be used.
  • the hole injection layer is composed of an acceptor compound alone or that the acceptor compound is doped in another hole transport layer.
  • the acceptor compound examples include metal chlorides such as iron trichloride (III), aluminum chloride, gallium chloride, indium chloride, and cesium chloride, and metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, and cerium oxide. , a charge transfer ligand such as tris(4-bromophenyl)hexachloroantimonate (TBPAH). Further, it may be an organic compound having a nitro group, a cyano group, a halogen or a trifluoromethyl group in the molecule, an anthraquinone compound, an acid anhydride compound or a fullerene.
  • metal chlorides such as iron trichloride (III), aluminum chloride, gallium chloride, indium chloride, and cesium chloride
  • metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, and cerium oxide.
  • a charge transfer ligand such as tris(4-bromopheny
  • the light-emitting layer may be any one of a single layer and a plurality of layers, and may be formed of a light-emitting material (host material, dopant material), which may be a mixture of the host material and the dopant material, or may be only
  • the main material can be used in either case. That is, in each of the light-emitting layers of the light-emitting element of the present invention, only the host material or only the dopant material may emit light, or the host material and the dopant material may emit light together. From the viewpoint of efficiently utilizing electric energy and obtaining light of high color purity, it is preferable that the light-emitting layer is formed by mixing a host material and a dopant material.
  • the host material and the dopant material may be one type or a combination of a plurality of types, and any of them may be used.
  • the doping material may be added to the entire host material or may be added to a portion, either in any case.
  • the doping material may be either laminated or dispersed, either in any case.
  • the doping material can control the luminescent color.
  • the amount of the dopant material is too large, the concentration extinction phenomenon occurs. Therefore, the amount thereof is preferably 20% by weight or less, and more preferably 10% by weight or less based on the host material.
  • the doping method may be a method of co-evaporation with a host material, or a method of simultaneously vapor-depositing after mixing with a host material.
  • the luminescent material examples include a fused ring derivative such as ruthenium or osmium which is conventionally known as an illuminant, a metal chelating quinolin compound such as tris(8-hydroxyquinoline)aluminum, and a dibenzofuran derivative.
  • a fused ring derivative such as ruthenium or osmium which is conventionally known as an illuminant
  • a metal chelating quinolin compound such as tris(8-hydroxyquinoline)aluminum
  • dibenzofuran derivative a fused ring derivative
  • the substance, the carbazole derivative, the indolocarbazole derivative, the polyphenylenevinylene derivative, the polyparaphenylene derivative, and the polythiophene derivative in the polymer are not particularly limited.
  • the host material contained in the luminescent material is not particularly limited, and ruthenium, phenanthrene, anthracene, benzophenanthrene, tetracene, anthracene, benzo[9,10]phenanthrene, fluoranthene, anthracene, anthracene, etc. may be used.
  • a cyclic compound or a derivative thereof an aromatic amine derivative such as N,N'-dinaphthyl-N,N'-diphenyl-4,4'-diphenyl-1,1'-diamine, or the like a metal chelate hydroxyquinoline compound such as (8-hydroxyquinoline)aluminum, a pyrrolopyrrole derivative, a dibenzofuran derivative, a carbazole derivative, an indolocarbazole derivative, a triazine derivative,
  • the polymer may, for example, be a polyphenylene vinylene derivative, a polyparaphenylene derivative, a polyfluorene derivative, a polyvinylcarbazole derivative or a polythiophene derivative, and is not particularly limited.
  • the doping material is not particularly limited, and examples thereof include a compound having a condensed aromatic ring such as naphthalene, anthracene, phenanthrene, anthracene, benzophenanthrene, anthracene, benzo[9,10]phenanthrene, fluoranthene, anthracene or anthracene.
  • a phosphorescent material may be doped in the light-emitting layer.
  • the phosphorescent material is a material that can also be phosphorescent at room temperature.
  • a phosphorescent material is used as the dopant, it is required to be substantially capable of phosphorescence at room temperature, but is not particularly limited, and is preferably organic containing at least one metal selected from the group consisting of indium, germanium, antimony, palladium, platinum, rhodium, and iridium.
  • Metal complex compound From the viewpoint of having high phosphorescence luminous efficiency at room temperature, an organometallic complex having indium or platinum is more preferable.
  • an anthracene derivative As a host material used in combination with a phosphorescent dopant, an anthracene derivative, a carbazole derivative, an indolocarbazole derivative, a nitrogen-containing aromatic compound derivative having a pyridine, a pyrimidine or a triazine skeleton,
  • An aromatic hydrocarbon compound derivative such as an arylbenzene derivative, a spiroindole derivative, a trimeric europium, a benzo[9,10]phenanthrene, a dibenzofuran derivative, a dibenzothiophene or the like, an oxygen group-containing compound, and a hydroxyl group.
  • An organic metal complex such as a quinoline ruthenium complex can be suitably used, but basically, as long as the triplet energy of the dopant used is larger and electrons and holes can be smoothly injected or transported from the respective layer transport layers, There is no particular limitation. Further, two or more kinds of triplet light-emitting dopants may be contained, or two or more types of host materials may be contained. In addition, more than one triplet luminescent dopant and one or more fluorescent luminescent dopants may also be included.
  • the electron transport layer is a layer in which electrons are injected from the cathode and electrons are transferred.
  • the electron transport layer preferably has high electron injection efficiency and can efficiently transport the injected electrons. Therefore, the electron transport layer is preferably composed of a substance having a large electron affinity and electron mobility and excellent stability, and which is less likely to cause impurities which are traps during production and use.
  • the electron transport layer mainly functions to efficiently prevent holes from the anode from being combined and flowing to the cathode side, even materials having a lower electron transporting ability are not so high.
  • the effect of improving the luminous efficiency is also equivalent to the case of a material having a high electron transporting ability. Therefore, in the electron transport layer in the present invention, the hole blocking layer which can efficiently prevent hole migration is also included as an equivalent.
  • the electron transporting material used in the electron transporting layer is not particularly limited, and examples thereof include a condensed aromatic ring derivative such as naphthalene or an anthracene, and a styrene-based aromatic group represented by 4,4'-di(diphenylvinyl)biphenyl. a cyclic derivative, an anthracene derivative such as hydrazine or biphenyl fluorene, a phosphine oxide derivative, a hydroxyquinoline complex such as tris(8-hydroxyquinoline)aluminum, a benzohydroxyquinoline complex, or a hydroxyazole complex.
  • a condensed aromatic ring derivative such as naphthalene or an anthracene
  • a cyclic derivative an anthracene derivative such as hydrazine or biphenyl flu
  • a substance, an azomethine complex, a cycloheptatrienol metal complex or a flavonol metal complex, preferably having a heteroaromatic ring structure from the viewpoint of lowering the driving voltage and enabling high-efficiency luminescence A compound having a heteroaryl ring structure composed of an element selected from the group consisting of carbon, hydrogen, nitrogen, oxygen, silicon, and phosphorus and containing electron-withdrawing nitrogen.
  • the heteroaryl ring containing an electron-withdrawing nitrogen has high electrophilicity.
  • An electron transporting material having electron-withdrawing nitrogen readily accepts electrons from a cathode having high electrophilicity, so that the driving voltage of the light-emitting element can be lowered. Further, since the electron supply to the light-emitting layer is increased and the probability of recombination in the light-emitting layer is increased, the light-emitting efficiency is improved.
  • heteroaryl ring containing an electron-withdrawing nitrogen examples include a pyridine ring, a pyrazine ring, a pyrimidine ring, a quinoline ring, a quinoxaline ring, a naphthyridine ring, a pyrimidopyrimidine ring, a benzoquinoline ring, and a phenanthrene ring.
  • a porphyrin ring an imidazole ring, an oxazole ring, an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, or a phenamimidazole ring, etc. .
  • examples of the compound having such a heteroaromatic ring structure include a benzimidazole derivative, a benzoxazole derivative, a benzothiazole derivative, an oxadiazole derivative, a thiadiazole derivative, and a triazole derivative.
  • An oligopyridine derivative such as a pyrazine derivative, a phenanthroline derivative, a quinoxaline derivative, a quinoline derivative, a benzoquinoline derivative, a bipyridine or a terpyridine.
  • the fused aromatic ring skeleton is preferably an anthracene skeleton, an anthracene skeleton or a phenanthroline skeleton.
  • the above electron transporting material may be used singly or in combination of two or more kinds of the above electron transporting materials, or one or more other electron transporting materials may be mixed and used in the above electron transporting material.
  • a donor compound can also be added.
  • the donor compound refers to a compound which facilitates electron injection from the cathode or the electron injecting layer to the electron transporting layer by improving the electron injecting energy barrier, thereby improving the electrical conductivity of the electron transporting layer.
  • the donor compound of the present invention include an alkali metal, an alkali metal-containing inorganic salt, an alkali metal-organic complex, an alkaline earth metal, an alkaline earth metal-containing inorganic salt, or an alkaline earth metal and an organic substance.
  • alkali metal or the alkaline earth metal include an alkali metal such as lithium, sodium or barium having a low work function and an effect of improving electron transporting ability, or an alkaline earth metal such as magnesium or calcium.
  • an electron injecting layer may also be provided between the cathode and the electron transporting layer.
  • the electron injecting layer is inserted for the purpose of assisting electron injection from the cathode to the electron transporting layer, and when inserted, a compound having a heteroaromatic ring structure containing electron-withdrawing nitrogen may be used, or a layer containing the above donor compound may be used.
  • an inorganic substance of an insulator or a semiconductor can also be used. By using these materials, it is possible to effectively prevent the short-circuiting of the light-emitting element and to improve the electron injectability, which is preferable.
  • At least one metal compound selected from the group consisting of an alkali metal chalcogenide, an alkaline earth metal chalcogenide, an alkali metal halide, and an alkaline earth metal halide is preferably used. Further, a complex of an organic substance and a metal can also be used favorably.
  • Examples of the method for forming the respective layers constituting the light-emitting element include resistance heating vapor deposition, electron beam evaporation, sputtering, molecular lamination, or coating, and the like, and are not particularly limited, but generally, from the viewpoint of element characteristics Preferably, resistance heating evaporation or electron beam evaporation is used.
  • the thickness of the organic layer varies depending on the electric resistance value of the luminescent material, and is not limited, but is preferably 1 to 1000 nm.
  • the film thickness of each of the light-emitting layer, the electron transport layer, and the hole transport layer is preferably 1 nm or more and 200 nm or less, and more preferably 5 nm or more and 100 nm or less.
  • the coating layer of the present invention can achieve high luminous efficiency by containing the above-described boron complex compound. Since the boron complex compound has an alkylene linkage, it has a fluorine element and thus has a low refractive index. Further, since it has excellent film forming properties of the deposited film, various underlayers such as glass or metal have a stable refractive index and a coefficient of decay. When the underlayer of the material having a low film forming property of the vapor-deposited film is changed, the refractive index and the coefficient of decay are often largely changed. In order to maximize the high luminous efficiency and achieve color reproducibility, it is preferred to laminate the boron-containing complex compound to a thickness of 20 nm to 120 nm. More preferably, the laminate thickness is from 40 nm to 80 nm. Further, from the viewpoint of maximizing the luminous efficiency, the laminated thickness is more preferably 50 nm to 70 nm.
  • the method for forming the coating layer is not particularly limited, and examples thereof include resistance heating vapor deposition, electron beam evaporation, sputtering, molecular lamination method, coating method, inkjet method, doctor blade method, or laser transfer method, and the like, and are not particularly limited. .
  • the light-emitting element of the present invention has a function of converting electric energy into light.
  • the electric energy a direct current is mainly used, and a pulse current or an alternating current can also be used.
  • the current value and the voltage value it should be selected in such a manner that the maximum brightness can be obtained with the lowest possible energy.
  • the light-emitting element of the present invention can be suitably used as a flat display which is displayed in, for example, a matrix and/or a field.
  • the matrix method refers to a two-dimensional arrangement of pixels for display in a checkered or mosaic shape, and displays characters or images by a collection of pixels.
  • the shape and size of the pixel depend on the application. For example, in the image and character display of a computer, a monitor, and a television, a quadrangular pixel having a side length of 300 ⁇ m or less is generally used, and in the case of a large display such as a display panel, a pixel having a side length of mm is used.
  • monochrome display it is only necessary to arrange pixels of the same color, but in the case of color display, red, green, and blue pixels are arranged to be displayed. In this case, there are typically triangular and striped shapes.
  • the driving method of the matrix may be any one of a line-by-line driving method and an active matrix.
  • the structure of the line-by-line drive is simple, when the operational characteristics are considered, the active matrix may be excellent, and therefore, it is required to be used flexibly depending on the application.
  • the field mode in the present invention refers to a mode in which a pattern is formed and an area determined by the arrangement of the pattern is illuminated to display predetermined information.
  • Examples thereof include a digital clock, a time in a thermometer, a temperature display, an operation state display of an audio device, an electromagnetic cooker, and the like, and a panel display of a car.
  • the matrix display and the field display can coexist in the same panel.
  • the light-emitting element of the present invention is preferably used as an illumination light source, and can provide a light source that is thinner and lighter than the prior art and can emit light on the surface.
  • the invention is illustrated by the following examples, but the invention is not limited to the boron coordination compounds and the synthesis methods exemplified in the examples.
  • the 1 H-NMR spectrum was measured using a JEOL (400 MHz) nuclear magnetic resonance apparatus; the HPLC spectrum was measured using a Shimadzu LC-20AD high performance liquid chromatograph.
  • NPD (N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine)
  • N,N'-bis(3,5-di-tert-butyl salicylidene)-1,2 ethylenediamine 15.0 g (30 mmol) and boron trifluoride-diethyl ether complex were added to the reactor.
  • 21.6 g (152 mmol), 300 ml of toluene, and 20 g (152 mmol) of N,N-diisopropylethylamine were stirred under heating at 40 ° C for 2.5 hours. After cooling to room temperature, 300 ml of water was added, and the filtrate was separated into an organic layer and an aqueous layer. The organic layer was washed twice with saturated aqueous sodium carbonate and dried over magnesium sulfate.
  • the obtained solid was recrystallized from toluene (150 ml) and ethanol (750 ml) to yield 17.89 g of crude product.
  • the crude product was sublimed at a pressure of 3 ⁇ 10 -3 Pa at a temperature of 220 ° C to give the compound [51] (yellow solid).
  • N,N'-bis(3,5-di-tert-butyl salicylidene)-1,2-cyclohexanediamine, 16.40 g (30 mmol), boron trifluoride was added to the reactor under a nitrogen atmosphere.
  • 21.6 g (152 mmol) of diethyl ether complex, 300 ml of toluene, and 20 g (152 mmol) of N,N-diisopropylethylamine were heated and stirred at 40 ° C for 2.5 hours. After cooling to room temperature, 300 ml of water was added, and the filtrate was separated into an organic layer and an aqueous layer.
  • N,N'-bis[2-[N-2,4-di-tert-butyl salicylaldehyde 1-ethylamine]methylamine, 13.13 g (30 mmol), trifluoroethylene was added to the reactor under a nitrogen atmosphere.
  • 21.6 g (152 mmol) of a boron-diethyl ether complex, 300 ml of toluene, and 20 g (152 mmol) of N,N-diisopropylethylamine were heated and stirred at 40 ° C for 2.5 hours. After cooling to room temperature, 300 ml of water was added, and the filtrate was separated into an organic layer and an aqueous layer.
  • the alkali-free glass was ultrasonically washed in isopropyl alcohol for 15 minutes, and then subjected to UV ozone washing treatment for 30 minutes in the atmosphere.
  • a reflective anode was formed on the alkali-free glass by a sputtering method using 100 nm of silver (Ag) and 10 nm of ITO in order. After the reflective anode was subjected to a UV ozone washing treatment for 10 minutes, a hole injecting layer (NPD and F4-TCNQ (weight ratio: 97:3), 50 nm), a hole transporting layer was sequentially laminated on the anode by vacuum evaporation.
  • NPD and F4-TCNQ weight ratio: 97:3
  • a translucent cathode was formed at a weight ratio of 10:1, 15 nm. Thereafter, a compound having a film thickness of 10 nm and a refractive index of 1.56 having a refractive index of 1.56, a coating layer 1 and a film thickness of 50 nm, a wavelength of 460 nm, and a refractive index of 2.06, were sequentially deposited on the translucent cathode.
  • Compound [TBDB] - Cover Layer 2 was sealed with an epoxy resin adhesive in a glove box of a dry nitrogen atmosphere to prepare a light-emitting element.
  • the light-emitting element was subjected to a direct current of 10 mA/cm 2 at room temperature in the air, and the luminance and color purity were measured from a light-emitting luminescence meter (CS1000, Konica Minolta Co., Ltd.) for light-emitting of the sealing plate.
  • Example 1 The same as Example 1 except that the cover layer 1 was the compound [53].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • Example 1 The same as Example 1 except that the cover layer 1 was the compound [55].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • Example 1 The same as Example 1 except that the cover layer 1 was the compound [70].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • Example 1 The same as Example 1 except that the cover layer 1 was the compound [141].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • Example 1 The same as Example 1 except that the cover layer 1 was the compound [10].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • Example 1 The same as Example 1 except that the cover layer 1 was the compound [154].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • Example 1 The same as Example 1 except that the cover layer 1 was the compound [159].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • cover layer 1 is TBDB and the cover layer 2 is NPD, the rest is the same as in the first embodiment.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • cover layer 1 is TBDB and the cover layer 2 is Alq 3 .
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • Example 1 The same procedure as in Example 1 was carried out except that the cover layer 1 was the compound [51] and the cover layer 2 was the compound [141].
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • Example 2 The same as Example 1 except that the cover layer 1 was the compound [160] and the cover layer 2 was a TBDB.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • Embodiment 1 The same as Embodiment 1 except that the cover layer 1 is TBDB and the cover layer 2 is not provided.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • Example 1 The same as Example 1 except that the cover layer 1 was the compound [51] and the cover layer 2 was not provided.
  • the organic light-emitting element was evaluated. The evaluation results are shown in Table 1.
  • n1 (460) is a refractive index of the cladding material 1 having a refractive index of 460 nm.
  • N2 (460) is a refractive index of the cladding material 2 having a refractive index of 460 nm.
  • the light-emitting elements of Examples 1 to 8 and 12 satisfy both high luminous efficiency and high color purity.
  • the difference in refractive index between the cover layer material 1 and the cover layer material 2 was less than 0.3, and the luminous efficiency was slightly lower.
  • the light-emitting elements of Comparative Examples 1 to 2 were equivalent to the color purity of the examples, but the luminous efficiency was remarkably lower than that of the examples, and high luminous efficiency and high color purity could not be simultaneously satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

一种有机发光元件,包含基板、第一电极、包括发光层在内的一层以上有机层膜、第二电极,所述发光元件还具有覆盖层;所述覆盖层在第二电极上,所述覆盖层包括高折射层和低折射层;所述覆盖层的低折射层材料是硼配位化合物有机小分子化合物。有机发光元件可实现高发光效率及色再现性。有机发光元件可用于有机EL显示器、液晶显示器的背光源、照明、标示板、标识灯等。

Description

有机发光元件 技术领域
本发明涉及有机发光元件,特别是应用了硼配位化合物后光取出效率得到大幅改善的有机发光元件,本发明还涉及用于上述有机发光元件的发光元件材料。
背景技术
有机发光元件是一种自发光的显示装置,具有轻薄、广视角、低耗电、高对比等特点。
有机发光元件的发光原理是,在从电极注入的空穴与电子在发光层通过再结合而经由激发态回复到基态时产生光。该发光元件具有薄型且能在低驱动电压下高亮度发光以及能通过选择发光材料而进行多色发光的特征,因此倍受关注。
该研究自从由柯达公司的C.W.Tang等揭示有机薄膜元件能以高亮度发光以来,对于其应用,已有许多研究。有机薄膜发光元件被采用在手机主显示屏等中,其实用化取得切实进展。但是,还存在很多技术课题,其中,元件的高效率化和低耗电是一个很大的课题。
根据有机发光层产生的光所发射的方向,有机发光元件可以分为底发射有机发光元件和顶发射有机发光元件。在底发射有机发光元件中,光射向基板侧,在有机发光层的上部形成有反射电极,在有机发光层的下部形成有透明电极。这种情况下,当有机发光元件为有源矩阵元件时,由于形成有薄膜晶体管的部分不透光,所以,发光面积减小。另一方面,在顶发射有机元件 中,透明电极形成在有机发光层的上部,反射电极形成在有机发光层的下部,所以光射向与基板侧相反的方向,由此,光所透过的面积增加,亮度提高。
现有技术中,为了提高顶发射有机发光元件的发光效率,所采用的方法有在使发光层的光透过的上部半透明金属电极上形成有机覆盖层,以此调节光学干涉距离,抑制外光反射和由表面等离子体能量移动引起的消光等(可参见专利文献1~5)。
例如,专利文献2记载,在顶发射有机发光元件的上部半透明金属电极上形成折射率在1.7以上、膜厚
Figure PCTCN2018115705-appb-000001
的有机覆盖层,使红色发光和绿色发光有机发光元件的发光效率提高了约1.5倍。所用的有机覆盖层的材料是胺衍生物、喹啉醇络合物等。
专利文献4记载,能隙小于3.2eV的材料会影响蓝色波长,不适合用于有机覆盖层,使用的有机覆盖层材料是具有特定化学结构的胺衍生物等。
专利文献5记载,要实现低CIEy值的蓝色发光元件,有机覆盖层材料在波长430nm-460nm的折射率变化量为Δn>0.08,使用的有机覆盖层材料是具有特定化学结构的蒽衍生物等。
如上所述,在现有技术中,使用具有高折射率的特定结构的胺衍生物或使用符合特定参数要求的材料作为有机覆盖层材料来改善光取出效率和色纯度,但是尚未解决兼顾发光效率和色纯度的问题,特别是在制备蓝光发光元件的情况下。
专利文献
专利文献1:WO2001/039554
专利文献2:JP2006-156390
专利文献3:JP2007-103303
专利文献4:JP2006-302878
专利文献5:WO2011/043083。
发明内容
为了解决上述兼顾发光效率和色纯度的问题,本发明者发现当覆盖层为高折射层和低折射层的层叠体、并且是使用满足特定参数的材料形成时,尤其是低折射层由满足特定参数要求、具有硼配位化合物的材料形成时,能够解决兼顾提高光取出效率与改善色纯度的问题。根据本发明,能够得到发光取出效率大幅度提高且具有优越的色纯度的有机发光元件。
本发明提供一种有机发光元件,其包含基板、第一电极、包括发光层在内的一层以上有机层膜、及第二电极,所述发光元件还具有覆盖层;所述覆盖层配置于第二电极上,所述覆盖层包括高折射层和低折射层;所述覆盖层的低折射层由有机小分子化合物形成。其覆盖顺序为从第二电极起依次为高折射层和低折射层、或依次为低折射层和高折射层。
所述高折射层折射率为1.8以上,低折射层的折射率为1.5-1.7。所述高折射层的折射率和低折射层的折射率之差为0.3以上。
所述高折射层由下述无机化合物和有机化合物中的至少一种形成,其中所述无机化合物是SiOx、SiNy、Zns、ZnSe、ZrO或TiO 2中的一种或多种;所述x,y为1~4的整数。所述有机化合物是芳胺衍生物、咔唑衍生物、苯并咪唑衍生物或三唑衍生物中的一种或多种。因为无机化合物相比于有机化合物在蒸镀工艺中需要更高的温度,因此优选高折射率材料为有机化合物。
本发明的低折射层既可以位于第一电极和第二电极之间,也可以位于第二电极和覆盖层之间,还可以位于第二电极之上。
由于在第二电极上配置有覆盖层,其能够有效地保护第二电极和有机发光层避免受到外面的湿气、氧气和污染物的影响,从而能够防止有机发光元件的寿命下降。顶发射发光元件比底发射发光元件具有扩大发光面的优点,从而提高光取出效率。
在上述通过使用覆盖层材料来实现高发光效率、高色纯度的发光元件中,要求覆盖层具有低折射率层。
作为低折射层材料,现有技术中通常会选择长链烷烃和无机氟化物等,但是长链烷烃在高温容易分解,使用蒸镀方式有困难;无机氟化物则有蒸镀温度高的问题。
现有技术中还提出过使用π共轭结构的芳胺衍生物,咔唑衍生物,苯并咪唑衍生物或三唑衍生物等作为低折射层材料的方案,但是上述芳胺衍生物衰减系数高,所以折射率高达1.7以上,其衰减系数和吸光系数有下式(A)的所示的关系。(式中,α:吸光系数、k:衰减系数、ω:光频率、c:光速)
Figure PCTCN2018115705-appb-000002
如式(A)显示衰减系数和吸光系数成正比,因此,吸光系数高的材料,其衰减系数也高。所以以上均不适合用于低折射率材料。在以上结果的基础上进行了深入研究后,本发明者发现,硼配位化合物适用于低折射率材料。此外还发现,由于硼配位化合物用于覆盖层时具有良好的透明性,能使发光效率提高及得到高色纯度元件。
作为满足上述特性的有机材料,优选覆盖层的低折射层由具有硼配位化合物的材料形成。
在本发明中,优选硼配位化合物具体地如以下通式1所示:
Figure PCTCN2018115705-appb-000003
其中,R 1~R 4相同或不同,分别独立选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基中的一种或多种;R 5~R 6相同或不同,分别独立选自氟,烷氧基、芳基醚基或芳基中的一种;R 1和R 2可以键合成环。
由于氟的导入可以降低折射率,故优选R 5~R 6是氟。
在上述R 1~R 6所表示的基团中,所述烷基优选为C1-C20的烷基;进一步优选为甲基、乙基、正丙基、异丙基、正丁基、仲丁基或叔丁基等饱和脂肪族烃基中的一种或多种。上述烷基可以具有取代基也可以没有取代基。
所述环烷基优选为C3-C20的环烷基;进一步优选为环丙基、环已基、降冰片基、或金刚烷基等饱和脂环式烃基中的一种或多种。上述环烷基可以具有取代基也可以没有取代基。
所述杂环基优选为C3-C20的杂环基;进一步优选为吡喃环、哌啶环、或环状酰胺等环内具有碳以外的原子的脂肪族环中的一种或多种。上述杂环基可以具有取代基也可以没有取代基。
所述链烯基优选为C2-C20的链烯基;进一步优选为乙烯基、烯丙基、或丁二烯基等包含双键的不饱和脂肪族烃基中的一种或多种。上述链烯基可以具有取代基也可以没有取代基。
所述环烯基优选为C3-C20的环烯基;进一步优选为环戊烯基、环戊二烯 基、或环己烯基等包含双键的不饱和脂环式烃基中的一种或多种。上述环烯基可以具有取代基也可以没有取代基。
所述炔基优选为C2-C20的炔基;进一步优选为乙炔基等包含三键的不饱和脂肪族烃基。上述炔基可以具有取代基也可以没有取代基。
所述烷氧基优选为C1-C20的烷氧基;进一步优选为甲氧基、乙氧基、或丙氧基等介由醚键键合脂肪族烃基的官能团中的一种或多种。该脂肪族烃基可以具有取代基也可以没有取代基。
所述烷硫基是烷氧基的氧原子被置换为硫原子的基团。优选为C1-C20的烷硫基;烷硫基的烷基可以具有取代基也可以没有取代基。
所述芳基醚基优选为C6-C60的芳基醚基;进一步优选为苯氧基等介由醚键键合芳香族烃基的官能团。芳基醚基可以具有取代基也可以没有取代基。
所述芳基硫醚基是芳基醚基的醚键的氧原子被置换为硫原子的基团。优选为C6-C60的芳基硫醚基。芳基硫醚基中的芳香族烃基可以具有取代基也可以没有取代基。
所述芳基优选为C6-C60的芳基;进一步优选为苯基、萘基、联苯基、菲基、苯三联苯基或芘基等芳香族烃基中的一种或多种。芳基可以具有取代基也可以没有取代基。
所述杂芳基优选为C4-C60的芳香族杂环基;进一步优选为呋喃基、噻吩基、吡咯、苯并呋喃基、苯并噻吩基、二并苯呋喃基、二并苯噻吩基、吡啶基或喹啉基等中的一种或多种。芳香族杂环基可以具有取代基也可以没有取代基。
所述卤素选自于氟、氯、溴、或碘。
所述羰基、羧基、氧羰基、氨基甲酰基、烷氨基可以具有取代基也可以没有取代基。对于烷氨基取代基的碳数没有特别限制,通常为2以上60以下的范围。
所述硅烷基表示为例如三甲基甲硅烷基等具有与硅原子键合的键的官能团,硅烷基可以具有取代基也可以没有取代基。对于硅烷基的碳数没有特别 限制,通常为3以上20以下的范围。另外,硅数通常为1以上6以下的范围。
所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
上述通式(1)所示的硼配位化合物,被相同或不相同取代基取代时,可以形成空间位阻效应,从而具有优越的薄膜稳定性。
以上结果得出,覆盖层使用具有低折射率和优越的薄膜稳定性的硼配位化合物,能够解决兼顾提高光取出效率与经时稳定性问题。
本发明中的硼配位化合物,优选如下式2所示:
Figure PCTCN2018115705-appb-000004
其中,R 7~R 14相同或不同,分别独立选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基中的一种或多种;也可以R 13~ R 14键合而形成环;R 15~R 18相同或不同,分别独立选自氟,烷氧基、芳基醚基或芳基中的一种;n是1-3的整数;R 7和R 8可以键合成环,R 10和R 11可以键合成环。
所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
由于氟的导入可以降低折射率,故优选R 15~R 18是氟。
上述取代基与上文所述取代基的说明相同。
如Lorentz-Lorent式所示,折射率与极化率和密度成正比。极化率和密度小的材料,其折射率越小。
Figure PCTCN2018115705-appb-000005
n:折光率,λ:照射光波长,R λ:极化率,V:分子体积
上述通式2所示硼配位化合物,亚烷基连接硼配位化合物,可降低膜密度,从而能得到低的折射率。
本发明中的硼配位化合物,进一步优选如下式3所示:
Figure PCTCN2018115705-appb-000006
其中,R 19~R 30相同或不同,分别独立选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基中的一种或多种;也可以R 29~R 30键合而形成环;R 31~R 34相同或不同,分别独立选自氟,烷氧基,芳基醚基或芳基中的一种;n是1-3的整数。
所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C6的烷基、C3-C6的环烷基、C3-C6的杂环基、C2-C6的链烯基、C4-C6的环烯基、C2-C6的炔基、C1-C6的烷氧基、C1-C6的烷硫基中的一种或多种。
上述取代基与上文所述取代基的说明相同。
上述通式3所示硼配位化合物具有亚烷基连接,所以具有空间位阻效应,从而具有优越的薄膜稳定性,而且亚烷基连接结构可以降低吸光系数,从而薄膜在紫外·可见光范围内能得到更低的折射率。进一步优选R 19~R 30相同或不同,分别独立选自氢,可被取代的烷基、可被取代的环烷基、可被取代的烷氧基或可被取代的烷硫基中的一种或多种,其具有降低极化率的性能,从而进一步能降低折射率。
从成膜时耐热性角度考虑,优选上述通式3所示硼配位化合物。
由于氟的导入可以降低折射率,故优选R 31~R 34是氟。
另外,从容易合成和电阻加热蒸镀法等成膜时耐热性角度考虑,n优选1。
另外,从降低膜密度,成膜时耐热性角度考虑,优选取代基为甲基、乙 基、正丙基、异丙基、正丁基、叔丁基、甲氧基、乙氧基、丙氧基或正丁氧基中的一种或多种。
上述烷基优选为C1-C20的烷基;进一步优选为甲基、乙基、正丙基、异丙基、正丁基、仲丁基或叔丁基等饱和脂肪族烃基中的一种或多种。上述烷基可以具有取代基也可以没有取代基。
上述环烷基优选为C3-C20的环烷基;进一步优选为环丙基、环己基、降冰片基、或金刚烷基等饱和脂环式烃基中的一种或多种。上述环烷基可以具有取代基也可以没有取代基。
上述杂环基优选为C2-C20的杂环基;进一步优选为吡喃环、哌啶环、或环状酰胺等环内具有碳以外的原子的脂肪族环中的一种或多种。上述杂环基可以具有取代基也可以没有取代基。
上述链烯基优选为C2-C20的链烯基;进一步优选为乙烯基、烯丙基、或丁二烯基等包含双键的不饱和脂肪族烃基中的一种或多种。上述链烯基可以具有取代基也可以没有取代基。
上述环烯基优选为C3-C20的环烯基;进一步优选为环戊烯基、环戊二烯基、或环己烯基等包含双键的不饱和脂环式烃基中的一种或多种。上述环烯基可以具有取代基也可以没有取代基。
上述炔基优选为C2-C20的炔基;进一步优选为乙炔基等包含三键的不饱和脂肪族烃基。上述炔基可以具有取代基也可以没有取代基。
上述烷氧基优选为C1-C20的烷氧基;进一步优选为甲氧基、乙氧基、或丙氧基等介由醚键键合脂肪族烃基的官能团中的一种或多种。该脂肪族烃基可以具有取代基也可以没有取代基。
上述烷硫基是烷氧基的氧原子被置换为硫原子的基团。优选为C1-C20 的烷硫基;烷硫基的烷基可以具有取代基也可以没有取代基。
上述芳基优选为C6-C60的芳基;进一步优选为苯基、萘基、联苯基、菲基、苯三联苯基或芘基等芳香族烃基中的一种或多种。芳基可以具有取代基也可以没有取代基。
上述杂芳基优选为C4-C60的芳香族杂环基;进一步优选为呋喃基、噻吩基、吡咯、苯并呋喃基、苯并噻吩基、二苯并呋喃基、二苯并噻吩基、吡啶基或喹啉基等中的一种或多种。芳香族杂环基可以具有取代基也可以没有取代基。
上述芳基醚基优选为C6-C40的芳基醚基;进一步优选为苯氧基等介由醚键键合芳香族烃基的官能团。芳基醚基可以具有取代基也可以没有取代基。
上述芳基硫醚基是芳基醚基的醚键的氧原子被置换为硫原子的基团。优选为C6-C60的芳基硫醚基。芳基硫醚基中的芳香族烃基可以具有取代基也可以没有取代基。
上述卤素选自于氟、氯、溴、或碘。
上述羰基、羧基、氧羰基、氨基甲酰基、烷氨基可以具有取代基也可以没有取代基。对于烷氨基取代基的碳数没有特别限制,通常为2以上60以下的范围。
上述硅烷基表示为例如三甲基硅烷基、三乙基硅烷基、二甲基叔丁基硅烷基、三苯基硅烷基等具有与硅原子键合的键的官能团,硅烷基可以具有取代基也可以没有取代基。对于硅烷基的碳数没有特别限制,通常为1以上40以下的范围。
所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C6的烷基、C3-C6的环烷基、C3-C6的杂环基、C2-C6的链烯基、C4-C6的环烯基、C2-C6 的炔基、C1-C6的烷氧基或C1-C6的烷硫基的一种或多种。
本发明提供的硼配位化合物,由于具有优越的薄膜稳定性和折射率,能够解决兼顾提高发光效率与改善色纯度的问题。
所述硼配位化合物,没有特别限定,具体可列举如下的例子。
Figure PCTCN2018115705-appb-000007
Figure PCTCN2018115705-appb-000008
Figure PCTCN2018115705-appb-000009
Figure PCTCN2018115705-appb-000010
Figure PCTCN2018115705-appb-000011
Figure PCTCN2018115705-appb-000012
Figure PCTCN2018115705-appb-000013
上述通式1、2、3所示的硼配位化合物的合成可以使用已知的方法进行。例如有机硼试剂和乙二胺(含水杨基)衍生物反应等,但并不限定于这些方法。
下面具体说明本发明的有机发光元件的实施方式。本发明的有机发光元件依次具有基板、第一电极、包括发光层在内的一层以上的有机层膜、使前述发光层发出的光透过的第二电极和覆盖层,发光层通过电能而发光。
在本发明的发光元件中,所用的基板优选为钠玻璃或无碱玻璃等玻璃基板。对于玻璃基板的厚度,只要是足以保持机械强度的厚度即可,因此,0.5mm以上就足够。对于玻璃的材质,由于从玻璃中溶出的离子越少越好,因此,优选无碱玻璃。另外,市场上销售的涂有SiO 2等防护涂层的也可以使用。此外,如果第一电极稳定地发挥功能,则基板不必一定为玻璃,例如,也可以在塑料基板上形成阳极。
第一电极中使用的材料优选为具有高折射率特性的金、银、铝等金属或APC系合金之类的金属合金。这些金属或金属合金也可以是多层层叠。此外,可在金属、金属合金或它们的层积体的上面和/或下面层叠氧化锡、氧化铟、氧化锡铟(ITO)、氧化锌铟(IZO)等透明导电性金属氧化物。
第二电极中使用的材料优选为可形成能使光透过的半透明或透明膜的材料。例如,银、镁、铝、钙或这些金属的合金,氧化锡、氧化铟、氧化锡铟 (ITO)或氧化锌铟(IZO)等透明导电性金属氧化物。这些金属、合金或金属氧化物也可以是多层层叠。
上述电极的形成方法可以是电阻加热蒸镀、电子束蒸镀、溅射、离子喷镀或胶涂布法等,没有特别限制。此外,第一电极与第二电极根据所使用的材料的功函数,其中一方相对于有机膜层起阳极作用,另一方起阴极作用。
有机层除了可以仅由发光层构成以外,还可以是由1)空穴传输层/发光层,2)发光层/电子传输层,3)空穴传输层/发光层/电子传输层,4)空穴注入层/空穴传输层/发光层/电子传输层,5)空穴注入层/空穴传输层/发光层/电子传输层/电子注入层等层叠而成的结构。此外,上述各层可以分别是单层或多层中的任一种。采用1)~5)的结构时,阳极侧电极与空穴输入层或空穴传输层接合,阴极侧电极则与电子输入层或电子传输层接合。
空穴传输层可通过将空穴传输材料的一种或二种以上层叠或混合的方法,或通过使用空穴传输材料和高分子粘合剂的混合物的方法来形成。空穴传输材料需要在施加了电场的电极之间高效率地传输来自正极的空穴,因此希望空穴注入效率高、能够高效率地传输注入的空穴。因此,要求空穴传输材料具有适当离子势,且空穴迁移率大,进而,稳定性优异,制造及使用时不容易产生会成为陷阱的杂质。对满足这样的条件的物质,没有特别限定,例如可以是4,4’-二(N-(3-甲基苯基)-N-苯基氨基)联苯(TPD)、4,4’-二(N-(1-萘基)-N-苯基氨基)联苯(NPD)、4,4’-二(N,N-二(4-联苯基)氨基)联苯(TBDB)、二(N,N-二苯基-4-苯基氨基)-N,N-二苯基-4,4’-二氨基-1,1’-联苯(TPD232)等联苯胺,4,4’,4”-三(3-甲基苯基(苯基)氨基)三苯胺(m-MTDATA)、4,4’, 4”-三(1-萘基(苯基)氨基)三苯胺(1-TNATA)等称作星型三芳胺的材料组,具有咔唑骨架的材料,其中优选咔唑类多聚体,具体可列举二(N-芳基咔唑)或二(N-烷基咔唑)等二咔唑衍生物、三咔唑衍生物、四咔唑衍生物、三苯系化合物、吡唑啉衍生物、芪系化合物、肼系化合物、苯并呋喃衍生物、噻吩衍生物、噁二唑衍生物、酞菁衍生物、卟啉衍生物等杂环化合物、或富勒烯衍生物,在聚合物系中,还优选侧链上具有上述单体的聚碳酸酯或苯乙烯衍生物、聚噻吩、聚苯胺、聚芴、聚乙烯基咔唑和聚硅烷等。此外,还可以使用P型Si、P型SiC等无机化合物。
可在阳极和空穴传输层之间设置空穴注入层。通过设置空穴注入层,可使有机发光元件实现低驱动电压,提高耐久寿命。空穴注入层通常优选使用比空穴传输层材料的离子势低的材料。具体地,例如可以是上述TPD232之类的联苯胺衍生物、星型三芳胺材料组,另外也可以使用酞菁衍生物等。此外,还优选空穴注入层由受体性化合物单独构成,或受体性化合物掺杂在别的空穴传输层中使用。受体性化合物可列举例如三氯化铁(III)、氯化铝、氯化镓、氯化铟、氯化锑等金属氯化物,氧化钼、氧化钒、氧化钨、氧化钌等金属氧化物,三(4-溴苯基)六氯锑酸铵(TBPAH)等电荷转移配位物。此外,还可以是分子内具有硝基、氰基、卤素或三氟甲基的有机化合物、醌系化合物、酸酐系化合物或富勒烯等。
本发明中,发光层可以是单层、多层中的任一种,可分别用发光材料(主体材料、掺杂材料)形成,其可以是主体材料和掺杂材料的混合物,也可以仅为主体材料,任一情况都可以。即,在本发明发光元件的各发光层中,可以是仅主体材料或仅掺杂材料发光,也可以是主体材料和掺杂材料一起发光。从高效率地利用电能、得到高色纯度的发光的角度考虑,优选发光层由主体 材料和掺杂材料混合而成。另外,主体材料和掺杂材料分别可以为一种,也可以为多种的组合,任一情况都可以。掺杂材料可以添加在整个主体材料中,也可以添加在一部分中,任一情况都可以。掺杂材料可以是层叠的,也可以分散的,任一情况都可以。掺杂材料可以控制发光色。掺杂材料的量过多时会发生浓度消光现象,因此,其用量相对于主体材料,优选为20重量%以下,更优选为10重量%以下。掺杂方法可以是与主体材料共蒸镀的方法,也可以是预先与主体材料混合后同时蒸镀的方法。
作为发光材料,具体而言,可使用以往作为发光体而已知的蒽、芘等稠环衍生物,三(8-羟基喹啉)铝等金属螯合类羟基喹啉化合物、二苯并呋喃衍生物、咔唑衍生物、吲哚并咔唑衍生物,聚合物中的聚亚苯基亚乙烯基衍生物、聚对亚苯基衍生物、以及聚噻吩衍生物等,没有特别限定。
对发光材料中所含有的主体材料没有特别限定,可以使用蒽、菲、芘、苯并菲、并四苯、苝、苯并[9,10]菲、荧蒽、芴、茚等具有稠芳环的化合物或其衍生物、N,N’-二萘基-N,N’-二苯基-4,4’-二苯基-1,1’-二胺等芳香族胺衍生物、三(8-羟基喹啉)铝等金属螯合类羟基喹啉化合物、吡咯并吡咯衍生物、二苯并呋喃衍生物、咔唑衍生物、吲哚并咔唑衍生物、三嗪衍生物,在聚合物中,可以使用聚亚苯基亚乙烯基衍生物、聚对亚苯基衍生物、聚芴衍生物、聚乙烯基咔唑衍生物、聚噻吩衍生物等,没有特别限定。
此外,对掺杂材料没有特别限制,可列举萘、蒽、菲、芘、苯并菲、苝、苯并[9,10]菲、荧蒽、芴、茚等具有稠芳环的化合物或其衍生物(例如2-(苯并噻唑-2-基)-9,10-二苯基蒽等)、呋喃、吡咯、噻吩、噻咯、9-硅杂芴、9,9’-螺二硅杂芴、苯并噻吩、苯并呋喃、吲哚、二苯并噻吩、 二苯并呋喃、咪唑并吡啶、菲咯啉、吡啶、吡嗪、萘啶、喹喔啉、吡咯并吡啶、噻吨等具有杂芳环的化合物或其衍生物、硼烷衍生物、二苯乙烯基苯衍生物、氨基苯乙烯基衍生物、吡咯甲川衍生物、二酮基吡咯并[3,4-c]吡咯衍生物、香豆素衍生物、咪唑、噻唑、噻二唑、咔唑、噁唑、噁二唑、三唑等唑衍生物、芳香族胺衍生物等。
另外,发光层中也可以掺杂磷光发光材料。磷光发光材料为室温下也可以磷光发光的材料。使用磷光发光材料作为掺杂剂时,需要基本上能够在室温下磷光发光,但没有特别限定,优选含有选自铟、钌、铑、钯、铂、锇和铼中的至少一种金属的有机金属络合化合物。从室温下具有高的磷光发光效率的角度考虑,更优选具有铟或铂的有机金属络合物。作为与磷光发光性掺杂剂组合使用的主体材料,吲哚衍生物、咔唑衍生物、吲哚并咔唑衍生物,具有吡啶、嘧啶、三嗪骨架的含氮芳香族化合物衍生物,多芳基苯衍生物、螺芴衍生物、三聚茚、苯并[9,10]菲等芳香烃化合物衍生物,二苯并呋喃衍生物、二苯并噻吩等含有氧族元素的化合物,羟基喹啉铍络合物等有机金属络合物可良好地使用,但基本上只要比使用的掺杂剂的三重态能大、电子和空穴能从各自层输送层顺利地注入或传输,则没有特别限定。另外,可以含有2种以上三重态发光掺杂剂,也可以含有2种以上主体材料。此外,也可以含有一种以上的三重态发光掺杂剂和一种以上的萤光发光掺杂剂。
在本发明中,电子传输层为电子从阴极注入、再将电子传输的层。电子传输层宜具有高的电子注入效率,且能高效率地传输注入的电子。因此,电子传输层优选由电子亲和力和电子迁移率大且稳定性优异、制造及使用时不容易产生会成为陷阱的杂质的物质构成。但是,在考虑空穴和电子的传输均衡时,如果电子传输层主要发挥可以高效率地阻止来自阳极的空穴不再结合 而流向阴极侧的作用,则即使由电子传输能力不那么高的材料构成,改善发光效率的效果也会与由电子传输能力高的材料构成的情况同等。因而,在本发明中的电子传输层中,可以高效率地阻止空穴迁移的空穴阻止层作为等同物也包含在内。
对电子传输层中使用的电子传输材料没有特别限定,可列举萘、蒽等稠芳环衍生物、以4,4’-二(二苯基乙烯基)联苯为代表的苯乙烯基系芳环衍生物、蒽醌、联苯醌等醌衍生物、氧化膦衍生物、三(8-羟基喹啉)铝等羟基喹啉络合物、苯并羟基喹啉络合物、羟基唑络合物、偶氮甲碱络合物、环庚三烯酚酮金属络合物或黄酮醇金属络合物,从降低驱动电压、能够得到高效率发光的角度考虑,优选使用具有杂芳环结构的化合物,所述杂芳环结构由选自碳、氢、氮、氧、硅、磷中的元素构成并且含有吸电子性氮。
含有吸电子性氮的杂芳环具有高亲电子性。具有吸电子性氮的电子传输材料容易接受来自具有高亲电子性的阴极的电子,因而可以降低发光元件的驱动电压。此外,由于向发光层的电子供给增大、在发光层再结合的概率增加,因而发光效率提高。作为含有吸电子性氮的杂芳环,可以列举例如,吡啶环、吡嗪环、嘧啶环、喹啉环、喹喔啉环、萘啶环、嘧啶并嘧啶环、苯并喹啉环、菲咯啉环、咪唑环、噁唑环、噁二唑环、三唑环、噻唑环、噻二唑环、苯并噁唑环、苯并噻唑环、苯并咪唑环、或菲并咪唑环等。
另外,作为具有这些杂芳环结构的化合物,可以列举出例如苯并咪唑衍生物、苯并噁唑衍生物、苯并噻唑衍生物、噁二唑衍生物、噻二唑衍生物、三唑衍生物、吡嗪衍生物、菲咯啉衍生物、喹喔啉衍生物、喹啉衍生物、苯并喹啉衍生物,联吡啶、三联吡啶等低聚吡啶衍生物。上述衍生物具有稠芳环骨架时,玻璃转化温度提高,且电子迁移率增加,由此,降低发光元件的 驱动电压的效果增大,因而优选。此外,从发光元件的耐久寿命提高、合成容易、原料容易购得的角度考虑,优选上述稠芳环骨架为蒽骨架、芘骨架或菲咯啉骨架。
上述电子传输材料可以单独使用,也可以将二种以上的上述电子传输材料混合使用,或将一种以上的其它电子传输材料混合到上述电子传输材料中使用。另外,也可以添加给体化合物。这里,给体化合物是指通过改善电子注入能障而使电子容易从阴极或电子注入层向电子传输层注入、进而改善电子传输层的电传导性的化合物。作为本发明的给体化合物的优选例,可列举:碱金属、含有碱金属的无机盐、碱金属与有机物的络合物、碱土金属、含有碱土金属的无机盐、或碱土金属与有机物的络合物等。作为碱金属、或碱土金属的优选种类,可列举低功函数且改善电子传输能力的效果大的锂、钠、或铯之类的碱金属或镁、钙之类的碱土金属。
本发明中,也可在阴极和电子传输层之间设置电子注入层。通常,电子注入层是以帮助电子从阴极注入到电子传输层为目的而插入的,插入时,可以使用含有吸电子性氮的杂芳环结构的化合物,也可以使用含有上述给体化合物的层。另外,在电子注入层中,还可以使用绝缘体或半导体的无机物。使用这些材料,可以有效地防止发光元件短路,且可以提高电子注入性,因而优选。作为这些绝缘体,优选使用选自碱金属硫族化物、碱土金属硫族化物、碱金属卤化物及碱土金属卤化物中的至少一种金属化合物。另外,有机物与金属的络合物也可良好地使用。
作为构成发光元件的上述各层的形成方法,可列举电阻加热蒸镀、电子束蒸镀、溅射、分子层叠法或涂层法等,没有特别限制,但是,通常,从元件特性的角度考虑,优选电阻加热蒸镀或电子束蒸镀。
有机层的厚度视发光物质的电阻值而异,不能限定,但优选为1~1000nm。发光层、电子传输层、空穴传输层的膜厚分别优选为1nm以上200nm以下,更优选为5nm以上100nm以下。
本发明的覆盖层通过含有上述具有硼配位化合物,能够实现高发光效率。硼配位化合物因为具有亚烷基连接,具有氟元素从而具有低的折射率。更进一步,因为具有优异的蒸镀薄膜的成膜性能,不论玻璃或金属等各种各样的底层都具有稳定的折射率和消衰系数。蒸镀薄膜的成膜性能低的材料的底层变化的时候,折射率和消衰系数往往也会发生较大的变化。为了使高发光效率极大化、实现色再现性,优选使含有硼配位化合物以20nm~120nm的厚度层叠。更优选层叠厚度为40nm~80nm。另外,从可以使发光效率极大化的角度考虑,更优选层叠厚度为50nm~70nm。
对覆盖层的形成方法没有特别限定,可列举电阻加热蒸镀、电子束蒸镀、溅射、分子层叠法、涂层法、喷墨法、刮板法或激光转印法等,没有特别限制。
本发明的发光元件具有可以将电能转换为光的功能。这里,作为电能,主要使用直流电流,也可以使用脉冲电流或交流电流。对电流值及电压值没有特别限制,但考虑到元件的耗电量和寿命时,应以能以尽可能低的能量得到最大亮度的方式来选择。
本发明的发光元件可良好地用作以例如矩阵及/或字段方式进行显示的平面显示器。
矩阵方式是指用于显示的像素以方格状或马赛克状等二维配置,通过像素的集合来显示文字或图像。像素的形状、尺寸视用途而定。例如,在计算机、监控器、电视的图像及文字显示中,通常使用边长在300μm以下的四边 形的像素,另外,在显示面板那样的大型显示器的情况下,使用边长为mm等级的像素。在单色显示的情况下,只要排列同色的像素即可,但在彩色显示的情况下,将红、绿、蓝色像素排列进行显示。这种情况下,典型的有三角型和条纹型。而且,该矩阵的驱动方法可以是逐线驱动方法和有源矩阵中的任一种。逐线驱动虽然其构造简单,但在考虑操作特性时,有时会有有源矩阵优异的情况,因此,需要根据用途灵活使用。
本发明中的字段方式是指形成图案、使由该图案的配置所确定的区域发光、从而显示预先确定的信息的方式。可列举例如:数字钟、温度计中的时刻、温度显示,音响设备、电磁灶等的工作状态显示及汽车的面板显示等。而且,所述矩阵显示和字段显示可以共存在同一个面板中。
本发明的发光元件优选用作照明光源,可以提供比现有的薄且轻、可进行面发光的光源。
具体实施方式
通过以下实施例对本发明进行举例说明,但本发明并不限于这些实施例中例举的硼配位化合物和合成方法。
如无特别说明,实施例和比较例中使用的材料和方法都按照本领域技术人员通常所知的那样来获得或使用。
实施例和比较例中使用的甲苯,N,N-二异丙基乙胺,二氯甲烷,和碳酸钠3,5-二叔丁基水杨醛,三氟化硼乙醚等购于国药公司;
1H-NMR谱图使用JEOL(400MHz)核磁共振仪来测定;HPLC谱图使用岛津LC-20AD高效液相仪来测定。
实施例和比较例中合成和/或使用了下述化合物:
化合物[10]:B-联苯-N-联苯-3-联苯-2-氮杂6-氧杂环己硼烷
化合物[51]:[[[2,2’-[1,2-乙二[(三价氮基)次甲基]]双[4,6-双(叔丁基)苯酚]](2-)]]四氟二硼
化合物[53]:[[[2,2’-[1,2-乙二[(三价氮基)次甲基]]双[5-N,N’-二乙基胺苯酚]](2-)]]四氟二硼
化合物[55]:[[[2,2’-[1,2-乙二[(三价氮基)次甲基]]双[5-甲氧基苯酚]](2-)]]四氟二硼
化合物[69]:[[[2,2’-[1,2-乙二[(三价氮基)二亚甲基次甲基]]双[4,6-双(叔丁基)苯酚]](2-)]]四甲氧基二硼
化合物[70]:[[[2,2’-[1,2-乙二[(三价氮基)二亚甲基次甲基]]双[5-N,N’-二乙基胺苯酚]](2-)]]四氟二硼
化合物[118]:[[[2,2’-[1,2-二(三价氮基)环己基]双[4,6-双(叔丁基)苯酚]](2-)]]四氟二硼
化合物[124]:[[[2,2’-[1,2-二(三价氮基)环己基]双[5-N,N’-二乙基胺苯酚]](2-)]]四氟二硼
化合物[136]:[[[2,2’-2-[1-乙二[(三价氮基)次乙基]甲基胺]双[4,6-双(叔丁基)苯酚]](2-)]]四氟二硼
化合物[141]:[[[2,2’-2-[1-乙二[(三价氮基)次乙基]甲基胺]双[二乙基胺苯酚]](2-)]]四氟二硼
化合物[154]:3,3’-(1,4-丁二基)二[3-,5-双(苯基)-3,4-二氢-2-二氟3-氮杂-6氧杂-环己硼烷
化合物[159]:[[[2,2’-[1,2-丁二[(三价氮基)次甲基]]双[4,6-双(叔丁基)苯酚]](2-)]]四氟二硼
化合物[160]:3,3’-(1,4-丁二基)-N,N’-苯基-二氟3,6-氮杂- 环己硼烷
Figure PCTCN2018115705-appb-000014
实施例和比较例中还使用了下述化合物:
BF3.Et2O:三氟化硼乙醚络合物
DIEA:N,N-二异丙基乙胺
NPD:(N,N’-二苯基-N,N’-二(1-萘基)-1,1’-联苯-4,4’-二胺)
Figure PCTCN2018115705-appb-000015
F4-TCNQ(2,3,5,6-四氟-7,7’,8,8’-四氰二甲基对苯醌)
Figure PCTCN2018115705-appb-000016
BH:(9-(2-萘基)-10-(4-(1-萘基)苯基)蒽)
Figure PCTCN2018115705-appb-000017
BD:(E-7-(4-(二苯基氨基)苯乙烯基)-N,N-二苯基-9,9’-二甲基芴基-2-胺)
Figure PCTCN2018115705-appb-000018
Alq 3:(三(8-羟基喹啉)铝)
Figure PCTCN2018115705-appb-000019
TBDB:(N,N,N’,N’-4(4-联苯基)联苯二氨)
Figure PCTCN2018115705-appb-000020
关于本说明书中记载的化合物,在本说明书中同时记载了其化学式命名和结构式的情况下,化合物的结构以结构式为准。
制备例1
化合物[51]的合成
氮气氛围下,反应器中加入N,N`-双(3,5-二叔丁基亚水杨基)-1,2乙二胺15.0g(30mmol)、三氟化硼-乙醚络合物21.6g(152mmol)、甲苯300ml、N,N-二异丙基乙胺20g(152mmol)40℃加热搅拌2.5小时。冷却至室温,加水300ml,滤液分层为有机层和水层,有机层饱和碳酸钠水溶液洗涤2次,硫酸镁干燥。得到的固体用甲苯(150ml)和乙醇(750ml)重结晶,得到17.89g的粗产品。粗产品在压力3×10 -3Pa,温度220℃下升华得到化合物[51](淡黄色固体)。
1HNMR(DMSO):δ8.28~7.10(s,6H),4.31~4.27(m,4H),1.57~1.40(m,36H).
HPLC(纯度=99.0%)
制备例2
化合物[53]的合成
氮气氛围下,反应器中加入2,2’-[1,2-乙二基双(次氮基甲基亚甲基)]双[5-(二乙基氨基)]苯酚12.32g(30mmol)、三氟化硼-乙醚络合物21.6g(152mmol)、甲苯300ml、N,N-二异丙基乙胺20g(152mmol)40℃加热搅拌2.5小时。冷却至室温,加水300ml,滤液分层为有机层和水层,有机层饱和碳酸钠水溶液洗涤2次,硫酸镁干燥。得到的固体用甲苯(150ml)和乙醇(750ml)重结晶,得到20.35g的粗产品。粗产品在压力3×10 -3Pa,温度215℃下升华得到化合物[53](淡黄色固体)。
1HNMR(DMSO):δ8.40~7.15(s,8H),4.30~4.27(m,4H),3.70~3.82(m,8H),1.21~1.30(m,12H).
HPLC(纯度=98.9%)
制备例3
化合物[55]的合成
氮气氛围下,反应器中加入,2,2’-[1,2-乙二基双(次氮基甲基亚甲基)]双[5-甲氧基]苯酚9.85g(30mmol)、三氟化硼-乙醚络合物21.6g(152mmol)、甲苯300ml、N,N-二异丙基乙胺20g(152mmol)40℃加热搅拌2.5小时。冷却至室温,加水300ml,滤液分层为有机层和水层,有机层饱和碳酸钠水溶液洗涤2次,硫酸镁干燥。得到的固体用甲苯(150ml)和乙醇(750ml)重结晶,得到17.56g的粗产品。粗产品在压力3×10 -3Pa,温度220℃下升华得到化合物[55](淡黄色固体)。
1HNMR(DMSO):δ8.35~7.10(s,8H),4.29~4.26(m,4H),3.80~3.85(s,6H).
HPLC(纯度=99.2%)
制备例4
化合物[69]的合成
氮气氛围下,反应器中加入,2,2’-[(1,1,2,2-四甲基-1,2-乙二基)双(氮基甲烷基)]双[4,6-双(1,1-二甲基乙基)]苯酚,16.46g(30mmol)、三氟化硼-乙醚络合物21.6g(152mmol)、甲苯300ml、N,N-二异丙基乙胺20g(152mmol)40℃加热搅拌2.5小时。冷却至室温,加水300ml,滤液分层为有机层和水层,有机层饱和碳酸钠水溶液洗涤2次,硫酸镁干燥。得到的固体用甲苯(150ml)和乙醇(750ml)重结晶,得到18.78g的粗产品。粗产品在压力3×10 -3Pa,温度225℃下升华得到化合物[69](淡黄色固体)。
1HNMR(DMSO):δ8.30~7.10(s,6H),1.55~1.37(m,12H),1.57~1.40(m,36H).
HPLC(纯度=99.4%)
制备例5
化合物[70]的合成
氮气氛围下,反应器中加入,2,2’-[(1,1,2,2-四甲基-1,2-乙二基)双(氮基甲烷基)]双[5-(二乙氨基)]苯酚,14.00g(30mmol)、三氟化硼-乙醚络合物21.6g(152mmol)、甲苯300ml、N,N-二异丙基乙胺20g(152mmol)40℃加热搅拌2.5小时。冷却至室温,加水300ml,滤液分层为有机层和水层,有机层饱和碳酸钠水溶液洗涤2次,硫酸镁干燥。得到的固体用甲苯(150ml)和乙醇(750ml)重结晶,得到16.55g的粗产品。粗产品在压力3×10 -3Pa,温度230℃下升华得到化合物[70](淡黄色固体)。
1HNMR(DMSO):δ8.30~7.10(s,8H),3.70~3.82(m,8H),1.55~1.37(m,12H),1.21~1.30(m,12H).
HPLC(纯度=98.9%)
制备例6
化合物[118]的合成
氮气氛围下,反应器中加入,N,N’-双(3,5-二叔丁基亚水杨基)-1,2-环己烷二胺,16.40g(30mmol)、三氟化硼-乙醚络合物21.6g(152mmol)、甲苯300ml、N,N-二异丙基乙胺20g(152mmol)40℃加热搅拌2.5小时。冷却至室温,加水300ml,滤液分层为有机层和水层,有机层饱和碳酸钠水溶液洗涤2次,硫酸镁干燥。得到的固体用甲苯(150ml)和乙醇(750ml)重结晶,得到18.16g的粗产品。粗产品在压力3×10 -3Pa,温度230℃下升华得到化合物[118](淡黄色固体)。
1HNMR(DMSO):δ8.28~7.10(s,6H),3.51~3.54(s,2H),2.13~2.25(m,4H),1.68~1.72(m,4H),1.55~1.40(m,36H).
HPLC(纯度=99.6%)
制备例7
化合物[124]的合成
氮气氛围下,反应器中加入,2,2’-[1,2-环己烷二基双(邻甲基次甲基)]双[5-(二乙基氨基)]苯酚,13.93g(30mmol)、三氟化硼-乙醚络合物21.6g(152mmol)、甲苯300ml、N,N-二异丙基乙胺20g(152mmol)40℃加热搅拌2.5小时。冷却至室温,加水300ml,滤液分层为有机层和水层,有机层饱和碳酸钠水溶液洗涤2次,硫酸镁干燥。得到的固体用甲苯(150ml)和乙醇(750ml)重结晶,得到17.56g的粗产品。粗产品在压力3×10 -3Pa,温度230℃下升华得到化合物[124](淡黄色固体)。
1HNMR(DMSO):8.28~7.10(s,8H),3.51~3.54(s,2H),2.13~2.25(m,4H),1.68~1.72(m,4H),3.70~3.82(m,8H),1.21~1.30(m,12H).
HPLC(纯度=99.5%)
制备例8
化合物[136]的合成
氮气氛围下,反应器中加入,N,N’-双[2-[N-2,4-二叔丁基水杨醛 缩1-乙胺]甲基胺,13.13g(30mmol)、三氟化硼-乙醚络合物21.6g(152mmol)、甲苯300ml、N,N-二异丙基乙胺20g(152mmol)40℃加热搅拌2.5小时。冷却至室温,加水300ml,滤液分层为有机层和水层,有机层饱和碳酸钠水溶液洗涤2次,硫酸镁干燥。得到的固体用甲苯(150ml)和乙醇(750ml)重结晶,得到17.56g的粗产品。粗产品在压力3×10 -3Pa,温度220℃下升华得到化合物[136](淡黄色固体)。
1HNMR(DMSO):δ8.28~7.10(s,6H),4.02~4.14(m,4H),3.12~3.25(m,4H),2.67(s,3H),1.55~1.40(m,36H).
HPLC(纯度=99.8%)
实施例1
无碱玻璃在异丙醇中超声波洗涤15分钟后,在大气中进行30分钟UV臭氧洗涤处理。利用测射法在无碱玻璃上,用100nm的银(Ag),10nm的ITO依次成膜形成反射阳极。反射阳极经过10分钟UV臭氧洗涤处理后,利用真空蒸镀法,在阳极上依次层叠蒸镀空穴注入层(NPD和F4-TCNQ(重量比97∶3),50nm),空穴传输层(NPD,80nm),蓝色发光层(BH和BD(重量比97∶3,20nm),电子传输层(Alq 3,35nm),电子注入层(LiF,1nm)后,共蒸镀Mg和Ag(重量比10∶1,15nm)作成半透明阴极。之后,半透明阴极上,依次蒸镀膜厚10nm的波长460nm折射率1.56的化合物[51]-覆盖层1和膜厚50nm的波长460nm折射率2.06的化合物[TBDB]-覆盖层2。最后在干燥氮气氛围的手套箱里,用环氧树脂粘合剂把无碱玻璃制的封口板封装,制成发光元件。
上述发光元件在室温,大气中,加10mA/cm 2直流电流,从封口板的发光用分光放射辉度计(CS1000,柯尼卡美能达株式会社)测试了亮度和色纯度。使用上述测定值测定光度效率为5.3cd/A,色纯度为CIE(x,y)=(0.138,0.050)。
从表1所示的结果可见,使用化合物[51]作为覆盖层时,得到了高发光 效率、高色纯度的高性能发光元件。
实施例2
除了覆盖层1为化合物[53]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例3
除了覆盖层1为化合物[55]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例4
除了覆盖层1为化合物[70]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例5
除了覆盖层1为化合物[141]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例6
除了覆盖层1为化合物[10]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例7
除了覆盖层1为化合物[154]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例8
除了覆盖层1为化合物[159]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例9
除了覆盖层1为TBDB,覆盖层2为NPD以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例10
除了覆盖层1为TBDB,覆盖层2为Alq 3以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例11
除了覆盖层1为化合物[51],覆盖层2为化合物[141]以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
实施例12
除了覆盖层1为化合物[160],覆盖层2为TBDB以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
比较例1
除了覆盖层1为TBDB,没有覆盖层2以外,其余与实施例1相同。
对有机发光元件进行评价。评价结果见表1。
比较例2
除了覆盖层1为化合物[51],没有覆盖层2以外,其余与实施例1相同。 对有机发光元件进行评价。评价结果见表1。
表1:发光元件性能(实施例及比较例)
  覆盖层材料1 n1(460) 覆盖层材料2 n2(460) 发光效率 色纯度CIE(x,y)
实施例1 化合物【51】 1.56 TBDB 2.06 5.3cd/A 0.138,0.050
实施例2 化合物【53】 1.60 TBDB 2.06 5.2cd/A 0.139,0.051
实施例3 化合物【55】 1.61 TBDB 2.06 5.0cd/A 0.140,0.048
实施例4 化合物【70】 1.65 TBDB 2.06 4.9cd/A 0.140,0.049
实施例5 化合物【141】 1.70 TBDB 2.06 4.5cd/A 0.141,0.047
实施例6 化合物【10】 1.66 TBDB 2.06 4.0cd/A 0.141,0.045
实施例7 化合物【154】 1.64 TBDB 2.06 4.3cd/A 0.141,0.047
实施例8 化合物【159】 1.59 TBDB 2.06 5.1cd/A 0.139,0.047
实施例9 TBDB 2.06 NPD 1.92 3.2cd/A 0.138,0.052
实施例10 TBDB 2.06 Alq3 1.82 3.1cd/A 0.138,0.052
实施例11 化合物【51】 1.56 化合物【141】 1.70 3.3cd/A 0.141,0.049
实施例12 化合物【160】 1.69 TBDB 2.06 4.4cd/A 0.141,0.047
比较例1 TBDB 2.06 --- 3.0cd/A 0.141,0.046
比较例2 化合物【51】 1.56 --- 2.0cd/A 0.141,0.045
表中n1(460)为覆盖层材料1折射率为波长460nm的折射率。n2(460)为覆盖层材料2折射率为波长460nm的折射率。
从上述表1所示,实施例1~实施例8、12的发光元件同时满足高发光效率和高色纯度。实施例9至11的发光元件中,覆盖层材料1和覆盖层材料2的折射率之差不足0.3,其发光效率略低。另外,比较例1~比较例2的发光元件与实施例的色纯度是同等,但发光效率比实施例明显低,不能同时满足高发光效率和高色纯度。
本说明书中提到的所有专利文献、非专利文献均通过引用的方式并入本文。本说明书中提到的“多种”包含大于一种的所有情况,即,“一种或多种”包括一种、两种、三种、……等等。本说明书中针对某数值范围分别记载上限和下限时,或者以上限和下限组合的方式记载某数值范围时,其中记载的各上限和各下限可任意组合为新的数值范围,这与直接明确记载组合而成的数值范围的记载形式应被视为是相同的。在不偏离本发明主旨的情况下,本 领域技术人员可对本发明进行改变和改良,这些也包括在本发明的范围内。

Claims (15)

  1. 有机发光元件,包含基板、第一电极、包括发光层在内的一层以上有机层膜、及第二电极,其特征在于:所述发光元件还具有覆盖层;所述覆盖层包含低折射层,所述低折射层由有机小分子化合物形成。
  2. 根据权力要求1所述的有机发光元件,其特征在于:覆盖层配置在第二电极上,所述覆盖层包括高折射层和低折射层。
  3. 根据权利要求2所述的有机发光元件,其特征在于:所述高折射层的折射率为1.8以上;所述低折射层的折射率为1.5-1.7。
  4. 根据权利要求2所述的有机发光元件,其特征在于:所述高折射层的折射率和所述低折射层的折射率之差为0.3以上。
  5. 根据权利要求1或2所述的有机发光元件,其特征在于:所述高折射层由下述无机化合物和有机化合物中的至少一种形成,其中所述无机化合物是SiOx、SiNy、ZnS、ZnSe、ZrO或TiO 2中的一种或多种,其中所述x,y独立地为1~4的整数;所述有机化合物是芳胺衍生物、咔唑衍生物、苯并咪唑衍生物或三唑衍生物中的一种或多种。
  6. 根据权利要求1或2所述的有机发光元件,其特征在于:含有硼配位化合物。
  7. 根据权利要求1或2所述的有机发光元件,其特征在于:所述覆盖层的低折射层由具有硼配位化合物的材料形成。
  8. 根据权利要求6或7所述的有机发光元件,其特征在于:所述硼配位化合物如下述式1所示:
    Figure PCTCN2018115705-appb-100001
    其中,R 1~R 4相同或不同,分别独立选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基中的一种或多种;R 5~R 6相同或不同,分别独立选自氟、烷氧基、芳基醚基或芳基中的一种;R 1和R 2可以键合成环,
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
  9. 根据权利要求8所述的有机发光元件,其特征在于:R 5~R 6为氟。
  10. 根据权利要求8所述的有机发光元件,其特征在于:所述硼配位化合物如下述式2所示:
    Figure PCTCN2018115705-appb-100002
    其中,R 7~R 14相同或不同,分别独立选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基中的一种或多种;也可以R 13~R 14键合而形成环;R 15~R 18相同或不同,分别独立选自氟、烷氧基、芳基醚基或芳基中的一种;n是1-3的整数;R 7和R 8可以键合成环,R 10和R 11可以键合成环,
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C15的烷基、C3-C15的环烷基、C3-C15的杂环基、C2-C15的链烯基、C4-C15的环烯基、C2-C15的炔基、C1-C15的烷氧基、C1-C15的烷硫基、C6-C55的芳基醚基、C6-C55的芳基硫醚基、C6-C55的芳基、C5-C55的芳香族杂环基、羰基、羧基、氧羰基、氨基甲酰基、C1-C40的烷氨基或C3-C15的硅原子数为1-5的硅烷基中的一种或多种。
  11. 根据权利要求10所述的有机发光元件,其特征在于:R 15~R 18为氟。
  12. 根据权利要求10所述的有机发光元件,其特征在于:所述硼配位化合 物如下述式3所示:
    Figure PCTCN2018115705-appb-100003
    其中,R 19~R 30相同或不同,分别独立选自氢、氘、可被取代的烷基、可被取代的环烷基、可被取代的杂环基、可被取代的链烯基、可被取代的环烯基、可被取代的炔基、可被取代的烷氧基、可被取代的烷硫基、可被取代的芳基醚基、可被取代的芳基硫醚基、可被取代的芳基、可被取代的杂芳基、可被取代的羰基、可被取代的羧基、可被取代的氧羰基、可被取代的氨基甲酰基、可被取代的烷氨基或可被取代的硅烷基中的一种或多种;也可以R 29~R 30键合而形成环;R 31~R 34相同或不同,分别独立选自氟、烷氧基、芳基醚基或芳基中的一种;n是1-3的整数;
    所述被取代的情况下,取代基分别独立选自氘、卤素、C1-C6的烷基、C3-C6的环烷基、C3-C6的杂环基、C2-C6的链烯基、C4-C6的环烯基、C2-C6的炔基、C1-C6的烷氧基或C1-C6的烷硫基的一种或多种。
  13. 根据权利要求12所述的有机发光元件,其特征在于,R 19~R 22和R 24~R 27中至少有三个不是氢。
  14. 根据权利要求12所述的有机发光元件,其特征在于:R 31~R 34是氟。
  15. 根据权利要求10-12中任一项所述的有机发光元件,其特征在于:n是1。
PCT/CN2018/115705 2017-11-23 2018-11-15 有机发光元件 WO2019100999A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880058731.8A CN111316461B (zh) 2017-11-23 2018-11-15 有机发光元件
EP18881946.0A EP3716348A4 (en) 2017-11-23 2018-11-15 ORGANIC LIGHT EMITTING ELEMENT
KR1020207013199A KR102413966B1 (ko) 2017-11-23 2018-11-15 유기 발광 소자
JP2020521608A JP7255592B2 (ja) 2017-11-23 2018-11-15 有機発光素子
US16/761,553 US11296304B2 (en) 2017-11-23 2018-11-15 Organic light-emitting element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711179753 2017-11-23
CN201711179577 2017-11-23
CN201711179753.3 2017-11-23
CN201711179577.3 2017-11-23

Publications (1)

Publication Number Publication Date
WO2019100999A1 true WO2019100999A1 (zh) 2019-05-31

Family

ID=66630895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115705 WO2019100999A1 (zh) 2017-11-23 2018-11-15 有机发光元件

Country Status (7)

Country Link
US (1) US11296304B2 (zh)
EP (1) EP3716348A4 (zh)
JP (1) JP7255592B2 (zh)
KR (1) KR102413966B1 (zh)
CN (1) CN111316461B (zh)
TW (1) TWI739046B (zh)
WO (1) WO2019100999A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210032274A (ko) * 2019-09-16 2021-03-24 창춘 하이페리온스 테크놀러지 코., 엘티디. 헤테로고리 화합물 및 그의 유기 전계 발광소자
CN112701238A (zh) * 2021-01-06 2021-04-23 长春海谱润斯科技股份有限公司 一种包含覆盖层及密封层的有机发光器件
CN113260605A (zh) * 2019-08-27 2021-08-13 东丽先端材料研究开发(中国)有限公司 芳香胺化合物、覆盖层材料及发光元件
CN113549094A (zh) * 2021-07-10 2021-10-26 浙江华显光电科技有限公司 一种硼配位化合物及发光器件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937234B (zh) * 2020-06-29 2023-08-15 江苏三月科技股份有限公司 一种含有覆盖层的顶发射有机电致发光器件
CN117229192A (zh) * 2022-08-25 2023-12-15 江苏三月科技股份有限公司 含有三氟甲基或全氟异丙基的双邻苯二甲酰亚胺类有机化合物及包含其的有机电致发光器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925438A (en) * 1996-06-17 1999-07-20 Dai Nippon Printing Co., Ltd. Antireflection film
WO2001039554A1 (en) 1999-11-22 2001-05-31 Sony Corporation Display device
JP2006156390A (ja) 2004-11-26 2006-06-15 Samsung Sdi Co Ltd 有機電界発光素子及びその製造方法
JP2006302878A (ja) 2005-03-24 2006-11-02 Kyocera Corp 発光素子、その発光素子を備えた発光装置及びその製造方法
JP2007103303A (ja) 2005-10-07 2007-04-19 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
WO2011043083A1 (ja) 2009-10-09 2011-04-14 出光興産株式会社 有機エレクトロルミネッセンス素子
CN102544334A (zh) * 2011-01-19 2012-07-04 南京第壹有机光电有限公司 一种高效发光的电致发光器件
CN105590948A (zh) * 2014-11-06 2016-05-18 三星显示有限公司 有机发光装置及其制造方法
CN106654049A (zh) * 2016-12-29 2017-05-10 上海天马有机发光显示技术有限公司 覆盖层、包括所述覆盖层的oled显示面板和电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824893B2 (en) * 2002-02-28 2004-11-30 Eastman Kodak Company Organic element for electroluminescent devices
JP2010237623A (ja) 2009-03-31 2010-10-21 Fujifilm Corp 反射防止フィルム、偏光板、画像表示装置
KR20110058126A (ko) * 2009-11-25 2011-06-01 삼성모바일디스플레이주식회사 유기 발광 표시 장치
WO2013179536A1 (ja) 2012-05-31 2013-12-05 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
CN102993224A (zh) * 2012-09-28 2013-03-27 浙江理工大学 有机二氟化硼配合物
CN102993223A (zh) * 2012-09-28 2013-03-27 浙江理工大学 N,o-双齿配基的有机二氟化硼配合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925438A (en) * 1996-06-17 1999-07-20 Dai Nippon Printing Co., Ltd. Antireflection film
WO2001039554A1 (en) 1999-11-22 2001-05-31 Sony Corporation Display device
JP2006156390A (ja) 2004-11-26 2006-06-15 Samsung Sdi Co Ltd 有機電界発光素子及びその製造方法
JP2006302878A (ja) 2005-03-24 2006-11-02 Kyocera Corp 発光素子、その発光素子を備えた発光装置及びその製造方法
JP2007103303A (ja) 2005-10-07 2007-04-19 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
WO2011043083A1 (ja) 2009-10-09 2011-04-14 出光興産株式会社 有機エレクトロルミネッセンス素子
CN102544334A (zh) * 2011-01-19 2012-07-04 南京第壹有机光电有限公司 一种高效发光的电致发光器件
CN105590948A (zh) * 2014-11-06 2016-05-18 三星显示有限公司 有机发光装置及其制造方法
CN106654049A (zh) * 2016-12-29 2017-05-10 上海天马有机发光显示技术有限公司 覆盖层、包括所述覆盖层的oled显示面板和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3716348A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113260605A (zh) * 2019-08-27 2021-08-13 东丽先端材料研究开发(中国)有限公司 芳香胺化合物、覆盖层材料及发光元件
KR20210032274A (ko) * 2019-09-16 2021-03-24 창춘 하이페리온스 테크놀러지 코., 엘티디. 헤테로고리 화합물 및 그의 유기 전계 발광소자
KR102424609B1 (ko) * 2019-09-16 2022-07-25 창춘 하이페리온스 테크놀러지 코., 엘티디. 헤테로고리 화합물 및 그의 유기 전계 발광소자
CN112701238A (zh) * 2021-01-06 2021-04-23 长春海谱润斯科技股份有限公司 一种包含覆盖层及密封层的有机发光器件
CN112701238B (zh) * 2021-01-06 2022-11-11 长春海谱润斯科技股份有限公司 一种包含覆盖层及密封层的有机发光器件
CN113549094A (zh) * 2021-07-10 2021-10-26 浙江华显光电科技有限公司 一种硼配位化合物及发光器件
CN113549094B (zh) * 2021-07-10 2022-07-29 浙江华显光电科技有限公司 一种硼配位化合物及发光器件

Also Published As

Publication number Publication date
KR102413966B1 (ko) 2022-06-29
TW201925212A (zh) 2019-07-01
JP7255592B2 (ja) 2023-04-11
TWI739046B (zh) 2021-09-11
EP3716348A4 (en) 2021-09-08
EP3716348A1 (en) 2020-09-30
KR20200087758A (ko) 2020-07-21
CN111316461A (zh) 2020-06-19
CN111316461B (zh) 2023-01-20
JP2021504876A (ja) 2021-02-15
US11296304B2 (en) 2022-04-05
US20210175475A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
KR102255037B1 (ko) 유기 발광 소자
TWI631111B (zh) 芳香胺化合物、發光元件材料及發光元件
TWI739046B (zh) 有機發光元件
TW201920601A (zh) 發光元件、含有其的顯示器、照明裝置及感測器
CN111194315B (zh) 芳香胺化合物、覆盖层材料及发光元件
WO2021036683A1 (zh) 芳香胺化合物、覆盖层材料及发光元件
WO2014124600A1 (zh) 有机发光元件
CN112920177A (zh) 芳香单胺化合物、覆盖层材料及发光元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521608

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018881946

Country of ref document: EP

Effective date: 20200623