WO2019100887A1 - 节温器故障诊断方法、装置、计算机设备以及存储介质 - Google Patents

节温器故障诊断方法、装置、计算机设备以及存储介质 Download PDF

Info

Publication number
WO2019100887A1
WO2019100887A1 PCT/CN2018/111499 CN2018111499W WO2019100887A1 WO 2019100887 A1 WO2019100887 A1 WO 2019100887A1 CN 2018111499 W CN2018111499 W CN 2018111499W WO 2019100887 A1 WO2019100887 A1 WO 2019100887A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
engine
thermostat
fault
heat balance
Prior art date
Application number
PCT/CN2018/111499
Other languages
English (en)
French (fr)
Inventor
曾姣
乔艳菊
白振霄
连学通
苏庆鹏
刘巨江
Original Assignee
广州汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州汽车集团股份有限公司 filed Critical 广州汽车集团股份有限公司
Priority to US16/340,148 priority Critical patent/US11454161B2/en
Publication of WO2019100887A1 publication Critical patent/WO2019100887A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/20Warning devices

Definitions

  • the invention relates to a method for diagnosing a fault of an automobile device, in particular to a method, a device, a computer device and a storage medium for fault diagnosis of a thermostat in an engine.
  • the thermostat automatically adjusts the amount of water entering the radiator according to the temperature of the coolant, changing the circulation range of the coolant to adjust the cooling capacity of the cooling system to ensure that the engine operates in a suitable temperature range.
  • the thermostat must maintain a good technical state, otherwise it will seriously affect the normal operation of the engine. If the main valve of the thermostat is opened too late, it will cause the engine to overheat; if the main valve is opened too early, the engine warm-up time will be prolonged and the engine temperature will be too low.
  • the diagnosis technology of thermostat is mainly the water temperature model diagnosis method, that is, the model water temperature is calculated by using various operating parameters of the engine.
  • the model water temperature reaches the warming temperature, if the engine water temperature is lower than the warming temperature, the threshold is determined, and the temperature is determined as the temperature.
  • the device is faulty.
  • the water temperature model diagnostic method requires a large amount of calibration work to ensure the accuracy of the water temperature model calculation, and the human and resource costs are very high.
  • a method for fault diagnosis of a thermostat in an engine comprising the steps of:
  • the above-mentioned thermostat fault diagnosis method does not need to establish a water temperature model, and only needs to have a fault on the thermostat according to the relationship between the current coolant temperature and the boundary temperature of the current ambient temperature and the initial opening temperature and the engine thermal balance state data. The judgment is made, the judgment result is more accurate, and a large amount of calibration work is not required, which reduces labor and resource costs.
  • the manner of determining whether the thermostat has a fault according to the engine thermal balance state data and the relationship between the current coolant temperature and the boundary temperature and the initial opening temperature includes:
  • determining, by the boundary temperature method, whether the thermostat has a fault according to the engine thermal balance state data includes:
  • the thermostat is determined to be faulty when the engine operating time is greater than the standard engine minimum warm-up time and the engine enters a thermal equilibrium state and the temperature is still less than the boundary temperature.
  • determining, by the temperature drop learning method or the active control method, whether the thermostat has a fault according to the engine thermal balance state data includes:
  • determining, by the heat balance determination method or the inheritance determination method, whether the thermostat has a fault according to the engine thermal balance state data includes:
  • the engine heat balance duration is obtained according to the engine coolant temperature curve, and when the engine heat balance duration exceeds the standard heat balance time parameter, it is determined that the thermostat is normal.
  • the manner of determining whether the thermostat is faulty by the heat balance determination method or the inheritance determination method according to the engine thermal balance state data further includes :
  • the starting mode is the start of the heat engine
  • the fault state information of the previous driving cycle of the thermostat is obtained, and according to the previous driving cycle fault state information of the thermostat, it is judged whether the thermostat in the previous driving cycle is faulty.
  • the method further comprises the steps of:
  • the fault state information is generated according to the result of the fault determination, and the fault state information is written into the history fault storage space.
  • a thermostat fault diagnosis device includes:
  • An ambient temperature module for obtaining a current ambient temperature, and a boundary temperature and an initial opening temperature corresponding to the ambient temperature
  • a heat balance data acquisition module configured to acquire engine heat balance state data determined based on coolant temperature change data in the engine
  • a coolant temperature module for obtaining a current coolant temperature
  • the fault determination module is configured to determine whether the thermostat has a fault according to the engine thermal balance state data and the relationship between the current coolant temperature and the boundary temperature and the initial opening temperature.
  • the above-mentioned thermostat fault diagnosis device does not need to establish a water temperature model, and only needs to have a fault on the thermostat according to the relationship between the current coolant temperature and the boundary temperature of the current ambient temperature and the initial opening temperature and the engine thermal balance state data. The judgment is made, the judgment result is more accurate, and a large amount of calibration work is not required, which reduces labor and resource costs.
  • a computer apparatus comprising a memory, a processor, and a computer program stored on the memory and operative on the processor, the processor executing the program to implement the steps of any of the methods described above.
  • a computer readable storage medium having stored thereon a computer program, the program being executed by a processor to implement the steps of any of the methods described above.
  • the above-mentioned thermostat fault diagnosis method, device, computer equipment and computer readable storage medium do not need to establish a water temperature model, and only need to be based on the relationship between the current coolant temperature and the current ambient temperature, the boundary temperature and the initial opening temperature, and the engine thermal equilibrium state.
  • the data can determine whether the thermostat is faulty, the judgment result is more accurate, and does not require a large amount of calibration work, reducing labor and resource costs.
  • FIG. 1 is a flow chart of one embodiment of a method for fault diagnosis of a thermostat according to the present application
  • FIG. 2 is a flow chart of a boundary temperature method of one embodiment of a method for fault diagnosis of a thermostat according to the present application
  • FIG. 3 is a flowchart of an active control method and a temperature drop learning method according to an embodiment of a method for fault diagnosis of a thermostat according to the present application;
  • FIG. 4 is a flowchart of a heat balance determination method and an inheritance determination method of one embodiment of the method for determining a temperature of a thermostat according to the present application;
  • FIG. 5 is a flow chart of one embodiment of a method for fault diagnosis of a thermostat according to the present application.
  • FIG. 6 is a structural diagram of one embodiment of a thermostat fault diagnosis apparatus according to the present application.
  • the National Six OBD regulations which began to be tested in 2018, have stricter diagnosis of the cooling system, increasing the requirements for the diagnosis of the thermostat, that is, after the engine is started.
  • the coolant temperature cannot reach the other required maximum temperature of the OBD system or does not reach the warm-up temperature (the warm-up temperature is defined as the 11-degree deviation of the thermostat adjustment temperature determined by the manufacturer) ), at this point the OBD system should detect a thermostat failure.
  • thermostat fault diagnosis method including the steps:
  • S100 Acquire a current ambient temperature, and a boundary temperature and an initial opening temperature corresponding to the ambient temperature.
  • the ambient temperature refers to the temperature of the external environment, and the ambient temperature can be obtained by the temperature sensor.
  • the obtained ambient temperature can be used to determine the corresponding boundary temperature and the initial opening temperature in the current environment.
  • the boundary temperature refers to the coolant temperature when the engine reaches the thermal equilibrium state when the engine idle speed warm air is turned to the maximum at each ambient temperature.
  • the initial opening temperature refers to the temperature of the corresponding engine coolant when the wax pack starts to melt in the thermostat. Based on the operating performance of the engine, the initial opening temperature will be greater than the boundary temperature. Therefore, based on the acquired boundary temperature and the initial opening temperature, three temperature intervals can be divided. In this embodiment, based on the current coolant temperature and the boundary temperature and the initial opening temperature. The relationship, or the temperature interval in which the current coolant temperature is located, serves as an effective basis for selecting a fault determination method based on the current coolant temperature.
  • the interval in which the temperature value is lower than the boundary temperature may be set as the first temperature interval, and the interval in which the temperature value is greater than or equal to the boundary temperature and less than the initial opening temperature is set as the second temperature interval, and the temperature value is greater than or equal to the initial temperature.
  • the interval of the opening temperature is set to the third temperature interval.
  • the three intervals are taken as an example.
  • S200 Acquire engine heat balance state data determined based on coolant temperature change data in the engine.
  • the coolant temperature change data in the engine may be obtained, and the engine heat balance state data is determined based on the coolant temperature change data in the engine.
  • the thermal equilibrium state means that the temperature is in a relatively stable interval, and maintaining the thermal equilibrium state during the operation of the engine generally dissipates a part of the heat by means of heat dissipation, so that the temperature of the coolant in the engine is in a relatively stable range. Because the difference between the fault thermostat in the engine and the normal thermostat is that the fault thermostat before the warming up, the cooling water of the thermostat will go through the radiator to take a large loop, thus taking a lot of heat, causing the water temperature to rise.
  • the engine thermal balance state data specifically refers to when the temperature of the coolant in the engine does not change, how long the state in which the temperature does not change can last and is subjected to the outside world. The change in the state of equilibrium during interference, etc., therefore focuses on the thermal equilibrium state of the engine.
  • the relationship between the current coolant temperature and the boundary temperature and the initial opening temperature at the current ambient temperature can be determined, such as determining the temperature range in which the current coolant temperature is located. According to the relationship between the current coolant temperature and the boundary temperature and the initial opening temperature at the current ambient temperature, it is confirmed how to determine the fault based on the thermal balance state information.
  • S400 Determine, according to the engine thermal balance state data and the relationship between the current coolant temperature and the boundary temperature and the initial opening temperature, whether the thermostat has a fault.
  • the fault is determined by acquiring the normal heat balance state information according to the current coolant temperature or the heat balance change information that should be under the stimulus, and combining the current heat balance state data obtained in step S200.
  • some fault thresholds may be set in advance, and then it is determined whether the change exceeds the fault threshold, thereby performing fault determination.
  • the above-mentioned fault threshold may specifically include a standard engine minimum warm-up time, a standard time of the duration of the heat balance, and a coolant temperature drop parameter in the engine. These three sets of data can be obtained by pre-calibration, which are parameters used to assess the thermal equilibrium state of the engine.
  • the minimum engine warm-up time of the standard engine is the engine running time when the engine idle speed warm air is turned on to the maximum and the heat balance is reached at each pre-calibrated ambient temperature.
  • the standard engine heat balance time is the standard time after the pre-calibrated engine reaches the heat balance and the duration of the heat balance.
  • the active control method or the temperature drop learning method can be selected for fault determination.
  • the coolant temperature drop parameter in the engine is the normal temperature drop of the coolant during the cooling fan switching process at each ambient temperature and starting temperature.
  • the temperature drop refers to the temperature of adjacent peaks and troughs in the thermostat curve.
  • the gap can be used to confirm the threshold of the temperature drop in the normal situation or the abnormal condition, that is, the first threshold in the active control method, the first preset number, the second threshold, and the second preset number.
  • the coolant cooling parameter in the engine also includes a third threshold and a third predetermined number of times required for the calibration of the temperature drop learning method.
  • the preset engine standard temperature parameter is to calibrate the above parameters according to the current ambient temperature and the starting temperature, including the ambient temperature is -7 degrees, the starting temperature is -7, 15, 30, 50 degrees; the ambient temperature is 0 degrees.
  • Starting temperature is 0 degrees, 25 degrees, 50 degrees; ambient temperature is 10 degrees, starting temperature is 10 degrees, 25 degrees, 50 degrees; ambient temperature is 25 degrees, starting temperature is 25 degrees, 50 degrees; ambient temperature is 35 degrees
  • the starting temperature is 35 degrees, 50 degrees, a total of 14 starting calibration, the above calibration basically includes the car engine cold start and hot machine start. Pre-calibrating these data simplifies the process of fault determination and results in better judgments.
  • the diagnostic process may be included, that is, according to the relevant fault state of the engine water temperature sensor, the vehicle speed, and the ambient temperature, the starting temperature, and the engine running state, and the conditions to be met specifically include
  • the engine has been started, there is no fault that affects the temperature of the coolant, the ambient temperature is higher than minus 7 degrees, and the starting temperature is lower than 60.
  • the thermostat fault determination state is entered. Otherwise, the diagnosis is judged to be completed. .
  • the diagnostic interrupt process should also be included, that is, the fault diagnosis of the thermostat is interrupted when a fault that affects the water temperature, an engine stop, and a diagnosis time exceeding the maximum limit occur during the diagnosis.
  • the above-mentioned thermostat fault diagnosis method does not need to establish a water temperature model compared to the thermostat water temperature model method, and only needs to obtain current heat balance state information according to the engine coolant temperature curve, and whether the thermostat fault threshold can be compared to the thermostat The fault is judged, the judgment result is more accurate, and a large amount of calibration work is not required, which reduces labor and resource costs.
  • the normal thermostat does not pass through the radiator before reaching the warm-up temperature. The change of the load and the speed of the vehicle rarely causes the water temperature to drop frequently. This is a characteristic shared by all vehicles. Therefore, for the matching of different cooling systems of different models, this All methods are applicable, and the versatility of the calibration data of this method is also strong. Even with respect to the thermostat valve displacement diagnostic method that requires the use of a displacement sensor, the diagnosis can be accurately performed without adding any hardware equipment, which can save a lot of cost.
  • the method before the step of obtaining the boundary temperature and the initial opening temperature in the current ambient temperature range and dividing the temperature interval according to the boundary temperature and the initial opening temperature, the method further includes the steps of:
  • the above engine heat balance failure thresholds are calibrated at different ambient temperatures and different starting temperatures, including an ambient temperature of -7 degrees, a starting temperature of -7, 15, 30, 50 degrees; an ambient temperature of 0 degrees and a starting temperature of 0. Degree, 25 degrees, 50 degrees; ambient temperature is 10 degrees, starting temperature is 10 degrees, 25 degrees, 50 degrees; ambient temperature is 25 degrees, starting temperature is 25 degrees, 50 degrees; ambient temperature is 35 degrees, starting temperature is 35 degrees, 50 degrees, a total of 14 starting calibration, the above calibration basically includes the car engine cold start and hot machine start.
  • the temperature interval is divided, the temperature interval in which the current ambient temperature is determined, and the temperature interval in which the current ambient temperature is located is determined according to the heat balance state data of the motor to determine whether the thermostat is faulty.
  • the pre-step, and the method for determining whether the thermostat is faulty specifically includes a boundary temperature method, a temperature drop learning method, an active control method, a heat balance determination method, and an inheritance determination method;
  • step S310 when the current coolant temperature is in the first temperature interval, that is, when the current coolant temperature is less than the boundary temperature, the boundary temperature method is selected for fault determination, specifically, according to the engine heat balance.
  • the status data determines whether the thermostat is faulty by the boundary temperature method.
  • step S330 when the current coolant temperature is in the second temperature interval, that is, when the current coolant temperature is greater than or equal to the boundary temperature and less than the initial opening temperature, the temperature drop learning method or active control is selected.
  • the method determines the fault, and specifically determines whether the thermostat is faulty by the temperature drop learning method or the active control method according to the engine thermal balance state data.
  • step S350 when the current coolant temperature is in the third temperature interval, that is, when the current coolant temperature is greater than or equal to the initial opening temperature, the heat balance determination method or the inheritance determination method is used to determine the fault, specifically Whether the thermostat is faulty is determined by the heat balance determination method or the inheritance determination method according to the engine thermal balance state data.
  • the boundary temperature method is used for fault determination or the boundary temperature method is used to determine whether the thermostat exists according to the engine thermal equilibrium state data.
  • the faults specifically include:
  • the boundary temperature method is used to determine. First, the coolant temperature curve is obtained to obtain the engine heat balance state information, and the time when the engine enters the heat balance is confirmed. After the engine running time exceeds the minimum warm-up time of the standard engine, confirm whether the engine enters the heat balance. If the heat balance is entered, confirm whether the current coolant temperature is still in the first temperature range, and still determine the thermostat in the first temperature range. A fault occurs and the thermostat troubleshooting process ends.
  • the boundary temperature method can be used to easily determine the fault state when the thermostat water temperature is low by changing the thermal equilibrium state.
  • the fan active control method or the temperature drop learning method performs the fault or determines whether the thermostat has a fault according to the engine thermal balance state data by the temperature drop learning method or the active control method, and specifically includes:
  • step S433 determining whether the engine thermal balance duration is greater than or equal to the standard heat balance time parameter, if yes, proceeding to step S434, selecting an active control method for fault determination; if otherwise, proceeding to step S439, selecting a temperature drop learning method for fault determination.
  • step S435 determining whether the number of times the temperature drop of the coolant exceeds the first threshold is greater than or equal to the first preset number of times. When it is greater than or equal to the first preset number of times, the process proceeds to step S436 to determine that the thermostat is faulty, and the diagnosis process is ended. Otherwise, proceeding to step S438, determining whether the number of times the temperature drop of the coolant is lower than the second threshold is greater than or equal to the second predetermined number of times, when it is greater than or equal to the second predetermined number of times, the process proceeds to step S438, and the thermostat is determined to be normal. , end the diagnostic process.
  • step S439 it is determined by the temperature drop learning method whether the thermostat is faulty. In particular, the amount of change in the engine heat load input amount and the vehicle speed during the fan opening and closing period are also obtained. If the two exceed the preset limit value, the process proceeds to step S438, and the thermostat is determined by the temperature drop learning method. Whether there is a malfunction.
  • the temperature drop learning method is selected, and if the temperature of the coolant temperature drop exceeds the third threshold is greater than the third preset number, the determination is performed.
  • the thermostat is faulty and the judgment process ends.
  • the first threshold, the first preset number, the second threshold, the second preset number, the third threshold and the third preset number are the coolant temperature drop parameters in the engine heat balance fault threshold calibrated during the calibration process.
  • the fault determination using the heat balance determination method or the inheritance determination method specifically includes:
  • the engine starting temperature is obtained, and the starting temperature refers to the temperature of the coolant in the engine when the engine is started.
  • the cold start is the start after the engine is parked for a period of time (>8 hours). At this time, the intake system and the combustion chamber have no oil film accumulation, and the combustion chamber temperature is equal to the engine coolant temperature and the oil temperature.
  • the start of the heat engine refers to the start after the engine is stopped. At this time, the temperature of the engine coolant is different from the oil temperature and the combustion chamber temperature.
  • step S457 If the engine is cold start, the process proceeds to step S457, and the heat balance determination method is selected.
  • the engine heat balance duration is obtained according to the engine coolant temperature curve.
  • the thermostat is determined to be normal, and the judgment process is ended.
  • step S459 If the engine is started by the heat engine, the process proceeds to step S459, and the inheritance determination method is selected.
  • the fault state information of the previous driving cycle of the thermostat in the history is obtained from the fault storage space, and whether the fault is determined according to the previous driving cycle fault state, and the temperature of the previous driving cycle is determined according to the previous driving cycle fault state information of the thermostat Whether the device has a fault, if the previous driving cycle is not faulty, it is determined that the thermostat has no fault, and the fault storage space is used to save the thermostat fault information.
  • the diagnosis result of the fault diagnosis method is saved to the fault storage space after each test is completed.
  • the state of the thermostat can be determined by the heat balance determination method. Since the function of the thermostat is to maintain the thermal balance, if the engine can still be in thermal equilibrium for a long time after the thermostat is working normally, this indicates that the thermostat has no fault. . It is easy to clearly confirm whether there is a fault when the engine heat engine is started by the inheritance judgment method.
  • the fault state information is generated according to the result of the fault determination, and the fault state information is written into the history fault storage space.
  • the fault storage space is in the processor of the onboard computer and is used to store fault information.
  • the fault diagnostic process includes an enable diagnostic process, a thermostat diagnostic interrupt process, and a fault determination process.
  • the enabling diagnosis process refers to determining the fault state according to the engine water temperature sensor, the vehicle speed, and the ambient temperature, the starting temperature, and the engine operating state.
  • the conditions to be met specifically include that the engine has been started, and there is no fault that affects the temperature of the coolant.
  • the ambient temperature is higher than minus 7 degrees and the starting temperature is lower than 60.
  • the thermostat failure determination state is entered. Otherwise, the diagnosis enable determination is completed.
  • the diagnosis interruption process refers to the interruption of the thermostat fault diagnosis when a fault that affects the water temperature occurs during the diagnosis process, the engine is stopped, and the diagnosis time exceeds the maximum limit.
  • the coolant temperature After entering the fault diagnosis process, when the coolant temperature is in the first temperature range, determine whether the engine start time is greater than the minimum warm-up time, and after the engine running time exceeds the minimum warm-up time of the standard engine, confirm whether the engine enters the heat balance, if Enter the heat balance, and then confirm whether the current coolant temperature is still in the first temperature range. If it is still in the first temperature range, it is determined that the thermostat is faulty, and the thermostat fault diagnosis process is ended.
  • the engine starting time is less than the minimum warm-up time and the coolant temperature does not reach the initial opening temperature of the melting of the thermostat wax package, it is in the second temperature range. Then determine whether the thermal equilibrium duration exceeds the standard thermal equilibrium time parameter. If it exceeds, the active control method is used. If it is not exceeded, the temperature drop learning method is used.
  • the active control method includes controlling the intermittent opening/closing of the cooling fan N times. When the engine working condition is stable, determining whether the temperature of the coolant temperature drop exceeds the first threshold during the fan opening and closing process is greater than or equal to the first preset number of times. . If yes, determine that the thermostat has failed and end the diagnostic process.
  • the coolant temperature reaches the initial opening temperature. If the initial opening temperature is not reached, continue to use the temperature drop learning method to judge, otherwise the heat balance determination method is used to determine if the coolant temperature drop exceeds the third. If the number of thresholds is greater than the third predetermined number of times, it is determined that the thermostat is faulty, and the fault determination is ended. If it is less than or equal to the third preset number of times, the determination is repeated until the coolant temperature deviates from the second temperature interval.
  • the heat balance determination method or the inheritance determination method is used for the determination. It is determined whether the engine is a cold start or a heat start according to the starting temperature of the engine. When the engine belongs to the cold start, when the warm-up time exceeds the limit 1 and the temperature reaches the initial open temperature, the heat balance method can be used to judge. If the initial open temperature is not reached, the jump to the boundary temperature method is used to determine the initial step. When it is a heat engine start, when the warm-up time exceeds the limit 2 and the temperature reaches the initial opening temperature, the inheritance determination method may be used for the determination. When the initial opening temperature is not reached, the initial step of the boundary temperature method is used for the determination.
  • the use of the heat balance method specifically includes, under the premise that the engine is cold start and the coolant temperature is in the third temperature range, the thermal balance duration exceeds the standard heat balance time parameter to determine that the thermostat has no fault, and the fault diagnosis process is ended.
  • the use of the inheritance determination method specifically includes, under the premise that the engine is started by the heat engine and the temperature of the coolant is in the third temperature range, the history record is read, the data of the previous history record is obtained, and it is determined whether the previous drive cycle thermostat is faulty. When the thermostat has no fault, it is determined that the thermostat has no fault, and the fault diagnosis process is ended.
  • the fault state information is generated according to the result of the fault determination, and the fault state information is written into the history fault storage space.
  • the fault storage space is in the processor of the onboard computer and is used to store fault information.
  • a thermostat fault diagnosis apparatus is characterized by comprising:
  • An ambient temperature module 601 configured to acquire a current ambient temperature, and a boundary temperature and an initial opening temperature corresponding to the ambient temperature
  • a heat balance data acquisition module 602 configured to acquire engine heat balance state data determined based on coolant temperature change data in the engine
  • a coolant temperature module 603, configured to acquire a current coolant temperature
  • the fault determination module 604 is configured to determine whether the thermostat has a fault according to the engine thermal balance state data and the relationship between the current coolant temperature and the boundary temperature and the initial opening temperature.
  • the above-mentioned thermostat fault diagnosis device does not need to establish a water temperature model, and only needs to obtain current heat balance state information according to the engine coolant temperature curve, and can determine whether the thermostat is faulty by comparing the calibration heat balance fault threshold, and the determination result is more To be accurate and without extensive calibration work, labor and resource costs are reduced. Moreover, the normal thermostat does not pass through the radiator before reaching the warm-up temperature. The change of the load and the speed of the vehicle rarely causes the water temperature to drop frequently. This is a characteristic shared by all vehicles, so it is suitable for the matching of different cooling systems of different models. And the versatility of the calibration data is also strong. Even with respect to the thermostat valve displacement diagnostic method that requires the use of a displacement sensor, the diagnosis can be accurately performed without adding any hardware equipment, which can save a lot of cost.
  • the fault determination module 604 specifically includes:
  • a first fault determining unit configured to determine, by the boundary temperature method, whether the thermostat has a fault according to the engine thermal equilibrium state data when the current coolant temperature is less than the boundary temperature
  • a second fault determining unit configured to determine a node temperature by a temperature drop learning method or an active control method according to the engine heat balance state data when the current coolant temperature is greater than or equal to the boundary temperature and less than the initial opening temperature Whether there is a fault in the device;
  • the third fault determining unit is configured to determine, by the heat balance determination method or the inheritance determination method, whether the thermostat has a fault according to the engine thermal balance state data when the current coolant temperature is greater than or equal to the initial opening temperature.
  • the first fault determining unit is specifically configured to:
  • the second fault determining unit is specifically configured to:
  • the third fault determining unit is specifically configured to:
  • the starting mode is cold start, obtaining an engine heat balance duration according to the engine coolant temperature curve, and determining that the thermostat is normal when the engine heat balance duration exceeds the standard heat balance time parameter;
  • the starting mode is the start of the heat engine
  • the fault state information of the previous driving cycle of the thermostat is obtained, and according to the previous driving cycle fault state information of the thermostat, it is judged whether the thermostat in the previous driving cycle is faulty.
  • the thermostat failure determining apparatus further includes:
  • the fault storage unit is configured to generate fault state information according to the result of the fault determination, and write the fault state information into the history record.
  • a computer apparatus comprising a memory, a processor, and a computer program stored on the memory and operative on the processor, wherein the processor implements the steps of any one of the methods described above.
  • a computer readable storage medium having stored thereon a computer program, wherein the program is executed by a processor to implement the steps of any of the above methods.
  • the above-mentioned thermostat judging method, device, computer equipment and computer readable storage medium do not need to establish a water temperature model, and only need to obtain current heat balance state information according to the engine coolant temperature curve, and can compare the temperature balance fault threshold of the calibration to the throttle temperature. Whether the device has a fault is judged, the judgment result is more accurate, and a large amount of calibration work is not required, thereby reducing labor and resource costs. Moreover, the normal thermostat does not pass through the radiator before reaching the warm-up temperature. The change of the load and the speed of the vehicle rarely causes the water temperature to drop frequently. This is a characteristic shared by all vehicles, so it is suitable for the matching of different cooling systems of different models. And the versatility of the calibration data is also strong.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

一种节温器故障诊断方法,包括步骤:获取当前环境温度,以及与所述环境温度对应的边界温度和初开温度(S100);获取基于发动机中冷却液温度变化数据确定的发动机热平衡状态数据(S200);获取当前冷却液温度(S300);根据所述发动机热平衡状态数据以及所述当前冷却液温度与所述边界温度和初开温度的关系,判断节温器是否存在故障(S400)。该方法无需建立水温模型,就能对节温器是否存在故障进行判定。还提供了一种装置,计算机设备以及存储介质。

Description

节温器故障诊断方法、装置、计算机设备以及存储介质 技术领域
本发明涉及汽车设备故障的诊断方法,特别是涉及发动机中节温器故障诊断方法、装置、计算机设备以及存储介质。
背景技术
在汽车设备中,节温器是根据冷却液温度的高低自动调节进入散热器的水量,改变冷却液的循环范围,以调节冷却系统的散热能力,保证发动机在合适的温度范围内工作。节温器必须保持良好的技术状态,否则会严重影响发动机的正常工作。如节温器主阀门开启过迟,就会引起发动机过热;主阀门开启过早,则使发动机预热时间延长,使发动机温度过低。
目前节温器诊断技术主要为水温模型诊断法,即利用发动机的各种运行参数计算出模型水温,当模型水温达到暖机温度时若发动机水温低于暖机温度一定阀值,判定为节温器故障。
水温模型诊断法需要大量的标定工作以便保证水温模型计算的精确度,人力和资源成本都非常高。
发明内容
基于此,有必要针对节温器诊断方法耗费成本过高问题,提供一种无需建立水温模型就能诊断节温器是否存在故障的方法、装置、计算机设备以及存储介质。
一种发动机中节温器故障诊断方法,包括步骤:
获取当前环境温度,以及与所述环境温度对应的边界温度和初开温度;
获取基于发动机中冷却液温度变化数据确定的发动机热平衡状态数据;
获取当前冷却液温度;
根据所述发动机热平衡状态数据以及所述当前冷却液温度与所述边界温度和初开温度的关系,判断节温器是否存在故障。
上述节温器故障诊断方法,无需建立水温模型,只需要根据当前冷却液温度与当前环境温度下边界温度与初开温度的关系以及所述发动机热平衡状态数据,就能对节温器是否存在故障进行判定,判定结果更为准确,而且无需大量标定工作,减少了人力和资源成本。
在其中一个实施例中,根据所述发动机热平衡状态数据以及所述当前冷却液温度与所述边界温度和初开温度的关系,判断节温器是否存在故障的方式包括:
当所述当前冷却液温度处于小于所述边界温度时,根据所述发动机热平衡状态数据通过边界温度法判断节温器是否存在故障;
当所述当前冷却液温度大于或等于所述边界温度且小于所述初开温度时,根据所述发动机热平衡状态数据通过温降学习法或主动控制法判断节温器是否存在故障;
当所述当前冷却液温度大于或等于所述初开温度时,根据所述发动机热平衡状态数据通过热平衡判定法或继承判定法判断节温器是否存在故障。
在其中一个实施例中,当所述当前冷却液温度处于小于所述边界温度时,根据所述发动机热平衡状态数据通过边界温度法判断节温器是否存在故障的方式包括:
获取启动后发动机运行时间以及当前环境温度下的标准发动机最短暖机时间;
当所述发动机运行时间大于所述标准发动机最短暖机时间,且所述发动机进入热平衡状态且温度仍小于所述边界温度时,判定所述节温器故障。
在其中一个实施例中,
当所述当前冷却液温度大于或等于所述边界温度且小于所述初开温度时,根据所述发动机热平衡状态数据通过温降学习法或主动控制法判断节温器是否存在故障的方式包括:
根据发动机热平衡状态数据获取发动机热平衡持续时间;
当所述发动机热平衡持续时间大于等于标准热平衡时间参数时,驱动发动机散热系统组件工作,分别获取每次所述发动机系统散热组件启动期间内发动 机的冷却液温降,当所述冷却液温降幅度超出第一阈值的次数大于或等于第一预设次数时,判定所述节温器故障,当所述冷却液温降幅度低于第二阈值的次数大于或等于第二预设次数时,判定所述节温器正常;
当所述发动机热平衡持续时间小于所述标准热平衡时间参数或使用风扇控制器无法进行故障判定时,若所述冷却液温降超过第三阈值的次数大于第三预设次数时,判定所述节温器故障。
在其中一个实施例中,
当所述当前冷却液温度大于或等于所述初开温度时,根据所述发动机热平衡状态数据通过热平衡判定法或继承判定法判断节温器是否存在故障的方式包括:
获取标准热平衡时间参数;
基于启动温度确定发动机的启动方式;
若启动方式为冷机启动,根据所述发动机冷却液温度曲线获得发动机热平衡持续时间,当所述发动机热平衡持续时间超过所述标准热平衡时间参数时,判定所述节温器正常。
在其中一个实施例中,当所述当前冷却液温度大于或等于所述初开温度时,根据所述发动机热平衡状态数据通过热平衡判定法或继承判定法判断节温器是否存在故障的方式还包括:
若启动方式为热机启动,获取节温器前次驾驶循环故障状态信息,根据所述节温器前次驾驶循环故障状态信息判断前次驾驶循环中节温器是否出现故障。
在其中一个实施例中,判断节温器是否存在故障之后还包括步骤:
根据故障判定的结果生成故障状态信息,将所述故障状态信息写入历史记录故障存储空间。
一种节温器故障诊断装置,包括:
环境温度模块,用于获取当前环境温度,以及与所述环境温度对应的边界温度和初开温度;
热平衡数据获取模块,用于获取基于发动机中冷却液温度变化数据确定的发动机热平衡状态数据;
冷却液温度模块,用于获取当前冷却液温度;
故障判定模块,用于根据所述发动机热平衡状态数据以及所述当前冷却液温度与所述边界温度和初开温度的关系,判断节温器是否存在故障。
上述节温器故障诊断装置,无需建立水温模型,只需要根据当前冷却液温度与当前环境温度下边界温度与初开温度的关系以及所述发动机热平衡状态数据,就能对节温器是否存在故障进行判定,判定结果更为准确,而且无需大量标定工作,减少了人力和资源成本。
一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述任意一项所述方法的步骤。
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任意一项所述方法的步骤。
上述节温器故障诊断方法、装置、计算机设备以及计算机可读存储介质,无需建立水温模型,只需要根据当前冷却液温度与当前环境温度下边界温度与初开温度的关系以及所述发动机热平衡状态数据,就能对节温器是否存在故障进行判定,判定结果更为准确,而且无需大量标定工作,减少了人力和资源成本。
附图说明
图1为本申请节温器故障诊断方法其中一个实施例的流程图;
图2为本申请节温器故障诊断方法其中一个实施例的边界温度法的流程图;
图3为本申请节温器故障诊断方法其中一个实施例的主动控制法以及温降学习法的流程图;
图4为本申请节温器故障诊断方法其中一个实施例的热平衡判定法以及继承判定法的流程图;
图5为本申请节温器故障诊断方法其中一个实施例的流程图;
图6为本申请节温器故障诊断装置其中一个实施例的结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
相对于国五OBD(On-BoardDiagnostic,车载诊断系统)法规来说,2018开始试行的国六OBD法规对冷却系统的诊断更加严格,增加了节温器诊断的要求,即在发动机启动后一段规定时间或等效计算的时间内,冷却液温度不能达到OBD系统进行其他要求的最高温度或者没有达到暖机温度(暖机温度定义是由制造厂确定的节温器调节温度的11度偏差范围内),此时OBD系统应该检测出节温器故障。
目前暂无满足国六OBD法规的成熟的节温器诊断算法,为了满足国六OBD法规的要求,提供一种车载节温器诊断方法,如图1所示,一种节温器故障诊断方法,包括步骤:
S100,获取当前环境温度,以及与所述环境温度对应的边界温度和初开温度。
环境温度指所处的外界环境的温度,可以通过温度传感器来获取环境温度,本实施例中,获取的环境温度可用以确定当前环境下对应的边界温度和初开温度。
边界温度指是各个环境温度下发动机怠速暖风开启到最大时,发动机达到热平衡状态时的冷却液温度,初开温度指是节温器中蜡包开始融化时对应的发动机冷却液的温度。基于发动机的工作性能,初开温度会大于边界温度,因此基于获取的边界温度和初开温度,可以划分出三个温度区间,本实施例中基于当前冷却液温度与边界温度和初开温度的关系,或者说当前冷却液温度所处的温度区间,作为根据当前冷却液温度选择故障判定方法的有效依据。非必要地,可以将温度值低于边界温度的区间划设为第一温度区间,温度值大于或等于边界温度且小于初开温度的区间划设为第二温度区间,温度值大于或等于初开温度的区间划设为第三温度区间。下述示例中,以这三个区间为例进行说明
S200,获取基于发动机中冷却液温度变化数据确定的发动机热平衡状态数 据。
一个具体示例中,可以获取发动机中冷却液温度变化数据,根据所述发动机中冷却液温度变化数据确发动机热平衡状态数据。热平衡状态是指温度处于一个相对稳定的区间,而维持发动机工作过程中的热平衡状态一般是通过散热等手段散去一部分热量,使得发动机中冷却液的温度处于一个相对稳定的区间。由于发动机中故障节温器和正常节温器之间的差异在于,故障节温器在暖机之前故障节温器冷却水会通过散热器走大循环,从而带走大量的热量,导致水温上升缓慢或者在温度处于第二温度区间时负荷车速的变化频繁波动,而正常节温器在达到暖机温度前不会通过散热器,负荷和车速的变化几乎很少造成水温频繁下跌。而这些变化都可以根据发动机的热平衡状态数据来进行判断,发动机热平衡状态数据具体指的是发动机中冷却液在什么时候温度不发生变化,这种温度不发生变化的状态能持续多久以及在受到外界干扰时这种平衡状态的变化情况等,因此着重关注发动机的热平衡状态。
S300,获取当前冷却液温度。
基于当前冷却液温度,可以确定当前冷却液温度与当前环境温度下的边界温度和初开温度的关系,如确定当前冷却液温度所处的温度区间。根据当前冷却液温度与当前环境温度下的边界温度及初开温度的关系,确认应该如何根据热平衡状态信息进行故障判定。
S400,根据所述发动机热平衡状态数据以及所述当前冷却液温度与所述边界温度和初开温度的关系,判断节温器是否存在故障。
根据当前冷却液温度获取正常的热平衡状态信息或者在受到刺激下应有的热平衡变化信息,结合步骤S200中所获得的当前热平衡状态数据进行故障判定。
在其中一个实施例中,可以预先设置一些故障阈值,再判断变化是否超出了故障阈值,从而进行故障判定。非必要地,上述的故障阈值具体可以包括标准发动机最短暖机时间,热平衡的持续时间的标准时间以及发动机中冷却液温降参数。可以通过预先的标定来获得这三组数据,这3组参数都是用来评定发动机热平衡状态的参量。标准发动机最短暖机时间为预先标定的各环境温度下发动机怠速暖风开启到最大、达到热平衡时的发动机运行时间,标准发动机热 平衡时间为预先标定的发动机达到热平衡后、热平衡的持续时间的标准时间,根据标准发动机热平衡时间可以选择主动控制法或是温降学习法进行故障判定。发动机中冷却液温降参数为标定的在各环境温度和启动温度下,冷却液在冷却风扇开关过程中正常的温降,温降指的是节温器曲线中相邻的波峰和波谷的温度差距,通过测量可以确认正常情况或异常情况下温降的阈值,即主动控制法中的第一阈值,第一预设次数,第二阈值以及第二预设次数。发动机中冷却液降温参数还包括标定的温降学习法判定所需的第三阈值和第三预设次数。预设发动机标准节温参数为根据当前的环境温度和启动温度对以上各参数进行标定,包括环境温度为-7度,起动温度为-7、15、30、50度;环境温度为0度,起动温度为0度、25度、50度;环境温度为10度,起动温度为10度、25度、50度;环境温度为25度,起动温度为25度、50度;环境温度为35度,起动温度为35度、50度,一共14次起动的标定,以上标定基本包含了汽车发动机冷机启动和热机启动的情况。预先标定这些数据可以简化故障判定的过程,获得更好的判定结果。
在上述节温器故障诊断过程前应该还可以包含使能诊断过程,即根据发动机水温传感器、车速等相关故障状态,以及环境温度、启动温度、发动机运行状态进行判定,所需满足的条件具体包括发动机已经启动完成、无影响冷却液温度的故障、环境温度高于零下7度以及启动温度低于60等,在满足所有条件时则进入节温器故障判定状态,否则继续等待诊断使能判定完成。
在上述节温器故障诊断过程中应该还包含诊断中断过程,即在诊断过程中出现了影响水温的故障、发动机停机以及诊断时间超过最大限值等现象时中断节温器故障诊断。
上述节温器故障诊断方法,相比节温器水温模型法无需建立水温模型,只需要根据发动机冷却液温度曲线获取当前热平衡状态信息,在比对标定的热平衡故障阈值就能对节温器是否存在故障进行判定,判定结果更为准确,而且无需大量标定工作,减少了人力和资源成本。而且正常节温器在达到暖机温度前不会通过散热器,负荷和车速的变化几乎很少造成水温频繁下跌,这是对所有车辆共用的特性,因此针对不同车型不同冷却系统的搭配,此种方法都适用, 且本方法标定数据的通用性也较强。即使是相对于需要使用位移传感器的节温器阀位移诊断法来说,也可以在不增加任何硬件设备上能准确的完成诊断,可节省大量的成本。
在其中一个实施例中,在获取当前环境温度范围下边界温度和初开温度,并根据边界温度及初开温度划分温度区间的步骤之前,还包括步骤:
在不同的环境温度和不同的启动温度下标定上述的发动机热平衡故障阈值,包括环境温度为-7度,起动温度为-7、15、30、50度;环境温度为0度,起动温度为0度、25度、50度;环境温度为10度,起动温度为10度、25度、50度;环境温度为25度,起动温度为25度、50度;环境温度为35度,起动温度为35度、50度,一共14次起动的标定,以上标定基本包含了汽车发动机冷机启动和热机启动的情况。
如图2,图3以及图4所示,划分温度区间,判定当前环境温度所处的温度区间,再根据当前环境温度所处的温度区间是根据动机热平衡状态数据确认节温器是否存在故障的前置步骤,而判定节温器是否故障的方法具体包括边界温度法、温降学习法、主动控制法、热平衡判定法以及继承判定法;
如步骤S310所示,在当前冷却液温度处于第一温度区间时,即当所述当前冷却液温度处于小于所述边界温度时,选用边界温度法进行故障判定,具体可以是根据所述发动机热平衡状态数据通过边界温度法判断节温器是否存在故障。
如步骤S330所示,在当前冷却液温度处于第二温度区间时,即当所述当前冷却液温度大于或等于所述边界温度且小于所述初开温度时,选用温降学习法或主动控制法进行故障判定,具体可以根据所述发动机热平衡状态数据通过温降学习法或主动控制法判断节温器是否存在故障。
如步骤S350所示,在当前冷却液温度处于第三温度区间时,即当所述当前冷却液温度大于或等于所述初开温度时,选用热平衡判定法或者继承判定法进行故障判定,具体可以根据所述发动机热平衡状态数据通过热平衡判定法或继承判定法判断节温器是否存在故障。
如图2所示,在其中一个实施例中,在当前冷却液温度处于第一温度区间时,选用边界温度法进行故障判定或者根据所述发动机热平衡状态数据通过边 界温度法判断节温器是否存在故障的方式具体包括:
S310,获取启动后发动机的运行时间以及当前环境温度下的标准发动机最短暖机时间;
S410:当发动机运行时间大于标准发动机最短暖机时间且发动机进入热平衡状态且温度仍处于第一温度区间(小于所述边界温度)时,判定节温器故障。
在发动机冷却液温度进入第一温度区间后使用边界温度法进行判断,首先获取冷却液温度曲线用以获得发动机热平衡状态信息,确认发动机进入热平衡的时间。在发动机运行的时间超过标准发动机的最短暖机时间后,确认发动机是否进入热平衡,如果进入热平衡,再确认当前冷却液温度是否仍处于第一温度区间,仍处于第一温度区间则判定节温器出现故障,结束节温器故障诊断流程。使用边界温度法通过热平衡状态的变化可以轻松判定节温器水温较低时的故障状态。
如图3所示,在其中一个实施例中,在当前冷却液温度处于第二温度区间时,即当所述当前冷却液温度大于或等于所述边界温度且小于所述初开温度时,选用风扇主动控制法或温降学习法进行故障或者说根据所述发动机热平衡状态数据通过温降学习法或主动控制法判断节温器是否存在故障的方式判定具体包括:
S431,获取标准热平衡时间参数以及标准节温参数;
S432,根据发动机热平衡状态数据获取发动机热平衡持续时间;
S433,判断发动机热平衡持续时间是否大于或等于标准热平衡时间参数,若是则进入步骤S434,选用主动控制法进行故障判定;若否则进入步骤S439,选用温降学习法进行故障判定。
S434,主动控制驱动发动机散热系统组件工作,改变散热系统散热系数,分别获取每次发动机冷却风扇发动机系统散热组件启动期间内发动机的冷却液温降。
S435,判断冷却液温降幅度超出第一阈值的次数是否大于或等于第一预设次数,当其大于或等于第一预设次数时,进入步骤S436判定节温器故障,结束诊断流程。否则进入步骤S438,判断冷却液温降幅度低于第二阈值的次数是否 大于或等于第二预设次数时,当其大于或等于第二预设次数时,进入步骤S438,判定节温器正常,结束诊断流程。若其小于第二预设次数,则进入步骤S439,通过温降学习法判断节温器是否出现故障。特别的,还要获取风扇开启和关闭期间发动机热负荷输入量变化量与车速的变化量,如果这两者超过预先设定的限值,则进入步骤S438,通过温降学习法判断节温器是否出现故障。
S439,当发动机热平衡持续时间小于标准热平衡时间参数或当使用风扇控制法无法进行故障判定时,选用温降学习法,若冷却液温降超过第三阈值的次数大于第三预设次数时,判定节温器故障,结束判断流程。上述的第一阈值,第一预设次数,第二阈值,第二预设次数,第三阈值以及第三预设次数俱为标定过程中标定的发动机热平衡故障阈值中的冷却液温降参数。
在热平衡状态长期保持时通过主动控制法施加外界控制,可以根据节温器中冷却液的热平衡状态在受到外界刺激的情况下变化是否符合期望,从而轻松判定节温器是否存在故障。在热平衡状态无法长期保持时,则通过冷却液的温降,判断获得发动机中热量变化的大体数据,根据热量的变化是否符合期望来进行故障判定。
如图4所示,在其中一个实施例中,在当前冷却液温度处于第三温度区间时,选用热平衡判定法或者继承判定法进行故障判定具体包括:
S451,获取标准热平衡时间参数。这是定过程中标定的发动机热平衡故障阈值之一。
S453,获取发动机启动温度,启动温度指的是发动机在启动时发动机内冷却液的温度。
S455,根据启动温度判断发动机为冷机启动还是热机启动。冷机启动是指发动机停放一段时间(>8小时)后的起动,此时进气系统以及燃烧室无油膜积累,燃烧室温度与发动机冷却液温和机油温度相等。而热机启动则是指发动机停机不久后的启动,此时发动机冷却液的温度与机油温度和燃烧室温度不同。
如果发动机为冷机启动,则进入步骤S457,选用热平衡判定法。根据发动机冷却液温度曲线获得发动机热平衡持续时间,当发动机热平衡持续时间超过标准热平衡时间参数时,判定节温器正常,结束判断流程。
如果发动机为热机启动,则进入步骤S459,选用继承判定法。从故障存储空间获取历史记录中节温器前次驾驶循环故障状态信息,根据前次驾驶循环故障状态判断是否有故障,根据节温器前次驾驶循环故障状态信息判断前次驾驶循环中节温器是否出现故障,如果前次驾驶循环无故障则判定节温器无故障,故障存储空间用于保存节温器故障信息。每次检测完成后将故障诊断方法的诊断结果保存到故障存储空间内。
通过热平衡判定法可以判定在节温器工作之后的状态,由于节温器的功能正是保持热平衡,如果在节温器正常工作后发动机仍然能长期处于热平衡状态,这说明节温器不存在故障。通过继承判定法可以轻松明了地确认发动机热机启动时是否存在故障。
在其中一个实施例中,在根据冷却液温度变化曲线和预设发动机标准节温参数,采用确定的判定方法,判断节温器是否存在故障,且在故障判定完成之后还包括步骤:
根据故障判定的结果生成故障状态信息,将故障状态信息写入历史记录故障存储空间。故障存储空间处于车载电脑的处理器中,用于保存故障信息。
如图5所示,在一个最具体的实施例中,故障诊断过程包括了使能诊断过程,节温器诊断中断过程和故障判定过程。
使能诊断过程即指根据发动机水温传感器、车速等相关故障状态,以及环境温度、启动温度、发动机运行状态进行判定,所需满足的条件具体包括发动机已经启动完成、无影响冷却液温度的故障、环境温度高于零下7度以及启动温度低于60等,在满足所有条件时则进入节温器故障判定状态,否则继续等待诊断使能判定完成。
而诊断中断过程则是指在诊断过程中出现了影响水温的故障、发动机停机以及诊断时间超过最大限值等现象时中断节温器故障诊断。
在进入故障诊断过程后,冷却液温度处于第一温度区间时,判断发动机启动时间是否大于最小暖机时间,在发动机运行的时间超过标准发动机的最短暖机时间后,确认发动机是否进入热平衡,如果进入热平衡,再确认当前冷却液温度是否仍处于第一温度区间,仍处于第一温度区间则判定节温器出现故障, 结束节温器故障诊断流程。
若发动机启动时间小于最小暖机时间且冷却液温度未达到节温器蜡包融化的初开温度,即处于第二温度区间。则判断其热平衡持续时间是否超过了标准热平衡时间参数,如果超过则选用主动控制法,未超过则选用温降学习法。主动控制法包括控制散热风扇间歇性的开启/关闭N次,在当发动机工况稳定时,判断风扇开启关闭过程中冷却液温降幅度超过第一阈值的次数是否大于或等于第一预设次数。如果是的话判定节温器出现故障,结束诊断流程。如果否,则判断冷却液温降幅度低于第二阈值的次数是否大于或等于第二预设次数,如果是的话,则判定节温器无故障,结束判断流程。如果否,则选择温降学习法进行判断。
在进行温降学习判断前先判断冷却液温度是否达到初开温度,如果未达到初开温度则继续使用温降学习法判断,否则就通过热平衡判定法进行判定,如果冷却液温降超过第三阈值的次数大于第三预设次数,则判定节温器出现故障,结束故障判定,如果小于或等于第三预设次数,则进行重复判定,直到冷却液温度脱离第二温度区间。
而用上述三种方法无法判定时,选用热平衡判定法或者继承判定法发进行判定。根据发动机的启动温度判定发动机是属于冷机启动还是热机启动。当发动机属于冷机启动时,暖机时间超过限值1且温度达到初开温度时,可以采用热平衡法进行判断,未达到初开温度时跳转至边界温度法初始步骤进行判断。而当属于热机启动,暖机时间超过限值2且温度达到初开温度时,可以采用继承判定法进行判定,未达到初开温度时采用边界温度法初始步骤进行判定。使用热平衡法判定具体包括,在发动机为冷机启动,冷却液温度处于第三温度区间的前提下,热平衡持续时间超过标准热平衡时间参数即可判定节温器无故障,结束故障诊断流程。使用继承判定法判定具体包括,在发动机为热机启动,冷却液温度处于第三温度区间的前提下,读取历史记录,获取前次历史记录的数据,判断前次驾驶循环节温器是否出现故障,当节温器无故障时,判定节温器无故障,结束故障诊断流程。根据故障判定的结果生成故障状态信息,将故障状态信息写入历史记录故障存储空间。故障存储空间处于车载电脑的处理器中, 用于保存故障信息。
如图6所示,一种节温器故障诊断装置,其特征在于,包括:
环境温度模块601,用于获取当前环境温度,以及与所述环境温度对应的边界温度和初开温度;
热平衡数据获取模块602,用于获取基于发动机中冷却液温度变化数据确定的发动机热平衡状态数据;
冷却液温度模块603,用于获取当前冷却液温度;
故障判定模块604,用于根据所述发动机热平衡状态数据以及所述当前冷却液温度与所述边界温度和初开温度的关系,判断节温器是否存在故障。
上述节温器故障诊断装置,无需建立水温模型,只需要根据发动机冷却液温度曲线获取当前热平衡状态信息,在比对标定的热平衡故障阈值就能对节温器是否存在故障进行判定,判定结果更为准确,而且无需大量标定工作,减少了人力和资源成本。而且正常节温器在达到暖机温度前不会通过散热器,负荷和车速的变化几乎很少造成水温频繁下跌,这是对所有车辆共用的特性,因此针对不同车型不同冷却系统的搭配都适用,且标定数据的通用性也较强。即使是相对于需要使用位移传感器的节温器阀位移诊断法来说,也可以在不增加任何硬件设备上能准确的完成诊断,可节省大量的成本。
在其中一个实施例中,所述故障判定模块604具体包括:
第一故障判定单元,用于当所述当前冷却液温度处于小于所述边界温度时,根据所述发动机热平衡状态数据通过边界温度法判断节温器是否存在故障;
第二故障判定单元,用于当所述当前冷却液温度大于或等于所述边界温度且小于所述初开温度时,根据所述发动机热平衡状态数据通过温降学习法或主动控制法判断节温器是否存在故障;
第三故障判定单元,用于当所述当前冷却液温度大于或等于所述初开温度时,根据所述发动机热平衡状态数据通过热平衡判定法或继承判定法判断节温器是否存在故障。
在其中一个实施例中,所述第一故障判定单元具体用于:
获取启动后发动机运行时间以及当前环境温度下的标准发动机最短暖机时 间;当所述发动机运行时间大于所述标准发动机最短暖机时间,且所述发动机进入热平衡状态且温度仍小于所述边界温度时,判定所述节温器故障。
在其中一个实施例中,所述第二故障判定单元具体用于:
根据发动机热平衡状态数据获取发动机热平衡持续时间;
当所述发动机热平衡持续时间大于等于标准热平衡时间参数时,驱动发动机散热系统组件工作,分别获取每次所述发动机系统散热组件启动期间内发动机的冷却液温降,当所述冷却液温降幅度超出第一阈值的次数大于或等于第一预设次数时,判定所述节温器故障,当所述冷却液温降幅度低于第二阈值的次数大于或等于第二预设次数时,判定所述节温器正常;
当所述发动机热平衡持续时间小于所述标准热平衡时间参数或使用风扇控制器无法进行故障判定时,若所述冷却液温降超过第三阈值的次数大于第三预设次数时,判定所述节温器故障。
在其中一个实施例中,所述第三故障判定单元具体用于:
获取标准热平衡时间参数;
基于启动温度确定发动机的启动方式;
若启动方式为冷机启动,根据所述发动机冷却液温度曲线获得发动机热平衡持续时间,当所述发动机热平衡持续时间超过所述标准热平衡时间参数时,判定所述节温器正常;
若启动方式为热机启动,获取节温器前次驾驶循环故障状态信息,根据所述节温器前次驾驶循环故障状态信息判断前次驾驶循环中节温器是否出现故障。
在其中一个实施例中,所述节温器故障判定装置还包括:
故障存储单元,用于根据故障判定的结果生成故障状态信息,将所述故障状态信息写入历史记录。
一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,处理器执行程序时实现上述任意一项方法的步骤。
一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现上述任意一项方法的步骤。
上述节温器判断方法,装置,计算机设备以及计算机可读存储介质,无需建立水温模型,只需要根据发动机冷却液温度曲线获取当前热平衡状态信息,在比对标定的热平衡故障阈值就能对节温器是否存在故障进行判定,判定结果更为准确,而且无需大量标定工作,减少了人力和资源成本。而且正常节温器在达到暖机温度前不会通过散热器,负荷和车速的变化几乎很少造成水温频繁下跌,这是对所有车辆共用的特性,因此针对不同车型不同冷却系统的搭配都适用,且标定数据的通用性也较强。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种发动机中节温器故障诊断方法,其特征在于,包括步骤:
    获取当前环境温度,以及与所述环境温度对应的边界温度和初开温度;
    获取基于发动机中冷却液温度变化数据确定的发动机热平衡状态数据;
    获取当前冷却液温度;
    根据所述发动机热平衡状态数据以及所述当前冷却液温度与所述边界温度和初开温度的关系,判断节温器是否存在故障。
  2. 根据权利要求1所述的发动机中节温器故障诊断方法,其特征在于,根据所述发动机热平衡状态数据以及所述当前冷却液温度与所述边界温度和初开温度的关系,判断节温器是否存在故障的方式包括:
    当所述当前冷却液温度处于小于所述边界温度时,根据所述发动机热平衡状态数据通过边界温度法判断节温器是否存在故障;
    当所述当前冷却液温度大于或等于所述边界温度且小于所述初开温度时,根据所述发动机热平衡状态数据通过温降学习法或主动控制法判断节温器是否存在故障;
    当所述当前冷却液温度大于或等于所述初开温度时,根据所述发动机热平衡状态数据通过热平衡判定法或继承判定法判断节温器是否存在故障。
  3. 根据权利要求2所述的节温器故障诊断方法,其特征在于,当所述当前冷却液温度处于小于所述边界温度时,根据所述发动机热平衡状态数据通过边界温度法判断节温器是否存在故障的方式包括:
    获取启动后发动机运行时间以及当前环境温度下的标准发动机最短暖机时间;
    当所述发动机运行时间大于所述标准发动机最短暖机时间,且所述发动机进入热平衡状态且温度仍小于所述边界温度时,判定所述节温器故障。
  4. 根据权利要求2所述的节温器故障诊断方法,其特征在于,当所述当前冷却液温度大于或等于所述边界温度且小于所述初开温度时,根据所述发动机热平衡状态数据通过温降学习法或主动控制法判断节温器是否存在故障的方式包括:
    根据发动机热平衡状态数据获取发动机热平衡持续时间;
    当所述发动机热平衡持续时间大于等于标准热平衡时间参数时,驱动发动机散热系统组件工作,分别获取每次所述发动机系统散热组件启动期间内发动机的冷却液温降,当所述冷却液温降幅度超出第一阈值的次数大于或等于第一预设次数时,判定所述节温器故障,当所述冷却液温降幅度低于第二阈值的次数大于或等于第二预设次数时,判定所述节温器正常;
    当所述发动机热平衡持续时间小于所述标准热平衡时间参数或使用风扇控制器无法进行故障判定时,若所述冷却液温降超过第三阈值的次数大于第三预设次数时,判定所述节温器故障。
  5. 根据权利要求2所述的节温器故障诊断方法,其特征在于,当所述当前冷却液温度大于或等于所述初开温度时,根据所述发动机热平衡状态数据通过热平衡判定法或继承判定法判断节温器是否存在故障的方式包括:
    获取标准热平衡时间参数;
    基于启动温度确定发动机的启动方式;
    若启动方式为冷机启动,根据所述发动机冷却液温度曲线获得发动机热平衡持续时间,当所述发动机热平衡持续时间超过所述标准热平衡时间参数时,判定所述节温器正常。
  6. 根据权利要求5所述的节温器故障诊断方法,其特征在于,当所述当前冷却液温度大于或等于所述初开温度时,根据所述发动机热平衡状态数据通过热平衡判定法或继承判定法判断节温器是否存在故障的方式还包括:
    若启动方式为热机启动,获取节温器前次驾驶循环故障状态信息,根据所述节温器前次驾驶循环故障状态信息判断前次驾驶循环中节温器是否出现故障。
  7. 根据权利要求1至6任意一项所述的节温器故障诊断方法,其特征在于,判断节温器是否存在故障之后,还包括步骤:
    根据故障判定结果生成故障状态信息,将所述故障状态信息写入历史记录。
  8. 一种节温器故障诊断装置,其特征在于,包括:
    环境温度模块,用于获取当前环境温度,以及与所述环境温度对应的边界温度和初开温度;
    热平衡数据获取模块,用于获取基于发动机中冷却液温度变化数据确定的发动机热平衡状态数据;
    冷却液温度模块,用于获取当前冷却液温度;
    故障判定模块,用于根据所述发动机热平衡状态数据以及所述当前冷却液温度与所述边界温度和初开温度的关系,判断节温器是否存在故障。
  9. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1-7任意一项所述方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1-7任意一项所述方法的步骤。
PCT/CN2018/111499 2017-11-24 2018-10-23 节温器故障诊断方法、装置、计算机设备以及存储介质 WO2019100887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/340,148 US11454161B2 (en) 2017-11-24 2018-10-23 Thermostat fault diagnosis method and device, computer device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711194705.1 2017-11-24
CN201711194705.1A CN107956573B (zh) 2017-11-24 2017-11-24 节温器故障诊断方法、装置、计算机设备以及存储介质

Publications (1)

Publication Number Publication Date
WO2019100887A1 true WO2019100887A1 (zh) 2019-05-31

Family

ID=61962739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111499 WO2019100887A1 (zh) 2017-11-24 2018-10-23 节温器故障诊断方法、装置、计算机设备以及存储介质

Country Status (3)

Country Link
US (1) US11454161B2 (zh)
CN (1) CN107956573B (zh)
WO (1) WO2019100887A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460988A (zh) * 2022-03-07 2022-05-10 重庆紫光华山智安科技有限公司 一种温度控制方法、装置、设备及存储介质
CN115234371A (zh) * 2021-06-01 2022-10-25 广州汽车集团股份有限公司 车辆发动机热管理诊断方法、装置、设备及存储介质
CN116537925A (zh) * 2023-03-16 2023-08-04 象山博宇汽车模塑制造有限公司 一种水壶进出水控制方法、系统、存储介质及智能终端

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107956573B (zh) * 2017-11-24 2019-06-28 广州汽车集团股份有限公司 节温器故障诊断方法、装置、计算机设备以及存储介质
CN111176406B (zh) * 2019-12-27 2021-05-14 北京比特大陆科技有限公司 液冷服务器及其故障诊断的方法和装置、保护方法和装置
CN113818981B (zh) * 2020-06-18 2022-12-20 广州汽车集团股份有限公司 基于温控模块的暖机方法、车辆及存储介质
CN112761773B (zh) * 2021-01-26 2022-07-01 联合汽车电子有限公司 一种节温器故障诊断方法
CN114810325B (zh) * 2021-01-28 2023-05-16 广州汽车集团股份有限公司 Tmm模块泄露故障诊断方法及装置
CN113529845B (zh) * 2021-08-09 2022-10-11 上海华兴数字科技有限公司 挖掘机故障诊断方法、挖掘机、电子设备及可读存储介质
CN114383864A (zh) * 2021-12-08 2022-04-22 北京罗克维尔斯科技有限公司 故障检测方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329840A (ja) * 2000-05-17 2001-11-30 Mazda Motor Corp サーモスタットの故障診断装置
CN104110298A (zh) * 2013-04-17 2014-10-22 现代自动车株式会社 用于判断恒温器的故障的系统和方法
CN105240125A (zh) * 2015-10-10 2016-01-13 广西南宁迈点装饰工程有限公司 一种汽车故障诊断控制系统及方法
CN205977391U (zh) * 2016-07-01 2017-02-22 宝沃汽车(中国)有限公司 一种车辆节温器故障监控装置及车辆
CN107956573A (zh) * 2017-11-24 2018-04-24 广州汽车集团股份有限公司 节温器故障诊断方法、装置、计算机设备以及存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6279390B1 (en) * 1996-12-17 2001-08-28 Denso Corporation Thermostat malfunction detecting system for engine cooling system
JP3562382B2 (ja) * 1999-05-12 2004-09-08 三菱自動車工業株式会社 内燃機関のサーモスタット故障診断装置
DE19948249A1 (de) * 1999-10-07 2001-04-26 Bayerische Motoren Werke Ag Kühlsystem für eine Brennkraftmaschine in Kraftfahrzeugen
US6321695B1 (en) * 1999-11-30 2001-11-27 Delphi Technologies, Inc. Model-based diagnostic method for an engine cooling system
JP3824828B2 (ja) * 1999-12-14 2006-09-20 本田技研工業株式会社 エンジン制御装置
JP3645827B2 (ja) * 2001-04-24 2005-05-11 本田技研工業株式会社 内燃機関のサーモスタット故障判定装置
JP3811044B2 (ja) * 2001-10-12 2006-08-16 本田技研工業株式会社 内燃機関のラジエータ故障検知装置
KR100612964B1 (ko) * 2004-04-08 2006-08-14 현대자동차주식회사 차량의 서모스탯 모니터링 장치 및 방법
JP4497047B2 (ja) * 2005-07-29 2010-07-07 トヨタ自動車株式会社 内燃機関の冷却装置
KR20140146621A (ko) * 2012-05-11 2014-12-26 닛산 지도우샤 가부시키가이샤 서모스탯 고장 검출 장치 및 서모스탯 고장 검출 방법
US20150176473A1 (en) * 2013-12-24 2015-06-25 Hyundai Motor Company Thermostat with failure diagnosis function and mehod for failure diagnosis of thermostat using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329840A (ja) * 2000-05-17 2001-11-30 Mazda Motor Corp サーモスタットの故障診断装置
CN104110298A (zh) * 2013-04-17 2014-10-22 现代自动车株式会社 用于判断恒温器的故障的系统和方法
CN105240125A (zh) * 2015-10-10 2016-01-13 广西南宁迈点装饰工程有限公司 一种汽车故障诊断控制系统及方法
CN205977391U (zh) * 2016-07-01 2017-02-22 宝沃汽车(中国)有限公司 一种车辆节温器故障监控装置及车辆
CN107956573A (zh) * 2017-11-24 2018-04-24 广州汽车集团股份有限公司 节温器故障诊断方法、装置、计算机设备以及存储介质

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115234371A (zh) * 2021-06-01 2022-10-25 广州汽车集团股份有限公司 车辆发动机热管理诊断方法、装置、设备及存储介质
CN115234371B (zh) * 2021-06-01 2023-09-05 广州汽车集团股份有限公司 车辆发动机热管理诊断方法、装置、设备及存储介质
CN114460988A (zh) * 2022-03-07 2022-05-10 重庆紫光华山智安科技有限公司 一种温度控制方法、装置、设备及存储介质
CN116537925A (zh) * 2023-03-16 2023-08-04 象山博宇汽车模塑制造有限公司 一种水壶进出水控制方法、系统、存储介质及智能终端
CN116537925B (zh) * 2023-03-16 2024-04-19 象山博宇汽车模塑制造有限公司 一种水壶进出水控制方法、系统、存储介质及智能终端

Also Published As

Publication number Publication date
CN107956573A (zh) 2018-04-24
US20210355857A1 (en) 2021-11-18
CN107956573B (zh) 2019-06-28
US11454161B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2019100887A1 (zh) 节温器故障诊断方法、装置、计算机设备以及存储介质
US8683854B2 (en) Engine cooling system control
US9217689B2 (en) Engine cooling system control
US9022647B2 (en) Engine cooling system control
US9341105B2 (en) Engine cooling system control
US8839665B2 (en) Apparatus, vehicle, and method for determining a thermostat malfunction in an engine cooling system
JP3896288B2 (ja) 冷却系の温度推定装置
CN113818981B (zh) 基于温控模块的暖机方法、车辆及存储介质
JP3849707B2 (ja) 筒内噴射式内燃機関の制御装置
KR20130114858A (ko) 엔진 냉각 시스템과 전자식 서모스탯 제어장치 및 방법
KR101459891B1 (ko) 서모스탯 고장 진단방법
JP2015059458A (ja) クーリングシステムの制御装置
CN111852641A (zh) 节温器诊断方法及系统、发动机冷却系统及电子控制器
KR101714176B1 (ko) 써모스탯의 고장진단방법
KR102041920B1 (ko) 터보차져 냉각 시스템 및 그 방법
JP2010007569A (ja) エンジンの冷却判定方法及びその判定システム
KR102484858B1 (ko) Atf 워머 시스템 및 그 운영방법
KR101562194B1 (ko) 수온조절기의 고장진단 방법
KR101008455B1 (ko) 자동차의 써모스테이트 고장 진단 방법
CN115214600B (zh) 车辆控制方法、装置、车辆及计算机存储介质
JP2013024188A (ja) エンジン冷却装置
JP5206696B2 (ja) 内燃機関冷却装置システム
CN117307309A (zh) 一种故障诊断方法、热管理装置、介质、节温器及控制器
CN117128083A (zh) 节温器故障诊断系统和方法
CN116517678A (zh) 一种发动机保护方法、装置、设备和汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881096

Country of ref document: EP

Kind code of ref document: A1