WO2019100265A1 - 一种控制参数配置方法及无人机 - Google Patents
一种控制参数配置方法及无人机 Download PDFInfo
- Publication number
- WO2019100265A1 WO2019100265A1 PCT/CN2017/112368 CN2017112368W WO2019100265A1 WO 2019100265 A1 WO2019100265 A1 WO 2019100265A1 CN 2017112368 W CN2017112368 W CN 2017112368W WO 2019100265 A1 WO2019100265 A1 WO 2019100265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parameter
- control
- signal
- spectral
- drone
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000005284 excitation Effects 0.000 claims abstract description 74
- 238000011156 evaluation Methods 0.000 claims description 159
- 230000003595 spectral effect Effects 0.000 claims description 137
- 238000001228 spectrum Methods 0.000 claims description 48
- 239000013643 reference control Substances 0.000 claims description 31
- 238000005259 measurement Methods 0.000 claims description 13
- 230000011664 signaling Effects 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims 3
- 238000010586 diagram Methods 0.000 description 16
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 11
- 230000004044 response Effects 0.000 description 10
- 238000001914 filtration Methods 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/40—Control within particular dimensions
- G05D1/49—Control of attitude, i.e. control of roll, pitch or yaw
- G05D1/495—Control of attitude, i.e. control of roll, pitch or yaw to ensure stability
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D2101/00—Details of software or hardware architectures used for the control of position
- G05D2101/10—Details of software or hardware architectures used for the control of position using artificial intelligence [AI] techniques
- G05D2101/15—Details of software or hardware architectures used for the control of position using artificial intelligence [AI] techniques using machine learning, e.g. neural networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D2109/00—Types of controlled vehicles
- G05D2109/20—Aircraft, e.g. drones
- G05D2109/25—Rotorcrafts
- G05D2109/254—Flying platforms, e.g. multicopters
Definitions
- the present invention relates to the field of electronic technologies, and in particular, to a control parameter configuration method and a drone.
- the control parameters of the flight controller are important parameters that determine whether the drone is stable and the flight performance is good or bad. Therefore, before the factory leaves the drone, it will refer to the object model of the drone (the object model is used to characterize the physical structure of the drone, such as power, structure, weight, electromechanical, etc.) to debug a set of better control parameters. And configuring the control parameters in the control loop of the drone to better control the flight of the drone.
- the object model of the drone may be greatly changed.
- the user installs a propeller cover on the drone.
- the accessories, other types of propellers are used, or the payload of the drone is replaced, etc.
- the object model of the drone is changed.
- continuing to use the factory-set control parameters may reduce the number of unmanned The flight performance of the aircraft may even cause a safety accident, and there are certain safety hazards.
- the embodiment of the invention discloses a control parameter configuration method and a drone, which can intelligently adjust the control parameters of the drone.
- the first aspect of the embodiment of the present invention discloses a control parameter configuration method, which is applied to a drone, wherein the drone is configured with a control object, and the control object is used to provide flight power for the drone when working. ,include:
- the initial control parameter is a parameter configured in a flight controller of the drone
- the initial control parameter is adjusted according to the control signal and the status information.
- a second aspect of the embodiment of the present invention discloses a drone, comprising: a flight controller, a control object, and a state sensor, wherein the control object is used to provide flight power for the drone when working,
- the flight controller is configured to:
- the initial control parameter is adjusted according to the control signal and the status information.
- a third aspect of the embodiments of the present invention discloses a drone, including:
- control object for providing flight power to the drone during work
- One or more processors working individually or in concert, for:
- the initial control parameter is a parameter configured in a flight controller of the drone
- the initial control parameter is adjusted according to the control signal and the status information.
- the control signal is obtained by the excitation signal and the initial control parameter
- the control object is controlled by the control signal
- the state information corresponding to the drone under the control signal is acquired, and finally according to the control signal and the state.
- the information automatically adjusts the initial control parameters of the UAV control loop, without the need for the user to manually participate in the parameter adjustment, and can adaptively adjust the control parameters in the flight controller of the UAV, so that the adjusted control parameters and The current object model of the man-machine is matched to improve the flight performance of the drone and improve the safety and intelligence of the drone.
- FIG. 1 is a schematic diagram of an overall structure of a drone according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a scenario for parameter configuration according to an embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of an evaluation unit according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram of the principle of an evaluation unit according to an embodiment of the present invention.
- FIG. 5 is a schematic flowchart of a method for configuring a control parameter according to an embodiment of the present invention
- FIG. 6 is a schematic flowchart diagram of another method for configuring a control parameter according to an embodiment of the present invention.
- FIG. 7 is a schematic flowchart of still another method for configuring a control parameter according to an embodiment of the present invention.
- FIG. 7b is a schematic diagram of a parameter adjustment according to an embodiment of the present invention.
- FIG. 7c is a schematic diagram of a parameter adjustment according to an embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of a drone according to an embodiment of the present invention.
- the Unmanned Aerial Vehicle can be equipped with four, six, and eight rotors as needed. By controlling the rotation of the motor, the propellers on each rotor are rotated to generate thrust, which drives the entire multi-rotor. Man-machine flight.
- the control loop in the flight controller can be configured with initial control parameters. Once the initial input into the control loop is received, the initial input into the control loop can be converted into an initial control signal to the motor, the initial control signal. The motor can be controlled to rotate. Therefore, the control parameters in the flight controller are important parameters to determine whether the drone is stable and the flight performance is good or bad.
- the object model of the drone may change, for example, the user installs accessories such as a propeller cover on the drone, and the user uses other types of propellers.
- the user changes the payload of the drone, the important changes of the drone when the agricultural drone performs the spraying task, etc., which will result in changes in the object model of the drone.
- the adjustment of the initial control parameters may be performed in various manners, for example, including the manner described below.
- the mode can be switched by means of manual switching by the user. For example, when the paddle protection cover is added, the user needs to open the paddle cover switch, and then the control circuit internally switches to use the control parameter of the adapted paddle protection cover.
- control signal for controlling the control object of the drone and the state information of the drone caused by the control signal may be acquired, and then the control loop is automatically controlled according to the control signal and the state information.
- the control parameters in the road are adjusted.
- the module or unit shown in this application may be a physical module or a unit, or may be a logical module. Or, the embodiment of the present invention does not impose any limitation on this; in addition, it should be noted that the direction of the arrow shown in the structural diagram of the present application is only for facilitating the flow of the description signal, and is not used to limit the connection relationship between each module and the unit. .
- the drone includes: a flight control module, an object component, and a parameter configuration module, and the flight control module, the object component, and the parameter configuration module are interconnected.
- the flight control module and the parameter configuration module are included in a flight controller of a drone, and the object component can include a control object and a status sensor.
- the parameter configuration module can be configured to generate an excitation signal, and adjust an initial control parameter according to the control signal and status information of the drone.
- the flight control module may be configured with an initial control parameter for generating a control signal according to the configured initial control parameter and the excitation signal, and controlling according to the control object in the target component.
- the object component may correspond to a control object and a state sensor of the drone, for example, to a control motor of the rotor of the multi-rotor drone and an inertial measurement unit.
- the object component may be configured to generate a control response according to a control signal output by the flight control module, and acquire state information generated by the drone.
- the control object generates a control response according to a control signal output by the flight control module
- the state sensor acquires no State information of the human machine, such as at least one of attitude information and angular velocity information.
- the internal structure of each of the above modules is introduced below, in which the flight control module and parameters are matched.
- the module may be a hardware module or a software module in the flight controller, which is not limited herein.
- the flight control module can include a superposition unit, a control loop, and a mixing control unit.
- the control loop may be configured with initial control parameters for maintaining control logic of the drone flight.
- the superimposing unit for example, can be a mixer, which can be used for signal superposition.
- the mixing control unit is configured to convert a physical quantity (such as an angular velocity) output by the superimposing unit into a control quantity for the target component, such as a rotational speed.
- the object component can include a state sensor (eg, an inertial measurement unit) and a control object.
- the control object may be, for example, a control motor of a rotor of a multi-rotor UAV, the control motor may have a plurality of, each rotor may correspond to one control motor, and the control object is used to provide a drone for working. Flight power.
- the status sensor can be, for example, an inertial measurement unit that can be mounted on the drone and can be used to measure and output status information of the drone.
- the parameter configuration module may include a signal generation unit, a first signal processing unit, a second signal processing unit, an evaluation unit, and a model estimation unit.
- the signal generating unit may be a signal generator for generating an excitation signal, the excitation signal being an angular velocity signal or an attitude signal.
- the first signal processing unit and the second signal processing unit may be signal processors for performing signal processing on the received control signals and status information, respectively.
- the model estimating unit may be a unit for estimating an object model of the current drone. In an embodiment, the model estimating unit may further estimate the unmanned according to the information output by the first processing unit and the second processing unit.
- the evaluation unit may be, for example, an evaluator for generating a set of target control parameters that most closely match the current object model to adjust the initial control parameters, ie, replacing the initial control parameters with the target control parameters.
- the flight controller is configured to: generate an excitation signal; generate a control signal according to the configured initial control parameter and the excitation signal, and control the control object according to the control signal; acquire a state sensor output Status information of the drone; adjusting the initial control parameter according to the control signal and the status information.
- the flight controller when the flight controller is configured to adjust the initial control parameter according to the control signal and the state information, specifically, the first signal processing is performed according to the control signal to obtain a first spectrum parameter. Performing a second signal processing according to the state information to obtain a second spectrum parameter; Adjusting the initial control parameter according to the first spectral parameter and the second spectral parameter.
- the first spectral parameter is used to represent spectral energy information in a frequency segment corresponding to the control signal; and the second spectral parameter is used to represent a frequency segment corresponding to the state information. Spectrum energy information.
- the method when the flight controller acquires the state information of the UAV output by the state sensor, the method is specifically configured to: acquire state information of the UAV output by the inertial measurement unit.
- the method is: generating an initial control signal according to the configured initial control parameter; and using the excitation signal Superimposed processing with the initial control signal to obtain a control signal.
- the flight controller when configured to adjust the initial control parameter according to the first spectral parameter and the second spectral parameter, specifically, the first spectral parameter and the second The spectral parameters are subjected to an arithmetic process to obtain a predicted evaluation parameter; and the initial control parameter is adjusted according to the predicted evaluation parameter.
- the flight controller is configured to perform the operation processing on the first spectrum parameter and the second spectrum parameter to obtain a prediction evaluation parameter, specifically, determining: determining, by using the first spectrum parameter a first target spectral parameter corresponding to the preset frequency segment; determining, from the second spectral parameter, a second target spectral parameter corresponding to the preset frequency segment; and the first target spectral parameter and the second target
- the spectral parameters are processed to obtain predictive evaluation parameters.
- the predetermined frequency segment is determined based on a frequency range of the excitation signal.
- the flight controller is configured to adjust the initial control parameter according to the predicted evaluation parameter, specifically, if the preset start condition is met, adjusting the initial according to the predicted evaluation parameter control parameter.
- the satisfying the preset start condition includes: the credibility of the predicted evaluation parameter is in a preset value range; and the credibility of the predicted evaluation parameter is according to the first part in the preset frequency segment A target spectral parameter and the second target spectral parameter are calculated.
- the method is: acquiring a reference evaluation parameter and a reference control parameter; and according to the reference evaluation parameter, the reference control parameter, and The predictive evaluation parameter adjusts the initial control parameter.
- the excitation signal is an angular velocity signal or an attitude signal.
- FIG. 2 is a schematic diagram of a scenario for parameter configuration according to an embodiment of the present invention.
- the drone may generate an excitation signal s by the signal generating unit when entering the take-off state or hovering in the air, and at the same time, the initial control parameter of the control loop configuration may generate an initial control signal t .
- the signal generating unit may transmit the excitation signal s to a superposition unit in the flight controller, and the control loop may also transmit the initial control signal t to the superposition unit.
- the superimposing unit may superimpose the excitation signal s with the initial control signal t, and send the superposed processed initial control signal t and the excitation signal s to the mixing unit.
- the initial control signal t and the excitation signal s after the superposition processing may be physical quantities such as angular velocity and the like.
- the mixing control unit may receive the initial control signal t and the excitation signal s after the superposition processing, and obtain a control signal u according to the initial control signal t and the excitation signal s after the superposition processing (eg, The angular velocity is converted into a control signal u, such as a rotational speed signal of the control motor, and the mixing control unit can send the control signal u to a control object in the target component.
- a control signal u such as a rotational speed signal of the control motor
- control object receives the control signal u and generates a control response according to the control signal u, the control response may change state information of the drone, wherein the state information may be, for example, acceleration, angular acceleration And one or more of the gestures, in one embodiment, the external representation may be a change in vibration or posture that occurs to the drone, which in one embodiment may be invisible to the naked eye. Slight vibration.
- a state sensor eg, an inertial measurement unit
- the second signal processing unit may perform second signal processing on the state information y to obtain a second spectral parameter Ys, where the second spectral parameter Ys may include an object stimulated by the control signal u.
- the spectrum information of the model may be performed using the second spectral parameter Ys.
- the first signal processing unit may further receive the overlay processing The initial control signal t and the excitation signal s.
- the first signal processing unit may perform a first signal processing on the control signal u to obtain a first spectral parameter Us, and the first spectral parameter Us may include spectrum information of the control signal u itself.
- the first signal processing unit may send the first spectral parameter Us to the model estimating unit, and the second signal processing unit may send the second spectral parameter Ys to the module to estimate unit.
- the model estimating unit when receiving the first spectral parameter Us and the second spectral parameter Ys, performs operations on the first spectral parameter Us and the second spectral parameter Ys to obtain a predicted evaluation parameter, and the The predicted evaluation parameters are sent to the evaluation unit.
- the prediction evaluation parameter can be used to approximate the current object model of the drone.
- the evaluation unit receives the predicted evaluation parameter, and the initial control parameter may be adjusted according to the predicted evaluation parameter.
- the evaluation unit may generate a set of target control parameters that most closely match the current object model based on the predicted evaluation parameters.
- the evaluation unit can transmit the newly generated target control parameters that best match the current object model to a control loop in the flight control module to replace the initial control parameters.
- control signal u may be a signal obtained after the first filtering process, and a first filtering unit may be disposed to perform a first filtering process on the control signal.
- first filtering unit may be configured in the flight control module or may be configured in the parameter configuration module.
- the state information y may be a signal obtained after the second filtering process; a second filtering unit may be disposed to perform a second filtering process on the state information. It should be noted that the second filtering unit may be configured in the parameter configuration module, or may be configured in the object component.
- the control parameters of the UAV adaptive configuration are matched with the current object model, which satisfies the current control requirements of the UAV and improves the safety of the UAV.
- the drone can adaptively configure the control parameters without waiting for the user to perform manual operations, and also improves the intelligence of the drone.
- the above process can also solve the adjustment of the flight performance of the drone at different altitudes, and the performance change of the agricultural drone due to the decrease of the liquid load during the spraying process. The problem.
- the evaluation unit in the parameter configuration module of the drone is used to generate a set of target control parameters that most closely match the current object model, and is an important unit for ensuring the reliability and validity of the configured control parameters.
- the structure and principle of the evaluation unit will be explained below.
- FIG. 3 is a schematic structural diagram of an evaluation unit according to an embodiment of the present invention. It should be noted that the evaluation unit may be an evaluator.
- the evaluation unit includes a judgment subunit and a reference generation subunit.
- the determining subunit may be combined with the determiner to determine whether the predicted evaluation parameter is authentic.
- the reference generation subunit may be combined with a reference generator, and the reference generation subunit may include reference control parameters and reference evaluation parameters configured by the drone at the factory.
- the working principle of the evaluation unit is described below based on the structure of the evaluation unit described above. In one embodiment, it can also be understood as a specific explanation of the step 205 shown in FIG. 2 .
- FIG. 4 is a schematic diagram of the principle of an evaluation unit according to an embodiment of the present invention.
- the model estimation unit may generate the prediction evaluation parameter, and the reliability of the prediction evaluation parameter, and send the prediction evaluation parameter and the reliability to the determination subunit of the evaluation unit.
- the determining subunit may first refer to the credibility of the predicted evaluation parameter, if the credibility does not satisfy a preset starting condition (eg, the credibility is not within a preset value range), The determining subunit may discard the predicted evaluation parameter.
- a preset starting condition eg, the credibility is not within a preset value range
- the determining subunit may perform the step 2052 if the credibility satisfies a preset launch condition.
- the determining subunit may refer to an object state (the object state may be, for example, a power value of a drone, a temperature value), if the object state of the drone does not satisfy the pre- The determining condition (for example, the power value of the drone is less than the preset power threshold), then the determining subunit may discard the predicted evaluation parameter.
- the object state may be, for example, a power value of a drone, a temperature value
- the determining subunit may acquire a state curve, and after adjusting the prediction evaluation parameter according to the state curve, perform the step 2053. .
- the predicted evaluation parameters may change due to the object state of the drone, such as voltage, temperature, etc.
- the prediction evaluation parameters may be adjusted.
- the determining subunit may refer to the current user's operation on the drone, and if the user's operation does not satisfy the preset starting condition (eg, the user's operation is a preset operation, the preset operation) For example, to operate the drone for large maneuvering, then the judging subunit may discard the predictive evaluation parameter.
- the preset starting condition eg, the user's operation is a preset operation, the preset operation
- the determining sub-unit may perform the step 2054 if the user's operation satisfies a preset launch condition.
- the judger The unit may discard the predicted evaluation parameters.
- the reference sub-unit may also be built in the reference model when the user performs the preset operation, and then the control parameter is generated in combination with the reference model when the preset operation is present in the presence of the preset operation.
- the determining subunit may perform the steps shown in the above 2051 to 2053 in sequence or in an out-of-order manner, or may perform any one or more of the steps, or may not perform the steps shown in the above 2051 to 2053.
- the embodiment of the present invention does not impose any limitation on this.
- the determining subunit may input the predictive evaluation parameter to the parameter generating subunit.
- the parameter generation subunit is configured with a reference evaluation parameter configured at the factory and a reference control parameter.
- the reference generation subunit may obtain a final output control parameter (ie, a target control parameter) according to the reference evaluation parameter, the reference control parameter, and the effective prediction evaluation parameter.
- the reference evaluation parameter and the reference control parameter may be parameters preset by the drone, for example, may be stored in a preset storage device.
- the reference evaluation parameter may represent an object model when the drone is shipped from the factory, and the reference control parameter is a control parameter that matches the object model at the factory, that is, when the drone is shipped from the factory, the control loop is configured.
- the control parameters are the reference control parameters.
- the parameter generation subunit may replace the initial control parameter according to the final output control parameter to complete the configuration process of the control parameter. It can be understood that if the initial control parameters in the flight controller are adjusted for the first time, the initial control parameters are reference control parameters, and the reference control parameters configured in the flight controller need to be replaced with the determined target control parameters.
- the method embodiment shown in this application can be applied to a drone, wherein the drone is configured with a control object, and the control object is used when working The drone provides flight power.
- the control object may be the control object shown in FIG. 1.
- FIG. 5 is a schematic flowchart of a method for configuring a control parameter according to an embodiment of the present invention.
- the method can be configured by the drone itself, or it can be configured by a dedicated processing device set in the drone or elsewhere.
- the method of the embodiment of the present invention may include:
- the excitation signal can be an angular velocity signal or an attitude signal.
- the excitation signal may be a high frequency signal, which may refer to a signal having a frequency in the range of 10 Hz to 40 Hz.
- the drone may generate the excitation signal upon entering a takeoff state. When the drone starts from the moment of leaving the ground, within the preset duration or within the preset flight distance, the state in which the drone is located can be considered as the take-off state.
- the preset duration may be 2s, 5s, 10s, 1min, etc.
- the preset flight distance may be 50cm, 1m, and the like, and the embodiment of the present invention does not impose any limitation.
- the excitation signal is generated, which can save drone energy and system resources.
- a person skilled in the art may generate an excitation signal at other suitable timings, which is not specifically limited herein.
- the initial control parameter is a parameter that is configured in a flight controller of the drone. That is, the initial control parameter may be a control parameter currently configured in the control loop.
- the initial control parameter may be a reference control parameter that is configured in the flight controller when the UAV is shipped from the factory, or may be a control parameter that is adjusted after being shipped from the factory.
- control signal may be, for example, a control signal for controlling the rotational speed.
- control object is a control motor of the rotor, and the control signal can be used to control the rotational speed of the control motor.
- the obtaining the control signal according to the excitation signal and the initial control parameter comprises: generating an initial control signal according to the configured initial control parameter; and superimposing the excitation signal and the initial control signal to obtain control signal.
- the drone may generate the initial control signal according to an initial input amount and an initial control parameter, which may be a remote control rocker from a ground end of the drone The amount of joystick.
- the initial control parameter may be any parameter required to convert an initial input amount into the control loop into an initial control signal.
- superimposing the excitation signal and the initial control signal may be performed by superimposing the excitation signal on the initial control signal to obtain the control signal.
- control signal can be used to control the control object to cause the control object to generate a control response.
- the drone may be configured with a state sensor, such as an inertial measurement unit, the status information of the drone may be detected by a status sensor, the status sensor responding to the control signal at the control object During the execution of the control response, the status information of the drone is detected.
- a state sensor such as an inertial measurement unit
- the control signal can control the control object, and the control object can change the state information of the drone after responding to the control signal.
- the status sensor can measure the status information.
- control object may change at least one of the acceleration, the angular acceleration, and the attitude angle of the drone after generating the control response.
- the status sensor may for example be an inertial measurement unit arranged in the drone.
- the inertial measurement unit may be mounted on the drone, and the inertial measurement unit detects the state information of the drone during the control object generating a control response due to the control signal.
- the control response of the control object may be to cause a change in the vibration or posture of the entire drone, wherein the vibration may be a slight vibration that is invisible to the naked eye.
- the adjusting the initial control parameter according to the control signal and the state information comprises: performing first signal processing according to the control signal to obtain a first spectrum parameter; and performing, according to the state information
- the second signal processing obtains a second spectral parameter; and the initial control parameter is adjusted according to the first spectral parameter and the second spectral parameter.
- first signal processing and the second signal processing may be, for example, performing a Fourier transform on the signal, and transforming the signal from the time domain to the frequency domain.
- the first spectral parameter is used to represent a frequency corresponding to the control signal Spectral energy information within the segment; the second spectral parameter is used to represent spectral energy information within a frequency segment corresponding to the state information.
- the control signal may be a signal in a frequency segment, and the frequency segment may be a continuous frequency segment, that is, the frequency segment includes all frequency points in the range of the frequency segment; or the frequency segment is also It may be a discrete frequency segment, that is, the frequency segment includes some discrete frequency points in the range of the frequency segment, which is not limited by the embodiment of the present invention.
- the first spectral parameter is obtained according to the control signal, and therefore, the frequency segment of the first spectral parameter may correspond to the control signal.
- the second spectral parameter is obtained according to the state information, and therefore, the frequency segment of the second spectral parameter may correspond to the state information.
- the drone may perform an approximate analysis and estimation on the current object model of the drone based on the control signal and the state information, that is, the drone according to the control signal and the state information.
- the object model performs approximation analysis and estimation, then generates target control parameters that match the current object model of the drone, and adjusts the initial control parameters to target control that matches the current object model of the drone parameter.
- the excitation signal is generated by the unmanned aerial vehicle, and then the control signal is obtained according to the excitation signal and the initial control parameter, and the control object of the drone is controlled according to the control signal to obtain state information, and according to The control signal and the status information adjust the initial control parameter, eliminating the user's operation, eliminating the dangerous state caused by the user's misoperation and parameter setting error, improving the safety of the drone, and the drone does not need to wait for the user.
- the adaptive adjustment process can be completed by manually setting the control parameters.
- the control parameters calculated by the built-in algorithm can better adapt the current object model of the drone, and can adapt to the official accessories and unofficial accessories, improving the unmanned The intelligence of the machine.
- FIG. 6 is a schematic flowchart of another method for configuring a control parameter according to an embodiment of the present invention.
- the method as shown in FIG. 6 may include:
- the initial control parameter is a parameter configured in a flight controller of the drone.
- first spectral parameter and the second spectral parameter may be used to generate a target control parameter that matches an object model of the current drone, and adjust the initial control parameter according to the target control parameter.
- the UAV adjusts the initial control parameter according to the first spectral parameter and the second spectral parameter, and may perform operations on the first spectral parameter and the second spectral parameter. Processing, calculating the predicted evaluation parameter, and adjusting the initial control parameter according to the predicted evaluation parameter.
- the predictive evaluation parameter can be used to approximate the current object model of the current drone.
- the initial control parameter diagram may be adjusted for the drone according to the predicted evaluation parameter.
- the method as shown in Figure 7a can include:
- S6061 Determine, from the first spectrum parameter, a first target spectrum parameter corresponding to the preset frequency segment.
- the predetermined frequency segment is determined based on a frequency range of the excitation signal.
- the excitation signal may be a high frequency signal in the range of 10 Hz to 40 Hz
- the initial control signal generated by the initial control parameter may include both low frequency (eg, frequency below 10 Hz) and high frequency (
- the signal having a frequency greater than or equal to 10 Hz when the excitation signal and the initial control signal are superimposed, the frequency range of the obtained control signal may be a range in which the frequency segment of the excitation signal and the frequency segment of the initial control signal are superimposed.
- the first spectral parameter is obtained according to the control signal, and the frequency range of the first spectral parameter may be a frequency range of the control signal.
- the drone may select a first target spectral parameter corresponding to a frequency range of the excitation signal from the first spectral parameter.
- S6062 Determine, from the second spectrum parameter, a second target spectral parameter corresponding to the preset frequency segment.
- the second spectral parameter is obtained according to the state information, and therefore, the The frequency range of the second spectral parameter may be the frequency range of the state information.
- the drone may select a second target spectral parameter corresponding to a frequency range of the excitation signal from the second spectral parameter.
- the excitation signal has a frequency range of 10-40 Hz
- the second target spectral parameter may be a second spectral parameter with a frequency range of 10-40 Hz.
- S6063 Perform arithmetic processing on the first target spectral parameter and the second target spectral parameter to obtain a predicted evaluation parameter.
- the drone may divide or subtract the first target spectral parameter and the second spectral parameter, and obtain the predicted evaluation parameter according to the result of the operation. In one embodiment, the drone may divide the first target spectral parameter by the second target spectral parameter, or divide the second spectral parameter by the first spectral parameter, and subtract the obtained value. As the prediction evaluation parameter.
- the adjusting the initial control parameter according to the predicted evaluation parameter comprises: adjusting the initial control parameter according to the predicted evaluation parameter if a preset start condition is met.
- the drone can discard the predicted evaluation parameter obtained without satisfying the preset starting condition.
- the initial control parameters can no longer be adjusted.
- the satisfying the preset start condition includes: the credibility of the predicted evaluation parameter is in a preset value range; and the credibility of the predicted evaluation parameter is according to the first part in the preset frequency segment A target spectral parameter and the second target spectral parameter are calculated.
- the credibility of the predictive evaluation parameter may be a variance.
- the drone may first divide or subtract the first target spectral parameter and the second target spectral parameter at the same time to obtain a predicted evaluation parameter, and then may select at least two predicted evaluation parameters within a preset time range.
- the variance calculation is performed to obtain a variance value, which can be used to determine whether the prediction evaluation parameter is authentic.
- a predetermined start condition may be considered to be met. If the reliability of the predicted evaluation parameter is not within the preset value range, it may be considered that the preset start condition is not met, and the drone may discard the obtained predicted evaluation parameter.
- the preset starting condition may also be set according to an object state of the drone, a user's current operation on the drone, and the like.
- the object state of the drone may be a power value, a temperature value, or the like. If the power value is less than the preset power threshold, the preset start condition may not be satisfied; if the temperature value is less than or greater than the preset The temperature threshold may also be considered as not satisfying the preset starting condition.
- the large maneuver may refer to a state in which the user operates the drone suddenly rises, or suddenly accelerates, or suddenly drops, and the acceleration suddenly increases. At this time, the reliability of the predicted evaluation parameter is low, and the drone can be used. The prediction evaluation parameter is discarded.
- the adjusting the initial control parameter according to the predicted evaluation parameter comprises: acquiring a reference evaluation parameter and a reference control parameter; adjusting according to the reference evaluation parameter, the reference control parameter, and the predicted evaluation parameter The initial control parameters.
- the reference evaluation parameter and the reference control parameter may be parameters preset by the drone, for example, may be stored in a preset storage device.
- the reference evaluation parameter may be used to represent an object model when the drone is shipped from the factory, and the reference control parameter is a control parameter that matches the object model at the factory, that is, the drone is configured in the flight controller at the factory.
- the parameters in . It can be understood that if the initial control parameter in the control loop is adjusted for the first time, the initial control parameter is the reference control parameter, and the reference control parameter configured in the control loop needs to be replaced with the determined target control parameter.
- the drone may obtain a target control parameter corresponding to the predicted evaluation parameter according to the predicted evaluation parameter, the reference evaluation parameter, and a reference control parameter corresponding to the reference evaluation parameter, the target
- the control parameters are the control parameters of the final output.
- the drone can replace the initial control parameter with the target control parameter to complete the configuration process of the control parameter.
- the reference control parameter, the reference evaluation parameter, the target control parameter, and the predicted evaluation parameter need to satisfy a preset operational relationship, and after obtaining the predicted evaluation parameter, that is, according to a preset operational relationship,
- the target control parameters are determined by reference to the control parameters, the reference evaluation parameters, and the predicted evaluation parameters, and the initial control parameters in the current control loop are replaced with the determined target control parameters.
- the product between the reference control parameter and the predicted evaluation parameter should be equal to the product between the target control parameter and the predicted evaluation parameter.
- FIG. 7b is a control parameter adjustment according to an embodiment of the present invention.
- Scenario diagram wherein, FIG. 7b can be used to indicate a spectrum energy map of the reference evaluation parameter corresponding to the reference control parameter in the case where K is a reference control parameter.
- the frequency segment can be 10-16 Hz.
- the reference energy of the reference evaluation parameter is 2
- the drone may calculate a predicted evaluation parameter based on the first spectral parameter and the second spectral parameter. Please refer to FIG. 7c.
- FIG. 7c can be used to represent a spectrum energy map corresponding to the calculated predicted evaluation parameter.
- the calculated spectral energy value of the predicted prediction parameter when the frequency is 10 Hz, the calculated spectral energy value of the predicted prediction parameter is 2.5, and when the frequency is 12 Hz, the calculated spectral energy value of the predicted prediction parameter is 2, and the frequency is 14 Hz.
- the calculated spectral energy value of the predicted evaluation parameter is 1.5, and the calculated spectral energy value of the predicted prediction parameter is 1 when the frequency is 16 Hz. Comparing the reference evaluation parameters with the prediction evaluation parameters, the object model of the drone has changed, and the flight performance of the drone has deteriorated. In order to improve the flight performance of the drone, the initial control parameters need to be adjusted.
- the energy value at each of the reference evaluation parameters is twice the energy value at the corresponding frequency in the predicted evaluation parameter, and therefore, the target control parameter can be determined to be twice the reference control parameter.
- the UAV can obtain the first spectrum parameter according to the control signal, obtain the second spectrum parameter according to the state information, and adjust the location according to the first spectrum parameter and the second spectrum parameter.
- the initial control parameters replace the manual operation of the user, and the adjustment of the initial control parameters according to the prediction evaluation parameters is completed, so that the drone can have better performance when the object model changes, and the safety of the drone is improved. And intelligence.
- FIG. 8 is a schematic structural diagram of a drone according to an embodiment of the present invention, including: a control object 801, one or more processors 802;
- the control object 801 is configured to provide flight power to the drone during operation
- the one or more processors 802 operate separately or in concert for:
- the initial control parameter is a parameter configured in a control loop (not shown in FIG. 8) of the drone;
- the initial control parameter is adjusted according to the control signal and the status information.
- the drone further includes a memory 803.
- the memory 803 is configured to store program instructions
- the processor 801 is configured to execute the program instructions stored by the memory 803, and when the program instructions are executed, are used to execute:
- the initial control parameter is a parameter configured in a control loop (not shown in FIG. 8) of the drone;
- the initial control parameter is adjusted according to the control signal and the status information.
- the processor 801 when the processor 801 is configured to adjust the initial control parameter according to the control signal and the status information, specifically, the first signal processing is performed according to the control signal to obtain a first spectrum. And performing a second signal processing according to the state information to obtain a second spectrum parameter; and adjusting the initial control parameter according to the first spectrum parameter and the second spectrum parameter.
- the first spectral parameter is used to represent spectral energy information in a frequency segment corresponding to the control signal; and the second spectral parameter is used to represent a frequency segment corresponding to the state information. Spectrum energy information.
- the status information is detected by an inertial measurement unit.
- the method is: generating an initial control signal according to the configured initial control parameter; and using the excitation signal with The initial control signal is superimposed to obtain a control signal.
- the processor 801 is configured to use the first spectrum parameter and the first The second spectrum parameter is used to adjust the initial control parameter, and is specifically used to: perform operation processing on the first spectrum parameter and the second spectrum parameter to obtain a prediction evaluation parameter; and adjust the initial control parameter according to the prediction evaluation parameter. .
- the processor 801 is configured to perform operation processing on the first spectrum parameter and the second spectrum parameter to obtain a prediction evaluation parameter, where the method is specifically configured to: determine from the first spectrum parameter. a first target spectral parameter corresponding to the preset frequency segment; determining, from the second spectral parameter, a second target spectral parameter corresponding to the preset frequency segment; and the first target spectral parameter and the second The target spectral parameters are processed to obtain predictive evaluation parameters.
- the predetermined frequency segment is determined based on a frequency range of the excitation signal.
- the processor 801 when the processor 801 is configured to adjust the initial control parameter according to the predicted evaluation parameter, specifically, when the preset start condition is met, the method is adjusted according to the predicted evaluation parameter. Initial control parameters.
- the processor 801 is configured to satisfy a preset start condition, where the reliability of the predicted evaluation parameter is in a preset value range; and the reliability of the predicted evaluation parameter is according to a preset frequency segment.
- the first target spectral parameter and the second target spectral parameter are calculated.
- the method is: acquiring a reference evaluation parameter and a reference control parameter; and using the reference evaluation parameter and the reference control parameter according to the reference And the predictive evaluation parameter adjusts the initial control parameter.
- the processor 801 is configured to excite the signal as an angular velocity signal or an attitude signal.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种控制参数配置方法及无人机,其中方法包括:生成激励信号(S501);根据所述激励信号以及初始控制参数得到控制信号(S502),所述初始控制参数为配置在所述无人机的飞行控制器中的参数;根据所述控制信号对所述控制对象进行控制,获取所述无人机产生的状态信息(S503);根据所述控制信号以及所述状态信息调整所述初始控制参数(S504),可以智能地对无人机的控制参数进行调整。
Description
本发明涉及电子技术领域,尤其涉及一种控制参数配置方法及无人机。
飞行控制器的控制参数是决定无人机是否稳定以及飞行性能好坏的重要参数。因此,无人机在出厂前,会参考无人机的对象模型(该对象模型用于表征无人机的物理结构,如动力、结构、重量、机电等)调试好一组较优的控制参数,并将所述控制参数配置在无人机的控制环路中,以较好地对无人机进行飞行控制。
然而,在实际使用过程中,如果无人机的结构、重量、动力组件等因素发生变化,可能会导致无人机的对象模型发生较大改变,例如,用户在无人机上加装螺旋桨保护罩等配件、使用了其他类型的螺旋桨或者更换了无人机的有效负载等等情况时,会改变无人机的对象模型,在这种情况下,继续使用出厂设置的控制参数可能会降低无人机的飞行性能,甚至可能引起安全事故,存在一定的安全隐患。
发明内容
本发明实施例公开了一种控制参数配置方法及无人机,可智能地对无人机的控制参数进行调整。
本发明实施例第一方面公开了一种控制参数配置方法,应用于无人机,所述无人机中配置有控制对象,所述控制对象工作时用于为所述无人机提供飞行动力,包括:
生成激励信号;
根据所述激励信号以及初始控制参数得到控制信号,所述初始控制参数为配置在所述无人机的飞行控制器中的参数;
根据所述控制信号对所述控制对象进行控制,获取所述无人机产生的状态信息;
根据所述控制信号以及所述状态信息调整所述初始控制参数。
本发明实施例第二方面公开了一种无人机,包括:飞行控制器、控制对象和状态传感器,其中,所述控制对象工作时用于为所述无人机提供飞行动力,
所述飞行控制器,用于:
生成激励信号;
根据配置的初始控制参数和所述激励信号生成控制信号,并根据所述控制信号对控制对象进行控制,其中,所述初始控制参数为配置在所述飞行控制器中的参数;
获取状态传感器输出的无人机的状态信息;
根据所述控制信号以及所述状态信息调整所述初始控制参数。
本发明实施例第三方面公开了一种无人机,包括:
控制对象,用于工作时为所述无人机提供飞行动力;
一个或多个处理器,单独或协同地工作,用于:
生成激励信号;
根据所述激励信号以及初始控制参数得到控制信号,所述初始控制参数为配置在所述无人机的飞行控制器中的参数;
根据所述控制信号对所述控制对象进行控制,获取所述无人机产生的状态信息;
根据所述控制信号以及所述状态信息调整所述初始控制参数。
本发明实施例中,通过激励信号与初始控制参数得到控制信号,利用控制信号对控制对象进行控制,并获取无人机在所述控制信号下对应的状态信息,最后根据所述控制信号以及状态信息对配置在无人机控制环路的初始控制参数进行自动调整,无需用户手动参与参数的调整,能够自适应调整无人机的飞行控制器中的控制参数,使得调整后的控制参数与无人机当前的对象模型相匹配,改善无人机飞行性能,提高无人机的安全性以及智能性。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一
些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种无人机的整体结构示意图;
图2是本发明实施例所提供的一种用于参数配置的情景示意图;
图3是本发明实施例提供的一种评估单元的结构示意图;
图4是本发明实施例提供的一种评估单元的原理示意图;
图5是本发明实施例所提供的一种控制参数配置方法的流程示意图;
图6是本发明实施例提供的另一种控制参数配置方法的流程示意图;
图7a是本发明实施例提供的又一种控制参数配置方法的流程示意图;
图7b是本发明实施例提供的一种参数调整的情景示意图;
图7c是本发明实施例提供的一种参数调整的情景示意图;
图8是本发明实施例提供的一种无人机的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
多旋翼无人机(Unmanned Aerial Vehicle,UAV)可以根据需要配置四个、六个、八个等旋翼,通过控制电机的转动,带动各个旋翼上的螺旋桨转动,从而产生推力,带动整个多旋翼无人机飞行。
飞行控制器中的控制环路可以配置有初始控制参数,一旦接收到进入控制环路的初始输入量,即可以将进入控制环路的初始输入量转化成对电机的初始控制信号,初始控制信号即可控制电机转动,因此,飞行控制器中的控制参数是决定无人机是否稳定以及飞行性能好坏的重要参数。
但在实际用户的使用中,由于受到各种外部因素的作用,无人机的对象模型可能会发生变化,例如用户在无人机上加装螺旋桨保护罩等配件、用户使用了其他类型的螺旋桨、用户更换了无人机的有效负载、农业无人机在执行喷洒任务时无人机的重要的改变等等都会导致无人机的对象模型的变化。
在本发明实施例中,对初始控制参数的调整可以采用多种方式,例如包括如下所述的方式。
在一个实施例中,可以通过用户手动切换的方式进行模式切换,如加装桨保护罩需要用户开启使用桨保护罩开关,然后控制回路内部切换使用适配加装桨保护罩的控制参数。
在一个实施例中,还可以通过获取对无人机的控制对象进行控制的控制信号和所述控制信号引起的无人机的状态信息,进而根据所述控制信号和状态信息自动地对控制环路中的控制参数进行调整。
本发明实施例中,在对所述无人机的整体结构进行进一步介绍之前,需要说明的是,本申请所示的模块或者单元可以为物理上的模块或单元,也可以为逻辑上的模块或单元,本发明实施例对此不作任何限制;还需要说明的,本申请结构类附图中所示的箭头方向仅为了便于描述信号的流向,不用于对各个模块和单元的连接关系构成限定。
下面进一步介绍图1所示的无人机的整体结构,在所述结构下,能够实现对飞行控制器中的控制参数进行调整。从图1可以看出,所述无人机包括:飞行控制模块、对象组件以及参数配置模块,所述飞行控制模块、对象组件以及参数配置模块两两互连。在一个实施例中,所述飞行控制模块和所述参数配置模块包括在无人机的飞行控制器中,所述对象组件可以包括控制对象及状态传感器。
其中,所述参数配置模块,可以用于生成激励信号,以及根据控制信号以及无人机的状态信息调整初始控制参数。
其中,所述飞行控制模块中可以配置有初始控制参数,用于根据配置的初始控制参数和所述激励信号生成控制信号,并根据对象组件中的控制对象进行控制。
其中,所述对象组件,可以与无人机的控制对象和状态传感器相对应,例如可以与多旋翼无人机的旋翼的控制电机以及惯性测量单元相对应。所述对象组件可以用于根据飞行控制模块输出的控制信号产生控制响应,以及获取无人机产生的状态信息,具体地,控制对象根据飞行控制模块输出的控制信号产生控制响应,状态传感器获取无人机的状态信息,例如姿态信息、角速度信息中的至少一种。
下面对上述各个模块的内部构成进行介绍,其中,飞行控制模块和参数配
置模块可以是飞行控制器中的硬件模块或者软件模块,在此不作限定。
首先介绍所述飞行控制模块的内部构成。从图1可以看出,所述飞行控制模块可以包括叠加单元、控制环路、混控单元。其中,所述控制环路,可以配置有初始控制参数,用于维持无人机飞行的控制逻辑。所述叠加单元,例如可以为混频器,可以用于进行信号叠加。所述混控单元,用于将所述叠加单元输出的物理量(如角速度)转换为对对象组件的控制量,例如转速。
在一个实施例中,所述对象组件可以包括:状态传感器(例如惯性测量单元)以及控制对象。所述控制对象,例如可以为多旋翼无人机的旋翼的控制电机,所述控制电机可以具有多个,每个旋翼可以对应一个控制电机,所述控制对象工作时用于为无人机提供飞行动力。所述状态传感器,例如可以为惯性测量单元,该状态传感器可以安装在无人机上,可以用于测量并输出无人机的状态信息。
在一个实施例中,所述参数配置模块,可以包括信号发生单元、第一信号处理单元、第二信号处理单元、评估单元以及模型估计单元。所述信号发生单元,例如可以为信号发生器,用于产生激励信号,所述激励信号为角速度信号或姿态信号。所述第一信号处理单元以及第二信号处理单元可以为信号处理器,分别用于对接收到的控制信号和状态信息进行信号处理。所述模型估计单元,可以为对当前无人机的对象模型进行估计的单元,在一个实施例中,所述模型估计单元还可以根据第一处理单元和第二处理单元输出的信息估计无人机当前的对象模型。所述评估单元,例如可以为评估器,用于生成一组与当前的对象模型最为匹配的目标控制参数以对初始控制参数进行调节,即利用目标控制参数替换初始控制参数。
在一个实施例中,所述飞行控制器,用于:生成激励信号;根据配置的初始控制参数和所述激励信号生成控制信号,并根据所述控制信号对控制对象进行控制;获取状态传感器输出的无人机的状态信息;根据所述控制信号以及所述状态信息调整所述初始控制参数。
在一个实施例中,所述飞行控制器用于根据所述控制信号以及所述状态信息调整所述初始控制参数时,具体用于:根据所述控制信号进行第一信号处理,得到第一频谱参数;根据所述状态信息进行第二信号处理,得到第二频谱参数;
根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数。
在一个实施例中,所述第一频谱参数用于表示与所述控制信号对应的频率段内的频谱能量信息;所述第二频谱参数用于表示与所述状态信息对应的频率段内的频谱能量信息。
在一个实施例中,所述飞行控制器获取状态传感器输出的无人机的状态信息时,具体用于:获取惯性测量单元输出的无人机的状态信息。
在一个实施例中,所述飞行控制器用于根据配置的初始控制参数和所述激励信号生成控制信号时,具体用于:根据配置的所述初始控制参数生成初始控制信号;将所述激励信号与初始控制信号进行叠加处理,得到控制信号。
在一个实施例中,所述飞行控制器用于根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数时,具体用于:将所述第一频谱参数以及所述第二频谱参数进行运算处理,得到预测评估参数;根据所述预测评估参数调整所述初始控制参数。
在一个实施例中,所述飞行控制器用于将所述第一频谱参数以及所述第二频谱参数进行运算处理,得到预测评估参数时,具体用于:从所述第一频谱参数中确定与预设频率段对应的第一目标频谱参数;从所述第二频谱参数中确定与所述预设频率段对应的第二目标频谱参数;将所述第一目标频谱参数以及所述第二目标频谱参数进行运算处理,得到预测评估参数。
在一个实施例中,所述预设频率段是根据所述激励信号的频率范围确定。在一个实施例中,所述飞行控制器用于根据所述预测评估参数调整所述初始控制参数时,具体用于:在满足预设启动条件的情况下,根据所述预测评估参数调整所述初始控制参数。
在一个实施例中,所述满足预设启动条件包括:所述预测评估参数的可信度处于预设数值范围;所述预测评估参数的可信度是根据预设频率段内的所述第一目标频谱参数以及所述第二目标频谱参数计算得到的。
在一个实施例中,所述飞行控制器用于根据所述预测评估参数调整所述初始控制参数时,具体用于:获取参考评估参数以及参考控制参数;根据所述参考评估参数、参考控制参数以及所述预测评估参数调整所述初始控制参数。
在一个实施例中,所述激励信号为角速度信号或姿态信号。
下面在图1所示的无人机的整体结构的基础上,提供了一种参数配置过程的情景示意图示例,具体请参阅图2。需要说明的是,所述参数配置过程可由无人机执行。
请参阅图2,为本发明实施例所提供的一种用于参数配置的情景示意图。
在201中,无人机可以在进入起飞状态或者在空中悬停的时候,通过所述信号发生单元生成一激励信号s,同时,所述控制环路配置的初始控制参数可以产生初始控制信号t。所述信号发生单元可以将所述激励信号s发送至所述飞行控制器中的叠加单元,所述控制环路也可以将所述初始控制信号t发送至叠加单元。
在一个实施例中,所述叠加单元可以将所述激励信号s与所述初始控制信号t进行叠加处理,并将叠加处理后的初始控制信号t以及激励信号s发送到所述混控单元。其中,所述叠加处理后的初始控制信号t以及激励信号s可以是物理量,如角速度等。
在一个实施例中,所述混控单元可以接收到叠加处理后的初始控制信号t以及激励信号s,并根据所述叠加处理后的初始控制信号t以及激励信号s得到控制信号u(如将角速度转换成控制信号u,所述控制信号u如控制电机的转速信号),所述混控单元可以将所述控制信号u发送给对象组件中的控制对象。
在一个实施例中,控制对象接收控制信号u,并根据所述控制信号u产生控制响应,所述控制响应可以改变无人机的状态信息,其中,所述状态信息例如可以用加速度、角加速度和姿态中的一种或多种来表示,在一个实施例中,外在表现可以是使无人机发生的震动或者姿态的改变,在一个实施例中,所述震动可以为肉眼不可见的轻微震动。
在202中,状态传感器(例如惯性测量单元)可以检测得到控制对象由于控制响应所引起的无人机的状态信息y,并将所述状态信息y对应的信号输入到参数配置模块中的第二信号处理单元中。在一个实施例中,所述第二信号处理单元可以对所述状态信息y进行第二信号处理,得到第二频谱参数Ys,所述第二频谱参数Ys可以包含控制信号u所激起的对象模型的频谱信息。
另一方面,在203中,所述第一信号处理单元还可以接收所述叠加处理后
的初始控制信号t以及激励信号s。
在一个实施例中,所述第一信号处理单元可以对控制信号u进行第一信号处理得到第一频谱参数Us,所述第一频谱参数Us可以包含控制信号u自身的频谱信息。
在204中,所述第一信号处理单元可以将所述第一频谱参数Us发送给所述模型估计单元,所述第二信号处理单元可以将所述第二频谱参数Ys发送给所述模块估计单元。所述模型估计单元在接收到所述第一频谱参数Us以及第二频谱参数Ys的情况下,根据所述第一频谱参数Us以及第二频谱参数Ys进行运算得到预测评估参数,并将所述预测评估参数发送到所述评估单元。其中,所述预测评估参数可以用于对无人机当前的对象模型作近似估计。
在205中,所述评估单元接收到所述预测评估参数,可以根据所述预测评估参数调整所述初始控制参数。在一个实施例中,可以是评估单元根据所述预测评估参数生成一组与当前的对象模型最为匹配的目标控制参数。
在206中,所述评估单元可以将新生成的与当前对象模型最为匹配的目标控制参数发送给飞行控制模块中的控制环路,以替换掉初始控制参数。
在一个实施例中,所述控制信号u可以为经过第一滤波处理后得到的信号,可以设置一个第一滤波单元来对所述控制信号进行第一滤波处理。需要说明的是,所述第一滤波单元可以配置在所述飞行控制模块中,也可以配置在所述参数配置模块中。
在一个实施例中,所述状态信息y可以为经过第二滤波处理后得到的信号;可以设置一个第二滤波单元用于对所述状态信息进行第二滤波处理。需要说明的是,所述第二滤波单元可以配置在所述参数配置模块中,也可以配置在所述对象组件中。
可见,通过上述介绍的无人机对控制参数的配置过程,无人机自适应配置的控制参数与当前的对象模型匹配,满足了无人机当前的控制需求,提高了无人机的安全性,并且,无人机无需等待用户进行手动操作,便可对控制参数进行自适应配置,也提高了无人机的智能性。
还需要说明的是,上述过程还可以解决无人机在不同海拔飞行性能的调整,以及农业无人机在喷洒过程中由于液体负载减少等因素导致性能发生变化
的问题。
另一方面,所述无人机的参数配置模块中的评估单元用于生成一组与当前的对象模型最为匹配的目标控制参数,是保障配置的控制参数的可靠性以及有效性的重要单元,下面将对所述评估单元的结构以及原理进行阐述。
首先介绍所述评估单元的结构。请参阅图3,为本发明实施例提供的一种评估单元的结构示意图,需要说明的,所述评估单元可以为评估器。
从图3可以看出,所述评估单元包括判断子单元以及参考生成子单元。其中,所述判断子单元可以与判断器相结合,用于判断预测评估参数是否可信。所述参考生成子单元可以与参考生成器相结合,所述参考生成子单元中可以包括无人机在出厂时配置的参考控制参数及参考评估参数。
下面基于上面介绍的所述评估单元的结构对所述评估单元的工作原理进行阐述,在一个实施例中,也可以理解为对图2所示的205步骤的具体阐述。
请参阅图4,为本发明实施例提供的一种评估单元的原理示意图。在2051中,模型估计单元可以生成所述预测评估参数,以及所述预测评估参数的可信度,并将所述预测评估参数以及可信度发送至评估单元的判断子单元中。
在一个实施例中,所述判断子单元可以先参考所述预测评估参数的可信度,如果所述可信度不满足预设的启动条件(例如可信度不在预设数值范围内),所述判断子单元就可以将所述预测评估参数丢弃。
在一个实施例中,如果所述可信度满足预设的启动条件,所述判断子单元可以执行所述2052步骤。
在一个实施例中,在2052中,所述判断子单元可以参考对象状态(所述对象状态例如可以为无人机的电量值、温度值),如果所述无人机的对象状态不满足预设的启动条件(例如为所述无人机的电量值小于预设电量阈值),那么所述判断子单元可以将所述预测评估参数丢弃。
在一个实施例中,如果所述无人机的对象状态满足预设的启动条件,那么所述判断子单元可以获取状态曲线,并根据状态曲线对预测评估参数进行调整后,执行所述2053步骤。
需要说明的是,预测评估参数可能会因为无人机的对象状态而发生变化,如电压、温度等,为了得到更为精确的结果,可以对预测评估参数进行调整。
在一个实施例中,在2053中,所述判断子单元可以参考当前用户对无人机的操作,如果用户的操作不满足预设启动条件(例如用户的操作为预设操作,该预设操作例如为操作无人机进行大机动),那么所述判断子单元可以丢弃所述预测评估参数。
在一个实施例中,如果用户的操作满足预设的启动条件,那么所述判断子单元可以执行所述2054步骤。
需要说明的是,当用户对无人机进行预设操作时,针对用户的预设操作(例如操作无人机进行大机动等)得到的预测评估参数可能不具有进行比较的价值,故判断子单元可以将所述预测评估参数予以丢弃。
在一个实施例中,判断子单元中也可以内置用户的预设操作时的参考模型,然后在存在预设操作的情况下结合所述预设操作时的参考模型进行控制参数生成。
需要说明的是,所述判断子单元可以顺序或乱序执行上述2051至2053所示的步骤,也可以选择其中任意一步或多步进行执行,也可以不执行上述2051至2053所示的步骤,本发明实施例对此不作任何限制。
在2054中,判断子单元可以将所述预测评估参数输入到参数生成子单元。
在2055中,所述参数生成子单元配置有出厂时配置的参考评估参数以及参考控制参数。所述参考生成子单元可以根据所述参考评估参数、参考控制参数以及有效的预测评估参数,得到最终输出的控制参数(即目标控制参数)。所述参考评估参数以及所述参考控制参数可以为无人机预置的参数,例如可以存储在预设的存储设备中。其中,所述参考评估参数可以表示无人机出厂时的对象模型,所述参考控制参数是与出厂时的对象模型相匹配的控制参数,即无人机在出厂时,控制环路中配置的控制参数即为参考控制参数。
在2056中,所述参数生成子单元可以根据该最终输出的控制参数替换掉初始控制参数,以完成控制参数的配置过程。可以理解的是,如果是第一次对飞行控制器中的初始控制参数进行调节,则初始控制参数即为参考控制参数,需要使用确定的目标控制参数替换飞行控制器中配置的参考控制参数。
下面介绍本申请的方法实施例。需要说明的是,本申请所示的方法实施例可应用于无人机,所述无人机中配置有控制对象,所述控制对象工作时用于为
所述无人机提供飞行动力。例如,所述控制对象可以为图1所示的控制对象。
请参阅图5,为本发明实施例所提供的一种控制参数配置方法的流程示意图。该方法可以由无人机自行进行配置,当然也可以通过设置在无人机或者其他地方的专用处理设备进行配置。如图5所示,本发明实施例的所述方法可包括:
S501、生成激励信号。所述激励信号可以为角速度信号或姿态信号。
在一个实施例中,所述激励信号可以是高频信号,所述高频信号可以是指频率范围在10Hz-40Hz的信号。在一个实施例中,无人机可以在进入起飞状态的情况下,生成所述激励信号。无人机从离地的时刻开始,在预设的时长范围内或者预设的飞行距离内,均可以认为无人机所处的状态为起飞状态。所述预设的时长可以为2s、5s、10s、1min等,所述预设的飞行距离可以为50cm、1m等距离,本发明实施例对此不作任何限制。
需要说明的是,所述无人机在进入起飞状态或者处于悬停的情况下生成所述激励信号,可以节约无人机能源以及系统资源。另外,本领域技术人员可以在其他合适的时机生成激励信号,在此不作具体的限定。
S502、根据所述激励信号以及初始控制参数得到控制信号。所述初始控制参数为配置在所述无人机的飞行控制器中的参数。即所述初始控制参数可以是当前配置在控制环路中的控制参数。
需要说明的是,所述初始控制参数可以是无人机出厂时配置在飞行控制器中的参考控制参数,也可以是出厂后经过调整的控制参数,本发明实施例对此不作任何限制。
需要说明的是,所述控制信号例如可以是控制转速的控制信号。例如,所述控制对象为旋翼的控制电机,所述控制信号就可以用于控制控制电机的转速。
在一个实施例中,所述根据所述激励信号以及初始控制参数得到控制信号,包括:根据配置的所述初始控制参数生成初始控制信号;将所述激励信号与初始控制信号进行叠加处理,得到控制信号。
在一个实施例中,所述无人机可以根据初始输入量和初始控制参数来生成所述初始控制信号,所述初始输入量可以是来自无人机的地面端上遥控器摇杆
的控制杆量。其中,所述初始控制参数可以为将进入控制环路的初始输入量转换成初始控制信号的所需的任何参数。
举例来说,将所述激励信号与所述初始控制信号进行叠加处理,可以是将所述激励信号叠加到所述初始控制信号上以获取所述控制信号。
还需要说明的是,得到的控制信号可以用于对控制对象进行控制,使所述控制对象产生控制响应。
S503、根据所述控制信号对所述控制对象进行控制,获取所述无人机产生的状态信息。
在一个实施例中,所述无人机可以配置有状态传感器,例如惯性测量单元,无人机的状态信息可以由状态传感器检测得到,所述状态传感器是在所述控制对象响应所述控制信号并执行控制响应的过程中,检测得到所述无人机的状态信息。
所述控制信号可以对控制对象进行控制,所述控制对象对控制信号进行响应后可以改变无人机的状态信息。状态传感器可以测量得到所述状态信息。
举例来说,所述控制对象产生控制响应后可以改变无人机的加速度、角加速度、姿态角中的至少一个状态信息。
所述状态传感器例如可以是配置在无人机中的惯性测量单元。所述惯性测量单元可以安装在无人机上,在所述控制对象因为控制信号产生控制响应的过程中,所述惯性测量单元检测得到所述无人机的状态信息。在一个实施例中,控制对象的控制响应可以是带动整个无人机发生震动或者姿态的改变,其中,所述震动可以为肉眼不可见的轻微震动。
S504、根据所述控制信号以及所述状态信息调整所述初始控制参数。
在一个实施例中,所述根据所述控制信号以及所述状态信息调整所述初始控制参数,包括:根据所述控制信号进行第一信号处理,得到第一频谱参数;根据所述状态信息进行第二信号处理,得到第二频谱参数;根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数。
需要说明的是,所述第一信号处理以及所述第二信号处理,例如可以是对信号进行傅里叶变换,将信号从时域变换到频域。
在一个实施例中,所述第一频谱参数用于表示与所述控制信号对应的频率
段内的频谱能量信息;所述第二频谱参数用于表示与所述状态信息对应的频率段内的频谱能量信息。
控制信号可以为一个频率段内的信号,所述频率段可以为连续的频率段,也就是说,所述频率段包含处于所述频率段范围内的所有频点;或者,所述频率段也可以为离散的频率段,也就是说,所述频率段包含处于所述频率段范围内的一些离散的频点,本发明实施例对此不作限制。
所述第一频谱参数是根据所述控制信号得到的,因此,所述第一频谱参数的频率段可以与所述控制信号相对应。所述第二频谱参数是根据所述状态信息得到的,因此,所述第二频谱参数的频率段可以与所述状态信息相对应。
在一个实施例中,所述无人机可以基于所述控制信号以及状态信息,对所述无人机当前的对象模型进行近似分析和估计,即根据所述控制信号和状态信息对无人机的对象模型进行近似分析和估计,然后生成与无人机当前的对象模型相匹配的目标控制参数,并将所述初始控制参数调整为与该与无人机当前的对象模型相匹配的目标控制参数。
本发明实施例中,通过无人机生成激励信号,然后根据所述激励信号以及初始控制参数得到控制信号,并根据所述控制信号对无人机的控制对象进行控制,得到状态信息,并根据所述控制信号以及状态信息调整所述初始控制参数,无需用户操作,排除了用户误操作、参数设置错误而产生的危险状态,提高了无人机的安全性,并且,无人机无需等待用户手动设置控制参数便可完成自适应调整过程,通过内置算法计算得到的控制参数,能够更好的适配无人机当前的对象模型,且能够适配官方配件以及非官方配件,提高了无人机的智能性。
下面请参阅图6,为本发明实施例提供的另一种控制参数配置方法的流程示意图。如图6所示的方法可包括:
S601、生成激励信号。
S602、根据所述激励信号以及初始控制参数得到控制信号。
其中,所述初始控制参数为配置在所述无人机的飞行控制器中的参数。
S603、根据所述控制信号对所述控制对象进行控制,得到所述控制对象产生的状态信息。
S604、根据所述控制信号进行第一信号处理,得到第一频谱参数。
S605、根据所述状态信息进行第二信号处理,得到第二频谱参数。
需要说明的是,上述S601至S605的具体实现过程可参考前述方法实施例中对S501至S504中的相关描述,在此不作赘述。
S606、根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数。
需要说明的是,所述第一频谱参数以及所述第二频谱参数可以用于生成与当前无人机的对象模型相匹配的目标控制参数,并根据该目标控制参数调整所述初始控制参数。
在一个实施例中,所述无人机根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数,可以是将所述第一频谱参数以及所述第二频谱参数进行运算处理,计算得到所述预测评估参数,并根据所述预测评估参数调整所述初始控制参数。所述预测评估参数可以用于对当前无人机的当前的对象模型进行近似估计。
请参阅图7a,可以为无人机根据预测评估参数调整所述初始控制参数示意图。如图7a所示的方法可包括:
S6061、从所述第一频谱参数中确定与预设频率段对应的第一目标频谱参数。在一个实施例中,所述预设频率段是根据所述激励信号的频率范围确定。
在一些可行的实施方式中,所述激励信号可以为10Hz到40Hz范围内的高频信号,初始控制参数生成的初始控制信号可以为既包括低频(例如频率低于10Hz),也包括高频(例如频率大于等于10Hz)的信号,当所述激励信号与所述初始控制信号经过叠加处理,得到的控制信号的频率范围可以为激励信号的频率段和初始控制信号的频率段叠加后的范围。
在一个实施例中,所述第一频谱参数根据所述控制信号得到,所述第一频谱参数的频率范围可以为所述控制信号的频率范围。无人机可以从所述第一频谱参数中选取与激励信号的频率范围相对应的第一目标频谱参数。
S6062、从所述第二频谱参数中确定与所述预设频率段对应的第二目标频谱参数。
在一个实施例中,所述第二频谱参数根据所述状态信息得到,因此,所述
第二频谱参数的频率范围可以为所述状态信息的频率范围。无人机可以从所述第二频谱参数中选取与激励信号的频率范围相对应的第二目标频谱参数。例如,所述激励信号的频率范围为10-40Hz,所述第二目标频谱参数则可以为频率范围在10-40Hz的第二频谱参数。
S6063、将所述第一目标频谱参数以及所述第二目标频谱参数进行运算处理,得到预测评估参数。
在一个实施例中,无人机可以将所述第一目标频谱参数以及所述第二频谱参数相除或相减,根据运算的结果得到所述预测评估参数。在一个实施例中,所述无人机可以将所述第一目标频谱参数除以所述第二目标频谱参数,或者将第二频谱参数除以所述第一频谱参数,相减得到的数值作为所述预测评估参数。
S6064、根据所述预测评估参数调整所述初始控制参数。
在一个实施例中,所述根据所述预测评估参数调整所述初始控制参数,包括:在满足预设启动条件的情况下,根据所述预测评估参数调整所述初始控制参数。
在不满足预设启动条件的情况下,得到的预测评估参数的准确性或可靠性较低,因此,所述无人机可以丢弃在不满足预设启动条件的情况下得到的预测评估参数,并可以不再对初始控制参数进行调整。
在一个实施例中,所述满足预设启动条件包括:所述预测评估参数的可信度处于预设数值范围;所述预测评估参数的可信度是根据预设频率段内的所述第一目标频谱参数以及所述第二目标频谱参数计算得到的。
所述预测评估参数的可信度可以为方差。无人机可以首先将同一时刻下的所述第一目标频谱参数以及所述第二目标频谱参数相除或相减得到预测评估参数,然后可以选取预设时间范围内的至少两个预测评估参数进行方差计算,得到方差值,可以用于判断所述预测评估参数是否可信。
在一个实施例中,如果所述预测评估参数的可信度处于预设数值范围内,则可以认为满足预设启动条件。如果所述预测评估参数的可信度未处于预设数值范围内,则可以认为不满足预设启动条件,无人机可以将得到的预测评估参数进行丢弃。
在一些可行的实施方式中,所述预设的启动条件还可以根据无人机的对象状态、用户当前对无人机的操作等进行设置。
所述无人机的对象状态可以为电量值、温度值等,如果所述电量值小于预设电量阈值,则可以认为不满足预设的启动条件;如果所述温度值小于或大于预设的温度阈值,也可以认为不满足所述预设的启动条件。
用户当前对无人机的操作,例如为操作无人机进行大机动时,可以认为不满足预设的启动条件。其中,所述大机动可以是指用户操作无人机突然上升,或突然加速,或突然下降等加速度突然增大的状态,这时得到的预测评估参数可靠性较低,无人机可以将所述预测评估参数丢弃。
在一个实施例中,所述根据所述预测评估参数调整所述初始控制参数,包括:获取参考评估参数以及参考控制参数;根据所述参考评估参数、参考控制参数和所述预测评估参数,调整所述初始控制参数。
所述参考评估参数以及所述参考控制参数可以为无人机预置的参数,例如可以存储在预设的存储设备中。其中,所述参考评估参数可以用于表示无人机出厂时的对象模型,所述参考控制参数是与出厂时的对象模型相匹配的控制参数,即无人机在出厂时配置在飞行控制器中的参数。可以理解的是,如果是第一次对控制环路中的初始控制参数进行调节,则初始控制参数即为参考控制参数,需要使用确定的目标控制参数替换控制环路中配置的参考控制参数。
在一个实施例中,无人机可以根据所述预测评估参数、所述参考评估参数以及与所述参考评估参数对应的参考控制参数,得到与所述预测评估参数对应的目标控制参数,该目标控制参数即为最终输出的控制参数。该无人机可以以该目标控制参数替换该初始控制参数,以完成对控制参数的配置过程。
在一些可行的实施方式中,在实际应用时,参考控制参数、参考评估参数、目标控制参数和预测评估参数需要满足预设运算关系,在获取到预测评估参数后,即按照预设运算关系、参考控制参数、参考评估参数和预测评估参数确定目标控制参数,并利用确定出的目标控制参数替换当前控制环路中的初始控制参数。在某些实施例中,参考控制参数与预测评估参数之间的乘积应该等于目标控制参数和预测评估参数之间的乘积。
举例来说,请参考图7b,图7b为本发明实施例提供的一种控制参数调整的
情景示意图。其中,图7b可以用于表示K为参考控制参数的情况下,与该参考控制参数对应的参考评估参数的频谱能量图。
可以看出,在图7b中,频率段可以为10-16Hz,具体的,当频率为16Hz时,所述参考评估参数的频谱能量值为2,当频率为14Hz时,所述参考评估参数的频谱能量值为3,当频率为12时,所述参考评估参数的频谱能量值为4,当频率为10时,所述参考评估参数的频谱能量值为5等等。
在一个实施例中,无人机可以根据该第一频谱参数以及该第二频谱参数计算得到预测评估参数。请参阅图7c,图7c可以用于表示计算得到的预测评估参数对应的频谱能量图。
可以看出,在图7c中,频率为10Hz时,计算得到的预测评估参数的频谱能量值为2.5,频率为12Hz时,计算得到的预测评估参数的频谱能量值为2,频率为14Hz时,计算得到的预测评估参数的频谱能量值为1.5,频率为16Hz时,计算得到的预测评估参数的频谱能量值为1。将参考评估参数和预测评估参数进行比较可知,无人机的对象模型已经发生变化,而且无人机的飞行性能已经变差,为了提高无人机的飞行性能,需要对初始控制参数进行调节,参考评估参数中每一个频率上的能量值是预测评估参数中对应频率上的能量值的两倍,因此,可以将目标控制参数确定为参考控制参数的两倍。
通过这种方式对控制环路中的初始控制参数进行调节,可以保证调节之后的确定的预测评估参数对应的频谱能量图与参考评估参数对应的频谱能量图相近,保证无人机具有与出厂时一样的飞行性能。
可以看出,在本发明实施例中,无人机可以根据控制信号得到第一频谱参数,根据状态信息得到第二频谱参数,并根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数,替代了用户的手动操作,完成了根据预测评估参数对初始控制参数的调整,使得无人机在对象模型发生变化时可以具有较好的性能,提高了无人机的安全性以及智能性。
本发明实施例还提供一种无人机。请参阅图8,为本发明实施例提供的一种无人机的结构示意图,包括:控制对象801,一个或多个处理器802;
所述控制对象801,用于工作时为所述无人机提供飞行动力;
所述一个或多个处理器802,单独或协同地工作,用于:
生成激励信号;
根据所述激励信号以及初始控制参数得到控制信号,所述初始控制参数为配置在所述无人机的控制环路(图8未示出)中的参数;
根据所述控制信号对所述控制对象801进行控制,获取所述无人机产生的状态信息;
根据所述控制信号以及所述状态信息调整所述初始控制参数。
在一个实施例中,所述无人机还包括存储器803。
所述存储器803,用于存储程序指令;
所述处理器801,用于执行所述存储器803存储的程序指令,当程序指令被执行时,用于执行:
生成激励信号;
根据所述激励信号以及初始控制参数得到控制信号,所述初始控制参数为配置在所述无人机的控制环路(图8未示出)中的参数;
根据所述控制信号对所述控制对象803进行控制,获取所述无人机产生的状态信息;
根据所述控制信号以及所述状态信息调整所述初始控制参数。
在一个实施例中,所述处理器801用于根据所述控制信号以及所述状态信息调整所述初始控制参数时,具体用于:根据所述控制信号进行第一信号处理,得到第一频谱参数;根据所述状态信息进行第二信号处理,得到第二频谱参数;根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数。
在一个实施例中,所述第一频谱参数用于表示与所述控制信号对应的频率段内的频谱能量信息;所述第二频谱参数用于表示与所述状态信息对应的频率段内的频谱能量信息。
在一个实施例中,所述状态信息由惯性测量单元检测得到。
在一个实施例中,所述处理器801用于根据所述激励信号以及初始控制参数得到控制信号时,具体用于:根据配置的所述初始控制参数生成初始控制信号;将所述激励信号与初始控制信号进行叠加处理,得到控制信号。
在一个实施例中,所述处理器801用于根据所述第一频谱参数以及所述第
二频谱参数调整所述初始控制参数时,具体用于:将所述第一频谱参数以及所述第二频谱参数进行运算处理,得到预测评估参数;根据所述预测评估参数调整所述初始控制参数。
在一个实施例中,所述处理器801用于将所述第一频谱参数以及所述第二频谱参数进行运算处理,得到预测评估参数时,具体用于:从所述第一频谱参数中确定与预设频率段对应的第一目标频谱参数;从所述第二频谱参数中确定与所述预设频率段对应的第二目标频谱参数;将所述第一目标频谱参数以及所述第二目标频谱参数进行运算处理,得到预测评估参数。
在一个实施例中,所述预设频率段是根据所述激励信号的频率范围确定。
在一个实施例中,所述处理器801用于根据所述预测评估参数调整所述初始控制参数时,具体用于:在满足预设启动条件的情况下,根据所述预测评估参数调整所述初始控制参数。
在一个实施例中,所述处理器801用于满足预设启动条件包括:所述预测评估参数的可信度处于预设数值范围;所述预测评估参数的可信度是根据预设频率段内的所述第一目标频谱参数以及所述第二目标频谱参数计算得到的。
在一个实施例中,所述处理器801用于根据所述预测评估参数调整所述初始控制参数时,具体用于:获取参考评估参数以及参考控制参数;根据所述参考评估参数、参考控制参数以及所述预测评估参数调整所述初始控制参数。
在一个实施例中,所述处理器801用于激励信号为角速度信号或姿态信号。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应所述知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应所述知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的一种控制参数配置方法及无人机进行了详
细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (36)
- 一种控制参数配置方法,其特征在于,应用于无人机,所述无人机中配置有控制对象,所述控制对象工作时用于为所述无人机提供飞行动力,所述方法包括:生成激励信号;根据所述激励信号以及初始控制参数得到控制信号,所述初始控制参数为配置在所述无人机的飞行控制器中的参数;根据所述控制信号对所述控制对象进行控制,获取所述无人机产生的状态信息;根据所述控制信号以及所述状态信息调整所述初始控制参数。
- 如权利要求1所述的方法,其特征在于,所述根据所述控制信号以及所述状态信息调整所述初始控制参数,包括:根据所述控制信号进行第一信号处理,得到第一频谱参数;根据所述状态信息进行第二信号处理,得到第二频谱参数;根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数。
- 如权利要求2所述的方法,其特征在于,所述第一频谱参数用于表示与所述控制信号对应的频率段内的频谱能量信息;所述第二频谱参数用于表示与所述状态信息对应的频率段内的频谱能量信息。
- 如权利要求1-3任一项所述的方法,其特征在于,所述状态信息由惯性测量单元检测得到。
- 如权利要求1-4任一项所述的方法,其特征在于,所述根据所述激励信号以及初始控制参数得到控制信号,包括:根据配置的所述初始控制参数生成初始控制信号;将所述激励信号与初始控制信号进行叠加处理,得到控制信号。
- 如权利要求2或3所述的方法,其特征在于,所述根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数,包括:将所述第一频谱参数以及所述第二频谱参数进行运算处理,得到预测评估参数;根据所述预测评估参数调整所述初始控制参数。
- 如权利要求6所述的方法,其特征在于,所述将所述第一频谱参数以及所述第二频谱参数进行运算处理,得到预测评估参数,包括:从所述第一频谱参数中确定与预设频率段对应的第一目标频谱参数;从所述第二频谱参数中确定与所述预设频率段对应的第二目标频谱参数;将所述第一目标频谱参数以及所述第二目标频谱参数进行运算处理,得到预测评估参数。
- 如权利要求7所述的方法,其特征在于,所述预设频率段是根据所述激励信号的频率范围确定。
- 如权利要求6-8任一项所述的方法,其特征在于,所述根据所述预测评估参数调整所述初始控制参数,包括:在满足预设启动条件的情况下,根据所述预测评估参数调整所述初始控制参数。
- 如权利要求9所述的方法,其特征在于,所述满足预设启动条件包括:所述预测评估参数的可信度处于预设数值范围;所述预测评估参数的可信度是根据预设频率段内的所述第一目标频谱参数以及所述第二目标频谱参数计算得到的。
- 如权利要求6-10任一项所述的方法,其特征在于,所述根据所述预测评估参数调整所述初始控制参数,包括:获取参考评估参数以及参考控制参数;根据所述参考评估参数、参考控制参数以及所述预测评估参数调整所述初始控制参数。
- 如权利要求1-11任一项所述的方法,其特征在于,所述激励信号为角速度信号或姿态信号。
- 一种无人机,其特征在于,包括:飞行控制器、控制对象和状态传感器,其中,所述控制对象工作时用于为所述无人机提供飞行动力,所述飞行控制器,用于:生成激励信号;根据配置的初始控制参数和所述激励信号生成控制信号,并根据所述控制信号对控制对象进行控制;获取状态传感器输出的无人机的状态信息;根据所述控制信号以及所述状态信息调整所述初始控制参数。
- 如权利要求13所述的无人机,其特征在于,所述飞行控制器用于根据所述控制信号以及所述状态信息调整所述初始控制参数时,具体用于:根据所述控制信号进行第一信号处理,得到第一频谱参数;根据所述状态信息进行第二信号处理,得到第二频谱参数;根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数。
- 如权利要求14所述的无人机,其特征在于,所述第一频谱参数用于表示与所述控制信号对应的频率段内的频谱能量信息;所述第二频谱参数用于表示与所述状态信息对应的频率段内的频谱能量信息。
- 如权利要求13-15任一项所述的无人机,其特征在于,所述飞行控制器获取状态传感器输出的无人机的状态信息时,具体用于:获取惯性测量单元输出的无人机的状态信息。
- 如权利要求13-16任一项所述的无人机,其特征在于,所述飞行控制器用于根据配置的初始控制参数和所述激励信号生成控制信号时,具体用于:根据配置的所述初始控制参数生成初始控制信号;将所述激励信号与初始控制信号进行叠加处理,得到控制信号。
- 如权利要求14或15所述的无人机,其特征在于,所述飞行控制器用于根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数时,具体用于:将所述第一频谱参数以及所述第二频谱参数进行运算处理,得到预测评估参数;根据所述预测评估参数调整所述初始控制参数。
- 如权利要求18所述的无人机,其特征在于,所述飞行控制器用于将所述第一频谱参数以及所述第二频谱参数进行运算处理,得到预测评估参数时,具体用于:从所述第一频谱参数中确定与预设频率段对应的第一目标频谱参数;从所述第二频谱参数中确定与所述预设频率段对应的第二目标频谱参数;将所述第一目标频谱参数以及所述第二目标频谱参数进行运算处理,得到预测评估参数。
- 如权利要求19所述的无人机,其特征在于,所述预设频率段是根据所述激励信号的频率范围确定。
- 如权利要求18-20任一项所述的无人机,其特征在于,所述飞行控制器用于根据所述预测评估参数调整所述初始控制参数时,具体用于:在满足预设启动条件的情况下,根据所述预测评估参数调整所述初始控制参数。
- 如权利要求21所述的无人机,其特征在于,所述满足预设启动条件包括:所述预测评估参数的可信度处于预设数值范围;所述预测评估参数的可信度是根据预设频率段内的所述第一目标频谱参数以及所述第二目标频谱参数计算得到的。
- 如权利要求18-22任一项所述的无人机,其特征在于,所述飞行控制器用于根据所述预测评估参数调整所述初始控制参数时,具体用于:获取参考评估参数以及参考控制参数;根据所述参考评估参数、参考控制参数以及所述预测评估参数调整所述初始控制参数。
- 如权利要求13-23任一项所述的无人机,其特征在于,所述激励信号为角速度信号或姿态信号。
- 一种无人机,其特征在于,所述无人机包括:一个或多个处理器、控制对象;所述控制对象,用于工作时为所述无人机提供飞行动力;所述一个或多个处理器,单独或协同地工作,用于:生成激励信号;根据所述激励信号以及初始控制参数得到控制信号,所述初始控制参数为配置在所述无人机的飞行控制器中的参数,其中,所述初始控制参数为配置在所述飞行控制器中的参数;根据所述控制信号对所述控制对象进行控制,获取所述无人机产生的状态信息;根据所述控制信号以及所述状态信息调整所述初始控制参数。
- 如权利要求25所述的无人机,其特征在于,所述处理器用于根据所述控制信号以及所述状态信息调整所述初始控制参数时,具体用于:根据所述控制信号进行第一信号处理,得到第一频谱参数;根据所述状态信息进行第二信号处理,得到第二频谱参数;根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数。
- 如权利要求26所述的无人机,其特征在于,所述第一频谱参数用于表示与所述控制信号对应的频率段内的频谱能量信息;所述第二频谱参数用于表示与所述状态信息对应的频率段内的频谱能量信息。
- 如权利要求25-27任一项所述的无人机,其特征在于,所述状态信息由惯性测量单元检测得到。
- 如权利要求25-28任一项所述的无人机,其特征在于,所述处理器用于根据所述激励信号以及初始控制参数得到控制信号时,具体用于:根据配置的所述初始控制参数生成初始控制信号;将所述激励信号与初始控制信号进行叠加处理,得到控制信号。
- 如权利要求26或27所述的无人机,其特征在于,所述处理器用于根据所述第一频谱参数以及所述第二频谱参数调整所述初始控制参数时,具体用于:将所述第一频谱参数以及所述第二频谱参数进行运算处理,得到预测评估参数;根据所述预测评估参数调整所述初始控制参数。
- 如权利要求30所述的无人机,其特征在于,所述处理器用于将所述第一频谱参数以及所述第二频谱参数进行运算处理,得到预测评估参数时,具体用于:从所述第一频谱参数中确定与预设频率段对应的第一目标频谱参数;从所述第二频谱参数中确定与所述预设频率段对应的第二目标频谱参数;将所述第一目标频谱参数以及所述第二目标频谱参数进行运算处理,得到预测评估参数。
- 如权利要求31所述的无人机,其特征在于,所述预设频率段是根据所述激励信号的频率范围确定。
- 如权利要求30-32任一项所述的无人机,其特征在于,所述处理器用于根据所述预测评估参数调整所述初始控制参数时,具体用于:在满足预设启动条件的情况下,根据所述预测评估参数调整所述初始控制参数。
- 如权利要求33所述的无人机,其特征在于,所述处理器用于满足预设启动条件包括:所述预测评估参数的可信度处于预设数值范围;所述预测评估参数的可信度是根据预设频率段内的所述第一目标频谱参数以及所述第二目标频谱参数计算得到的。
- 如权利要求30-34任一项所述的无人机,其特征在于,所述处理器用于根据所述预测评估参数调整所述初始控制参数时,具体用于:获取参考评估参数以及参考控制参数;根据所述参考评估参数、参考控制参数以及所述预测评估参数调整所述初始控制参数。
- 如权利要求25-35任一项所述的无人机,其特征在于,所述激励信号为角速度信号或姿态信号。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/112368 WO2019100265A1 (zh) | 2017-11-22 | 2017-11-22 | 一种控制参数配置方法及无人机 |
CN201780017611.9A CN108885466A (zh) | 2017-11-22 | 2017-11-22 | 一种控制参数配置方法及无人机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/112368 WO2019100265A1 (zh) | 2017-11-22 | 2017-11-22 | 一种控制参数配置方法及无人机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019100265A1 true WO2019100265A1 (zh) | 2019-05-31 |
Family
ID=64325725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/112368 WO2019100265A1 (zh) | 2017-11-22 | 2017-11-22 | 一种控制参数配置方法及无人机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108885466A (zh) |
WO (1) | WO2019100265A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204270115U (zh) * | 2014-11-14 | 2015-04-15 | 山东农业大学 | 一种植保无人机专用飞控系统 |
CN106406341A (zh) * | 2016-09-06 | 2017-02-15 | 广西师范大学 | 四旋翼无人飞行器的飞行控制方法 |
CN106462167A (zh) * | 2014-05-30 | 2017-02-22 | 深圳市大疆创新科技有限公司 | 飞行器姿态控制方法 |
CN206023654U (zh) * | 2016-08-31 | 2017-03-15 | 深圳市大疆创新科技有限公司 | 控制系统,包含该控制系统的动力系统及无人飞行器 |
WO2017125916A1 (en) * | 2016-01-19 | 2017-07-27 | Vision Cortex Ltd | Method and system for emulating modular agnostic control of commercial unmanned aerial vehicles (uavs) |
CN107024937A (zh) * | 2017-03-13 | 2017-08-08 | 武汉飞流智能技术有限公司 | 无人机载荷自识别与参数自匹配方法及地面自适应系统 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1195482A (en) * | 1967-07-27 | 1970-06-17 | Northrop Corp | Integrated System for Processing Aircraft Operating Parameters |
FR2531676A1 (fr) * | 1982-08-11 | 1984-02-17 | Onera (Off Nat Aerospatiale) | Procede et installation de reduction du tremblement de la voilure d'un aeronef au moyen de gouvernes actives |
US8000847B2 (en) * | 2004-10-08 | 2011-08-16 | Textron Innovations Inc. | Control system for automatic flight in windshear conditions |
EP1901153A1 (en) * | 2006-09-12 | 2008-03-19 | OFFIS e.V. | Control system for unmanned 4-rotor-helicopter |
FR2917201B1 (fr) * | 2007-06-05 | 2009-09-25 | Airbus France Sa | Procede et dispositif de gestion,de traitement et de controle de parametres utilises a bord d'aeronefs |
CN101551642A (zh) * | 2009-04-08 | 2009-10-07 | 南京航空航天大学 | 用于无人飞机控制律参数自动优化的改进粒子群算法 |
US20120209455A1 (en) * | 2011-02-10 | 2012-08-16 | Warkomski Edward J | Autopilot with Adaptive Rate/Acceleration Based Damping |
US9327839B2 (en) * | 2011-08-05 | 2016-05-03 | General Atomics | Method and apparatus for inhibiting formation of and/or removing ice from aircraft components |
CN102495634A (zh) * | 2011-12-07 | 2012-06-13 | 中国南方航空工业(集团)有限公司 | 无人机的控制方法和装置及无人机的操作装置 |
US8972310B2 (en) * | 2012-03-12 | 2015-03-03 | The Boeing Company | Method for identifying structural deformation |
EP2778819A1 (en) * | 2013-03-12 | 2014-09-17 | Thomson Licensing | Method for shooting a film performance using an unmanned aerial vehicle |
CN103383571B (zh) * | 2013-08-13 | 2016-03-30 | 湖南航天机电设备与特种材料研究所 | 一种非对称四旋翼无人机及其控制方法 |
CN103713517B (zh) * | 2013-12-20 | 2016-08-24 | 南京航空航天大学 | 一种飞行控制系统自适应调参方法 |
CN105448137B (zh) * | 2014-07-31 | 2019-03-08 | 深圳市大疆创新科技有限公司 | 飞行器及其控制方法、飞行器的智能管理系统及方法 |
US9868524B2 (en) * | 2014-11-11 | 2018-01-16 | Amazon Technologies, Inc. | Unmanned aerial vehicle configuration for extended flight |
CN104316900B (zh) * | 2014-11-11 | 2017-02-15 | 成都点阵科技有限公司 | 空中无线电监测智能机器人 |
CN104731106B (zh) * | 2015-01-23 | 2017-09-01 | 广州快飞计算机科技有限公司 | 基于飞行控制器的参数修改方法和装置 |
CN104898653B (zh) * | 2015-05-18 | 2018-07-03 | 国家电网公司 | 一种飞行控制系统 |
RU2608430C2 (ru) * | 2015-06-03 | 2017-01-18 | Акционерное общество "Корпорация "Тактическое ракетное вооружение" | Способ обработки телеметрической информации беспилотного летательного аппарата и устройство для его реализации |
CN105021887A (zh) * | 2015-06-30 | 2015-11-04 | 北京航空航天大学 | 一种无人机数据链测试用电磁环境数据自动化采集系统 |
US10824141B2 (en) * | 2015-12-09 | 2020-11-03 | SZ DJI Technology Co., Ltd. | Systems and methods for UAV flight control |
CN105676860A (zh) * | 2016-03-17 | 2016-06-15 | 歌尔声学股份有限公司 | 一种可穿戴设备、无人机控制装置和控制实现方法 |
CN106444826A (zh) * | 2016-09-07 | 2017-02-22 | 广西师范大学 | 四旋翼无人飞行器的飞行控制方法 |
CN106444812A (zh) * | 2016-10-26 | 2017-02-22 | 华南智能机器人创新研究院 | 一种基于四旋翼无人机的姿态控制的方法及其系统 |
CN107065900B (zh) * | 2017-01-17 | 2020-04-28 | 清华大学 | 无人机飞行控制参数更新系统 |
CN206523788U (zh) * | 2017-02-27 | 2017-09-26 | 中国人民公安大学 | 一种基于无人机航拍的案事件现场三维重建系统 |
-
2017
- 2017-11-22 WO PCT/CN2017/112368 patent/WO2019100265A1/zh active Application Filing
- 2017-11-22 CN CN201780017611.9A patent/CN108885466A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106462167A (zh) * | 2014-05-30 | 2017-02-22 | 深圳市大疆创新科技有限公司 | 飞行器姿态控制方法 |
CN204270115U (zh) * | 2014-11-14 | 2015-04-15 | 山东农业大学 | 一种植保无人机专用飞控系统 |
WO2017125916A1 (en) * | 2016-01-19 | 2017-07-27 | Vision Cortex Ltd | Method and system for emulating modular agnostic control of commercial unmanned aerial vehicles (uavs) |
CN206023654U (zh) * | 2016-08-31 | 2017-03-15 | 深圳市大疆创新科技有限公司 | 控制系统,包含该控制系统的动力系统及无人飞行器 |
CN106406341A (zh) * | 2016-09-06 | 2017-02-15 | 广西师范大学 | 四旋翼无人飞行器的飞行控制方法 |
CN107024937A (zh) * | 2017-03-13 | 2017-08-08 | 武汉飞流智能技术有限公司 | 无人机载荷自识别与参数自匹配方法及地面自适应系统 |
Also Published As
Publication number | Publication date |
---|---|
CN108885466A (zh) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11511857B2 (en) | Aerial vehicle control method and aerial vehicle | |
US10890830B2 (en) | Gimbal control method, gimbal control apparatus, and gimbal | |
US20240353833A1 (en) | Adaptive rate gain controller | |
CN108877757B (zh) | 用于声学辐射控制的系统和方法 | |
CN106843245B (zh) | 一种无人机姿态控制方法、装置及无人机 | |
EP2951656B1 (en) | Stabilized directional control systems and methods | |
JP2016043927A (ja) | 投げスタートにおける回転翼の無人機を動的に制御する方法 | |
CN105824319B (zh) | 飞行器回避一个或多个障碍的方法,相关计算机程序产品,电子系统和飞行器 | |
NO334600B1 (no) | Stillingskontroll for roterende-vinge luftfartøy | |
US10351230B2 (en) | Initial rotor state compensation for a rotorcraft | |
WO2020019331A1 (zh) | 气压计的高度测量补偿方法以及无人机 | |
US10338090B2 (en) | Airspeed estimation system | |
US12227285B2 (en) | System and method for controlling flight path of a blown lift aircraft | |
CN106774377A (zh) | 一种无人机起飞控制方法及装置 | |
WO2019100265A1 (zh) | 一种控制参数配置方法及无人机 | |
WO2019169850A1 (zh) | 电机控制方法、其装置及无人机控制系统 | |
EP3057866A1 (en) | Coaxial rotor yaw control | |
CN107703979B (zh) | 舵机伺服系统的尖峰电流抑制方法及装置 | |
CN113767350A (zh) | 无人机的动力输出检测方法和设备 | |
WO2019196330A1 (zh) | 判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器 | |
CN111055998A (zh) | 一种飞机驾驶杆主动控制方法及装置 | |
WO2019042095A1 (zh) | 给定转速计算方法、装置、电调、动力系统及无人飞行器 | |
WO2018089514A1 (en) | Real time effective mass and moment of inertia measurement | |
JP7139229B2 (ja) | 遠隔制御ヘリコプタの駆動制御装置 | |
CN110162088B (zh) | 无人机控制方法、装置、无人机、可穿戴设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17933102 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17933102 Country of ref document: EP Kind code of ref document: A1 |