WO2019169850A1 - 电机控制方法、其装置及无人机控制系统 - Google Patents

电机控制方法、其装置及无人机控制系统 Download PDF

Info

Publication number
WO2019169850A1
WO2019169850A1 PCT/CN2018/105293 CN2018105293W WO2019169850A1 WO 2019169850 A1 WO2019169850 A1 WO 2019169850A1 CN 2018105293 W CN2018105293 W CN 2018105293W WO 2019169850 A1 WO2019169850 A1 WO 2019169850A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
given
value
signal
given signal
Prior art date
Application number
PCT/CN2018/105293
Other languages
English (en)
French (fr)
Inventor
陈毅东
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019169850A1 publication Critical patent/WO2019169850A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors

Definitions

  • the present application relates to the field of motor control technologies, and in particular, to a motor control method, a motor control device, and a drone control system.
  • the user in the drone control process, as a controlled air vehicle, the user usually sends a corresponding operation command to the drone through the remote controller to control it to operate in various postures.
  • the drone control system converts the operation command into a corresponding motor control signal.
  • These motor control signals are respectively transmitted to the ESC connected to the input end of the motor of the drone, and the motorized state of the UAV is controlled by the ESC to adjust the flight attitude of the UAV, thereby responding to the user's operation command. .
  • the inventors have found that the prior art has at least the following problem: when the operation command of the joystick is too severe, the ESC receives a relatively large step signal. Excessive step signals can cause abnormal motion of the motor and affect the safe operation of the drone.
  • the embodiment of the present application provides a motor control method, a motor control device, and a drone control system that can adapt to a large step signal and avoid motor runaway.
  • the embodiment of the present application provides the following technical solutions:
  • a motor control method includes: receiving a given signal for controlling a motor speed; acquiring a given signal upper threshold of the motor at a current voltage; and setting the received signal to be smaller than the given
  • the received signal is used as a given value of the motor control, and a control signal corresponding to the given value is output to the motor; the given signal received is greater than the upper limit of the given signal
  • the given signal upper limit threshold is used as a given value of the motor control, and a control signal corresponding to the given value is output to the motor.
  • the obtaining a given signal upper threshold of the motor at a current voltage comprises:
  • the predetermined function relationship is determined by the following steps:
  • the voltage value being a DC voltage value supplied by the external power source to the motor
  • a functional relationship between the plurality of different voltage values and the corresponding given signal upper threshold is determined by the plurality of different voltage values and a corresponding given signal upper threshold.
  • the outputting the control signal corresponding to the given value to the motor by using the received given signal as a given value of the motor control includes:
  • the control signal is output to the motor to control the motor to operate at a corresponding speed.
  • the method further includes:
  • the given signal upper threshold value is used as a given value of the motor control, and a control signal corresponding to the given value is output to the motor;
  • the current given signal is used as a given value of the motor control, and a control signal corresponding to the given value is output to the motor.
  • the functional relationship between the voltage value and a given signal upper threshold is represented by the following expression:
  • u qref_max is the upper threshold of the given signal and U dc is the voltage value; a and b are constants.
  • the constant a is a negative number.
  • the constants a and b are calculated by the following equations, respectively:
  • U dc_1 is the highest voltage value when the power supply is powered by the motor
  • u qref_max_1 is the upper limit threshold of the given signal corresponding to the highest voltage value
  • U dc_0 is the lowest voltage value when the power supply is the motor
  • u qref_max_0 is A given signal upper threshold corresponding to the lowest voltage value.
  • the embodiment of the present application further provides the following technical solutions:
  • a motor control device comprising: a receiving module, configured to receive a given signal for controlling a motor speed; and a threshold acquiring module, configured to acquire a given signal upper threshold value of the motor at a current voltage; a value control module, configured to: when the received given signal is less than the given signal upper limit threshold, use the received given signal as a given value of the motor control, and output to the motor corresponding to the given value a control signal; and when the received given signal is greater than the given signal upper threshold, the given signal upper threshold is used as a given value of the motor control, and the motor is output corresponding to the given value control signal.
  • the threshold acquisition module specifically includes a voltage value acquisition unit and a calculation unit:
  • the voltage value obtaining unit is configured to acquire a current voltage value of the motor
  • the calculating unit is configured to determine, according to the current voltage value, a given signal upper threshold value corresponding to the current voltage value by a function relationship between a preset voltage value and a given signal upper threshold.
  • the motor control device further includes a function relationship calculation module, and the function relationship calculation module is specifically configured to:
  • the voltage value being a DC voltage value supplied by the external power source to the motor
  • a functional relationship between the plurality of different voltage values and the corresponding given signal upper threshold is determined by the plurality of different voltage values and a corresponding given signal upper threshold.
  • the given value control module when the received given signal is less than the given signal upper threshold, is specifically configured to:
  • the control signal is output to the motor to control the motor to operate at a corresponding speed.
  • the given value control module is further configured to:
  • the given signal upper threshold value is used as a given value of the motor control, and a control signal corresponding to the given value is output to the motor;
  • the current given signal is used as a given value of the motor control, and a control signal corresponding to the given value is output to the motor.
  • the voltage value is a function of the given signal upper threshold as represented by the following equation:
  • u qref_max is the upper threshold of the given signal and U dc is the voltage value; a and b are constants.
  • the constant a is a negative number.
  • the constants a and b are calculated by the following equations, respectively:
  • U dc_1 is the highest voltage value when the power supply is powered by the motor
  • u qref_max_1 is the upper limit threshold of the given signal corresponding to the highest voltage value
  • U dc_0 is the lowest voltage value when the power supply is the motor
  • u qref_max_0 is A given signal upper threshold corresponding to the lowest voltage value.
  • the embodiment of the present application further provides the following technical solutions:
  • the UAV control system includes at least one processor and a memory communicatively coupled to the at least one processor;
  • the memory stores an instruction program executable by the at least one processor, the instruction program being executed by the at least one processor to enable the at least one processor to execute the motor control method as described above
  • the output corresponds to a given value of the control signal to control the operation of the motor.
  • the motor control method of the embodiment of the present application is adjusted and controlled in combination with the robustness in the motor control, and the step process of the control signal is adjusted by calculating the step limit of the motor to avoid a single time. If the adjustment is too large, the motor will run out of control.
  • FIG. 1 is a schematic diagram of an application environment according to an embodiment of the present application
  • FIG. 2 is a functional block diagram of a motor control system according to an embodiment of the present application.
  • FIG. 3 is a flow chart of a method for controlling a motor according to an embodiment of the present application.
  • step 302 is a flow chart of the method of step 302 shown in FIG. 3;
  • FIG. 5 is a functional block diagram of a motor control apparatus provided by one embodiment of the present application.
  • FIG. 6 is a block diagram of the function 2 of the threshold acquisition module 520 shown in FIG. 5;
  • FIG. 7 is a structural block diagram of a drone control system according to an embodiment of the present application.
  • FIG. 1 is an application environment provided by an embodiment of the present application. As shown in FIG. 1, the application environment includes a drone 10, a remote controller 20, and a user 30.
  • the drone 10 can be any type of unmanned aerial vehicle, such as a four-axis unmanned aerial vehicle. It can be embodied in a variety of types of fuselage structures or shapes that are driven by one or more motors to perform a variety of different actions, such as steering, accelerating, ascending or descending. As a vehicle, the drone 10 can carry different functional devices for various possible applications, such as terrain survey, high-altitude shooting or monitoring.
  • the motor controller for use with the motor can be provided on the drone 10.
  • the motor controller may receive one or more control signals and adjust the output torque of the motor according to the control signal to change the flight state of the drone, and perform one or more actions corresponding to the control signals.
  • the motor controller can be a controller based on any type of motor control strategy.
  • 2 is a control block diagram of a motor controller according to an embodiment of the present application. As shown in Figure 2, the motor controller uses a Foc sine wave motor control strategy for reactive current conversion control of the motor.
  • the motor controller converts the DC supply voltage Udc into a corresponding three-phase voltage through the inverter 210, and controls the output torque of the permanent magnet synchronous motor 220.
  • the a-phase current ia and the b-phase current ib output from the inverter 210 are collected, and then passed through the Clark converter 230 and the Park converter 240 to output the q-axis actual current Iq and the d-axis actual current Id.
  • the space vector modulator 260 receives the position angle ⁇ and the DC voltage Udc, and accordingly controls the three-phase voltage output by the inverter.
  • the position angle ⁇ and the electrical angular velocity ⁇ are calculated by the d-axis actual current Id, the q-axis actual current Iq, the d-axis given voltage Udref, and the q-axis given voltage Uqref by the non-inductive control algorithm 270.
  • the electrical angular velocity ⁇ is also re-inputted to the non-inductive control algorithm as feedback.
  • An input variable is provided in a complete motor control system to vary the output torque of the motor as a function of the input variable.
  • the control signal can be a signal that controls or adjusts the input variable, and the input variable is set to a corresponding given value to adjust the running state of the motor.
  • the remote control 20 can be any type of client device that establishes a communication connection with the drone 10.
  • the remote controller 20 is provided with one or more interactive devices such as a joystick, an operation button or a touch screen for the user 30 to input an operation command to control the drone 10 to perform different flight actions.
  • the operation command input by the user 30 can be converted into a control signal by a corresponding conversion on the remote controller 20 or the drone 10, and the input variable of the motor controller is set to a corresponding given value. After receiving the given value, the motor controller changes the output torque of the motor to complete the operation command.
  • control signal received by the motor controller typically corresponds to a particular target setpoint.
  • the motor controller responds to the control signal by adjusting the current setpoint to the target setpoint.
  • the corresponding control signal has a large adjustment range, and the motor controller's set value is too large, which may easily cause the motor to run out of control or stall. .
  • the control system when the adjustment amplitude of the control signal is too large, the control system does not adjust the current given value to the target given value corresponding to the control signal once in response to the control signal, but According to the preset step size, the set value of the motor control system is gradually increased to the target set value, thereby avoiding the problem that the motor stalls or the drone is out of control when the target given value is directly given to the motor.
  • the control method of gradually increasing the given value can ensure the security, but the user experience is not good due to the slow response time.
  • the use is as shown in FIG. 3 .
  • the motor control method improves the response speed to the control signal as much as possible by combining the robustness of the motor control system.
  • the motor control method may include the following steps:
  • the given value refers to an input variable input to the motor control system. Based on different motor control strategies, the given value may specifically be a corresponding variable.
  • Each control signal has a corresponding target setpoint that is used to adjust the setpoint of the motor control system to the target setpoint.
  • control signal only needs to make a small adjustment to the given value to achieve the target setpoint. In other cases, the control signal may require a larger adjustment of the setpoint to bring the input variable to the target setpoint.
  • the given signal upper threshold is the range of step intervals for a given signal that the motor can accept, as determined by the actual operating conditions of the motor and the product attribute parameters. It represents the robustness of motor control with better robustness with a larger given signal upper threshold.
  • the upper limit threshold of the signal of the motor at the current voltage should not be exceeded to avoid the motor control system losing control of the motor.
  • the given signal upper threshold can be pre-set and pre-stored in any type of storage device before the product leaves the factory.
  • the upper limit threshold of the given signal is called as a known parameter by the motor controller and the corresponding data is judged.
  • the given signal upper threshold may also be determined or determined in real time during motor control.
  • step 303 Determine whether the given signal is less than the upper threshold of the given signal. If no, step 304 is performed; if yes, step 305 is performed.
  • Each given signal has a corresponding adjusted amplitude value, and the ESC can compare these current given signals with a given signal upper threshold.
  • the given signal received as a given value of the motor control outputs a control signal corresponding to the given value to the motor.
  • the corresponding control signal can be directly output to the motor, and the output torque of the motor can be adjusted to improve the response speed to a given signal.
  • the predetermined signal upper limit threshold is used as a given value of the motor control, and a control signal corresponding to the given value is output to the motor.
  • the adjustment exceeds the step limit, it indicates that the performance of the motor control system is not sufficient to withstand the step required for a given signal.
  • the upper threshold of the given signal can be directly output to the motor at the first step, and then the second step will be used. Continue to increase the setpoint to the target setpoint required by the control signal.
  • the control redundancy of the motor control system is considered in combination.
  • a control signal with a large step with a minimum number of steps is beneficial to shorten the response time of the motor to the control signal.
  • the shortening of the response time can provide a good experience in various operating scenarios of the motor. For example, when the motor control method provided by the embodiment of the present application is applied to the UAV application environment shown in FIG. 1, the effective shortening can be effectively eliminated.
  • FIG. 4 is a flowchart of a method for determining an upper limit threshold of a given signal of a motor according to an embodiment of the present application.
  • the method for determining a step limit of a motor includes the following steps:
  • the current voltage value of the motor can be obtained by electrical test or corresponding detection or measurement circuit in the motor control system.
  • the upper threshold of the given signal under the current operating condition can be calculated by the function relationship according to the current voltage value.
  • the calculation process of the upper limit threshold of the given signal in the above step 402 is performed in the motor control process, and is determined by the motor control system in real time after receiving the given signal.
  • the above functional relationship is calculated after the product is tested and the corresponding data is tested before the product leaves the factory.
  • the functional relationship can be stored in the motor control system in the form of a correspondence table or a corresponding lookup table.
  • the upper limit threshold of the given signal of the motor can be dynamically adjusted according to the voltage variation of the DC battery to utilize the motor capability as much as possible.
  • permanent magnet synchronous motors are typically powered by separate DC battery packs.
  • the DC voltage is applied to the input side of the inverter, and is controlled by the switching tube in the inverter to be converted into a corresponding three-phase voltage output value in the permanent magnet synchronous motor.
  • the voltage value is a DC voltage value that supplies power to the motor.
  • the upper limit threshold of the given signal of the motor also changes.
  • the upper limit threshold of the given signal corresponding to the two or more voltage values may be measured by a corresponding measuring method or device as the basic data for calculating the relationship between the voltage value of the motor and the upper threshold of the given signal. These basic data can be measured or tested beforehand when the product is shipped from the factory.
  • the functional relationship between the voltage value and the given signal upper threshold is determined based on the voltage value obtained in advance and the upper threshold of the given signal.
  • the functional relationship may be of any type that can fit a functional model of the correlation between the voltage value and the upper threshold of the given signal.
  • a straight line function can be used to fit the functional relationship between the voltage value and the upper threshold of a given signal. That is, the function of the voltage value as a function of the upper threshold of the given signal is represented by equation (1):
  • u qref_max is the upper threshold of the given signal
  • U dc is the voltage value
  • a is the slope value less than 0
  • b is the intercept.
  • the slope value a and the intercept b can be calculated by the two endpoints through which the straight line passes. Among them, it can be understood that, in the normal use state of the motor, the calculated slope value a should be a negative number.
  • the slope value and the intercept in the above formula (1) are calculated by using two endpoints of the highest voltage value and the lowest voltage value of the DC battery, which are specifically expressed by the following formula (2):
  • U dc_1 is the highest voltage value when the power supply is powered by the motor
  • u qref_max_1 is the upper limit threshold of the given signal corresponding to the highest voltage value
  • U dc_0 is the lowest voltage value when the power supply is the motor
  • u qref_max_0 is A given signal upper threshold corresponding to the lowest voltage value.
  • the step limit of the motor is represented by the given signal upper threshold of the motor.
  • the upper limit threshold of the given signal is adjusted correspondingly to the change of the voltage value, so that the performance of the motor can be more fully utilized.
  • the motor control system can control the motor to correspond to a given signal (ie, step 304) when the given signal is within the motor controllable range.
  • the received given signal is used as an independent variable to input a preset motor control model. Then, after the motor control model is operated, the corresponding dependent variable is output as a control signal. Finally, the control signal is output to the motor to control the motor to operate at a corresponding speed.
  • the motor control model can be any type of control model, depending on the actual application of the motor control system.
  • the motor control model has a specific control strategy that calculates and converts the input given signal into a corresponding control signal for supply to the motor.
  • the motor control system can specifically control the motor as follows:
  • the given signal upper limit threshold is used as a given value of the motor control, and a control signal corresponding to the given value is output to the motor (ie, step 305).
  • This step is the first step of the motor control system. In the first step, the step is first stepped to the maximum to make full use of the motor's control capability.
  • the rotational speed of the motor reaches the rotational speed corresponding to the upper threshold of the given signal, it is determined whether the current given signal is less than the upper threshold of the given signal. After the first step is completed, the next determination step is repeated to determine whether it is possible to control the motor to reach the given value of the target.
  • the given signal upper limit threshold is used as a given value of the motor control, and a control signal corresponding to the given value is output to the motor.
  • the current given signal is used as a given value of the motor control, and a control signal corresponding to the given value is output to the motor.
  • the motor control method provided by the embodiment of the present application can be applied to other motor-driven power equipments in addition to the application environment of the drone flight control shown in FIG. 1 to improve the motor.
  • the response speed of the operation command can be applied to other motor-driven power equipments in addition to the application environment of the drone flight control shown in FIG. 1 to improve the motor.
  • FIG. 5 is a schematic structural diagram of a motor control apparatus according to an embodiment of the present application.
  • the motor control device includes a receiving module 510, a threshold acquiring module 520, and a given value control module 530.
  • the receiving module 510 is configured to receive a given signal for controlling the rotational speed of the motor.
  • the threshold acquisition module 520 is configured to obtain a given signal upper threshold of the motor at the current voltage.
  • the set value control module 530 is configured to output, to the motor, the given motor with a given signal as a given value of the motor control when the received given signal is less than the given signal upper threshold. And corresponding to the control signal and when the received given signal is greater than the given signal upper threshold, the given signal upper threshold is used as a given value of the motor control, and the motor output corresponds to the given value Control signal.
  • a control signal is first received by the receiving module 510, and the threshold upper threshold of the motor at the current voltage is obtained by the threshold acquisition module 520. Then, the given value control module 530 determines whether the control signal is less than the given signal upper limit threshold, and according to the determination result, selects the received given signal as a given value of the motor control, and outputs to the motor and the given
  • the control signal corresponding to the fixed value or the given signal upper limit threshold is used as a given value of the motor control, and a control signal corresponding to the given value is output to the motor.
  • the threshold acquisition module 520 may specifically include a voltage value acquisition unit 521 and a calculation unit 522 .
  • the voltage value acquiring unit 521 is configured to acquire a current voltage value of the motor, and the calculating unit 522 is configured to pass a function relationship between the preset voltage value and the upper threshold of the given signal according to the current voltage value. A given signal upper threshold corresponding to the current voltage value is determined.
  • the function relationship between the preset voltage value and the upper limit threshold of the given signal may be obtained by pre-measurement calculation before the product is manufactured, stored in the motor control system or a specific storage device, and called by the threshold acquisition module 520.
  • the motor control device may further include a function relationship calculation module.
  • the function relationship calculation module is configured to measure a corresponding given signal upper threshold value of the motor under different voltage values and calculate a voltage function as a function of the given signal upper threshold value.
  • the voltage value is a DC voltage value that supplies power to the motor.
  • the function of the voltage value as a function of the upper threshold of the given signal is represented by the following equation:
  • U dc is the voltage value; a is the slope value less than 0; b is the intercept.
  • U dc_1 is the highest voltage value when the power supply is powered by the motor
  • u qref_max_1 is the upper limit threshold of the given signal corresponding to the highest voltage value
  • U dc_0 is the lowest voltage value when the power supply is the motor
  • u qref_max_0 is A given signal upper threshold corresponding to the lowest voltage value.
  • the given value control module 530 may be specifically configured to: input the received given signal as an independent variable into the preset motor control. a model; after the motor control model is operated, outputting a corresponding dependent variable as a control signal; and outputting the control signal to the motor to control the motor to operate at a corresponding rotational speed.
  • control module 530 may be specifically configured to: use the upper threshold of the given signal as the motor A given value of the control outputs a control signal corresponding to the given value to the motor.
  • the given signal upper limit threshold is used as a given value of the motor control, and outputs a control signal corresponding to the given value to the motor, or when the given signal is greater than the given signal upper limit threshold, the current given The signal is a given value of the motor control, and a control signal corresponding to the given value is output to the motor.
  • FIG. 7 is a schematic structural diagram of a drone control system according to an embodiment of the present application.
  • the device 70 includes one or more processors 701 and a memory 702. Wherein, one processor 701 is taken as an example in FIG.
  • the drone control system that executes the above motor control method may further include an input device 703 and an output device 704.
  • input device 703 and an output device 704.
  • output device 704. Of course, other suitable device modules can also be added or subtracted according to actual needs.
  • the processor 701, the memory 702, the input device 703, and the output device 704 may be connected by a bus or other means, as exemplified by a bus connection in FIG.
  • the memory 702 is a non-volatile computer readable storage medium, and can be used to store a non-volatile software program, a non-volatile computer-executable program, and a module, such as a program instruction corresponding to the diagnostic method in the embodiment of the present application or
  • the module for example, the receiving module 510, the threshold acquisition module 520, and the given value control module 530 shown in FIG.
  • the processor 701 executes various functional applications and data processing of the server by executing non-volatile software programs, instructions, and modules stored in the memory 702, that is, the motor control method of the above-described method embodiments.
  • the memory 702 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to use of the motor control device, and the like.
  • memory 702 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 702 can optionally include a memory remotely located relative to processor 701, examples of which include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 703 can receive the input digital or character information and generate a key signal input related to user settings and function control of the motor control device.
  • Output device 704 can include a display device such as a display screen.
  • the one or more modules are stored in the memory 702, and when executed by the one or more processors 701, perform the motor control method in any of the above method embodiments.
  • the computer software can be stored in a computer readable storage medium, which, when executed, can include the flow of an embodiment of the methods described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only storage memory, or a random storage memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

一种电机控制方法、电机控制装置及无人机控制系统。该电机控制方法包括:接收用于控制电机转速的控制信号;获取电机在当前电压下的给定信号上限阈值;在接收的给定信号小于给定信号上限阈值时,以接收的给定信号作为电机控制的给定值向电机输出与给定值对应的控制信号;在接收的给定信号大于给定信号上限阈值时,以给定信号上限阈值作为电机控制的给定值,向电机输出与给定值对应的控制信号。该技术方案结合了电机控制中的鲁棒性进行调节和控制,通过计算电机的阶跃限制的方式来调整控制信号的阶跃过程,避免单次调整幅度过大导致电机失控的问题。

Description

电机控制方法、其装置及无人机控制系统
本申请要求于2018年03月08日提交中国专利局、申请号为2018101910479、申请名称为“电机控制方法、其装置及无人机控制系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机控制技术领域,尤其涉及电机控制方法、电机控制装置及无人机控制系统。
背景技术
为了实现机器的可控性能,现有提供了许多基于不同策略的电机控制方法或者控制系统,供用户输入相应的控制信号以调整电机的运行,从而执行相应的动作。
例如,在无人机控制过程中,作为一种受控的空中飞行器,用户通常会通过遥控器,向无人机发出相应的操作指令,控制其在以各种姿态运行。遥控器接收到操作指令以后,无人机控制系统会将操作指令转换为相应的电机控制信号。这些电机控制信号分别传输到与无人机的电机的输入端相连接的电调中,由电调通过控制无人机的电机运行状态来调整无人机的飞行姿态,从而响应用户的操作指令。
在实现本申请的过程中,发明人发现现有技术至少存在以下问题:当摇杆的操作指令过于剧烈时,电调会接收到一个比较大的阶跃信号。过大的阶跃信号会令电机出现异常运动,影响无人机的安全运行。
发明内容
为了解决上述技术问题,本申请实施例提供一种可以适应较大阶跃信号、避免电机失控的电机控制方法、电机控制装置及无人机控制系统。
为解决上述技术问题,本申请实施例提供以下技术方案:
一种电机控制方法,所述电机控制方法包括:接收用于控制电机转速的给定信号;获取电机在当前电压下的给定信号上限阈值;在所述接收的给定信号小于所述给定信号上限阈值时,以所述接收的给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号;在所述接收的给定信号大于所述给定信号上限阈值时,以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
在一些实施例中,所述获取电机在当前电压下的给定信号上限阈值,包括:
获取电机当前的电压值;
根据所述当前的电压值,通过预先设定的电压值与给定信号上限阈值之间的函数关系,确定所述当前的电压值对应的给定信号上限阈值。
在一些实施例中,所述预先设定的函数关系通过以下步骤确定:
测量电机在多个不同的电压值下,对应的给定信号上限阈值,所述电压值为外部电源向所述电机提供的直流电压值;
通过所述多个不同的电压值以及对应的给定信号上限阈值,确定所述多个不同的电压值与所述对应的给定信号上限阈值之间的函数关系。
在一些实施例中,所述以所述接收的给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号,具体包括:
将所述接收的给定信号作为自变量,输入预设的电机控制模型;
通过所述电机控制模型运算后,输出对应的因变量作为控制信号;
向电机输出所述控制信号以控制电机以对应的转速运行。
在一些实施例中,所述以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号之后,所述方法还包括:
在电机的转速达到所述给定信号上限阈值对应的转速时,判断当前给定信号是否小于所述给定信号上限阈值;所述当前给定信号由所述接收的给定信号以及电机当前转速确定;
若是,则以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号;
若否,则以所述当前给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
在一些实施例中,所述电压值与给定信号上限阈值之间的函数关系,通过如下表达式表示:
u qref_max=aU dc+b
其中,u qref_max为给定信号上限阈值,U dc为电压值;a和b为常数。
在一些实施例中,所述常数a为负数。
在一些实施例中,所述常数a和b分别通过如下算式计算:
Figure PCTCN2018105293-appb-000001
其中,U dc_1为供电电源为电机供电时的最高电压值,u qref_max_1为与所述最高电压值对应的给定信号上限阈值;U dc_0为供电电源为电机供电时 的最低电压值,u qref_max_0为与所述最低电压值对应的给定信号上限阈值。
为解决上述技术问题,本申请实施例还提供以下技术方案:
一种电机控制装置,所述电机控制装置包括:接收模块,用于接收用于控制电机转速的给定信号;阈值获取模块,用于获取电机在当前电压下的给定信号上限阈值;给定值控制模块,用于在所述接收的给定信号小于所述给定信号上限阈值时,以所述接收的给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号;以及在所述接收的给定信号大于所述给定信号上限阈值时,以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
在一些实施例中,所述阈值获取模块具体包括电压值获取单元以及计算单元:
所述电压值获取单元用于获取电机当前的电压值;
所述计算单元用于根据所述当前的电压值,通过预先设定的电压值与给定信号上限阈值之间的函数关系,确定所述当前的电压值对应的给定信号上限阈值。
在一些实施例中,所述电机控制装置还包括函数关系计算模块,所述函数关系计算模块具体用于:
测量电机在多个不同的电压值下,对应的给定信号上限阈值,所述电压值为外部电源向所述电机提供的直流电压值;
通过所述多个不同的电压值以及对应的给定信号上限阈值,确定所述多个不同的电压值与所述对应的给定信号上限阈值之间的函数关系。
在一些实施例中,在所述接收的给定信号小于所述给定信号上限阈值时,所述给定值控制模块具体用于:
将所述接收的给定信号作为自变量,输入预设的电机控制模型;
通过所述电机控制模型运算后,输出对应的因变量作为控制信号;
向电机输出所述控制信号以控制电机以对应的转速运行。
在一些实施例中,以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号以后,所述给定值控制模块还用于:
在电机的转速达到所述给定信号上限阈值对应的转速时,判断当前给定信号是否小于所述给定信号上限阈值;所述当前给定信号由所述接收的给定信号以及电机当前转速确定;
若是,则以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号;
若否,则以所述当前给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
在一些实施例中,所述电压值与所述给定信号上限阈值的函数关系通过如下算式表示:
u qref_max=aU dc+b
其中,u qref_max为给定信号上限阈值,U dc为电压值;a和b为常数。
在一些实施例中,所述常数a为负数。
在一些实施例中,所述常数a和b分别通过如下算式计算:
Figure PCTCN2018105293-appb-000002
其中,U dc_1为供电电源为电机供电时的最高电压值,u qref_max_1为与所述最高电压值对应的给定信号上限阈值;U dc_0为供电电源为电机供电时的最低电压值,u qref_max_0为与所述最低电压值对应的给定信号上限阈值。
为解决上述技术问题,本申请实施例还提供以下技术方案:
一种无人机控制系统。所述无人机控制系统包括至少一个处理器以及与所述至少一个处理器通信连接的存储器;
其中,所述存储器存储有可被所述至少一个处理器执行的指令程序,所述指令程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的电机控制方法,输出与控制信号对应的给定值以控制电机的运行。
与现有技术相比较,本申请实施例的电机控制方法,结合电机控制中的鲁棒性进行调节和控制,通过计算电机的阶跃限制的方式来调整控制信号的阶跃过程,避免单次调整幅度过大导致电机失控的问题。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例的应用环境示意图;
图2为本申请实施例提供的电机控制系统的功能框图;
图3为本申请其中一个实施例提供的电机控制方法的方法流程图;
图4为图3所示的步骤302的方法流程图;
图5为本申请其中一个实施例提供的电机控制装置的功能框图;
图6为图5所示的阈值获取模块520的功能2框图;
图7为本申请实施例提供的无人机控制系统的结构框图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之 间未构成冲突就可以相互结合。
图1为本申请实施例提供的应用环境。如图1所示,所述应用环境包括无人机10、遥控器20以及用户30。
无人机10可以是任何类型的无人飞行器,例如四轴无人飞行器。其具体可以采用多种类型的机身结构或形状,由一个或者多个电机驱动,完成多种不同的动作,例如转向、加速、上升或者下降。无人机10作为载具,可以承载不同的功能设备以应用于多种可能的应用场合,例如地形勘察、高空拍摄或者监控等。
为控制无人机10在空中飞行过程中的飞行姿态或者动作,无人机10上可以设置与电机配合使用的电机控制器。该电机控制器可以接收一个或者多个控制信号并根据控制信号调整电机的输出扭矩,以改变无人机的飞行状态,执行一个或者多个与控制信号对应的动作。
电机控制器可以是基于任何类型的电机控制策略的控制器。图2为本申请实施例提供的电机控制器的控制框图。如图2所示,该电机控制器使用Foc正弦波的电机控制策略,对于电机采用无功电流变换控制。
该电机控制器通过逆变器210,将直流供电电压Udc转换为相应的三相电压,控制永磁同步电机220的输出转矩。其中,逆变器210输出的a相电流ia和b相电流ib被采集,然后经过Clark变换器230和Park变换器240,输出q轴实际电流Iq和d轴实际电流Id。
d轴给定电流Idref和d轴实际电流Id反馈叠加后,转换为相应的d轴给定电压Udref。q轴给定电压Uqref作为输入的给定值,一同输入到Park逆变换器250,经过Park逆变换后,输入到空间矢量调制器260。空间矢量 调制器260接收位置角度θ和直流电压Udc,相应的控制逆变器输出的三相电压。
其中,位置角度θ和电角速度ω由d轴实际电流Id,q轴实际电流I q、d轴给定电压Udref和q轴给定电压Uqref通过无感控制算法270计算获得。电角速度ω还重新输入至无感控制算法,作为反馈。
在一个完整的电机控制系统中设置有一个输入变量,根据输入变量的变化而改变电机的输出扭矩。控制信号可以是控制或者调整输入变量的信号,令输入变量设置为相应的给定值从而调整电机的运行状态。
遥控器20可以是任何类型的,与无人机10建立有通信连接的用户端设备。遥控器20上设置有摇杆、操作按键或者触控屏幕等一个或多个交互设备,用于供用户30输入操作指令,以控制无人机10执行不同的飞行动作。
用户30输入的操作指令可以在遥控器20或者无人机10上经过相应的转换而转换为控制信号,将电机控制器的输入变量设置为相应的给定值。电机控制器在接收到该给定值以后,相应改变电机的输出扭矩来完成操作指令。
换言之,电机控制器接收到的控制信号通常与一个特定的目标给定值对应。电机控制器通过将当前给定值调整到目标给定值来响应控制信号。在操作指令较为激烈,无人机需要执行较大变化幅度的动作时,相应的控制信号的调整幅度较大,电机控制器的给定值阶跃过大,容易令电机出现失控或者失速的风险。
在惯常的飞行控制方法中,在控制信号的调整幅度过大时,控制系统在响应控制信号时,不会一次性地将当前给定值调整到与控制信号对应的目标给定值,而是会按照预设的步长,逐渐地将电机控制系统的给定值增加到与 目标给定值,从而避免直接向电机给予目标给定值时,电机失速或者无人机失控的问题。
然而,逐渐增加给定值的控制方法虽然能够保证安全性,但由于响应时间慢,带来的用户体验不好。为了解决逐渐增加给定值的控制方法需要较长的时间达到与控制信号对应的目标给定值,导致控制信号的响应速度较慢的问题,在本申请实施例中,使用如图3所示的电机控制方法,通过结合电机控制系统的鲁棒性考虑的方法,尽可能的提高对控制信号的响应速度。
如图3所示,该电机控制方法可以包括如下步骤:
301、接收用于控制电机转速的控制信号。
在本实施例中,该给定值是指输入至电机控制系统的输入变量。基于不同的电机控制策略,该给定值具体可以是相应的变量。每个控制信号都有一个对应的目标给定值,用于调整电机控制系统的给定值达到目标给定值。
在一些情况下,控制信号只需要对给定值进行较小程度的调整,即可达到目标给定值。而在另一些情况下,控制信号则可能需要较大幅度的调整给定值以使输入变量达到目标给定值。
302、获取电机在当前电压下的给定信号上限阈值。
给定信号上限阈值是指由电机的实际工况以及产品属性参数所决定的,电机能够接受的给定信号的阶跃区间范围。其代表了电机控制的鲁棒性,更好的鲁棒性具有更大的给定信号上限阈值。在目标给定信号的单次变化过程中,不应当超出电机在当前电压下的给信信号上限阈值以避免电机控制系统失去对电机的控制。
该给定信号上限阈值可以是一个预先设置的,在产品出厂前预先存储在 任何类型的存储设备中。在电机控制过程中,给定信号上限阈值作为已知参数被电机控制器调用并进行相应的数据判断。在另一些实施例中,该给定信号上限阈值也可以是在进行电机控制过程中,实时确定计算获取或者确定的。
303、判断所述给定信号是否小于所述给定信号上限阈值。若否,则执行步骤304;若是,则执行步骤305。
每个给定信号都具有相应的调整幅度值,电调可以对这些当前给定信号与给定信号上限阈值进行比较判断。
304、以所述接收的给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
当给定信号对于给定值的调整幅度较小,不超出电机控制系统的给定信号上限阈值时,表明此时电机控制系统的性能具有冗余,即使进行单次阶跃也不会出现失控的风险。因此,可以直接向电机输出对应的控制信号,,调整电机的输出转矩以提高对给定信号的响应速度。
305、以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
若调整幅度超出所述阶跃限制时,表明电机控制系统的性能并不足以承受给定信号所需要的阶跃。为了尽可能快的达到给定信号所需要的目标给定值,此时可以在第一次阶跃时,直接向电机输出给定信号上限阈值,,然后再通过二次阶跃的方式,将继续将给定值增加到控制信号需要的目标给定值。
在本实施例提供的电机控制方法中,结合考虑了电机控制系统的控制冗余。在保证电机可控的前提下,以最少的阶跃次数达到一个较大阶跃的控制信号有利于缩短电机对于控制信号的响应时间。
缩短响应时间能够在电机的各项使用场景中提供良好的使用体验,例如,当本申请实施例提供的电机控制方法应用于图1所示的无人机应用环境时,便可以有效的缩短无人机对用户的一些大幅度操作指令的响应时间,从而为用户提供更好的无人机控制手感。
如上所述,电机的给定信号上限阈值与实际的运行工况密切相关。在一些实施例中,为了更大程度的发挥电机的性能,还可以根据电机实际的运行环境对电机的给定信号上限阈值进行相应的调整。图4为本申请实施例提供的,用于确定电机给定信号上限阈值的方法流程图。
如图4所示,所述确定电机的阶跃限制的方法包括如下步骤:
401、获取电机当前的电压值。
电机当前的电压值可以通过电调或者电机控制系统中相应的检测或者测量电路检测获得。
402、根据当前的电压值,通过预先设定的电压值与给定信号上限阈值之间的函数关系确定对应的给定信号上限阈值。
在获得了电压值与给定信号上限阈值之间的变化关系以后,便可以根据当前的电压值,通过该函数关系计算在当前工况下的给定信号上限阈值。
上述步骤402给定信号上限阈值的计算过程是在电机控制过程中执行的,由电机控制系统在接收到给定信号以后,实时计算确定的。
当然,上述函数关系是在产品出厂前,预定对电机进行相应的数据测试后计算获得的。该函数关系可以以对应表或者或者相应的查询表的形式存储在电机控制系统中。
在本实施例中,通过上述函数关系,可以根据直流电池的电压变化情况, 动态调整电机的给定信号上限阈值,以尽可能的利用电机能力。
在通常的应用场景中,永磁同步电机通常由独立的直流电池组进行供电。直流电压加载在逆变器的输入侧,通过对逆变器中开关管的控制,使其转换为相应的三相电压输出值永磁同步电机中。在本实施例中,所述电压值为向所述电机供电的直流电压值。
在电机运行过程中,由于采用独立的直流电池组进行供电时,电池能够提供的最大电压会相应的逐渐降低。因此,电机的给定信号上限阈值也会发生变化。在电机运行前,可以通过相应的测量方法或者设备,测量两个或以上电压值对应的给定信号上限阈值,作为计算电机的电压值与所述给定信号上限阈值的函数关系的基础数据。这些基础数据可以是在产品出厂前,预先对实际使用的电机进行测量或者测试获得。
根据事先测量获得的电压值和给定信号上限阈值,确定电压值和给定信号上限阈值这两个变量之间的函数关系。该函数关系具体可以采用任何类型,能够拟合电压值与给定信号上限阈值之间的相关关系的函数模型。
具体的,可以使用直线函数来拟合电压值与给定信号上限阈值之间的函数关系。亦即,所述电压值与所述给定信号上限阈值的函数关系通过算式(1)表示:
u qref_max=aU dc+b     (1)
其中,u qref_max为给定信号上限阈值,U dc为电压值;a为小于0的斜率值;b为截距。一般的,在采用算式(1)的方法拟合电压值与给定信号上限阈值时,可以通过该直线经过的两个端点来计算上述斜率值a和截距b。其中, 可以理解的是,在电机正常使用状态下,计算获得的斜率值a应当为负数。
在本实施例中,采用直流电池的最高电压值和最低电压值两个端点来计算上述算式(1)中的斜率值和截距,其具体通过如下算式(2)表示:
Figure PCTCN2018105293-appb-000003
其中,U dc_1为供电电源为电机供电时的最高电压值,u qref_max_1为与所述最高电压值对应的给定信号上限阈值;U dc_0为供电电源为电机供电时的最低电压值,u qref_max_0为与所述最低电压值对应的给定信号上限阈值。
在本实施例中,电机的阶跃限制由电机的给定信号上限阈值表示。给定信号上限阈值会跟随电压值的变化而相应的调整,从而更充分的利用电机的性能。
在一些实施例中,在给定信号属于电机可控范围内时,电机控制系统可以通过如下方式对电机进行控制,使电机的运行状态与给定信号对应(即步骤304)。
首先,将所述接收的给定信号作为自变量,输入预设的电机控制模型。然后,通过所述电机控制模型运算后,输出对应的因变量作为控制信号。最后,向电机输出所述控制信号以控制电机以对应的转速运行。
该电机控制模型可以是任何类型的控制模型,具体取决于电机控制系统的实际应用情况。电机控制模型具有特定的控制策略,能够将输入的给定信 号计算并转换为相应的控制信号以提供给电机。
在另一些实施例中,当给定信号超出了电机可控范围,需要使用二次阶跃的方式使电机的运行状态达到预定的目标时,电机控制系统具体可以通过如下方式对电机进行控制:
首先,以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号(即步骤305)。该步骤为电机控制系统的第一次阶跃过程,在第一次阶跃的过程中首先阶跃到最大限度,从而尽可能的利用电机的控制能力。
然后,在电机的转速达到所述给定信号上限阈值对应的转速时,判断当前给定信号是否小于所述给定信号上限阈值。在第一次阶跃完成以后,重复进行下一次判断步骤,确定是否能够控制电机达到目标的给定值。
最后,在给定信号小于所述给定信号上限阈值时,以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
而在给定信号大于所述给定信号上限阈值时,以所述当前给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
应当说明的是,本申请实施例提供的电机控制方法除应用于图1所示的无人机飞行控制的应用环境以外,还可以应用于其它基于电机驱动的动力设备中,用以提高电机对于操作指令的响应速度。
本申请实施例还进一步提供了一种电机控制装置。图5为本申请实施例提供的电机控制装置的结构示意图。如图5所示,该电机控制装置包括:接收模块510、阈值获取模块520以及给定值控制模块530。
其中,该接收模块510用于接收用于控制电机转速的给定信号。阈值获 取模块520用于获取电机在当前电压下的给定信号上限阈值。给定值控制模块530用于在所述接收的给定信号小于所述给定信号上限阈值时,以所述接收的给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号以及在所述接收的给定信号大于所述给定信号上限阈值时,以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
在实际操作过程中,首先由接收模块510接收来自一个控制信号,并且通过阈值获取模块520获取电机在当前电压下的给定信号上限阈值。然后,给定值控制模块530判断控制信号是否小于所述给定信号上限阈值,并根据判断结果,选择以所述接收的给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号或者以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
在一些实施例中,为了计算获得更精确的给定信号上限阈值,如图6所示,所述阈值获取模块520具体可以包括电压值获取单元521以及计算单元522。
所述电压值获取单元521用于获取电机当前的电压值,所述计算单元522用于根据所述当前的电压值,通过预先设定的电压值与给定信号上限阈值之间的函数关系,确定所述当前的电压值对应的给定信号上限阈值。
该预先设定的电压值与给定信号上限阈值之间的函数关系可以是在产品出厂生产前预先测量计算获得,存储在电机控制系统或者特定的存储设备中,由阈值获取模块520进行调用。
在一些实施例中,所述电机控制装置还可以包括函数关系计算模块。所 述函数关系计算模块用于测量电机在不同的电压值下,对应的给定信号上限阈值并据此计算获得所述电压值与所述给定信号上限阈值的函数关系。
其中,所述电压值为向所述电机供电的直流电压值。所述电压值与所述给定信号上限阈值的函数关系通过如下算式表示:
u qref_max=aU dc+b
其中,u qref_max为给定信号上限阈值,U dc为电压值;a为小于0的斜率值;b为截距。
所述斜率值和截距通过如下算式计算:
Figure PCTCN2018105293-appb-000004
其中,U dc_1为供电电源为电机供电时的最高电压值,u qref_max_1为与所述最高电压值对应的给定信号上限阈值;U dc_0为供电电源为电机供电时的最低电压值,u qref_max_0为与所述最低电压值对应的给定信号上限阈值。在另一些实施例中,在给定信号属于电机可控范围内时,所述给定值控制模块530具体可以用于:将所述接收的给定信号作为自变量,输入预设的电机控制模型;通过所述电机控制模型运算后,输出对应的因变量作为控制信号;向电机输出所述控制信号以控制电机以对应的转速运行。
当给定信号超出了电机可控范围,需要使用二次阶跃的方式使电机的运行状态达到预定的目标时,所述控制模块530具体可以用于:以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信 号。然后,在电机的转速达到所述给定信号上限阈值对应的转速时,判断当前给定信号是否小于所述给定信号上限阈值,以及在给定信号小于所述给定信号上限阈值时,以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号,或者在给定信号大于所述给定信号上限阈值时,以所述当前给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
图7是本申请实施例提供的一种无人机控制系统的结构示意图,如图7所示,该设备70包括一个或多个处理器701以及存储器702。其中,图7中以一个处理器701为例。
执行上述电机控制方法的无人机控制系统还可以包括输入装置703和输出装置704。当然,也可以根据实际情况需要,添加或者减省其它合适的装置模块。
处理器701、存储器702、输入装置703和输出装置704可以通过总线或者其他方式连接,图7中以通过总线连接为例。
存储器702作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的诊断方法对应的程序指令或模块,例如,附图5所示的接收模块510、阈值获取模块520以及给定值控制模块530。处理器701通过运行存储在存储器702中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例的电机控制方法。
存储器702可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电机 控制装置的使用所创建的数据等。此外,存储器702可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器702可选包括相对于处理器701远程设置的存储器,上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置703可接收输入的数字或字符信息,以及产生与电机控制装置的用户设置以及功能控制有关的键信号输入。输出装置704可包括显示屏等显示设备。所述一个或者多个模块存储在所述存储器702中,当被所述一个或者多个处理器701执行时,执行上述任意方法实施例中的电机控制方法。
本领域技术人员应该还可以进一步意识到,结合本文中所公开的实施例描述的示例性的电机控制方法的各个步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所述的计算机软件可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同 方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (17)

  1. 一种电机控制方法,其特征在于,包括:
    接收用于控制电机转速的给定信号;
    获取电机在当前电压下的给定信号上限阈值;
    在所述接收的给定信号小于所述给定信号上限阈值时,以所述接收的给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号;
    在所述接收的给定信号大于所述给定信号上限阈值时,以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
  2. 根据权利要求1所述的电机控制方法,其特征在于,所述获取电机在当前电压下的给定信号上限阈值,包括:
    获取电机当前的电压值;
    根据所述当前的电压值,通过预先设定的电压值与给定信号上限阈值之间的函数关系,确定所述当前的电压值对应的给定信号上限阈值。
  3. 根据权利要求2所述的电机控制方法,其特征在于,所述预先设定的函数关系通过以下步骤确定:
    测量电机在多个不同的电压值下,对应的给定信号上限阈值,所述电压值为外部电源向所述电机提供的直流电压值;
    通过所述多个不同的电压值以及对应的给定信号上限阈值,确定所述多个不同的电压值与所述对应的给定信号上限阈值之间的函数关系。
  4. 根据权利要求1所述的电机控制方法,其特征在于,所述以所述接收的给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号,具体包括:
    将所述接收的给定信号作为自变量,输入预设的电机控制模型;
    通过所述电机控制模型运算后,输出对应的因变量作为控制信号;
    向电机输出所述控制信号以控制电机以对应的转速运行。
  5. 根据权利要求1所述的电机控制方法,其特征在于,所述以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号之后,所述方法还包括:
    在电机的转速达到所述给定信号上限阈值对应的转速时,判断当前给定信号是否小于所述给定信号上限阈值;所述当前给定信号由所述接收的给定信号以及电机当前转速确定;
    若是,则以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号;
    若否,则以所述当前给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
  6. 根据权利要求3所述的电机控制方法,其特征在于,所述电压值与给定信号上限阈值之间的函数关系,通过如下表达式表示:
    u qref_max=aU dc+b
    其中,u qref_max为给定信号上限阈值,U dc为电压值;a和b为常数。
  7. 根据权利要求6所述的电机控制方法,其特征在于,所述常数a为负数。
  8. 根据权利要求6或7所述的电机控制方法,其特征在于,所述常数a和b分别通过如下算式计算:
    Figure PCTCN2018105293-appb-100001
    其中,U dc_1为供电电源为电机供电时的最高电压值,u qref_max_1为与所述最高电压值对应的给定信号上限阈值;U dc_0为供电电源为电机供电时的最低电压值,u qref_max_0为与所述最低电压值对应的给定信号上限阈值。
  9. 一种电机控制装置,其特征在于,包括:
    接收模块,用于接收用于控制电机转速的给定信号;
    阈值获取模块,用于获取电机在当前电压下的给定信号上限阈值;
    给定值控制模块,用于在所述接收的给定信号小于所述给定信号上限阈值时,以所述接收的给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号;以及在所述接收的给定信号大于所述给定信号上限阈值时,以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述 给定值对应的控制信号。
  10. 根据权利要求9所述的电机控制装置,其特征在于,所述阈值获取模块具体包括:电压值获取单元以及计算单元;:
    所述电压值获取单元,用于获取电机当前的电压值;
    所述计算单元,用于根据所述当前的电压值,通过预先设定的电压值与给定信号上限阈值之间的函数关系,确定所述当前的电压值对应的给定信号上限阈值。
  11. 根据权利要求10所述的电机控制装置,其特征在于,还包括函数关系计算模块,所述函数关系计算模块具体用于:
    测量电机在多个不同的电压值下,对应的给定信号上限阈值,所述电压值为外部电源向所述电机提供的直流电压值;
    通过所述多个不同的电压值以及对应的给定信号上限阈值,确定所述多个不同的电压值与所述对应的给定信号上限阈值之间的函数关系。
  12. 根据权利要求9所述的电机控制装置,其特征在于,在所述接收的给定信号小于所述给定信号上限阈值时,所述给定值控制模块具体用于:
    将所述接收的给定信号作为自变量,输入预设的电机控制模型;
    通过所述电机控制模型运算后,输出对应的因变量作为控制信号;
    向电机输出所述控制信号以控制电机以对应的转速运行。
  13. 根据权利要求9所述的电机控制装置,其特征在于,以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号以后,所述给定值控制模块还用于:
    在电机的转速达到所述给定信号上限阈值对应的转速时,判断当前给定信号是否小于所述给定信号上限阈值;所述当前给定信号由所述接收的给定信号以及电机当前转速确定;
    若是,则以所述给定信号上限阈值作为电机控制的给定值,向电机输出与所述给定值对应的控制信号;
    若否,则以所述当前给定信号作为电机控制的给定值,向电机输出与所述给定值对应的控制信号。
  14. 根据权利要求11所述的电机控制装置,其特征在于,所述电压值与所述给定信号上限阈值的函数关系通过如下算式表示:
    u qref_max=aU dc+b
    其中,u qref_max为给定信号上限阈值,U dc为电压值;a和b为常数。
  15. 根据权利要求14所述的电机控制装置,其特征在于,所述常数a为负数。
  16. 根据权利要求14或15所述的电机控制装置,其特征在于,所述常数a和b分别通过如下算式计算:
    Figure PCTCN2018105293-appb-100002
    其中,U dc_1为供电电源为电机供电时的最高电压值,u qref_max_1为与所述最高电压值对应的给定信号上限阈值;U dc_0为供电电源为电机供电时的最低电压值,u qref_max_0为与所述最低电压值对应的给定信号上限阈值。
  17. 一种无人机控制系统,其特征在于,包括至少一个处理器以及与所述至少一个处理器通信连接的存储器;
    其中,所述存储器存储有可被所述至少一个处理器执行的指令程序,所述指令程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1-8任一所述的电机控制方法,向电机输出对应的控制信号。
PCT/CN2018/105293 2018-03-08 2018-09-12 电机控制方法、其装置及无人机控制系统 WO2019169850A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810191047.9 2018-03-08
CN201810191047.9A CN108390603B (zh) 2018-03-08 2018-03-08 电机控制方法、其装置及无人机控制系统

Publications (1)

Publication Number Publication Date
WO2019169850A1 true WO2019169850A1 (zh) 2019-09-12

Family

ID=63067014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105293 WO2019169850A1 (zh) 2018-03-08 2018-09-12 电机控制方法、其装置及无人机控制系统

Country Status (2)

Country Link
CN (1) CN108390603B (zh)
WO (1) WO2019169850A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390603B (zh) * 2018-03-08 2019-12-31 深圳市道通智能航空技术有限公司 电机控制方法、其装置及无人机控制系统
CN110815233B (zh) * 2019-11-28 2020-12-08 北京云迹科技有限公司 机器人驱动方法、装置、存储介质及机器人
CN113859554B (zh) * 2021-09-22 2022-12-09 北京三快在线科技有限公司 一种无人设备控制方法、装置、存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368474A (zh) * 2012-03-27 2013-10-23 比亚迪股份有限公司 一种电机转速控制方法
US20140375233A1 (en) * 2013-06-21 2014-12-25 Hamilton Sundstrand Corporation Permanent magnet motor control
CN107508515A (zh) * 2017-09-11 2017-12-22 珠海格力节能环保制冷技术研究中心有限公司 一种永磁同步电机的保安控制方法和装置
CN107585297A (zh) * 2016-07-06 2018-01-16 襄阳联航动力技术有限公司 一种多旋翼并联式混合动力无人机
CN108390603A (zh) * 2018-03-08 2018-08-10 深圳市道通智能航空技术有限公司 电机控制方法、其装置及无人机控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515489B (zh) * 2016-01-21 2018-01-23 珠海格力节能环保制冷技术研究中心有限公司 一种电机转速控制方法及装置
CN106160617A (zh) * 2016-07-27 2016-11-23 零度智控(北京)智能科技有限公司 飞行器的电机控制方法、装置、电子调速器以及飞行器
WO2018076149A1 (zh) * 2016-10-25 2018-05-03 深圳市大疆创新科技有限公司 多旋翼飞行器及其控制方法、控制装置及飞行控制系统
CN107425771B (zh) * 2017-08-28 2019-12-24 浙江华飞智能科技有限公司 一种无人机中电机的控制方法及电子调速器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368474A (zh) * 2012-03-27 2013-10-23 比亚迪股份有限公司 一种电机转速控制方法
US20140375233A1 (en) * 2013-06-21 2014-12-25 Hamilton Sundstrand Corporation Permanent magnet motor control
CN107585297A (zh) * 2016-07-06 2018-01-16 襄阳联航动力技术有限公司 一种多旋翼并联式混合动力无人机
CN107508515A (zh) * 2017-09-11 2017-12-22 珠海格力节能环保制冷技术研究中心有限公司 一种永磁同步电机的保安控制方法和装置
CN108390603A (zh) * 2018-03-08 2018-08-10 深圳市道通智能航空技术有限公司 电机控制方法、其装置及无人机控制系统

Also Published As

Publication number Publication date
CN108390603A (zh) 2018-08-10
CN108390603B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2019169850A1 (zh) 电机控制方法、其装置及无人机控制系统
JP6661837B2 (ja) モータのベクトル制御方法、装置及び航空機
US11005396B2 (en) Starting method and apparatus for permanent magnet synchronous motor, power system, and unmanned aerial vehicle
CN113890059A (zh) 一种混合储能vsg控制系统稳定性分析方法及系统
CN108445910B (zh) 控制无人飞行器的电机加速的方法、装置和电子调速器
WO2019210639A1 (zh) 一种油门控制的方法、装置及无人机
US9143074B2 (en) Controlling method of synchronous motor
WO2019233021A1 (zh) 电机控制方法、装置、电子调速器和无人飞行器
CN110932633A (zh) 一种电机控制方法、装置及变频控制器
EP3484009B1 (en) Hydropower generation system
WO2021212520A1 (zh) 电机的控制方法、装置、设备及存储介质
CN109193609A (zh) 一种基于vsg控制的直流电网直流电压协调控制方法
CN110601630B (zh) 磁链角度限幅处理、无速度传感器矢量控制方法及系统
CN112234870A (zh) 一种控制交流异步电机飞车启动方法及控制系统
CN108809192B (zh) 一种参数自整定永磁同步电机控制系统
CN113645399B (zh) 云台设备的运行位置的确定方法及装置
CN112202381B (zh) 驱动控制方法、装置、电器设备和计算机可读存储介质
WO2019196352A1 (zh) 一种电机加速方法、装置、电子调速器和无人飞行器
CN112886885A (zh) 风力发电机组的永磁同步发电机控制方法、装置和系统
CN106777596B (zh) 微电网半实物仿真系统及风力发电机闭环控制方法
WO2021196218A1 (zh) 电机控制方法、装置、可移动平台和存储介质
CN110513247A (zh) 用于风力发电机组变桨系统的自主控制系统及方法
WO2019042095A1 (zh) 给定转速计算方法、装置、电调、动力系统及无人飞行器
CN108696221B (zh) 一种电机启动方法、装置、电子调速器和无人飞行器
CN113285645B (zh) 电动机控制方法、电动机驱动装置、工业用机器人的控制方法及工业用机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908852

Country of ref document: EP

Kind code of ref document: A1