WO2021196218A1 - 电机控制方法、装置、可移动平台和存储介质 - Google Patents

电机控制方法、装置、可移动平台和存储介质 Download PDF

Info

Publication number
WO2021196218A1
WO2021196218A1 PCT/CN2020/083337 CN2020083337W WO2021196218A1 WO 2021196218 A1 WO2021196218 A1 WO 2021196218A1 CN 2020083337 W CN2020083337 W CN 2020083337W WO 2021196218 A1 WO2021196218 A1 WO 2021196218A1
Authority
WO
WIPO (PCT)
Prior art keywords
quadrature
axis
signal
current signal
motor
Prior art date
Application number
PCT/CN2020/083337
Other languages
English (en)
French (fr)
Inventor
金学健
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/083337 priority Critical patent/WO2021196218A1/zh
Priority to CN202080004285.XA priority patent/CN112640292A/zh
Publication of WO2021196218A1 publication Critical patent/WO2021196218A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control

Definitions

  • the present invention relates to the technical field of motor control, in particular to a motor control method, device, movable platform and storage medium.
  • the user can increase the speed of the motor by triggering an acceleration command.
  • a quadrature axis voltage signal corresponding to the acceleration command is generated, and the quadrature axis voltage signal is specifically expressed as an increase in voltage value.
  • the increased quadrature axis voltage signal acts on the motor control system, and the motor control system will control and increase the speed of the motor.
  • the quadrature axis current signal when the quadrature axis voltage signal suddenly increases, the quadrature axis current signal will also increase correspondingly. Due to the coupling effect of the quadrature axis current signal and the direct axis voltage signal, the direct axis voltage signal will also suddenly increase, and the direct axis voltage signal cannot be effectively adjusted and oscillation occurs. The oscillating direct-axis voltage signal will also react back to the quadrature axis current signal, causing the quadrature axis current signal to also oscillate. Due to the interaction between the quadrature axis current signal and the direct axis voltage signal, the oscillation is difficult to adjust, and the entire motor control system is unstable.
  • the embodiments of the present invention provide a motor control method, device, equipment, and storage medium, which are used to ensure the stability of the motor control system during the speed increase process of the motor.
  • an embodiment of the present invention provides a motor control method, the method including:
  • the rotation of the motor is controlled according to the direct axis input voltage signal and the quadrature axis input voltage signal.
  • an embodiment of the present invention provides a motor control device, which includes:
  • the determination module is used to determine the direct-axis output current signal and the quadrature-axis output current signal of the motor at the current moment;
  • the acquisition module is used to acquire the direct-axis reference current signal and the quadrature-axis reference current signal;
  • the determining module is configured to determine a direct-axis current error signal according to the direct-axis output current signal and the direct-axis reference current signal, and, according to the quadrature-axis output current signal and the quadrature-axis reference current signal, Determine the quadrature axis current error signal;
  • the adjustment module is used to adjust the direct axis current error signal through the first PI controller to obtain the direct axis input voltage signal, and adjust the quadrature axis current error signal through the second PI controller to obtain the alternating current error signal.
  • the control module is used for controlling the rotation of the motor according to the direct axis input voltage signal and the quadrature axis input voltage signal.
  • an embodiment of the present invention provides a movable platform, which includes the motor control device and the motor described in the second aspect of the present invention.
  • an embodiment of the present invention provides a non-transitory machine-readable storage medium, the storage medium is a computer-readable storage medium, the computer-readable storage medium stores program instructions, and the program instructions are used for The motor control method described in the first aspect of the present invention is realized.
  • the first PI controller and the second PI controller are used to separately input the direct-axis current signal and the AC
  • the adjustment of the shaft input current signal enables the direct shaft input current signal and the quadrature shaft input current signal to be in a stable state, thereby ensuring the stability of the motor control system in the process of controlling the motor to increase the speed, and preventing the motor control system from controlling the motor to increase the speed Oscillation occurred during the process.
  • Fig. 1 is a flowchart of a motor control method provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a motor control system provided by an embodiment of the present invention.
  • FIG. 3 is a flowchart of another motor control method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another motor control system provided by an embodiment of the present invention.
  • Figure 5 is a schematic structural diagram of a motor control device provided by an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • the words “if” and “if” as used herein can be interpreted as “when” or “when” or “in response to determination” or “in response to detection”.
  • the phrase “if determined” or “if detected (statement or event)” can be interpreted as “when determined” or “in response to determination” or “when detected (statement or event) )” or “in response to detection (statement or event)”.
  • the motor control method provided by the embodiment of the present invention may be executed by a movable platform, and the movable platform may be an unmanned aerial vehicle, a robot, a sweeper, or the like.
  • the user can control the drone to fly through the controller, and the user can send an acceleration command to the controller to accelerate the drone, and the controller can control the drone to speed up according to the acceleration command.
  • the power for the flight of the UAV comes from the motor.
  • the rotation speed of the motor needs to be increased accordingly.
  • the motor can be controlled to stably increase the rotation speed of the motor while ensuring the response speed to the acceleration command, so as to realize the acceleration process of the unmanned aerial vehicle.
  • Fig. 1 is a flowchart of a motor control method provided by an embodiment of the present invention. As shown in Fig. 1, the method includes the following steps:
  • Step S101 Determine the direct-axis output current signal and the quadrature-axis output current signal of the motor at the current moment.
  • Step S102 Obtain a direct-axis reference current signal and a quadrature-axis reference current signal.
  • Step S103 Determine the direct axis current error signal according to the direct axis output current signal and the direct axis reference current signal, and determine the quadrature axis current error signal according to the quadrature axis output current signal and the quadrature axis reference current signal.
  • step S104 the direct axis current error signal is adjusted by the first PI controller to obtain the direct axis input voltage signal, and the quadrature axis current error signal is adjusted by the second PI controller to obtain the quadrature axis input voltage signal.
  • Step S105 controlling the rotation of the motor according to the direct axis input voltage signal and the quadrature axis input voltage signal.
  • Vq_ref is used to represent the quadrature axis reference voltage signal.
  • Vq_ref is used to represent the quadrature axis reference voltage signal.
  • the Vq_ref corresponding to the lowest acceleration gear of the five acceleration gears is 1V
  • the Vq_ref corresponding to the highest acceleration gear of the five acceleration gears It is 5V.
  • Vq_ref will be generated correspondingly, and this Vq_ref will be input into the motor control system.
  • FIG. 2 it is a schematic structural diagram of a motor control system provided by an embodiment of the present invention.
  • a corresponding duty cycle signal for controlling the three-phase bridge is generated.
  • the duty cycle signal directly affects the magnitude of the three-phase voltage signal and the three-phase current signal output by the three-phase bridge.
  • the three-phase electricity output by the three-phase bridge acts on the motor to realize the speed increase and decrease of the motor.
  • the motor control system regulates the motor according to the control period.
  • the motor control system is based on Vq_ref, the current direct-axis output current signal and the quadrature-axis output current signal of the motor to realize the control of the motor. Regulation.
  • Id will be used below to represent the direct-axis output current signal of the motor at the current moment
  • Iq will represent the quadrature-axis output current signal of the motor at the current moment.
  • the above-mentioned Id affects the maximum speed of the motor. In the embodiment of the present invention, it is sufficient to make Id close to 0 without interfering with the value of Id.
  • the aforementioned Iq affects the torque of the motor. When Iq increases, the torque of the motor increases and the motor speeds up. When Iq decreases, the torque of the motor decreases and the motor decelerates.
  • the three-phase current signal and the three-phase voltage signal of the motor at the current moment can be collected, and the Clarke transformation (in English expressed as Clarke transformation) and Park transformation (in English expressed as Park) are performed on the three-phase current signal and the three-phase voltage signal. Transformation) to get Id and Iq.
  • the three-phase current signal of the motor at the current moment can be expressed as Ia, Ib, and Ic
  • the three-phase voltage signal can be expressed as Va, Vb, and Vc.
  • the Ia, Ib, Ic, Va, Vb, and Vc on the motor can be collected through a three-phase electrical detection device. After Ia, Ib, and Ic are collected, Clarke transformation can be performed on Ia, Ib, and Ic to obtain the current moment of the motor. Quadrature input current signals (denoted as I ⁇ and I ⁇ below), I ⁇ and I ⁇ are values in a stationary coordinate system. After collecting Va, Vb, and Vc, Clarke transform can be performed on Va, Vb, and Vc to obtain quadrature input voltage signals (hereinafter denoted as V ⁇ and V ⁇ ), and V ⁇ and V ⁇ are also values in the stationary coordinate system.
  • I ⁇ , I ⁇ , V ⁇ , and V ⁇ I ⁇ , I ⁇ , V ⁇ , and V ⁇ can be input to the motor angle observer, and the motor angle observer outputs the speed and rotation angle of the motor at the current moment (hereinafter denoted as ⁇ ).
  • Park transformation can be performed on I ⁇ and I ⁇ according to ⁇ to obtain Id and Iq, and Id and Iq are the values in the rotating coordinate system.
  • Id_ref direct-axis reference current signal
  • Iq_ref quadrature-axis reference current signal
  • Id can be made close to the preset amplitude, and the preset amplitude may be zero.
  • Id_ref can be set to 0, so that when Id is adjusted with reference to Id_ref, Id and Id_ref can be made close to equal, and the value of Id can be controlled near 0.
  • the foregoing process of obtaining Iq_ref may be implemented as: obtaining Vq_ref; and determining Iq_ref according to Vq_ref.
  • the process of determining Iq_ref can be realized as: determining the voltage difference between Vq_ref and the quadrature axis input voltage signal (hereinafter denoted as Vq) input in the previous control cycle of the motor; inputting the voltage difference to the third In the PI controller, get Iq_ref.
  • the PI controller is a linear controller. It can form a deviation signal based on the reference control signal and the actual output electrical signal in the system. The proportional and integral of the deviation signal are linearly combined to form a control variable. Adjust the actual output electrical signal in the system.
  • Vq can follow the value of Vq_ref.
  • the third PI controller implements the regulation of Vq through the control quantity Iq_ref.
  • Vq' is also relatively fixed, and Vq' is approximately equal to Vq_ref'.
  • Vq_ref suddenly increases.
  • Vq has not changed, and the error between Vq and Vq_ref is relatively large.
  • the third PI controller outputs a relatively large Iq_ref.
  • Iq_ref Through the large Iq_ref, through the action of the control loop, Vq rises rapidly, but at this time The Vq is quickly close to Vq_ref, there may still be an error between them, and the error is small.
  • the third PI controller In the subsequent regulation period, when a small error signal is input to the third PI controller, the third PI controller outputs a relatively small Iq_ref. Through the small Iq_ref, Vq gradually rises and becomes more and more. Close to or even finally equal to Vq_ref.
  • Iq_ref at the current moment can be calculated according to Vq.
  • the quadrature axis current error signal can be determined according to Iq and Iq_ref.
  • the direct-axis current error signal can be determined according to Id_ref and the acquired Id. Input the direct axis current error signal to the first PI controller to obtain the direct axis input voltage signal (hereinafter denoted as Vd). Input the quadrature axis current error signal to the second PI controller to obtain Vq.
  • a d-axis current loop and a q-axis current loop are provided.
  • the main module in the q-axis current loop is the second PI controller.
  • the q-axis current loop is from Iq through the second controller to Vq, from Vq to the three-phase bridge, and collects the three-phase output of the three-phase bridge. After the current signal and the three-phase voltage signal, they undergo Clarke transformation, then Park transformation and finally return to Iq.
  • Vq_ref increases suddenly, and Iq also increases rapidly. Due to the coupling effect between Iq and Vd, the rapid increase of Iq will cause the speed of Vd to increase, and Vd can be adjusted by the first PI controller in the d-axis current loop. Correspondingly, after Iq increases rapidly, Iq is adjusted by the second PI controller in the q-axis current loop. Through the adjustment of the second PI controller, Iq always follows the value of Iq_ref, and when Iq_ref is stable, Iq is also stable of. In this way, the stable Iq and the adjusted Vd will not interact with each other through the coupling effect and cause difficult-to-suppress oscillations.
  • the motor control system can control the rotation of the motor according to Vd and Vq.
  • the process of controlling the rotation of the motor according to Vd and Vq can be implemented as: based on ⁇ , perform Park inverse transformation on Vd and Vq (which can be expressed as Park inverse transformation) to obtain quadrature output voltage signals (hereinafter expressed as V ⁇ and V ⁇ ); Control motor rotation based on V ⁇ and V ⁇ .
  • the process of controlling the rotation of the motor based on V ⁇ and V ⁇ can be implemented as: determining the three-phase current signal (represented as Ia', Ib' and Ic') and the three-phase voltage input in the next control cycle of the motor corresponding to V ⁇ and V ⁇ Signals (represented as Va', Vb' and Vc'); determine the duty cycle signals corresponding to Ia', Ib', Ic', Va', Vb' and Vc'; control the rotation of the motor based on the duty cycle signal.
  • Ia', Ib', Ic', Va', Vb' and Vc' can be input to the Space Vector Pulse Width Modulation (SVPWM) module, Obtain the corresponding duty cycle signal.
  • the duty cycle signal can be used to adjust the working parameters of the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) in the three-phase bridge, and finally realize the control of the motor by adjusting the working parameters of the MOSFET.
  • Fig. 3 is a flowchart of another motor control method provided by an embodiment of the present invention. As shown in Fig. 3, the method includes the following steps:
  • Step S301 Determine the direct-axis output current signal and the quadrature-axis output current signal of the motor at the current moment.
  • Step S302 Obtain a direct axis reference current signal.
  • Step S303 Obtain the quadrature axis reference voltage signal.
  • Step S304 Obtain a calibration current signal corresponding to the quadrature axis reference voltage signal.
  • Step S305 Determine the sum of the current signal output by the third PI controller and the calibrated current signal as the quadrature axis reference current signal.
  • Step S306 Determine the direct axis current error signal according to the direct axis output current signal and the direct axis reference current signal, and determine the quadrature axis current error signal according to the quadrature axis output current signal and the quadrature axis reference current signal.
  • step S307 the direct axis current error signal is adjusted by the first PI controller to obtain the direct axis input voltage signal, and the quadrature axis current error signal is adjusted by the second PI controller to obtain the quadrature axis input voltage signal.
  • step S308 the motor is controlled to rotate according to the direct axis input voltage signal and the quadrature axis input voltage signal.
  • the calibration current signal corresponding to Vq_ref (hereinafter denoted as Iq_f) can be obtained. This process can be realized by the feedforward module.
  • Iq_f corresponding to Vq_ref can be obtained, it means that the corresponding relationship between Vq_ref and Iq_f can be calibrated in advance, and the corresponding relationship can be expressed in the form of a list or expressed by an algorithm.
  • the specific value range of Vq_ref is certain, the possible value of Vq_ref can be determined, and then by inputting different given Vq_ref to the motor control system, the q-axis input current signal is tested under the stable state of the motor control system to obtain Iq_f.
  • Vq_ref and the measured Iq_f can be stored in the list correspondingly.
  • Vq_ref is given, the Iq_f of the system in a stable state can be checked through the list. It is also possible to fit a formula for the correspondence between Vq_ref and Iq_f based on these Vq_ref and the measured Iq_f.
  • Vq_ref is given, the corresponding Iq_f can be calculated through this formula.
  • Vq_ref In the actual situation, when Vq_ref is given, the motor control system needs to go through several control cycles to keep the motor control system in a stable state, and this process takes a long time.
  • the feedforward module when Vq_ref is given, by querying the correspondence between Vq_ref and Iq_f in a steady state, the Iq_f corresponding to the given Vq_ref can be determined immediately, which improves the response speed of the motor control system.
  • Iq_pi the current signal output by the third PI controller
  • Iq_f the current signal output by the third PI controller
  • the response speed of the motor control system can be improved.
  • the motor control system due to the adjustment effect of the d-axis current loop and the q-axis current loop set in the motor control system, it can ensure that the motor
  • the motor control system can operate stably. Therefore, when the motor control system can run stably, the motor can increase the speed stably to prevent the drone from shaking during the speed increase process.
  • motor control device of one or more embodiments of the present invention will be described in detail below. Those skilled in the art can understand that these motor control devices can all be configured by using commercially available hardware components through the steps taught in this solution.
  • Fig. 5 is a schematic structural diagram of a motor control device provided by an embodiment of the present invention. As shown in FIG. 5, the device includes: a determination module 51, an acquisition module 52, an adjustment module 53, and a control module 54.
  • the determining module 51 is used to determine the direct-axis output current signal and the quadrature-axis output current signal of the motor at the current moment.
  • the obtaining module 52 is used to obtain the direct-axis reference current signal and the quadrature-axis reference current signal.
  • the determining module 51 is configured to determine the direct axis current error signal according to the direct axis output current signal and the direct axis reference current signal, and determine the quadrature axis current error signal according to the quadrature axis output current signal and the quadrature axis reference current signal.
  • the adjustment module 53 is used to adjust the direct axis current error signal through the first PI controller to obtain the direct axis input voltage signal, and adjust the quadrature axis current error signal through the second PI controller to obtain the quadrature axis input voltage Signal.
  • the control module 54 is used to control the rotation of the motor according to the direct axis input voltage signal and the quadrature axis input voltage signal.
  • the obtaining module 52 is configured to: obtain the quadrature axis reference voltage signal; and determine the quadrature axis reference current signal according to the quadrature axis reference voltage signal.
  • the acquisition module 52 is configured to: determine the voltage difference between the quadrature axis reference voltage signal and the quadrature axis voltage signal input in the previous control period of the motor; The current signal output by the PI controller is used as the quadrature axis reference current signal.
  • the acquiring module 52 is configured to: acquire a calibration current signal corresponding to the quadrature axis reference voltage signal; determine the sum of the current signal output by the third PI controller and the calibration current signal as the quadrature axis reference current signal.
  • the direct-axis reference current signal is a current signal with a preset amplitude.
  • the preset amplitude is 0.
  • the determining module 51 is configured to: collect the three-phase current signal and the three-phase voltage signal of the motor at the current moment; perform Clark transformation and Parker transformation on the three-phase current signal and the three-phase voltage signal to obtain the direct axis of the motor at the current moment Output current signal and quadrature axis output current signal.
  • the determining module 51 is configured to: perform Clark transformation on the three-phase current signal and the three-phase voltage signal to obtain the quadrature input current signal and the quadrature input voltage signal of the motor at the current moment; based on the quadrature input current signal and the positive The alternating input voltage signal determines the rotation angle of the motor at the current moment; based on the rotation angle, the quadrature input current signal and the quadrature input voltage signal are Park transformed to obtain the direct-axis output current signal and the quadrature-axis output current signal of the motor at the current moment.
  • the determining module 51 is configured to: based on the rotation angle, perform inverse Park transformation on the direct-axis input voltage signal and the quadrature-axis input voltage signal to obtain a quadrature output voltage signal; and control the rotation of the motor based on the quadrature output voltage signal.
  • the determining module 51 is configured to: determine the three-phase current signal and the three-phase voltage signal input in the next control cycle of the motor corresponding to the quadrature voltage signal; determine the three-phase current signal and the three-phase current signal input in the next control cycle of the motor The duty cycle signal corresponding to the voltage signal; the motor is controlled to rotate based on the duty cycle signal.
  • the device shown in FIG. 5 can execute the motor control method provided in the foregoing embodiments shown in FIG. 1 to FIG. 4, and the detailed execution process and technical effects can be referred to the description in the foregoing embodiment, which will not be repeated here.
  • the structure of the motor control device and the motor shown in FIG. 5 can be realized as a movable platform.
  • the movable platform may include: a motor control device 61 and a motor 62.
  • the embodiment of the present invention provides a non-transitory machine-readable storage medium.
  • the non-transitory machine-readable storage medium stores executable code.
  • the executable code is executed by a removable platform, the removable The platform can at least implement the motor control method provided in the aforementioned embodiments shown in FIGS. 1 to 4.
  • the motor control method provided by the embodiment of the present invention can be executed by a certain program/software, and the program/software can be provided by the network side.
  • the movable platform mentioned in the foregoing embodiment can download the program/software to the local non- In a volatile storage medium, and when it needs to execute the aforementioned motor control method, the program/software is read into the memory through the CPU, and then the program/software is executed by the CPU to realize the motor control provided in the foregoing embodiment
  • the method and the execution process please refer to the schematic diagrams in Figs. 1 to 4 described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明实施例提供一种电机控制方法、装置、可移动平台和存储介质,该电机控制方法包括:确定当前时刻电机的直轴输出电流信号和交轴输出电流信号;获取直轴参考电流信号和交轴参考电流信号;根据直轴输出电流信号和直轴参考电流信号,确定直轴电流误差信号,以及,根据交轴输出电流信号和交轴参考电流信号,确定交轴电流误差信号;通过第一PI控制器对直轴电流误差信号进行调整,以得到直轴输入电压信号,通过第二PI控制器对交轴电流误差信号进行调整,以得到交轴输入电压信号;根据直轴输入电压信号和交轴输入电压信号控制电机转动。采用本发明,在保障响应速度的同时,能够保障电机控制系统在控制电机进行提速过程中的稳定性。

Description

电机控制方法、装置、可移动平台和存储介质 技术领域
本发明涉及电机控制技术领域,尤其涉及一种电机控制方法、装置、可移动平台和存储介质。
背景技术
用户可以通过触发加速指令来提高电机的转速。
当用户触发了加速指令时,会产生加速指令对应的交轴电压信号,该交轴电压信号具体表现为电压值增大。该增大的交轴电压信号作用到电机控制系统中,电机控制系统会控制提高电机的转速。
在上述过程中,当交轴电压信号突然增大时,交轴电流信号也会相应突然增大。由于交轴电流信号和直轴电压信号的耦合作用,直轴电压信号也会突然增大,直轴电压信号不能得到有效调节而出现振荡。振荡的直轴电压信号还会反作用回交轴电流信号,导致交轴电流信号也发生振荡。由于交轴电流信号和直轴电压信号的相互作用,导致振荡难以调节,整个电机控制系统是不稳定的。
发明内容
本发明实施例提供一种电机控制方法、装置、设备和存储介质,用以实现在电机提速的过程中,保证电机控制系统的稳定性。
第一方面,本发明实施例提供一种电机控制方法,该方法包括:
确定当前时刻电机的直轴输出电流信号和交轴输出电流信号;
获取直轴参考电流信号和交轴参考电流信号;
根据所述直轴输出电流信号和所述直轴参考电流信号,确定直轴电流误差信号,以及,根据所述交轴输出电流信号和所述交轴参考电流信号,确定交轴电流误差信号;
通过第一PI控制器对所述直轴电流误差信号进行调整,以得到直轴输入电压信号,通过第二PI控制器对所述交轴电流误差信号进行调整,以得到交轴输入电压信号;
根据所述直轴输入电压信号和所述交轴输入电压信号控制所述电机转动。
第二方面,本发明实施例提供一种电机控制装置,该装置包括:
确定模块,用于确定当前时刻电机的直轴输出电流信号和交轴输出电流信号;
获取模块,用于获取直轴参考电流信号和交轴参考电流信号;
所述确定模块,用于根据所述直轴输出电流信号和所述直轴参考电流信号,确定直轴电流误差信号,以及,根据所述交轴输出电流信号和所述交轴参考电流信号,确定交轴电流误差信号;
调整模块,用于通过第一PI控制器对所述直轴电流误差信号进行调整,以得到直轴输入电压信号,通过第二PI控制器对所述交轴电流误差信号进行调整,以得到交轴输入电压信号;
控制模块,用于根据所述直轴输入电压信号和所述交轴输入电压信号控制所述电机转动。
第三方面,本发明实施例提供一种可移动平台,其中包括本发明第二方面所述的电机控制装置和电机。
第四方面,本发明实施例提供了一种非暂时性机器可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现本发明第一方面所述的电机控制方法。
通过本发明实施例提供的方法,在电机控制系统根据提速指令进行提速的过程中,在保障响应速度的同时,通过第一PI控制器和第二PI控制器分别对直轴输入电流信号和交轴输入电流信号的调节,使得直轴输入电流信号和交轴输入电流信号能够处于稳定的状态,从而保障电机控制系统在控制电机进行提速过程中的稳定性,防止电机控制系统在控制电机进行提速过程中产生振荡。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种电机控制方法的流程图;
图2为本发明实施例提供的一种电机控制系统的结构示意图;
图3为本发明实施例提供的另一种电机控制方法的流程图;
图4为本发明实施例提供的另一种电机控制系统的结构示意图;
图5为本发明实施例提供的一种电机控制装置的结构示意图;
图6为本发明实施例提供的一种可移动平台的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
另外,下述各方法实施例中的步骤时序仅为一种举例,而非严格限定。
本发明实施例提供的电机控制方法可以由一可移动平台来执行,该可移动平台可以是无人机、机器人、扫地机等。
以无人机的场景为例,用户可以通过控制器控制无人机飞行,用户可以向控制器发出让无人机进行加速的加速指令,控制器可以根据该加速指令,控制无人机进行提速。可以理解的是,无人机飞行的动力来自于电机,当需要无人机进行提速时,电机的转速需要相应提升。通过本发明实施例提供的方法,能够控制电机在保障对加速指令响应速度的情况下,稳定地提高电机的转速,以实现无人机加速的过程。
下面结合以下一些实施例来说明本文提供的电机控制方法的执行过程。
图1为本发明实施例提供的一种电机控制方法的流程图,如图1所示,该方法包括如下步骤:
步骤S101,确定当前时刻电机的直轴输出电流信号和交轴输出电流信号。
步骤S102,获取直轴参考电流信号和交轴参考电流信号。
步骤S103,根据直轴输出电流信号和直轴参考电流信号,确定直轴电流误差信号,以及,根据交轴输出电流信号和交轴参考电流信号,确定交轴电流误差信号。
步骤S104,通过第一PI控制器对直轴电流误差信号进行调整,以得到直轴输入电压信号,通过第二PI控制器对交轴电流误差信号进行调整,以得到交轴输入电压信号。
步骤S105,根据直轴输入电压信号和交轴输入电压信号控制电机转动。
在实际应用中,当用户触发了加速指令时,会产生加速指令对应的交轴参考电压信号,下文为了方便描述,用Vq_ref表示交轴参考电压信号。例如,假设可以通过五个加速档位对无人机进行加速,该五个加速档位中的最低加速档位对应的Vq_ref是1V,该五个加速档位中的最高加速档位对应的Vq_ref是5V,当用户选择了任一加速档位时,会对应生成Vq_ref,该Vq_ref会输入到电机控 制系统中。
如图2所示,是本发明实施例提供的一种电机控制系统的结构示意图。通过电机控制系统对Vq_ref的处理,会对应生成用于控制三相电桥的占空比信号,该占空比信号直接影响三相电桥输出的三相电压信号和三相电流信号的大小,最终三相电桥输出的三相电作用到电机上,实现电机的提速和降速。
需要说明的是,电机控制系统是按照控制周期对电机进行调控的,在每个控制周期中,电机控制系统基于Vq_ref、当前时刻电机的直轴输出电流信号和交轴输出电流信号,实现对电机的调控。为了方便描述,下文将使用Id表示当前时刻电机的直轴输出电流信号,Iq表示当前时刻电机的交轴输出电流信号。
上述Id影响电机的最高转速,在本发明实施例中,让Id接近等于0即可,不干涉Id的值。上述Iq影响电机的转矩,当Iq增大时,电机的转矩加大,电机提速,当Iq减小时,电机的转矩减小,电机减速。
为了获取Id和Iq,可以采集当前时刻电机的三相电流信号和三相电压信号,对三相电流信号和三相电压信号进行克拉克变换(英文表示为Clarke变换)和帕克变换(英文表示为Park变换),得到Id和Iq。当前时刻电机的三相电流信号可以表示为Ia、Ib和Ic,三相电压信号可以表示为Va、Vb和Vc。
可以通过三相电检测装置来采集电机上的Ia、Ib、Ic、Va、Vb和Vc,在采集到Ia、Ib和Ic之后,可以对Ia、Ib和Ic进行Clarke变换,得到当前时刻电机的正交输入电流信号(下文表示为Iα和Iβ),Iα和Iβ为静止坐标系下的值。在采集到Va、Vb和Vc之后,可以对Va、Vb和Vc进行Clarke变换,得到正交输入电压信号(下文表示为Vα和Vβ),Vα和Vβ也是静止坐标系下的值。在得到Iα、Iβ、Vα和Vβ之后,可以将Iα、Iβ、Vα和Vβ输入到电机角度观测器中,电机角度观测器输出当前时刻电机的速度和旋转角度(下文表示为θ)。在得到θ之后,可以根据θ,对Iα和Iβ进行Park变换,得到Id和Iq,Id和Iq为旋转坐标系下的值。
在获取Id和Iq之外,还可以获取直轴参考电流信号(下文表示为Id_ref)和交轴参考电流信号(下文表示为Iq_ref)。Id_ref可以作为Id的参照调控信 号,Iq_ref可以作为Iq的参照调控信号。
前文提到可以让Id接近等于预设幅值,该预设幅值可以是0。为了实现这个目的,可以将Id_ref设置为0,这样参照Id_ref对Id进行调控时,可以使得Id与Id_ref接近相等,进而Id的值可以控制在0的附近。
上述获取Iq_ref的过程可以实现为:获取Vq_ref;根据Vq_ref,确定Iq_ref。
在实际应用中,根据Vq_ref,确定Iq_ref的过程可以实现为:确定Vq_ref与电机上一控制周期输入的交轴输入电压信号(下文表示为Vq)的电压差值;将电压差值输入到第三PI控制器中,得到Iq_ref。
需要说明的是,PI控制器是一种线性控制器,它可以根据参照调控信号与系统中实际输出的电信号构成偏差信号,将偏差信号的比例和积分通过线性组合构成控制量,通过控制量对系统中实际输出的电信号进行调节。
通过第三PI控制器的调控,可以使得Vq追随Vq_ref的值,在实际调控过程中,第三PI控制器是通过控制量Iq_ref来实施对Vq的调控的。
在实际应用中,在用户未触发加速指令时,电机控制系统在经过一定调控之后是处于稳定状态的,此时的Vq'也是相对固定的,Vq'接近等于Vq_ref'。当用户刚刚触发了加速指令时,Vq_ref突然增加,此时的Vq还未发生改变,Vq与Vq_ref之间存在的误差较大。将一个较大的误差信号输入到第三PI控制器时,第三PI控制器输出相对较大的Iq_ref,通过该较大的Iq_ref,经过控制环的作用,使得Vq迅速升高,但是此时的Vq是快速接近Vq_ref,它们之间可能仍然存在误差,该误差较小。在之后的调控周期,将较小的误差信号输入到第三PI控制器时,第三PI控制器输出相对较小的Iq_ref,通过该较小的Iq_ref,使得Vq慢慢升高且越来越接近甚至最后等于Vq_ref。
通过上述过程,在给定Vq_ref之后,可以根据Vq计算当前时刻的Iq_ref。在获取到Iq和Iq_ref之后,可以根据Iq和Iq_ref,确定交轴电流误差信号。相应地,在给定Id_ref之后,可以根据Id_ref和获取到的Id,确定直轴电流误差信号。将直轴电流误差信号输入到第一PI控制器,得到直轴输入电压信号 (下文表示为Vd)。将交轴电流误差信号输入到第二PI控制器,得到Vq。
通过图2可见,在本发明实施例提供的电机控制系统中,设置有d轴电流环和q轴电流环。其中,q轴电流环中的主要模块为第二PI控制器,该q轴电流环为从Iq经第二控制器到Vq,从Vq到三相电桥,采集三相电桥输出的三相电流信号和三相电压信号之后,经过Clarke变换,再到Park变换最终回到Iq。
当用户触发加速指令之后,Vq_ref突然增加,Iq也是迅速增加的。由于Iq和Vd之间存在耦合作用,Iq的迅速增加会导致Vd也速度增加,而Vd可以通过d轴电流环中的第一PI控制器来调节。相应地,在Iq迅速增加之后,Iq被q轴电流环中的第二PI控制器来调节,通过第二PI控制器的调节使得Iq始终追随Iq_ref的值,而当Iq_ref稳定时,Iq也是稳定的。这样,稳定的Iq和被调节的Vd之间不会通过耦合作用相互影响而产生难以抑制的振荡。
在第一PI控制器输出Vd以及第二PI控制器输出Vq之后,电机控制系统可以根据Vd和Vq控制电机转动。
可选地,根据Vd和Vq控制电机转动的过程可以实现为:基于θ,对Vd和Vq进行帕克逆变换(可以表示为Park逆变换),得到正交输出电压信号(下文表示为Vα和Vβ);基于Vα和Vβ控制电机转动。
可选地,基于Vα和Vβ控制电机转动的过程可以实现为:确定Vα和Vβ对应的电机下一控制周期输入的三相电流信号(表示为Ia'、Ib'和Ic')和三相电压信号(表示为Va'、Vb'和Vc');确定Ia'、Ib'、Ic'、Va'、Vb'和Vc'对应的占空比信号;基于占空比信号控制电机转动。
在实际应用中,如图2所示,可以将Ia'、Ib'、Ic'、Va'、Vb'和Vc'输入到空间矢量脉宽调制(Space Vector Pulse Width Modulation,简写为SVPWM)模块,得到对应的占空比信号。该占空比信号可以用于调节三相电桥中金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,简写为MOSFET)的工作参数,通过调节MOSFET的工作参数,最终实现控制电机电机转动的目的。
图3为本发明实施例提供的另一种电机控制方法的流程图,如图3所示, 该方法包括如下步骤:
步骤S301,确定当前时刻电机的直轴输出电流信号和交轴输出电流信号。
步骤S302,获取直轴参考电流信号。
步骤S303,获取交轴参考电压信号。
步骤S304,获取与交轴参考电压信号对应的标定电流信号。
步骤S305,确定第三PI控制器输出的电流信号和标定电流信号的和作为交轴参考电流信号。
步骤S306,根据直轴输出电流信号和直轴参考电流信号,确定直轴电流误差信号,以及,根据交轴输出电流信号和交轴参考电流信号,确定交轴电流误差信号。
步骤S307,通过第一PI控制器对直轴电流误差信号进行调整,以得到直轴输入电压信号,通过第二PI控制器对交轴电流误差信号进行调整,以得到交轴输入电压信号。
步骤S308,根据直轴输入电压信号和交轴输入电压信号控制电机转动。
区别于图1对应的实施例,在本发明实施例中,提供另外一种获取交轴参考电流信号(Iq_ref)的方式,其他信号的处理方式与图1对应的实施例相似,可以参见图1对应的实施例中具体描述的内容,在此不再赘述。
在实际应用中,如图4所示,在获取到Vq_ref之后,可以获取与Vq_ref对应的标定电流信号(下文表示为Iq_f)。该过程可以通过前馈模块实现。
可以理解的是,既然可以获取与Vq_ref对应的Iq_f,表示可以预先标定Vq_ref和Iq_f的对应关系,该对应关系可以以列表形式表示,也可以通过算法表示。具体Vq_ref能够取值的范围是一定的,可以确定Vq_ref可能的取值,然后通过向电机控制系统输入不同给定的Vq_ref,在电机控制系统稳定的状态下测试q轴输入电流信号,得到Iq_f。可以将这些Vq_ref和测得的Iq_f相应存储在列表中,当给定Vq_ref时,通过该列表可以查得系统在稳定状态下的Iq_f。也可以基于这些Vq_ref和测得的Iq_f,拟合Vq_ref和Iq_f之间的对应关系的公式,当给定Vq_ref时,可以通过该公式,计算出相应的Iq_f。
实际情况中,在给定Vq_ref时,电机控制系统是需要经过几个控制周期的调控,才能使得电机控制系统处于稳定状态的,这一过程耗时较长。而通过前馈模块,当给定Vq_ref时,通过查询Vq_ref和稳定状态下Iq_f的对应关系,可以立即确定给定的Vq_ref对应的Iq_f,提高电机控制系统的响应速度。
由于测得Vq_ref和Iq_f的对应关系的实验环境和实际使用电机控制系统环境之间的偏差,导致实际使用电机控制系统时,实际稳定状态下的Iq_f'可能与实验测得的Iq_f之间存在偏差,为了消除这种偏差,可以将第三PI控制器输出的电流信号(下文表示为Iq_pi)和Iq_f之间作和,将得到的和作为Iq_ref。
通过本发明实施例提供的方法,通过设置前馈模块,可以提高电机控制系统的响应速度,同时由于电机控制系统中设置的d轴电流环以及q轴电流环的调节作用,可以保证在使得电机系统具有较高响应速度的情况下,当用户触发加速指令时,电机控制系统能够稳定运行。故此,当电机控制系统能够稳定运行时,电机可以稳定的进行提速,防止在提速过程中无人机出现抖动现象。
以下将详细描述本发明的一个或多个实施例的电机控制装置。本领域技术人员可以理解,这些电机控制装置均可使用市售的硬件组件通过本方案所教导的步骤进行配置来构成。
图5为本发明实施例提供的一种电机控制装置的结构示意图。如图5所示,该装置包括:确定模块51、获取模块52、调整模块53、控制模块54。
确定模块51,用于确定当前时刻电机的直轴输出电流信号和交轴输出电流信号。
获取模块52,用于获取直轴参考电流信号和交轴参考电流信号。
确定模块51,用于根据直轴输出电流信号和直轴参考电流信号,确定直轴电流误差信号,以及,根据交轴输出电流信号和交轴参考电流信号,确定交轴电流误差信号。
调整模块53,用于通过第一PI控制器对直轴电流误差信号进行调整,以得到直轴输入电压信号,通过第二PI控制器对交轴电流误差信号进行调整,以得到交轴输入电压信号。
控制模块54,用于根据直轴输入电压信号和交轴输入电压信号控制电机转动。
可选地,获取模块52,用于:获取交轴参考电压信号;根据交轴参考电压信号,确定交轴参考电流信号。
可选地,获取模块52,用于:确定交轴参考电压信号与电机上一控制周期输入的交轴电压信号的电压差值;通过第三PI控制器对电压差值进行调整,以第三PI控制器输出的电流信号作为交轴参考电流信号。
可选地,获取模块52,用于:获取与交轴参考电压信号对应的标定电流信号;确定第三PI控制器输出的电流信号和标定电流信号的和作为交轴参考电流信号。
可选地,直轴参考电流信号为预设幅值的电流信号。
可选地,预设幅值为0。
可选地,确定模块51,用于:采集当前时刻电机的三相电流信号和三相电压信号;对三相电流信号和三相电压信号进行克拉克变换和帕克变换,得到当前时刻电机的直轴输出电流信号和交轴输出电流信号。
可选地,确定模块51,用于:对三相电流信号和三相电压信号进行克拉克变换,得到当前时刻电机的正交输入电流信号和正交输入电压信号;基于正交输入电流信号和正交输入电压信号,确定当前时刻电机的旋转角度;基于旋转角度,对正交输入电流信号和正交输入电压信号进行帕克变换,得到当前时刻电机的直轴输出电流信号和交轴输出电流信号。
可选地,确定模块51,用于:基于旋转角度,对直轴输入电压信号和交轴输入电压信号进行逆帕克变换,得到正交输出电压信号;基于正交输出电压信号控制电机转动。
可选地,确定模块51,用于:确定正交电压信号对应的电机下一控制周期输入的三相电流信号和三相电压信号;确定电机下一控制周期输入的三相电流信号和三相电压信号对应的占空比信号;基于占空比信号控制电机转动。
图5所示装置可以执行前述图1至图4所示实施例中提供的电机控制方法, 详细的执行过程和技术效果参见前述实施例中的描述,在此不再赘述。
在一个可能的设计中,上述图5所示电机控制装置和电机的结构可实现为一可移动平台。如图6所示,该可移动平台可以包括:电机控制装置61和电机62。
另外,本发明实施例提供了一种非暂时性机器可读存储介质,非暂时性机器可读存储介质上存储有可执行代码,当所述可执行代码被可移动平台执行时,使可移动平台至少可以实现如前述图1至图4所示实施例中提供的电机控制方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本发明实施例提供的电机控制方法可以由某种程序/软件来执行,该程序/软件可以由网络侧提供,前述实施例中提及的可移动平台可以将该程序/软件下载到本地的非易失性存储介质中,并在其需要执行前述电机控制方法时,通过CPU将该程序/软件读取到内存中,进而由CPU执行该程序/软件以实现前述实施例中所提供的电机控制方法,执行过程可以参见前述图1至图4中的示意。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (22)

  1. 一种电机控制方法,其特征在于,包括:
    确定当前时刻电机的直轴输出电流信号和交轴输出电流信号;
    获取直轴参考电流信号和交轴参考电流信号;
    根据所述直轴输出电流信号和所述直轴参考电流信号,确定直轴电流误差信号,以及,根据所述交轴输出电流信号和所述交轴参考电流信号,确定交轴电流误差信号;
    通过第一PI控制器对所述直轴电流误差信号进行调整,以得到直轴输入电压信号,通过第二PI控制器对所述交轴电流误差信号进行调整,以得到交轴输入电压信号;
    根据所述直轴输入电压信号和所述交轴输入电压信号控制所述电机转动。
  2. 根据权利要求1所述的方法,其特征在于,所述获取交轴参考电流信号,包括:
    获取交轴参考电压信号;
    根据所述交轴参考电压信号,确定所述交轴参考电流信号。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述交轴参考电压信号,确定所述交轴参考电流信号,包括:
    确定所述交轴参考电压信号与所述电机上一控制周期输入的交轴电压信号的电压差值;
    通过第三PI控制器对所述电压差值进行调整,以所述第三PI控制器输出的电流信号作为所述交轴参考电流信号。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述交轴参考电压信号,确定所述交轴参考电流信号,包括:
    获取与所述交轴参考电压信号对应的标定电流信号;
    确定所述第三PI控制器输出的电流信号和所述标定电流信号的和作为所述交轴参考电流信号。
  5. 根据权利要求1所述的方法,其特征在于,所述直轴参考电流信号为预设幅值的电流信号。
  6. 根据权利要求2所述的方法,其特征在于,所述预设幅值为0。
  7. 根据权利要求1所述的方法,其特征在于,所述确定当前时刻电机的直轴输出电流信号和交轴输出电流信号,包括:
    采集当前时刻电机的三相电流信号和三相电压信号;
    对所述三相电流信号和所述三相电压信号进行克拉克变换和帕克变换,得到当前时刻所述电机的直轴输出电流信号和交轴输出电流信号。
  8. 根据权利要求7所述的方法,其特征在于,所述对所述三相电流信号和所述三相电压信号进行克拉克变换和帕克变换,得到当前时刻所述电机的直轴输出电流信号和交轴输出电流信号,包括:
    对所述三相电流信号和所述三相电压信号进行克拉克变换,得到当前时刻所述电机的正交输入电流信号和正交输入电压信号;
    基于所述正交输入电流信号和所述正交输入电压信号,确定当前时刻所述电机的旋转角度;
    基于所述旋转角度,对所述正交输入电流信号和所述正交输入电压信号进行帕克变换,得到当前时刻所述电机的直轴输出电流信号和交轴输出电流信号。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述直轴输入电压信号和所述交轴输入电压信号控制所述电机转动,包括:
    基于所述旋转角度,对所述直轴输入电压信号和所述交轴输入电压信号进行帕克逆变换,得到正交输出电压信号;
    基于所述正交输出电压信号控制所述电机转动。
  10. 根据权利要求9所述的方法,其特征在于,所述基于所述正交输出电压信号控制所述电机转动,包括:
    确定所述正交电压信号对应的所述电机下一控制周期输入的三相电流信号和三相电压信号;
    确定所述电机下一控制周期输入的三相电流信号和三相电压信号对应的占 空比信号;
    基于所述占空比信号控制所述电机转动。
  11. 一种电机控制装置,其特征在于,包括:
    确定模块,用于确定当前时刻电机的直轴输出电流信号和交轴输出电流信号;
    获取模块,用于获取直轴参考电流信号和交轴参考电流信号;
    所述确定模块,用于根据所述直轴输出电流信号和所述直轴参考电流信号,确定直轴电流误差信号,以及,根据所述交轴输出电流信号和所述交轴参考电流信号,确定交轴电流误差信号;
    调整模块,用于通过第一PI控制器对所述直轴电流误差信号进行调整,以得到直轴输入电压信号,通过第二PI控制器对所述交轴电流误差信号进行调整,以得到交轴输入电压信号;
    控制模块,用于根据所述直轴输入电压信号和所述交轴输入电压信号控制所述电机转动。
  12. 根据权利要求11所述的装置,其特征在于,所述获取模块,用于:
    获取交轴参考电压信号;
    根据所述交轴参考电压信号,确定所述交轴参考电流信号。
  13. 根据权利要求12所述的装置,其特征在于,所述获取模块,用于:
    确定所述交轴参考电压信号与所述电机上一控制周期输入的交轴电压信号的电压差值;
    通过第三PI控制器对所述电压差值进行调整,以所述第三PI控制器输出的电流信号作为所述交轴参考电流信号。
  14. 根据权利要求12所述的装置,其特征在于,所述获取模块,用于:
    获取与所述交轴参考电压信号对应的标定电流信号;
    确定所述第三PI控制器输出的电流信号和所述标定电流信号的和作为所述交轴参考电流信号。
  15. 根据权利要求11所述的装置,其特征在于,所述直轴参考电流信号为 预设幅值的电流信号。
  16. 根据权利要求12所述的装置,其特征在于,所述预设幅值为0。
  17. 根据权利要求11所述的装置,其特征在于,所述确定模块,用于:
    采集当前时刻电机的三相电流信号和三相电压信号;
    对所述三相电流信号和所述三相电压信号进行克拉克变换和帕克变换,得到当前时刻所述电机的直轴输出电流信号和交轴输出电流信号。
  18. 根据权利要求17所述的装置,其特征在于,所述确定模块,用于:
    对所述三相电流信号和所述三相电压信号进行克拉克变换,得到当前时刻所述电机的正交输入电流信号和正交输入电压信号;
    基于所述正交输入电流信号和所述正交输入电压信号,确定当前时刻所述电机的旋转角度;
    基于所述旋转角度,对所述正交输入电流信号和所述正交输入电压信号进行帕克变换,得到当前时刻所述电机的直轴输出电流信号和交轴输出电流信号。
  19. 根据权利要求18所述的装置,其特征在于,所述确定模块,用于:
    基于所述旋转角度,对所述直轴输入电压信号和所述交轴输入电压信号进行帕克逆变换,得到正交输出电压信号;
    基于所述正交输出电压信号控制所述电机转动。
  20. 根据权利要求19所述的装置,其特征在于,所述确定模块,用于:
    确定所述正交电压信号对应的所述电机下一控制周期输入的三相电流信号和三相电压信号;
    确定所述电机下一控制周期输入的三相电流信号和三相电压信号对应的占空比信号;
    基于所述占空比信号控制所述电机转动。
  21. 一种可移动平台,其特征在于,包括:权利要求11-20中任一项所述的电机控制装置和所述电机。
  22. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现 权利要求1-10中任意一项所述的电机控制方法。
PCT/CN2020/083337 2020-04-03 2020-04-03 电机控制方法、装置、可移动平台和存储介质 WO2021196218A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/083337 WO2021196218A1 (zh) 2020-04-03 2020-04-03 电机控制方法、装置、可移动平台和存储介质
CN202080004285.XA CN112640292A (zh) 2020-04-03 2020-04-03 电机控制方法、装置、可移动平台和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083337 WO2021196218A1 (zh) 2020-04-03 2020-04-03 电机控制方法、装置、可移动平台和存储介质

Publications (1)

Publication Number Publication Date
WO2021196218A1 true WO2021196218A1 (zh) 2021-10-07

Family

ID=75291515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083337 WO2021196218A1 (zh) 2020-04-03 2020-04-03 电机控制方法、装置、可移动平台和存储介质

Country Status (2)

Country Link
CN (1) CN112640292A (zh)
WO (1) WO2021196218A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113253A (zh) * 2014-07-01 2014-10-22 广东美芝制冷设备有限公司 速度波动的抑制方法、控制装置和压缩机控制系统
CN107070342A (zh) * 2017-02-20 2017-08-18 哈尔滨理工大学 一种带负载状态观测器的永磁同步电机控制系统
WO2019214777A1 (de) * 2018-05-08 2019-11-14 Mdynamix Ag Verfahren zur erzeugung und/oder kompensation von schwingungen mittels eines elektromotors
JP2019201471A (ja) * 2018-05-15 2019-11-21 株式会社富士通ゼネラル モータ制御装置
CN110649844A (zh) * 2019-09-16 2020-01-03 北京理工大学 一种基于αβ电流控制器的无刷直流电机矢量控制系统及方法
CN110868122A (zh) * 2019-11-26 2020-03-06 奇瑞汽车股份有限公司 电机的控制方法、装置及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103281036B (zh) * 2013-05-16 2015-09-30 浙江吉利汽车研究院有限公司杭州分公司 一种五相交流电机的控制方法及其控制装置
CN104348393A (zh) * 2013-07-23 2015-02-11 广东美的制冷设备有限公司 空调器、变频调速系统及其控制方法
CN104901598B (zh) * 2015-06-24 2017-07-28 广东威灵电机制造有限公司 电机驱动装置、方法及电机
CN107659230B (zh) * 2016-07-26 2021-01-15 广州极飞科技有限公司 电机矢量控制方法、装置和飞行器
CN106921304A (zh) * 2017-02-21 2017-07-04 广州致远电子股份有限公司 单相逆变控制方法及系统
CN109150020A (zh) * 2018-08-02 2019-01-04 顺丰科技有限公司 无人机电机电流闭环拖动方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113253A (zh) * 2014-07-01 2014-10-22 广东美芝制冷设备有限公司 速度波动的抑制方法、控制装置和压缩机控制系统
CN107070342A (zh) * 2017-02-20 2017-08-18 哈尔滨理工大学 一种带负载状态观测器的永磁同步电机控制系统
WO2019214777A1 (de) * 2018-05-08 2019-11-14 Mdynamix Ag Verfahren zur erzeugung und/oder kompensation von schwingungen mittels eines elektromotors
JP2019201471A (ja) * 2018-05-15 2019-11-21 株式会社富士通ゼネラル モータ制御装置
CN110649844A (zh) * 2019-09-16 2020-01-03 北京理工大学 一种基于αβ电流控制器的无刷直流电机矢量控制系统及方法
CN110868122A (zh) * 2019-11-26 2020-03-06 奇瑞汽车股份有限公司 电机的控制方法、装置及存储介质

Also Published As

Publication number Publication date
CN112640292A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
KR102169131B1 (ko) 모터 벡터 제어 방법, 장치와 항공기
JP2006054995A (ja) 交流電動機の駆動制御装置および駆動制御方法
US8536811B2 (en) Engagement of a spinning AC induction motor
US9143074B2 (en) Controlling method of synchronous motor
CN106602950B (zh) 基于复矢量的电流环解耦控制方法及系统
CN109150055A (zh) 永磁同步电机的i/f控制中电磁转矩计算及反馈控制方法
WO2019169850A1 (zh) 电机控制方法、其装置及无人机控制系统
WO2021196218A1 (zh) 电机控制方法、装置、可移动平台和存储介质
Diab Implementation of a novel full-order observer for speed sensorless vector control of induction motor drives
CN113489405A (zh) 一种电机控制方法、装置以及存储介质
CN112234870A (zh) 一种控制交流异步电机飞车启动方法及控制系统
JP7194320B2 (ja) モータ制御装置
CN113489407B (zh) 一种电机的控制方法、装置、电机、存储介质及处理器
JP3707251B2 (ja) 同期電動機の制御装置
CN108258962B (zh) 一种永磁电机电感参数辨识方法及系统
CN103516282B (zh) 异步电机开环矢量控制方法和装置
CN109842337B (zh) 一种磁链差异量处理方法及电机控制装置
Terorde et al. Speed, flux and torque estimation of induction motor drives with adaptive system model
WO2012010087A1 (zh) 一种用于高压变频器的电流控制方法
CN112740534A (zh) 多电机变换器
US20190158006A1 (en) Motor control device and method of controlling motor
CN113719972B (zh) 控制参数整定方法、装置、设备和计算机可读存储介质
CN117767835B (zh) 无感电机启动控制方法、装置、系统及存储介质
CN111224602B (zh) 基于功率平衡的永磁同步电机的控制方法和控制装置
CN110535394B (zh) 一种mtpa环节增益抑制方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928883

Country of ref document: EP

Kind code of ref document: A1