WO2018076149A1 - 多旋翼飞行器及其控制方法、控制装置及飞行控制系统 - Google Patents

多旋翼飞行器及其控制方法、控制装置及飞行控制系统 Download PDF

Info

Publication number
WO2018076149A1
WO2018076149A1 PCT/CN2016/103137 CN2016103137W WO2018076149A1 WO 2018076149 A1 WO2018076149 A1 WO 2018076149A1 CN 2016103137 W CN2016103137 W CN 2016103137W WO 2018076149 A1 WO2018076149 A1 WO 2018076149A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor assembly
motor
aircraft
power
Prior art date
Application number
PCT/CN2016/103137
Other languages
English (en)
French (fr)
Inventor
蓝求
周长兴
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201680002336.9A priority Critical patent/CN107077142B/zh
Priority to PCT/CN2016/103137 priority patent/WO2018076149A1/zh
Publication of WO2018076149A1 publication Critical patent/WO2018076149A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw

Definitions

  • the present application relates to the field of multi-rotor aircraft control, and more particularly to a multi-rotor aircraft and its control method, control device and flight control system.
  • Multi-rotor aircraft are widely used in various fields.
  • Multi-rotor aircraft can be equipped with professional aerial photography and high-definition camera equipment, which can be widely carried out such as ecological environmental protection, mineral resources exploration, land use survey, water resources development, agriculture.
  • high-definition camera equipment can be widely carried out such as ecological environmental protection, mineral resources exploration, land use survey, water resources development, agriculture.
  • Each of the rotors of the existing multi-rotor aircraft is powered by a motor drive.
  • the motor of the multi-rotor aircraft fails or the rotor is shot or broken, the aircraft loses power and will cause the side-turning machine.
  • the present application proposes a flight control method for a multi-rotor aircraft, the multi-rotor aircraft including a plurality of rotor assemblies, each of which includes a motor and a rotor that is driven to rotate by the motor.
  • the method includes the steps of: determining whether there is a lack of power in the rotor assembly; and if there is a lack of power, changing the at least one rotor assembly other than the rotor assembly that is missing power according to a roll direction of the multi-rotor aircraft The direction of rotation of the motor.
  • the at least one rotor assembly is the rotor assembly that is opposite to the motion component of the power-deficient rotor assembly in the vertical direction during the roll of the multi-rotor aircraft.
  • the number of the plurality of rotor assemblies is four, wherein the at least one rotor assembly is the rotor assembly disposed diagonally to the power-deficient rotor assembly.
  • the step of determining whether the rotor assembly has power loss includes: according to the plurality of At least one of a roll angle of the rotorcraft and an operating state of the electric machine determines whether there is a lack of power in the rotor assembly.
  • the step of determining whether the rotor assembly has power loss according to at least one of a roll angle of the multi-rotor aircraft and an operating state of the electric machine includes: determining that the multi-rotor aircraft is oriented toward a certain one Whether the roll angle of the rotor assembly is greater than or equal to a preset tilt threshold; if greater than or equal to the preset tilt threshold, there is a lack of power of the certain rotor assembly.
  • the step of determining whether the rotor assembly has power loss according to at least one of a roll angle of the multi-rotor aircraft and an operating state of the electric machine includes: determining the motor of a certain one of the rotor assemblies Whether there is a fault or a no-load state; if there is a fault or is in an unloaded state, there is a lack of power in the certain rotor assembly.
  • the determining whether the motor of the rotor assembly is faulty or in an idle state comprises: determining whether a current value of the motor of a certain one of the rotor assemblies at a predetermined speed is less than or equal to a pre- The current threshold or the ratio of the speed to the current is less than or equal to a preset proportional threshold; if the current value is less than or equal to a preset current threshold or the ratio is less than or equal to a preset proportional threshold, the motor In an empty state.
  • the step of changing the direction of rotation of the motor of the at least one rotor assembly other than the rotor assembly lacking power according to the roll direction of the multi-rotor aircraft comprises: if the multi-rotor aircraft is missing toward the power Rotating one side of the rotor assembly to control the motor of the at least one rotor assembly to perform a reverse rotation to provide a pull-down force, or to control the motor of the at least one rotor assembly to stop rotating; if the multi-rotor aircraft faces the at least one The rotor assembly is tilted on one side to control the motor of the at least one rotor assembly to rotate in a forward direction to provide a lifting force.
  • the motor of the at least one rotor assembly rotates in a forward direction for at least part of a period of time greater than a maximum speed of the motor of the at least one rotor assembly when the motor is reversely rotated.
  • the present application proposes a flight control device for a multi-rotor aircraft, the multi-rotor aircraft including a plurality of rotor assemblies, each of which includes a motor and a rotor that is driven to rotate by the motor.
  • the flight control device includes: a determination module, configured to determine Whether there is a lack of power in the rotor assembly;
  • the motor control module if there is a lack of power, the motor control module changes a direction of rotation of the motor of the at least one rotor assembly other than the rotor assembly that is missing power according to a roll direction of the multi-rotor aircraft.
  • the at least one rotor assembly is the rotor assembly that is opposite to the motion component of the power-deficient rotor assembly in the vertical direction during the roll of the multi-rotor aircraft.
  • the number of the plurality of rotor assemblies is four, wherein the at least one rotor assembly is the rotor assembly disposed diagonally to the power-deficient rotor assembly.
  • the judging module judges whether the rotor assembly has power loss according to at least one of a roll angle of the multi-rotor aircraft and an operating state of the electric machine.
  • the determining module includes a tilting state determining sub-module, configured to determine whether a tilt angle of the multi-rotor aircraft toward a certain one of the rotor assemblies is greater than or equal to a preset tilting threshold, if greater than or equal to the preset
  • the inclination threshold is such that there is a lack of power in the certain rotor assembly.
  • the judging module includes a motor state judging sub-module, configured to determine whether the motor of a certain rotor component is faulty or in an idle state; if there is a fault or is in an idle state, the certain rotor There is a lack of power in the components.
  • the motor state determining sub-module is configured to determine whether a current value of the motor of a certain rotor component at a predetermined rotational speed is less than or equal to a preset current threshold or a ratio of the rotational speed to the current is less than or equal to a preset.
  • the proportional threshold if the current value is less than or equal to a preset current threshold or the ratio is less than or equal to a preset proportional threshold, the motor is in an idle state.
  • the motor control module controls the motor of the at least one rotor assembly to perform reverse rotation to provide a pull-down force, or control the at least one The motor of the rotor assembly stops rotating. If the multi-rotor aircraft is tilted toward one side of the at least one rotor assembly, the motor control module controls the motor of the at least one rotor assembly to rotate in a forward direction to provide a lifting force.
  • the motor control module controls the motor of the at least one rotor assembly to rotate in a forward direction
  • the rotational speed of at least a portion of the time period is greater than the maximum rotational speed of the motor of the at least one rotor assembly when it is reversely rotated.
  • the present application proposes a flight control device for a multi-rotor aircraft, the multi-rotor aircraft including a plurality of rotor assemblies, each of which includes a motor and a rotor that is driven to rotate by the motor.
  • the flight control device includes a processor and a memory in communication with the processor, the processor executing a program stored in the memory to perform the steps of: determining whether the rotor assembly has power loss; if there is power loss, Changing a direction of rotation of the motor of the at least one rotor assembly other than the rotor assembly lacking power according to a roll direction of the multi-rotor aircraft.
  • the at least one rotor assembly is the rotor assembly that is opposite to the motion component of the power-deficient rotor assembly in the vertical direction during the roll of the multi-rotor aircraft.
  • the number of the plurality of rotor assemblies is four, wherein the at least one rotor assembly is the rotor assembly disposed diagonally to the power-deficient rotor assembly.
  • the step of determining whether the rotor assembly has power loss includes determining whether the rotor assembly has power loss according to at least one of a roll angle of the multi-rotor aircraft and an operating state of the motor.
  • the step of determining whether the rotor assembly has power loss according to at least one of a roll angle of the multi-rotor aircraft and an operating state of the electric machine includes: determining that the multi-rotor aircraft is oriented toward a certain one Whether the roll angle of the rotor assembly is greater than or equal to a preset tilt threshold; if greater than or equal to the preset tilt threshold, there is a lack of power of the certain rotor assembly.
  • the step of determining whether the rotor assembly has power loss according to at least one of a roll angle of the multi-rotor aircraft and an operating state of the electric machine includes: determining the motor of a certain one of the rotor assemblies Whether there is a fault or a no-load state; if there is a fault or is in an unloaded state, there is a lack of power in the certain rotor assembly.
  • the determining whether the motor of the rotor assembly is faulty or in an idle state comprises: determining whether a current value of the motor of a certain one of the rotor assemblies at a predetermined speed is less than or equal to a pre- The current threshold or the ratio of the speed to the current is less than or equal to a preset proportional threshold; if the current value is less than or equal to a preset current threshold or the ratio is less than or equal to a preset The proportional threshold, then the motor is in an idle state.
  • the step of changing the direction of rotation of the motor of the at least one rotor assembly other than the rotor assembly lacking power according to the roll direction of the multi-rotor aircraft comprises: if the multi-rotor aircraft is missing toward the power Rotating one side of the rotor assembly to control the motor of the at least one rotor assembly to perform a reverse rotation to provide a pull-down force, or to control the motor of the at least one rotor assembly to stop rotating; if the multi-rotor aircraft faces the at least one The rotor assembly is tilted on one side to control the motor of the at least one rotor assembly to rotate in a forward direction to provide a lifting force.
  • the motor of the at least one rotor assembly rotates in a forward direction for at least part of a period of time greater than a maximum speed of the motor of the at least one rotor assembly when the motor is reversely rotated.
  • the present application proposes a flight control system for a multi-rotor aircraft, the multi-rotor aircraft including a plurality of rotor assemblies, each of which includes a motor and a rotor that is driven to rotate by the motor.
  • the flight control system includes at least one sensor for detecting an operating state of the rotor assembly, and the flight control device for determining whether the rotor assembly is based on an operating state of the rotor assembly There is a lack of power and the direction of rotation of the motor of at least one of the rotor assemblies other than the rotor assembly that is missing power is changed according to the roll direction of the multi-rotor aircraft in the presence of power loss.
  • the at least one rotor assembly is the rotor assembly that is opposite to the motion component of the power-deficient rotor assembly in the vertical direction during the roll of the multi-rotor aircraft.
  • the number of the plurality of rotor assemblies is four, wherein the at least one rotor assembly is the rotor assembly disposed diagonally to the power-deficient rotor assembly.
  • the senor is configured to detect at least one of a roll angle of the multi-rotor aircraft and an operating state of the motor, the flight control device according to a roll angle of the multi-rotor aircraft and the motor At least one of the operational states determines if there is a lack of power in the rotor assembly.
  • the flight control device determines, according to a roll angle of the multi-rotor aircraft, whether a roll angle of the multi-rotor aircraft toward a certain one of the rotor assemblies is greater than or equal to a preset tilt threshold; if greater than or equal to the With a preset tilt threshold, there is a lack of power in one of the rotor assemblies.
  • the flight control device determines whether the motor of the rotor assembly is faulty or in an idle state according to an operating state of the motor, and if there is a fault or is in an idle state, the certain rotor assembly There is a lack of motivation.
  • the flight control device determines whether the current value of the motor of the rotor assembly at a predetermined rotational speed is less than or equal to a preset current threshold or whether the ratio of the rotational speed to the current is less than or equal to a preset proportional threshold. If the current value is less than or equal to a preset current threshold or the ratio is less than or equal to a preset proportional threshold, the motor is in an idle state.
  • the flight control device controls a motor of the at least one rotor assembly to perform a reverse rotation to provide a pull-down force, or to control the at least one
  • the motor of the rotor assembly stops rotating, and when the multi-rotor aircraft is tilted toward one side of the at least one rotor assembly, the flight control device controls the motor of the at least one rotor assembly to rotate in a forward direction to provide a lifting force.
  • the motor of the at least one rotor assembly rotates in a forward direction for at least part of a period of time greater than a maximum speed of the motor of the at least one rotor assembly when the motor is reversely rotated.
  • the present application proposes a multi-rotor aircraft comprising a plurality of rotor assemblies and a flight control system, each of the rotor assemblies including a motor and a rotor that is driven to rotate by the motor,
  • the flight control system includes at least one sensor for detecting an operating state of the rotor assembly, and the flight control device for determining whether the rotor assembly is based on an operating state of the rotor assembly There is a lack of power, and when there is a lack of power, the direction of rotation of the motor of at least one of the rotor assemblies other than the rotor assembly that is missing power is changed according to the roll direction of the multi-rotor aircraft.
  • the at least one rotor assembly is the rotor assembly that is opposite to the motion component of the power-deficient rotor assembly in the vertical direction during the roll of the multi-rotor aircraft.
  • the number of the plurality of rotor assemblies is four, wherein the at least one rotor assembly is the rotor assembly disposed diagonally to the power-deficient rotor assembly.
  • the sensor is configured to detect a roll angle of the multi-rotor aircraft and a work of the motor
  • the flight control device determines whether the rotor assembly has a power loss based on at least one of a roll angle of the multi-rotor aircraft and an operating state of the electric machine.
  • the flight control device determines, according to a roll angle of the multi-rotor aircraft, whether a roll angle of the multi-rotor aircraft toward a certain one of the rotor assemblies is greater than or equal to a preset tilt threshold; if greater than or equal to the With a preset tilt threshold, there is a lack of power in one of the rotor assemblies.
  • the flight control device determines whether the motor of the rotor assembly is faulty or in an idle state according to an operating state of the motor, and if there is a fault or is in an idle state, the certain rotor assembly There is a lack of motivation.
  • the flight control device determines whether the current value of the motor of the rotor assembly at a predetermined rotational speed is less than or equal to a preset current threshold or whether the ratio of the rotational speed to the current is less than or equal to a preset proportional threshold. If the current value is less than or equal to a preset current threshold or the ratio is less than or equal to a preset proportional threshold, the motor is in an idle state.
  • the flight control device controls a motor of the at least one rotor assembly to perform a reverse rotation to provide a pull-down force, or to control the at least one
  • the motor of the rotor assembly stops rotating, and when the multi-rotor aircraft is tilted toward one side of the at least one rotor assembly, the flight control device controls the motor of the at least one rotor assembly to rotate in a forward direction to provide a lifting force.
  • the motor of the at least one rotor assembly rotates in a forward direction for at least part of a period of time greater than a maximum speed of the motor of the at least one rotor assembly when the motor is reversely rotated.
  • the utility model has the beneficial effects of preventing the further tilting of the multi-rotor aircraft and reducing the loss to a minimum by changing the direction of rotation of the motor of the at least one rotor assembly corresponding to the power missing rotor assembly in the absence of power loss of the multi-rotor aircraft. At the same time, the safety performance of the multi-rotor aircraft has been improved.
  • FIG. 1 is a schematic structural view of a multi-rotor aircraft of the present application
  • FIG. 2 is a schematic view showing the tilting of the multi-rotor aircraft shown in FIG. 1 in the presence of power loss in a certain rotor assembly;
  • FIG. 3 is a flow chart of an embodiment of a flight control method for a multi-rotor aircraft of the present application
  • FIG. 4 is a schematic diagram of a specific manner of changing the rotation direction of the motor of the rotor assembly according to the tilt direction of the multi-rotor aircraft;
  • FIG. 5 is a schematic diagram of another specific manner of changing the rotation direction of the motor of the rotor assembly according to the tilt direction of the multi-rotor aircraft;
  • FIG. 6 is a schematic diagram of determining a tilt direction of a multi-rotor aircraft according to a spin angle of a multi-rotor aircraft
  • FIG. 7 is a schematic structural view of a first embodiment of a flight control device for a multi-rotor aircraft of the present application.
  • FIG. 8 is a schematic structural view of a second embodiment of a flight control device for a multi-rotor aircraft of the present application.
  • FIG. 9 is a schematic structural view of an embodiment of a flight control system of a multi-rotor aircraft of the present application.
  • FIG. 1 is a schematic structural view of a multi-rotor aircraft of the present application.
  • a four-rotor aircraft is taken as an example for detailed description.
  • the multi-rotor aircraft may also be a six-rotor aircraft or an eight-rotor aircraft.
  • the multi-rotor aircraft 10 includes four rotor assemblies 11-14 that include a motor 111 and a rotor 112 that is rotated by a motor 111.
  • the rotor assembly 12 includes a motor 121 and a rotor 122 that is driven to rotate by the motor 121.
  • the rotor assembly 13 includes a motor 131 and a rotor 132 that is driven to rotate by the motor 131.
  • the rotor assembly 14 includes a motor 141 and a rotor 142 that is driven to rotate by the motor 141.
  • the rotor 112 is driven by the forward rotation of the motors 111, 121, 131, and 141,
  • the 122, 132 and 142 are rotated about their respective axes to generate a lifting force, thereby enabling the multi-rotor aircraft 10 to be suspended in the air.
  • the forward rotation directions of a part of the motors 111, 121, 131, and 141 are further set to be opposite to the forward rotation directions of the other motors, so that the rotor 112
  • the spin torques generated by the rotation of 122, 132, and 142 can cancel each other out. For example, in Fig.
  • the forward rotation directions of the diagonally disposed motors 111, 131 are clockwise, and the forward rotation directions of the diagonally disposed motors 121, 141 are reversed.
  • the lift and torque generated by controlling the four rotor assemblies 11-14 are provided to adjust the flying height and attitude of the multi-rotor aircraft 10, thereby achieving pitch, roll and heading in three-dimensional space. The movement of the yaw.
  • FIG. 2 is a schematic diagram showing the tilting of the multi-rotor aircraft shown in FIG. 1 in the case where there is power loss in a certain rotor assembly.
  • the rotor assembly 11 when there is power loss in the rotor assembly 11, for example, when the rotor 112 is broken or the propeller or the motor 111 fails, the rotor assembly 11 cannot provide sufficient lifting force, and the other rotor assemblies 12-14 are still normal.
  • the rotor assembly 11 is caused to produce a downward movement tendency as indicated by the arrow D1 in the vertical direction, and the rotor assembly 13 provided corresponding to the rotor assembly 11 produces an upward direction as indicated by the arrow D2 in the vertical direction.
  • FIG. 3 is a flow chart of a first embodiment of a flight control method for a multi-rotor aircraft of the present application.
  • the flight control method of the present embodiment mainly includes the following steps:
  • the power loss of the rotor assembly includes various situations, for example, when the multi-rotor aircraft is flying in the air, the blades in the rotor assembly are broken or the blades are off the motor due to the structure or collision of the rotor assembly (ie, shooting Paddle), resulting in a lack of power in its current rotor assembly, or lack of power in the current rotor assembly due to motor failure.
  • the module can be used with the appropriate sensor to determine if there is a lack of power in the rotor assembly.
  • whether the rotor assembly has power loss can be determined according to at least one of a roll angle of the multi-rotor aircraft and an operating state of the motor.
  • a certain rotor assembly has power loss by determining whether the roll angle of the multi-rotor aircraft toward a certain rotor assembly is greater than or equal to a preset tilt angle threshold.
  • a preset tilt angle threshold As described above in Figure 1, when there is a lack of power in one of the rotor assemblies, the multi-rotor aircraft will roll sideways toward the direction of the rotor assembly.
  • the roll angle of the multi-rotor aircraft 10 toward a certain rotor assembly can be detected by an inertial sensor, a gravity sensor, or the like, and the tilt angle is compared with a preset tilt angle, and it is further determined whether the tilt angle is Greater than or equal to the preset tilt threshold. If it is greater than or equal to the preset inclination threshold, the rotor assembly has a lack of power.
  • the method for determining that the motor of the rotor assembly is in an idle state is specifically: determining whether the current value of the motor of a certain rotor assembly at a predetermined speed is less than or equal to a preset current threshold or whether the ratio of the speed to the current is less than or equal to The preset proportional threshold. If it is determined that the current value is less than or equal to the preset current threshold or the ratio of the motor speed to the current is less than or equal to the preset proportional threshold, it may be determined that the motor is in an idle state; or, the electronic speed regulation for controlling the motor speed
  • the device (electrical adjustment) directly provides an empty tip; or an inertial sensor combined with an idle command provided by the ESC.
  • the method for judging the fault of the motor of the rotor assembly is determined by the existing method of the speed, current and voltage of the motor, and will not be described herein.
  • the multi-rotor aircraft 10 when there is power loss in the rotor assembly 11, the multi-rotor aircraft 10 is tilted toward the side of the rotor assembly 11 without changing the direction of rotation of the rotor assembly 12-14.
  • the motor 131 of the correspondingly disposed rotor assembly 13 is controlled to be reversed. A pull-down force is provided to the rotation or the motor 131 is controlled to stop rotating.
  • the multi-rotor aircraft 10 is caused to spin in the direction indicated by the arrow D3.
  • the rotor assembly 13 is rotated to the side of the rotor assembly 11 shown in Fig. 1, the original multi-rotor aircraft 10 is tilted toward the side of the rotor assembly 11 to become inclined toward the side of the rotor assembly 13.
  • the motor 131 that controls the rotor assembly 13 performs forward rotation to provide a rising force.
  • the rotor assembly 13 When the motor 131 is rotated in the forward direction, since the rotor assembly 13 provides the lifting force, the rotor assembly 13 can be caused to generate an upward movement tendency as indicated by the arrow D7 in the vertical direction, and the rotor corresponding to the rotor assembly 13 can be provided.
  • the assembly 11 produces a downward motion tendency as indicated by arrow D8 in the vertical direction, thereby causing the rotor assembly 11 and the rotor assembly 13 to revolve around the line between the rotor assembly 12 and the rotor assembly 14 to the equilibrium position shown by the dashed line.
  • the purpose of balancing the pitch angle and the roll angle is achieved.
  • the multi-rotor aircraft 10 accelerates the spin in the direction indicated by the arrow D3.
  • the motor of the rotor assembly 13 is further At least part of the time period when the 131 is rotated in the forward direction is greater than the rotor assembly The maximum rotational speed of the motor 131 of 13 when it is reversely rotated.
  • greater torque can be provided in the forward rotation of the motor 131 of the rotor assembly 13 as opposed to the rotor assemblies 12, 14, thereby slowing the spin of the multi-rotor aircraft 10.
  • the roll direction of the multi-rotor aircraft 10 can be directly detected by means of an inertial sensor, a gravity sensor or the like, or can be estimated by the spin angle of the multi-rotor aircraft 10.
  • the multi-rotor aircraft 10 spins to a first angular range with respect to the reference point (for example, The hourly and counterclockwise ranges of 90 degrees to 180 degrees or other angular ranges) the default multi-rotor aircraft 10 is tilted toward the rotor assembly 11, thereby controlling the motor 131 of the rotor assembly 13 to reverse or stop rotating, while in the multi-rotor aircraft 10 spinning into a second angular range relative to the reference point (e.g., within the remaining 180 degrees or other angular range) the default multi-rotor aircraft 10 is tilted toward the rotor assembly 13, thereby controlling the motor 131 of
  • the flight control method of the present embodiment is described in detail by taking a quadrotor as an example, but the above flight control method is also applicable to a rotor of a six-rotor aircraft or an eight-rotor aircraft as other numbers of aircraft.
  • at least one rotor assembly can be selected from other rotor assemblies other than the power-deficient rotor assembly according to the specific arrangement of the rotor and the rotation direction, and the multi-rotor aircraft can be prevented by the rotation direction of the motor according to the roll direction of the multi-rotor aircraft. Further roll.
  • the selected at least one rotor assembly is a rotor assembly that is opposite to the motion component of the power-deficient rotor assembly in the vertical direction during the roll of the multi-rotor aircraft.
  • the rotation direction of the motor corresponding to the power missing rotor assembly is controlled to prevent further roll of the multi-rotor aircraft, and the loss is minimized, and the safety performance of the multi-rotor aircraft is improved.
  • FIG. 7 is a schematic structural diagram of a first embodiment of a flight control device for a multi-rotor aircraft according to the present application.
  • the multi-rotor aircraft includes a plurality of rotor assemblies, each of which includes a motor and a rotor that is driven to rotate by the motor.
  • the flight control device 20 includes:
  • the judging module 22 is configured to determine whether there is power loss in the rotor assembly.
  • the motor control module 24 if there is power loss, the motor control module 24 changes the rotation direction of the motor of at least one rotor component other than the power-deficient rotor assembly according to the roll direction of the multi-rotor aircraft, thereby preventing further roll of the multi-rotor aircraft .
  • the execution body of the judging module 22 may be a flight controller (flying control) or other processing module in the multi-rotor aircraft that cooperates with an appropriate sensor, specifically for determining whether the rotor assembly has power loss.
  • the lack of power of the rotor assembly refers specifically: when the multi-rotor aircraft flies in the air due to the structure or collision of the rotor assembly, the blades in the rotor assembly are disengaged from the motor, resulting in the lack of power of the current rotor assembly, or the motor failure. Its current rotor assembly is lacking in power.
  • the determining module 22 can be configured to determine whether the rotor assembly has power loss according to at least one of a roll angle of the multi-rotor aircraft and an operating state of the motor.
  • the determining module 22 further includes a tilt state determining sub-module 222 for determining whether a roll angle of the multi-rotor aircraft toward a certain rotor assembly is greater than or equal to a preset tilt threshold to determine whether a certain rotor component is There is a lack of motivation. As described above in Figure 1, when there is a lack of power in one of the rotor assemblies, the multi-rotor aircraft will roll sideways toward the direction of the rotor assembly.
  • the roll angle of the multi-rotor aircraft toward a certain rotor assembly may be detected by an inertial sensor, a gravity sensor, or the like, and the tilt angle is compared with a preset tilt angle, and it is further determined whether the tilt angle is greater than Or equal to the preset tilt threshold. If it is greater than or equal to the preset inclination threshold, the rotor assembly has a lack of power.
  • the judging module 22 further includes a motor state judging sub-module 224 for determining whether the motor of a certain rotor assembly is faulty or in an unloaded state to determine whether a certain rotor component has power loss. If it is judged that the motor of the rotor assembly is faulty or in an unloaded state, there is a lack of power of the rotor assembly.
  • the motor state determining sub-module 224 is specifically configured to determine whether the current value of the motor of a certain rotor component at a predetermined speed is less than or equal to a preset current threshold or whether the ratio of the speed to the current is less than or equal to a preset proportional threshold. . If it is determined that the current value is less than or equal to the preset current threshold or the ratio of the motor speed to the current is less than or equal to a preset proportional threshold, it may be determined that the motor is at No load condition.
  • the method for judging the fault of the motor of the rotor assembly is determined by the existing method of the speed, current and voltage of the motor, and will not be described herein.
  • the motor control module 24 changes the rotation direction of the motor of the at least one rotor component other than the power-deficient rotor assembly according to the roll direction of the multi-rotor aircraft, thereby preventing the multi-rotor aircraft Further roll.
  • the number of the plurality of rotor assemblies of the multi-rotor aircraft is four.
  • the multi-rotor aircraft may also be a six-rotor aircraft or an eight-rotor aircraft or the like.
  • the determining module 22 determines that there is a lack of power in one of the rotor assemblies, the at least one rotor assembly is a mutual component of the motion component of the rotor assembly in the vertical direction during the roll of the multi-rotor aircraft.
  • a reverse rotor assembly, and the rotor assembly is a rotor assembly disposed corresponding to the power-deficient rotor assembly.
  • the motor control module 24 controls the motor of the at least one rotor assembly to perform a reverse rotation to provide a pull-down force, or control the at least one rotor The motor of the assembly stops rotating. If the multi-rotor aircraft is tilted toward at least one side of the rotor assembly, the motor control module 24 controls the motor of at least one of the rotor assemblies to rotate positively to provide a lifting force.
  • the rotational speed of at least part of the time period is greater than the maximum rotational speed when the reverse rotation is performed.
  • the judging module 22 judges that there is power loss in the multi-rotor aircraft rotor assembly, and controls the motor corresponding to the power missing rotor assembly to change the rotation direction through the motor control module 24 to prevent further tilting of the multi-rotor aircraft and minimize the loss. At the same time, the safety performance of the multi-rotor aircraft has been improved.
  • FIG. 8 is a structural diagram showing a second embodiment of a flight control device for a multi-rotor aircraft of the present application. intention.
  • the multi-rotor aircraft includes a plurality of rotor assemblies, each rotor assembly including a motor and a rotor that is driven to rotate by a motor.
  • the flight control device includes a processor 32 and a memory 34 in communication with the processor 32.
  • the processor 32 is stored by operating the memory 34.
  • the program performs the following steps:
  • the direction of rotation of the motor of at least one of the rotor assemblies other than the power-deflending rotor assembly is changed according to the roll direction of the multi-rotor, thereby preventing further roll of the multi-rotor aircraft.
  • the manner of determining whether the rotor component has power loss specifically comprises: determining whether the rotor component has power loss according to at least one of a roll angle of the multi-rotor aircraft and an operating state of the motor.
  • the manner of changing the direction of rotation of the motor of the at least one rotor assembly other than the power-deficient rotor assembly according to the roll direction of the multi-rotor includes: controlling the at least one rotor assembly if the multi-rotor is tilted toward the side of the power-deficient rotor assembly The motor rotates in the opposite direction to provide a pull-down force, or controls the motor of at least one of the rotor assemblies to stop rotating, thereby balancing the tilting tendency of the aircraft.
  • the motor controlling at least one of the rotor assemblies is positively rotated to provide a lifting force to balance the tilting tendency of the aircraft.
  • the at least one rotor assembly is a rotor assembly disposed diagonally with the power-deficient rotor assembly.
  • the rotor of a multi-rotor aircraft It can also be six or eight.
  • the at least one rotor assembly is a rotor assembly that is opposite to the motion component of the power-deficient rotor assembly in the vertical direction during the roll of the multi-rotor aircraft.
  • FIG. 9 is a schematic structural diagram of an embodiment of a flight control system for a multi-rotor aircraft of the present application.
  • the multi-rotor aircraft includes a plurality of rotor assemblies, each rotor assembly including a motor and a rotor that is driven to rotate by a motor.
  • the flight control system includes at least one sensor 42 and a flight control device 44, wherein the sensor 42 is configured to detect the operational state of the rotor assembly.
  • the flight control device 44 is configured to determine whether the rotor assembly has power loss according to the operating state of the rotor assembly, and change the rotation of the motor of the at least one rotor assembly other than the power missing rotor assembly according to the roll direction of the multi-rotor when there is power loss. The direction, which in turn prevents further roll of the multi-rotor aircraft.
  • the senor 42 may be, for example, but not limited to, an inertial sensor, a gravity sensor, or the like, specifically for detecting at least one of a roll angle of the multi-rotor aircraft and an operating state of the motor.
  • the flight control device 44 determines whether there is a lack of power in the rotor assembly based on at least one of the roll angle of the multi-rotor aircraft and the operating state of the electric machine.
  • the flight control device 44 is configured to determine, according to the roll angle of the multi-rotor aircraft, whether the roll angle of the multi-rotor aircraft toward a certain rotor assembly is greater than or equal to a preset tilt angle threshold; if greater than or equal to the preset tilt angle threshold, Then there is a lack of power in one of the rotor components.
  • the flight control device 44 is further configured to determine whether the motor of a certain rotor assembly is faulty or in an idle state according to the working state of the motor. If there is a fault or is in an idle state, there is a lack of power of a certain rotor component.
  • the flight control device 44 is specifically configured to determine whether the current value of the motor of a certain rotor assembly at a predetermined speed is less than or equal to a preset current threshold or whether the ratio of the speed to the current is less than or equal to a preset proportional threshold. If the current value is less than or equal to the preset current threshold or the ratio is less than or equal to the preset proportional threshold, the motor is in an idle state.
  • the at least one rotor assembly is a spin lacking power during the roll of the multi-rotor aircraft
  • the components of the wing assembly in the vertical direction are mutually opposite rotor assemblies, and the number of the plurality of rotor assemblies is four, wherein the at least one rotor assembly is a rotor assembly disposed diagonally to the power-deficient rotor assembly.
  • the flight control device controls the motor of the at least one rotor assembly to perform a reverse rotation to provide a pull-down force, or to control at least one rotor assembly.
  • the motor stops rotating.
  • the flight control device controls the motor of at least one of the rotor assemblies to rotate positively to provide a lifting force.
  • the rotation speed of the motor of the at least one rotor assembly during at least part of the period of rotation is greater than the maximum rotation speed of the motor of the at least one rotor assembly when the reverse rotation is performed.
  • the present application further provides a multi-rotor aircraft comprising a plurality of rotor assemblies as shown in FIG. 1 and a flight control system as shown in FIG.
  • the rotation of the motor corresponding to the power-deficient rotor assembly is changed to prevent further roll of the multi-rotor aircraft, thereby reducing the loss.
  • the safety of the multi-rotor aircraft is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Multiple Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种多旋翼飞行器(10)的飞行控制方法,多旋翼飞行器(10)包括多个旋翼组件(11-14),每一旋翼组件(11-14)包括电机(111,121,131,141)以及由电机(111,121,131,141)驱动旋转的旋翼(112,122,132,142),控制方法包括:判断旋翼组件(11-14)是否存在动力缺失(S1);若存在动力缺失,则根据多旋翼飞行器(10)的侧倾方向改变动力缺失的旋翼组件(11-14)以外的至少一旋翼组件(11-14)的电机(111,121,131,141)的转动方向(S2)。还公开了一种多旋翼飞行器(10)的飞行控制装置(20,44)、控制系统及多旋翼飞行器(10)。

Description

多旋翼飞行器及其控制方法、控制装置及飞行控制系统 【技术领域】
本申请涉及多旋翼飞行器控制领域,特别是涉及一种多旋翼飞行器及其控制方法、控制装置及飞行控制系统。
【背景技术】
目前,多旋翼飞行器被广泛应用于各个领域,多旋翼飞行器可挂载专业的航拍云台与高清摄像设备,可广泛的开展诸如生态环境保护、矿产资源勘探、土地利用调查、水资源开发、农业作业、自然灾害检测、城市规划与建设高空影像参考以及各种广告高空摄影等领域,有着广阔的市场需求。
现有的多旋翼飞行器的每一个旋翼都有电机驱动提供动力,当多旋翼飞行器的电机出现故障或者旋翼发生射桨或断桨后,飞行器失去动力源,将会导致侧翻炸机。
【发明内容】
为了至少部分解决以上问题,本申请提出了一种多旋翼飞行器的飞行控制方法,所述多旋翼飞行器包括多个旋翼组件,每一所述旋翼组件包括电机以及由所述电机驱动旋转的旋翼,所述方法包括以下步骤:判断所述旋翼组件是否存在动力缺失;若存在动力缺失,则根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向。
其中,所述至少一旋翼组件为在所述多旋翼飞行器的侧倾过程中与所述动力缺失的旋翼组件在竖直方向上的运动分量互为反向的所述旋翼组件。
其中,所述多个旋翼组件的数量为四个,其中所述至少一旋翼组件为与所述动力缺失的旋翼组件对角设置的所述旋翼组件。
其中,所述判断所述旋翼组件是否存在动力缺失的步骤包括:根据所述多 旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失。
其中,所述根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失的步骤包括:判断所述多旋翼飞行器朝向某一所述旋翼组件的侧倾角度是否大于或等于预设的倾角阈值;若大于或等于所述预设的倾角阈值,则所述某一旋翼组件存在动力缺失。
其中,所述根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失的步骤包括:判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态;若存在故障或处于空载状态,则所述某一旋翼组件存在动力缺失。
其中,所述判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态的步骤包括:判断某一所述旋翼组件的所述电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值;若所述电流值小于或等于预设的电流阈值或者所述比例小于或等于预设的比例阈值,则所述电机处于空载状态。
其中,所述根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向的步骤包括:若所述多旋翼飞行器朝向所述动力缺失的旋翼组件一侧倾斜,则控制所述至少一旋翼组件的电机进行反向转动来提供下拉力,或控制所述至少一旋翼组件的电机停止转动;若所述多旋翼飞行器朝向所述至少一旋翼组件一侧倾斜,则控制所述至少一旋翼组件的电机进行正向转动来提供上升力。
其中,所述至少一旋翼组件的电机进行正向转动时至少部分时段的转速大于所述至少一旋翼组件的电机进行反向转动时的最大转速。
为了至少部分解决以上问题,本申请提出了一种多旋翼飞行器的飞行控制装置,所述多旋翼飞行器包括多个旋翼组件,每一所述旋翼组件包括电机以及由所述电机驱动旋转的旋翼,所述飞行控制装置包括:判断模块,用于判断所 述旋翼组件是否存在动力缺失;
电机控制模块,若存在动力缺失,则所述电机控制模块根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向。
其中,所述至少一旋翼组件为在所述多旋翼飞行器的侧倾过程中与所述动力缺失的旋翼组件在竖直方向上的运动分量互为反向的所述旋翼组件。
其中,所述多个旋翼组件的数量为四个,其中所述至少一旋翼组件为与所述动力缺失的旋翼组件对角设置的所述旋翼组件。
其中,所述判断模块根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失。
其中,所述判断模块包括倾角状态判断子模块,用于判断所述多旋翼飞行器朝向某一所述旋翼组件的侧倾角度是否大于或等于预设的倾角阈值,若大于或等于所述预设的倾角阈值,则所述某一旋翼组件存在动力缺失。
其中,所述判断模块包括电机状态判断子模块,用于判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态;若存在故障或处于空载状态,则所述某一旋翼组件存在动力缺失。
其中,所述电机状态判断子模块用于判断某一所述旋翼组件的所述电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值,若所述电流值小于或等于预设的电流阈值或者所述比例小于或等于预设的比例阈值,则所述电机处于空载状态。
其中,若所述多旋翼飞行器朝向所述动力缺失的旋翼组件一侧倾斜,则所述电机控制模块控制所述至少一旋翼组件的电机进行反向转动来提供下拉力,或控制所述至少一旋翼组件的电机停止转动,若所述多旋翼飞行器朝向所述至少一旋翼组件一侧倾斜,则所述电机控制模块控制所述至少一旋翼组件的电机进行正向转动来提供上升力。
其中,所述电机控制模块控制所述至少一旋翼组件的电机进行正向转动时 至少部分时段的转速大于所述至少一旋翼组件的电机进行反向转动时的最大转速。
为了至少部分解决以上问题,本申请提出了一种多旋翼飞行器的飞行控制装置,所述多旋翼飞行器包括多个旋翼组件,每一所述旋翼组件包括电机以及由所述电机驱动旋转的旋翼,所述飞行控制装置包括处理器以及与所述处理器通讯的存储器,所述处理器通过运行所述存储器存储的程序执行以下步骤:判断所述旋翼组件是否存在动力缺失;若存在动力缺失,则根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向。
其中,所述至少一旋翼组件为在所述多旋翼飞行器的侧倾过程中与所述动力缺失的旋翼组件在竖直方向上的运动分量互为反向的所述旋翼组件。
其中,所述多个旋翼组件的数量为四个,其中所述至少一旋翼组件为与所述动力缺失的旋翼组件对角设置的所述旋翼组件。
其中,所述判断所述旋翼组件是否存在动力缺失的步骤包括:根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失。
其中,所述根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失的步骤包括:判断所述多旋翼飞行器朝向某一所述旋翼组件的侧倾角度是否大于或等于预设的倾角阈值;若大于或等于所述预设的倾角阈值,则所述某一旋翼组件存在动力缺失。
其中,所述根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失的步骤包括:判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态;若存在故障或处于空载状态,则所述某一旋翼组件存在动力缺失。
其中,所述判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态的步骤包括:判断某一所述旋翼组件的所述电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值;若所述电流值小于或等于预设的电流阈值或者所述比例小于或等于预设 的比例阈值,则所述电机处于空载状态。
其中,所述根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向的步骤包括:若所述多旋翼飞行器朝向所述动力缺失的旋翼组件一侧倾斜,则控制所述至少一旋翼组件的电机进行反向转动来提供下拉力,或控制所述至少一旋翼组件的电机停止转动;若所述多旋翼飞行器朝向所述至少一旋翼组件一侧倾斜,则控制所述至少一旋翼组件的电机进行正向转动来提供上升力。
其中,所述至少一旋翼组件的电机进行正向转动时至少部分时段的转速大于所述至少一旋翼组件的电机进行反向转动时的最大转速。
为了至少部分解决以上问题,本申请提出了一种多旋翼飞行器的飞行控制系统,所述多旋翼飞行器包括多个旋翼组件,每一所述旋翼组件包括电机以及由所述电机驱动旋转的旋翼,所述飞行控制系统包括至少一传感器以及飞行控制装置,其中所述传感器用于检测所述旋翼组件的工作状态,所述飞行控制装置用于根据所述旋翼组件的工作状态判断所述旋翼组件是否存在动力缺失,并在存在动力缺失时根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向。
其中,所述至少一旋翼组件为在所述多旋翼飞行器的侧倾过程中与所述动力缺失的旋翼组件在竖直方向上的运动分量互为反向的所述旋翼组件。
其中,所述多个旋翼组件的数量为四个,其中所述至少一旋翼组件为与所述动力缺失的旋翼组件对角设置的所述旋翼组件。
其中,所述传感器用于检测所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者,所述飞行控制装置根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失。
其中,所述飞行控制装置根据所述多旋翼飞行器的侧倾角度判断所述多旋翼飞行器朝向某一所述旋翼组件的侧倾角度是否大于或等于预设的倾角阈值;若大于或等于所述预设的倾角阈值,则所述某一旋翼组件存在动力缺失。
其中,所述飞行控制装置根据所述电机的工作状态判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态,若存在故障或处于空载状态,则所述某一旋翼组件存在动力缺失。
其中,所述飞行控制装置判断某一所述旋翼组件的所述电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值,若所述电流值小于或等于预设的电流阈值或者所述比例小于或等于预设的比例阈值,则所述电机处于空载状态。
其中,当所述多旋翼飞行器朝向所述动力缺失的旋翼组件一侧倾斜时,所述飞行控制装置控制所述至少一旋翼组件的电机进行反向转动来提供下拉力,或控制所述至少一旋翼组件的电机停止转动,当所述多旋翼飞行器朝向所述至少一旋翼组件一侧倾斜,所述飞行控制装置控制所述至少一旋翼组件的电机进行正向转动来提供上升力。
其中,所述至少一旋翼组件的电机进行正向转动时至少部分时段的转速大于所述至少一旋翼组件的电机进行反向转动时的最大转速。
为了至少部分解决以上问题,本申请提出了一种多旋翼飞行器,所述多旋翼飞行器包括多个旋翼组件以及飞行控制系统,每一所述旋翼组件包括电机以及由所述电机驱动旋转的旋翼,所述飞行控制系统包括至少一传感器以及飞行控制装置,其中所述传感器用于检测所述旋翼组件的工作状态,所述飞行控制装置用于根据所述旋翼组件的工作状态判断所述旋翼组件是否存在动力缺失,并当存在动力缺失时根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向。
其中,所述至少一旋翼组件为在所述多旋翼飞行器的侧倾过程中与所述动力缺失的旋翼组件在竖直方向上的运动分量互为反向的所述旋翼组件。
其中,所述多个旋翼组件的数量为四个,其中所述至少一旋翼组件为与所述动力缺失的旋翼组件对角设置的所述旋翼组件。
其中,所述传感器用于检测所述多旋翼飞行器的侧倾角度和所述电机的工 作状态中的至少一者,所述飞行控制装置根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失。
其中,所述飞行控制装置根据所述多旋翼飞行器的侧倾角度判断所述多旋翼飞行器朝向某一所述旋翼组件的侧倾角度是否大于或等于预设的倾角阈值;若大于或等于所述预设的倾角阈值,则所述某一旋翼组件存在动力缺失。
其中,所述飞行控制装置根据所述电机的工作状态判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态,若存在故障或处于空载状态,则所述某一旋翼组件存在动力缺失。
其中,所述飞行控制装置判断某一所述旋翼组件的所述电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值,若所述电流值小于或等于预设的电流阈值或者所述比例小于或等于预设的比例阈值,则所述电机处于空载状态。
其中,当所述多旋翼飞行器朝向所述动力缺失的旋翼组件一侧倾斜时,所述飞行控制装置控制所述至少一旋翼组件的电机进行反向转动来提供下拉力,或控制所述至少一旋翼组件的电机停止转动,当所述多旋翼飞行器朝向所述至少一旋翼组件一侧倾斜,所述飞行控制装置控制所述至少一旋翼组件的电机进行正向转动来提供上升力。
其中,所述至少一旋翼组件的电机进行正向转动时至少部分时段的转速大于所述至少一旋翼组件的电机进行反向转动时的最大转速。
本申请的有益效果是:在多旋翼飞行器出现动力缺失的情况下,通过改变与动力缺失旋翼组件对应设置的至少一旋翼组件的电机转动方向,防止多旋翼飞行器的进一步倾侧,将损失降低到最小的同时,提高了多旋翼飞行器的安全性能。
【附图说明】
图1是本申请的多旋翼飞行器的结构示意图;
图2是图1所示的多旋翼飞行器在某一旋翼组件存在动力缺失的情况而产生倾侧的示意图;
图3是本申请多旋翼飞行器的飞行控制方法一实施例的流程图;
图4是本申请根据多旋翼飞行器的倾斜方向改变旋翼组件的电机的转动方向的一具体方式的示意图;
图5是本申请根据多旋翼飞行器的倾斜方向改变旋翼组件的电机的转动方向的另一具体方式的示意图;
图6是本申请根据多旋翼飞行器的自旋角度判断多旋翼飞行器倾斜方向的示意图;
图7是本申请多旋翼飞行器的飞行控制装置第一实施例的结构示意图;
图8是本申请多旋翼飞行器的飞行控制装置第二实施例的结构示意图;
图9是本申请多旋翼飞行器的飞行控制系统一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1是本申请多旋翼飞行器的结构示意图。在图1中,以四旋翼飞行器为例进行详细描述,当然在其它实施例中,多旋翼飞行器也可以为六旋翼飞行器或八旋翼飞行器等。该多旋翼飞行器10包括四个旋翼组件11-14,旋翼组件11包括电机111以及由电机111驱动旋转的旋翼112。旋翼组件12包括电机121以及由电机121驱动旋转的旋翼122。旋翼组件13包括电机131以及由电机131驱动旋转的旋翼132。旋翼组件14包括电机141以及由电机141驱动旋转的旋翼142。
在本实施例中,通过电机111、121、131及141的正向转动驱动旋翼112、 122、132及142绕各自的转轴旋转来产生上升力,进而使得多旋翼飞行器10能够悬浮在空中。此外,为了平衡多旋翼飞行器10的自旋,进一步将电机111、121、131及141中的一部分电机的正向转动方向设置成与其他电机的正向转动方向互为反向,以使得旋翼112、122、132及142旋转所产生的自旋扭矩能够相互抵消。例如,在图1中,从多旋翼飞行器10的顶部观察时,对角设置的电机111、131的正向转动方向为顺时针,而对角设置的电机121、141的正向转动方向为逆时针。由此,提供控制四个旋翼组件11-14所产生的升力和扭矩来调节多旋翼飞行器10的飞行高度以及姿态,进而实现三维空间里的俯仰角(pitch)、横滚角(roll)及航向角(yaw)的运动。
请参阅图2,图2是图1所示的多旋翼飞行器在某一旋翼组件存在动力缺失的情况而产生倾侧的示意图。如图2所示,当旋翼组件11存在动力缺失,例如旋翼112出现断桨或射桨或者电机111出现故障时,由于旋翼组件11无法提供足够的上升力,而其他旋翼组件12-14仍正常工作,则导致旋翼组件11在竖直方向上产生如箭头D1所示的向下的运动趋势,而与旋翼组件11对应设置的旋翼组件13在竖直方向上产生如箭头D2所示的向上的运动趋势,进而使得旋翼组件11绕旋翼组件12、14之间连线朝向旋翼组件11一侧进行侧倾,甚至侧翻。同时,由于旋翼组件11无法提供足够的扭矩,导致多旋翼飞行器10如箭头D3所示的进行自旋。进而,容易造成多旋翼飞行器10的坠机损坏以及安全事故。
请参阅图3,图3是本申请多旋翼飞行器的飞行控制方法第一实施例的流程图。在本实施例中,为了避免在某一旋翼组件存在动力缺失时所导致的多旋翼飞行器10的侧倾现象,本实施例的飞行控制方法主要包括以下步骤:
S1:判断旋翼组件是否存在动力缺失。
在步骤S1中,旋翼组件的动力缺失包括多种情况,例如,多旋翼飞行器在空中飞行时因旋翼组件的结构或者碰撞使旋翼组件中的桨叶出现断桨或者桨叶脱离电机(即,射桨),导致的其当前旋翼组件动力缺失,或者因电机出现故障而导致的当前旋翼组件动力缺失。具体地,通过飞行控制器(飞控)或其他处 理模块配合适当的传感器可以判断旋翼组件是否存在动力缺失。
例如,在一具体实现方式中,可根据多旋翼飞行器的侧倾角度和电机的工作状态中的至少一者判断旋翼组件是否存在动力缺失。
具体来说,可以通过判断多旋翼飞行器朝向某一旋翼组件的侧倾角度是否大于或等于预设的倾角阈值来确定某一旋翼组件是否存在动力缺失。如上文图1所描述,当某一旋翼组件存在动力缺失时,多旋翼飞行器将会朝着该旋翼组件的方向侧倾。此时,可通过惯性传感器、重力传感器等设备来检测多旋翼飞行器10朝向某一旋翼组件的侧倾角度,并将该倾侧角度与预设好的倾角阈值进行比较,并进一步判断该倾侧角度是否大于或者等于该预设的倾侧阈值。若大于或等于预设的倾角阈值,则该旋翼组件存在动力缺失。
在通过电机的工作状态来判断旋翼组件是否存在动力缺失时,可以通过判断某一旋翼组件的电机是否存在故障或处于空载状态来确定某一旋翼组件是否存在动力缺失。若判断该旋翼组件的电机出现故障或处于空载状态,则该旋翼组件存在动力缺失。
其中,判断该旋翼组件的电机处于空载状态的方法具体为:判断某一旋翼组件的电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值。若判断电流值小于或等于预设的电流阈值或者电机的转速与电流的比例值小于或等于预设的比例阈值,则可以确定电机处于空载状态;或者,用于控制电机转速的电子调速器(电调)直接提供空载提示;亦或由惯性传感器结合电调提供的空载提示。
判断该旋翼组件的电机存在故障的方法具体通过现有的对电机的转速、电流以及电压等方式进行判断,在此不再赘述。
S2:若存在动力缺失,则根据多旋翼飞行器的侧倾方向改变动力缺失的旋翼组件以外的至少一旋翼组件的电机的转动方向,进而防止多旋翼飞行器的进一步侧倾。
请参阅图4和图5,下面将对如何根据多旋翼飞行器的侧倾方向改变动力缺 失的旋翼组件以外的至少一旋翼组件的电机的转动方向进行详细描述。
在图1所示的四旋翼飞行器为例,当旋翼组件11存在动力缺失时,若不改变旋翼组件12-14的转动方向,则多旋翼飞行器10朝向旋翼组件11一侧倾斜。具体如图4实线位置所示,为了避免多旋翼飞行器10的进一步侧倾,当多旋翼飞行器10朝向动力缺失的旋翼组件11一侧倾斜时,控制对应设置的旋翼组件13的电机131进行反向转动来提供下拉力或控制电机131停止转动。
当电机131进行反向转动时,由于旋翼组件13提供下拉力,此时可以导致旋翼组件11在竖直方向上产生如箭头D5所示的向上的运动趋势,而与旋翼组件11对应设置的旋翼组件13在竖直方向上产生如箭头D6所示的向上的运动趋势,进而使得旋翼组件11和旋翼组件13绕旋翼组件12和旋翼组件14之间连线向虚线所示的平衡位置进行反向复位(箭头D5及D6所指向的虚线位置),进而达到平衡俯仰角和横滚角的目的。当电机131停止转动时,由于旋翼组件13不提供动力,同样可以避免旋翼组件13的进一步侧倾。
进一步如图5所示,由于旋翼组件11存在动力缺失,导致多旋翼飞行器10沿箭头D3所示方向进行自旋。当旋翼组件13旋转到图1所示的旋翼组件11所在一侧,则原本多旋翼飞行器10朝向旋翼组件11一侧倾斜变为朝向旋翼组件13一侧倾斜。此时,控制旋翼组件13的电机131进行正向转动来提供上升力。
当电机131进行正向转动时,由于旋翼组件13提供上升力,此时可以导致旋翼组件13在竖直方向上产生如箭头D7所示的向上的运动趋势,而与旋翼组件13对应设置的旋翼组件11在竖直方向上产生如箭头D8所示的向下的运动趋势,进而使得旋翼组件11和旋翼组件13绕旋翼组件12和旋翼组件14之间连线向虚线所示的平衡位置进行反向复位(箭头D7及D8所指向的虚线位置),进而达到平衡俯仰角和横滚角的目的。
由于电机131停止转动或反向转动时,多旋翼飞行器10会沿箭头D3所示方向加速自旋,为了进一步减缓多旋翼飞行器10的自旋,在本实施例中,进一步将旋翼组件13的电机131进行正向转动时至少部分时段的转速大于旋翼组件 13的电机131进行反向转动时的最大转速。由此,在旋翼组件13的电机131进行正向转动时可以提供更大的与旋翼组件12、14相反的扭矩,进而减缓多旋翼飞行器10的自旋。
在本实施例中,多旋翼飞行器10的侧倾方向可以直接通过惯性传感器、重力传感器等设备来直接进行检测,也可以通过多旋翼飞行器10的自旋角度来进行估算。例如,图6所示,当检测到旋翼组件11存在动力缺失时,以旋翼组件11的当前位置为基准点,多旋翼飞行器10自旋到相对于基准点的第一角度范围内(例如,顺时针和逆时针的各90度到180度范围内或其他角度范围)默认多旋翼飞行器10朝向旋翼组件11倾斜,进而控制旋翼组件13的电机131进行反向转动或停止转动,而在多旋翼飞行器10自旋到相对于基准点的第二角度范围内(例如,剩余的180度范围内或其他角度范围)默认多旋翼飞行器10朝向旋翼组件13倾斜,进而控制旋翼组件13的电机131进行正向转动。
在本实施例中,以四旋翼飞行器为例对本实施例的飞行控制方法进行了详细描述,但上述飞行控制方法同样适用于六旋翼飞行器或八旋翼飞行器等旋翼为其他数量的飞行器。具体可根据旋翼的具体设置以及转动方向从动力缺失的旋翼组件以外其他旋翼组件中对应选择至少一旋翼组件,并通过根据多旋翼飞行器的侧倾方向改变的电机的转动方向,进而防止多旋翼飞行器的进一步侧倾。例如,所选择的至少一旋翼组件为在多旋翼飞行器的侧倾过程中与动力缺失的旋翼组件在竖直方向上的运动分量互为反向的旋翼组件。
上述实施方式中,通过控制与动力缺失旋翼组件对应设置的电机改变转动方向,防止多旋翼飞行器的进一步侧倾,将损失降低到最小的同时,提高了多旋翼飞行器的安全性能。
参阅图7,图7为本申请多旋翼飞行器的飞行控制装置第一实施例的结构示意图。在本实施例中,多旋翼飞行器包括多个旋翼组件,每一旋翼组件包括电机以及由电机驱动旋转的旋翼,飞行控制装置20包括:
判断模块22,用于判断旋翼组件是否存在动力缺失。
电机控制模块24,若存在动力缺失,则电机控制模块24根据多旋翼飞行器的侧倾方向改变动力缺失的旋翼组件以外的至少一旋翼组件的电机的转动方向,进而防止多旋翼飞行器的进一步侧倾。
其中,判断模块22的执行主体可以为多旋翼飞行器中的飞行控制器(飞控)或其他处理模块配合适当的传感器,具体用于判断旋翼组件是否存在动力缺失。其中,旋翼组件的动力缺失具体是指:多旋翼飞行器在空中飞行时因旋翼组件的结构或者碰撞使旋翼组件中的桨叶脱离电机,导致的其当前旋翼组件动力缺失,或者电机故障所导致的其当前旋翼组件动力缺失。
进一步地,在一具体实现方式中,判断模块22可用于根据多旋翼飞行器的侧倾角度和电机的工作状态中的至少一者判断旋翼组件是否存在动力缺失。
在具体实施例中,判断模块22进一步包括倾角状态判断子模块222,用于判断多旋翼飞行器朝向某一旋翼组件的侧倾角度是否大于或等于预设的倾角阈值,来确定某一旋翼组件是否存在动力缺失。如上文图1所描述,当某一旋翼组件存在动力缺失时,多旋翼飞行器将会朝着该旋翼组件的方向侧倾。此时,可通过惯性传感器、重力传感器等设备来检测多旋翼飞行器朝向某一旋翼组件的侧倾角度,并将该倾侧角度与预设好的倾角阈值进行比较,并进一步判断该倾侧角度是否大于或者等于该预设的倾侧阈值。若大于或等于预设的倾角阈值,则该旋翼组件存在动力缺失。
进一步地,判断模块22还包括电机状态判断子模块224,用于判断某一旋翼组件的电机是否存在故障或处于空载状态来确定某一旋翼组件是否存在动力缺失。若判断该旋翼组件的电机出现故障或处于空载状态,则该旋翼组件存在动力缺失。
进一步地,电机状态判断子模块224具体用于判断某一旋翼组件的电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值。若判断电流值小于或等于预设的电流阈值或者电机的转速与电流的比例值小于或等于预设的比例阈值,则可以确定电机处于 空载状态。
判断该旋翼组件的电机存在故障的方法具体通过现有的对电机的转速、电流以及电压等方式进行判断,在此不再赘述。
当判断模块22判断其中一旋翼组件存在动力缺失时,则电机控制模块24根据多旋翼飞行器的侧倾方向改变动力缺失的旋翼组件以外的至少一旋翼组件的电机的转动方向,进而防止多旋翼飞行器的进一步侧倾。
在具体实施例中,多旋翼飞行器多个旋翼组件的数量为四个,可选地,其它实施例中,多旋翼飞行器也可以为六旋翼飞行器或八旋翼飞行器等。在实施例中,若判断模块22判断其中一旋翼组件存在动力缺失,则该至少一旋翼组件为在多旋翼飞行器的侧倾过程中与动力缺失的旋翼组件在竖直方向上的运动分量互为反向的旋翼组件,且该旋翼组件为与动力缺失的旋翼组件对应设置的旋翼组件。在四旋翼飞行器中为对角设置的旋翼组件。
在本申请一应用场景中,若多旋翼飞行器朝向动力缺失的旋翼组件一侧倾斜,则电机控制模块24控制该至少一旋翼组件的电机进行反向转动来提供下拉力,或控制该至少一旋翼组件的电机停止转动,若多旋翼飞行器朝向至少一旋翼组件一侧倾斜,则电机控制模块24控制至少一旋翼组件的电机进行正向转动来提供上升力。
进一步地,与动力缺失旋翼组件对应设置的该至少一旋翼组件的电机进行正向转动时至少部分时段的转速大于其进行反向转动时的最大转速。
本申请多旋翼飞行器的飞行控制装置各实施例中各个部分的功能具体可参考本申请多旋翼飞行器的飞行控制方法对应实施例中的描述,在此不再重复。
上述实施方式中,判断模块22判断多旋翼飞行器旋翼组件存在动力缺失,通过电机控制模块24控制与动力缺失旋翼组件对应设置的电机改变转动方向,防止多旋翼飞行器的进一步倾侧,将损失降低到最小的同时,提高了多旋翼飞行器的安全性能。
参阅图8,图8为本申请多旋翼飞行器的飞行控制装置第二实施例的结构示 意图。该多旋翼飞行器包括多个旋翼组件,每一旋翼组件包括电机以及由电机驱动旋转的旋翼,飞行控制装置包括处理器32以及与处理器32通讯的存储器34,处理器32通过运行存储器34存储的程序执行以下步骤:
判断旋翼组件是否存在动力缺失。
若存在动力缺失,则根据多旋翼飞行器的侧倾方向改变动力缺失的旋翼组件以外的至少一旋翼组件的电机的转动方向,进而防止多旋翼飞行器的进一步侧倾。
其中,判断旋翼组件是否存在动力缺失的方式具体包括:根据多旋翼飞行器的侧倾角度和电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失。
例如,判断多旋翼飞行器朝向某一旋翼组件的侧倾角度是否大于或等于预设的倾角阈值;若大于或等于预设的倾角阈值,则某一旋翼组件存在动力缺失。
或者,判断某一旋翼组件的电机是否存在故障或处于空载状态,若存在故障或处于空载状态,则某一旋翼组件存在动力缺失。
更进一步地,判断某一旋翼组件的电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值。若电流值小于或等于预设的电流阈值或者比例小于或等于预设的比例阈值,则电机处于空载状态。
根据多旋翼飞行器的侧倾方向改变动力缺失的旋翼组件以外的至少一旋翼组件的电机的转动方向的方式包括:若多旋翼飞行器朝向动力缺失的旋翼组件一侧倾斜,则控制该至少一旋翼组件的电机进行反向转动来提供下拉力,或控制至少一旋翼组件的电机停止转动,以此来平衡飞行器的的倾斜趋势。
若多旋翼飞行器朝向至少一旋翼组件一侧倾斜,则控制至少一旋翼组件的电机进行正向转动来提供上升力,以此来平衡飞行器的倾斜趋势。
其中,多个旋翼组件的数量为四个时,该至少一旋翼组件为与动力缺失的旋翼组件对角设置的旋翼组件。当然,在其它实施例中,多旋翼飞行器的旋翼 也可以为六个或者八个等。此时,该至少一旋翼组件为在多旋翼飞行器的侧倾过程中与动力缺失的旋翼组件在竖直方向上的运动分量互为反向的旋翼组件。
本申请多旋翼飞行器的飞行控制装置备各实施例中各个部分的功能具体可参考本申请多旋翼飞行器的飞行控制方法对应实施例中的描述,在此不再重复。
参阅图9,图9为本申请多旋翼飞行器的飞行控制系统一实施例的结构示意图。该多旋翼飞行器包括多个旋翼组件,每一旋翼组件包括电机以及由电机驱动旋转的旋翼,飞行控制系统包括至少一传感器42以及飞行控制装置44,其中传感器42用于检测旋翼组件的工作状态,飞行控制装置44用于根据旋翼组件的工作状态判断旋翼组件是否存在动力缺失,并在存在动力缺失时根据多旋翼飞行器的侧倾方向改变动力缺失的旋翼组件以外的至少一旋翼组件的电机的转动方向,进而防止多旋翼飞行器的进一步侧倾。
在具体实施例中,传感器42可以为包括但不限于惯性传感器、重力传感器等,具体用于检测多旋翼飞行器的侧倾角度和电机的工作状态中的至少一者。飞行控制装置44根据多旋翼飞行器的侧倾角度和电机的工作状态中的至少一者判断旋翼组件是否存在动力缺失。
进一步地,飞行控制装置44用于根据多旋翼飞行器的侧倾角度判断多旋翼飞行器朝向某一旋翼组件的侧倾角度是否大于或等于预设的倾角阈值;若大于或等于预设的倾角阈值,则某一旋翼组件存在动力缺失。
其中,飞行控制装置44还用于根据电机的工作状态判断某一旋翼组件的电机是否存在故障或处于空载状态,若存在故障或处于空载状态,则某一旋翼组件存在动力缺失。
进一步地,飞行控制装置44具体用于判断某一旋翼组件的电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值,若电流值小于或等于预设的电流阈值或者比例小于或等于预设的比例阈值,则电机处于空载状态。
其中,该至少一旋翼组件为在多旋翼飞行器的侧倾过程中与动力缺失的旋 翼组件在竖直方向上的运动分量互为反向的旋翼组件,且多个旋翼组件的数量为四个,其中该至少一旋翼组件为与动力缺失的旋翼组件对角设置的旋翼组件。
在本申请一应用场景中,当多旋翼飞行器朝向所述动力缺失的旋翼组件一侧倾斜时,飞行控制装置控制至少一旋翼组件的电机进行反向转动来提供下拉力,或控制至少一旋翼组件的电机停止转动,当多旋翼飞行器朝向至少一旋翼组件一侧倾斜,飞行控制装置控制至少一旋翼组件的电机进行正向转动来提供上升力。其中,至少一旋翼组件的电机进行正向转动时至少部分时段的转速大于至少一旋翼组件的电机进行反向转动时的最大转速。
本申请多旋翼飞行器的飞行控制系统各实施例中各个部分的功能具体可参考本申请多旋翼飞行器的飞行控制方法对应实施例中的描述,在此不再重复。
本申请进一步提供一种多旋翼飞行器,该多旋翼飞行器包括多个图1所示的旋翼组件以及图9所示的飞行控制系统。
在本申请所提供的几个实施例中,在多旋翼飞行器出现动力缺失的情况下,通过改变与动力缺失旋翼组件对应设置的电机的转动方向,防止多旋翼飞行器的进一步侧倾,将损失降低到最小的同时,提高了多旋翼飞行器的安全性能。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (45)

  1. 一种多旋翼飞行器的飞行控制方法,其特征在于,所述多旋翼飞行器包括多个旋翼组件,每一所述旋翼组件包括电机以及由所述电机驱动旋转的旋翼,所述方法包括以下步骤:
    判断所述旋翼组件是否存在动力缺失;
    若存在动力缺失,则根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一旋翼组件为在所述多旋翼飞行器的侧倾过程中与所述动力缺失的旋翼组件在竖直方向上的运动分量互为反向的所述旋翼组件。
  3. 根据权利要求1所述的方法,其特征在于,所述多个旋翼组件的数量为四个,其中所述至少一旋翼组件为与所述动力缺失的旋翼组件对角设置的所述旋翼组件。
  4. 根据权利要求1所述的方法,其特征在于,所述判断所述旋翼组件是否存在动力缺失的步骤包括:
    根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失的步骤包括:
    判断所述多旋翼飞行器朝向某一所述旋翼组件的侧倾角度是否大于或等于预设的倾角阈值;
    若大于或等于所述预设的倾角阈值,则所述某一旋翼组件存在动力缺失。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力 缺失的步骤包括:
    判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态;
    若存在故障或处于空载状态,则所述某一旋翼组件存在动力缺失。
  7. 根据权利要求6所述的方法,其特征在于,所述判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态的步骤包括:
    判断某一所述旋翼组件的所述电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值;
    若所述电流值小于或等于预设的电流阈值或者所述比例小于或等于预设的比例阈值,则所述电机处于空载状态。
  8. 根据权利要求1所述的方法,其特征在于,所述根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向的步骤包括:
    若所述多旋翼飞行器朝向所述动力缺失的旋翼组件一侧倾斜,则控制所述至少一旋翼组件的电机进行反向转动来提供下拉力,或控制所述至少一旋翼组件的电机停止转动;
    若所述多旋翼飞行器朝向所述至少一旋翼组件一侧倾斜,则控制所述至少一旋翼组件的电机进行正向转动来提供上升力。
  9. 根据权利要求8所述的方法,其特征在于,所述至少一旋翼组件的电机进行正向转动时至少部分时段的转速大于所述至少一旋翼组件的电机进行反向转动时的最大转速。
  10. 一种多旋翼飞行器的飞行控制装置,其特征在于,所述多旋翼飞行器包括多个旋翼组件,每一所述旋翼组件包括电机以及由所述电机驱动旋转的旋翼,所述飞行控制装置包括:
    判断模块,用于判断所述旋翼组件是否存在动力缺失;
    电机控制模块,若存在动力缺失,则所述电机控制模块根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电 机的转动方向。
  11. 根据权利要求10所述的飞行控制装置,其特征在于,所述至少一旋翼组件为在所述多旋翼飞行器的侧倾过程中与所述动力缺失的旋翼组件在竖直方向上的运动分量互为反向的所述旋翼组件。
  12. 根据权利要求11所述的飞行控制装置,其特征在于,所述多个旋翼组件的数量为四个,其中所述至少一旋翼组件为与所述动力缺失的旋翼组件对角设置的所述旋翼组件。
  13. 根据权利要求10所述的飞行控制装置,其特征在于,所述判断模块根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失。
  14. 根据权利要求13所述的飞行控制装置,其特征在于,所述判断模块包括倾角状态判断子模块,用于判断所述多旋翼飞行器朝向某一所述旋翼组件的侧倾角度是否大于或等于预设的倾角阈值,若大于或等于所述预设的倾角阈值,则所述某一旋翼组件存在动力缺失。
  15. 根据权利要求13所述的飞行控制装置,其特征在于,所述判断模块包括电机状态判断子模块,用于判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态;若存在故障或处于空载状态,则所述某一旋翼组件存在动力缺失。
  16. 根据权利要求15所述的飞行控制装置,其特征在于,所述电机状态判断子模块用于判断某一所述旋翼组件的所述电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值,若所述电流值小于或等于预设的电流阈值或者所述比例小于或等于预设的比例阈值,则所述电机处于空载状态。
  17. 根据权利要求10所述的飞行控制装置,其特征在于,若所述多旋翼飞行器朝向所述动力缺失的旋翼组件一侧倾斜,则所述电机控制模块控制所述至少一旋翼组件的电机进行反向转动来提供下拉力,或控制所述至少一旋翼组件的 电机停止转动,若所述多旋翼飞行器朝向所述至少一旋翼组件一侧倾斜,则所述电机控制模块控制所述至少一旋翼组件的电机进行正向转动来提供上升力。
  18. 根据权利要求17所述的飞行控制装置,其特征在于,所述电机控制模块控制所述至少一旋翼组件的电机进行正向转动时至少部分时段的转速大于所述至少一旋翼组件的电机进行反向转动时的最大转速。
  19. 一种多旋翼飞行器的飞行控制装置,其特征在于,所述多旋翼飞行器包括多个旋翼组件,每一所述旋翼组件包括电机以及由所述电机驱动旋转的旋翼,所述飞行控制装置包括处理器以及与所述处理器通讯的存储器,所述处理器通过运行所述存储器存储的程序执行以下步骤:
    判断所述旋翼组件是否存在动力缺失;
    若存在动力缺失,则根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向。
  20. 根据权利要求19所述的飞行控制装置,其特征在于,所述至少一旋翼组件为在所述多旋翼飞行器的侧倾过程中与所述动力缺失的旋翼组件在竖直方向上的运动分量互为反向的所述旋翼组件。
  21. 根据权利要求20所述的飞行控制装置,其特征在于,所述多个旋翼组件的数量为四个,其中所述至少一旋翼组件为与所述动力缺失的旋翼组件对角设置的所述旋翼组件。
  22. 根据权利要求19所述的飞行控制装置,其特征在于,所述判断所述旋翼组件是否存在动力缺失的步骤包括:
    根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失。
  23. 根据权利要求22所述的飞行控制装置,其特征在于,所述根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失的步骤包括:
    判断所述多旋翼飞行器朝向某一所述旋翼组件的侧倾角度是否大于或等于 预设的倾角阈值;
    若大于或等于所述预设的倾角阈值,则所述某一旋翼组件存在动力缺失。
  24. 根据权利要求22所述的飞行控制装置,其特征在于,所述根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失的步骤包括:
    判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态;
    若存在故障或处于空载状态,则所述某一旋翼组件存在动力缺失。
  25. 根据权利要求24所述的飞行控制装置,其特征在于,所述判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态的步骤包括:
    判断某一所述旋翼组件的所述电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值;
    若所述电流值小于或等于预设的电流阈值或者所述比例小于或等于预设的比例阈值,则所述电机处于空载状态。
  26. 根据权利要求19所述的飞行控制装置,其特征在于,所述根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向的步骤包括:
    若所述多旋翼飞行器朝向所述动力缺失的旋翼组件一侧倾斜,则控制所述至少一旋翼组件的电机进行反向转动来提供下拉力,或控制所述至少一旋翼组件的电机停止转动;
    若所述多旋翼飞行器朝向所述至少一旋翼组件一侧倾斜,则控制所述至少一旋翼组件的电机进行正向转动来提供上升力。
  27. 根据权利要求26所述的飞行控制装置,其特征在于,所述至少一旋翼组件的电机进行正向转动时至少部分时段的转速大于所述至少一旋翼组件的电机进行反向转动时的最大转速。
  28. 一种多旋翼飞行器的飞行控制系统,其特征在于,所述多旋翼飞行器包括多个旋翼组件,每一所述旋翼组件包括电机以及由所述电机驱动旋转的旋翼, 所述飞行控制系统包括至少一传感器以及飞行控制装置,其中所述传感器用于检测所述旋翼组件的工作状态,所述飞行控制装置用于根据所述旋翼组件的工作状态判断所述旋翼组件是否存在动力缺失,并在存在动力缺失时根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向。
  29. 根据权利要求28所述的飞行控制系统,其特征在于,所述至少一旋翼组件为在所述多旋翼飞行器的侧倾过程中与所述动力缺失的旋翼组件在竖直方向上的运动分量互为反向的所述旋翼组件。
  30. 根据权利要求29所述的飞行控制系统,其特征在于,所述多个旋翼组件的数量为四个,其中所述至少一旋翼组件为与所述动力缺失的旋翼组件对角设置的所述旋翼组件。
  31. 根据权利要求28所述的飞行控制系统,其特征在于,所述传感器用于检测所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者,所述飞行控制装置根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失。
  32. 根据权利要求31所述的飞行控制系统,其特征在于,所述飞行控制装置根据所述多旋翼飞行器的侧倾角度判断所述多旋翼飞行器朝向某一所述旋翼组件的侧倾角度是否大于或等于预设的倾角阈值;若大于或等于所述预设的倾角阈值,则所述某一旋翼组件存在动力缺失。
  33. 根据权利要求31所述的飞行控制系统,其特征在于,所述飞行控制装置根据所述电机的工作状态判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态,若存在故障或处于空载状态,则所述某一旋翼组件存在动力缺失。
  34. 根据权利要求33所述的飞行控制系统,其特征在于,所述飞行控制装置判断某一所述旋翼组件的所述电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值,若所述电流值小于或等于预设的电流阈值或者所述比例小于或等于预设的比例阈值,则 所述电机处于空载状态。
  35. 根据权利要求28所述的飞行控制系统,其特征在于,当所述多旋翼飞行器朝向所述动力缺失的旋翼组件一侧倾斜时,所述飞行控制装置控制所述至少一旋翼组件的电机进行反向转动来提供下拉力,或控制所述至少一旋翼组件的电机停止转动,当所述多旋翼飞行器朝向所述至少一旋翼组件一侧倾斜,所述飞行控制装置控制所述至少一旋翼组件的电机进行正向转动来提供上升力。
  36. 根据权利要求35所述的飞行控制系统,其特征在于,所述至少一旋翼组件的电机进行正向转动时至少部分时段的转速大于所述至少一旋翼组件的电机进行反向转动时的最大转速。
  37. 一种多旋翼飞行器,其特征在于,所述多旋翼飞行器包括多个旋翼组件以及飞行控制系统,每一所述旋翼组件包括电机以及由所述电机驱动旋转的旋翼,所述飞行控制系统包括至少一传感器以及飞行控制装置,其中所述传感器用于检测所述旋翼组件的工作状态,所述飞行控制装置用于根据所述旋翼组件的工作状态判断所述旋翼组件是否存在动力缺失,并当存在动力缺失时根据所述多旋翼飞行器的侧倾方向改变动力缺失的所述旋翼组件以外的至少一旋翼组件的所述电机的转动方向。
  38. 根据权利要求37所述的多旋翼飞行器,其特征在于,所述至少一旋翼组件为在所述多旋翼飞行器的侧倾过程中与所述动力缺失的旋翼组件在竖直方向上的运动分量互为反向的所述旋翼组件。
  39. 根据权利要求38所述的多旋翼飞行器,其特征在于,所述多个旋翼组件的数量为四个,其中所述至少一旋翼组件为与所述动力缺失的旋翼组件对角设置的所述旋翼组件。
  40. 根据权利要求37所述的多旋翼飞行器,其特征在于,所述传感器用于检测所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者,所述飞行控制装置根据所述多旋翼飞行器的侧倾角度和所述电机的工作状态中的至少一者判断所述旋翼组件是否存在动力缺失。
  41. 根据权利要求40所述的多旋翼飞行器,其特征在于,所述飞行控制装置根据所述多旋翼飞行器的侧倾角度判断所述多旋翼飞行器朝向某一所述旋翼组件的侧倾角度是否大于或等于预设的倾角阈值;若大于或等于所述预设的倾角阈值,则所述某一旋翼组件存在动力缺失。
  42. 根据权利要求40所述的多旋翼飞行器,其特征在于,所述飞行控制装置根据所述电机的工作状态判断某一所述旋翼组件的所述电机是否存在故障或处于空载状态,若存在故障或处于空载状态,则所述某一旋翼组件存在动力缺失。
  43. 根据权利要求42所述的多旋翼飞行器,其特征在于,所述飞行控制装置判断某一所述旋翼组件的所述电机在预定转速下的电流值是否小于或等于预设的电流阈值或者转速与电流的比例是否小于或等于预设的比例阈值,若所述电流值小于或等于预设的电流阈值或者所述比例小于或等于预设的比例阈值,则所述电机处于空载状态。
  44. 根据权利要求37所述的多旋翼飞行器,其特征在于,当所述多旋翼飞行器朝向所述动力缺失的旋翼组件一侧倾斜时,所述飞行控制装置控制所述至少一旋翼组件的电机进行反向转动来提供下拉力,或控制所述至少一旋翼组件的电机停止转动,当所述多旋翼飞行器朝向所述至少一旋翼组件一侧倾斜,所述飞行控制装置控制所述至少一旋翼组件的电机进行正向转动来提供上升力。
  45. 根据权利要求44所述的多旋翼飞行器,其特征在于,所述至少一旋翼组件的电机进行正向转动时至少部分时段的转速大于所述至少一旋翼组件的电机进行反向转动时的最大转速。
PCT/CN2016/103137 2016-10-25 2016-10-25 多旋翼飞行器及其控制方法、控制装置及飞行控制系统 WO2018076149A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680002336.9A CN107077142B (zh) 2016-10-25 2016-10-25 多旋翼飞行器及其控制方法、控制装置及飞行控制系统
PCT/CN2016/103137 WO2018076149A1 (zh) 2016-10-25 2016-10-25 多旋翼飞行器及其控制方法、控制装置及飞行控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103137 WO2018076149A1 (zh) 2016-10-25 2016-10-25 多旋翼飞行器及其控制方法、控制装置及飞行控制系统

Publications (1)

Publication Number Publication Date
WO2018076149A1 true WO2018076149A1 (zh) 2018-05-03

Family

ID=59624568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103137 WO2018076149A1 (zh) 2016-10-25 2016-10-25 多旋翼飞行器及其控制方法、控制装置及飞行控制系统

Country Status (2)

Country Link
CN (1) CN107077142B (zh)
WO (1) WO2018076149A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107839874A (zh) * 2017-12-06 2018-03-27 刘红军 多旋翼飞行器及控制方法
CN108390603B (zh) * 2018-03-08 2019-12-31 深圳市道通智能航空技术有限公司 电机控制方法、其装置及无人机控制系统
CN108466699B (zh) * 2018-04-11 2020-04-10 深圳市道通智能软件开发有限公司 判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器
CN108614573B (zh) * 2018-05-15 2021-08-20 上海扩博智能技术有限公司 六旋翼无人机的自动容错姿态控制方法
CN109263979A (zh) * 2018-10-26 2019-01-25 珠海银通无人机科技有限公司 一种双冗余动力飞行器
CN110254731B (zh) * 2019-06-25 2020-12-25 辽宁壮龙无人机科技有限公司 一种基于六旋翼飞行器的断桨保护方法及装置
CN110466799A (zh) * 2019-08-06 2019-11-19 江苏荣耀天翃航空科技有限公司 一种无人机预旋转检测的方法及无人机
CN111746788B (zh) * 2019-12-25 2022-03-18 广州极飞科技股份有限公司 飞行器控制方法、装置、飞行器和计算机可读存储介质
CN113212755A (zh) * 2020-01-21 2021-08-06 辽宁壮龙无人机科技有限公司 一种油电混动多旋翼无人机控制方法
CN113039502B (zh) * 2020-05-07 2024-04-12 深圳市大疆创新科技有限公司 多旋翼无人机及其控制方法、控制装置和计算机可读存储介质
CN112173094B (zh) * 2020-09-24 2023-12-26 成都沃飞天驭科技有限公司 一种多旋翼电动飞机的安全控制系统及方法
CN112373677B (zh) * 2020-11-18 2021-06-22 三生万物(北京)人工智能技术有限公司 一种六旋翼无人机动力缺失保护系统、保护方法
CN114228420A (zh) * 2022-02-22 2022-03-25 中铁十二局集团有限公司 一种隧道工程用空陆两栖空气耦合雷达检测机器人
CN114476052B (zh) * 2022-03-08 2024-03-05 广州极飞科技股份有限公司 无人机控制方法、装置、控制设备及可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114914A (zh) * 2011-01-21 2011-07-06 文杰 分布式动力多旋翼垂直起降飞行器及其控制方法
CN102126554A (zh) * 2011-01-28 2011-07-20 南京航空航天大学 面对称布局的多旋翼无人飞行器
CN203094441U (zh) * 2013-01-16 2013-07-31 广州大学 一种改进型四旋翼飞行器
US20140117148A1 (en) * 2012-10-29 2014-05-01 Eurocopter Method of managing an engine failure on a multi-engined aircraft having a hybrid power plant
CN104176247A (zh) * 2014-07-16 2014-12-03 李一波 采用一台发动机直驱一个旋翼的四旋翼无人机
CN205418095U (zh) * 2016-03-23 2016-08-03 刘海涛 油电混合动力多旋翼飞行器
CN205524965U (zh) * 2016-04-14 2016-08-31 刘海涛 多旋翼飞行器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8616492B2 (en) * 2009-10-09 2013-12-31 Oliver Vtol, Llc Three wing, six tilt-propulsion units, VTOL aircraft
CN201932359U (zh) * 2011-01-21 2011-08-17 文杰 分布式动力多旋翼垂直起降飞行器
CN103963963B (zh) * 2014-04-22 2016-01-13 深圳市大疆创新科技有限公司 多旋翼飞行器的飞行控制方法及系统
CN104176248B (zh) * 2014-07-16 2016-05-25 沈阳航空航天大学 双发动机四轴四旋翼无人机
CN105253301B (zh) * 2015-09-28 2017-12-05 深圳一电航空技术有限公司 多轴飞行器的飞行控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114914A (zh) * 2011-01-21 2011-07-06 文杰 分布式动力多旋翼垂直起降飞行器及其控制方法
CN102126554A (zh) * 2011-01-28 2011-07-20 南京航空航天大学 面对称布局的多旋翼无人飞行器
US20140117148A1 (en) * 2012-10-29 2014-05-01 Eurocopter Method of managing an engine failure on a multi-engined aircraft having a hybrid power plant
CN203094441U (zh) * 2013-01-16 2013-07-31 广州大学 一种改进型四旋翼飞行器
CN104176247A (zh) * 2014-07-16 2014-12-03 李一波 采用一台发动机直驱一个旋翼的四旋翼无人机
CN205418095U (zh) * 2016-03-23 2016-08-03 刘海涛 油电混合动力多旋翼飞行器
CN205524965U (zh) * 2016-04-14 2016-08-31 刘海涛 多旋翼飞行器

Also Published As

Publication number Publication date
CN107077142B (zh) 2018-09-18
CN107077142A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018076149A1 (zh) 多旋翼飞行器及其控制方法、控制装置及飞行控制系统
CN107226206B (zh) 多旋翼无人机安全降落系统及方法
CN205891232U (zh) 一种四旋翼无人机紧急安全降落装置
CN109153447B (zh) 停转式旋翼飞行器
WO2018084261A1 (ja) 垂直離着陸可能飛行体、飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラムを格納した記録媒体
JP6456641B2 (ja) マルチロータクラフトの姿勢安定化制御装置
WO2016035068A2 (en) Tilt winged multi rotor
CN108614573B (zh) 六旋翼无人机的自动容错姿态控制方法
WO2018098774A1 (zh) 一种控制迫降的装置、方法、设备
CN105667780A (zh) 多旋翼飞行器
EP3384361A1 (en) Multirotor aircraft control systems
CN113508078A (zh) 配有碰撞容错推进和控制器的无人机
CN114667255A (zh) 用于确定无人机中异常安装的螺旋桨的方法和设备
CN113135285A (zh) 一种旋翼无人机的喷气辅助装置
CN108454847A (zh) 一种旋翼姿态调节装置以及包括该装置的多旋翼无人机
US20180046200A1 (en) Aircraft and roll method thereof
CN108349586A (zh) 飞行器
CN109308064A (zh) 一种四旋翼无人机的故障容错控制方法及系统
KR101824183B1 (ko) 추락방지 기능을 갖는 무인비행체
CN205076036U (zh) 飞行器
JP2017074868A (ja) 回転翼機
CN108145749A (zh) 仿生机器人稳定装置及系统
US10908618B2 (en) Rotor control law for multi-rotor vehicles systems and methods
US20160083076A1 (en) Automatic propeller torque protection system
CN108958279A (zh) 无人机地面翻滚方法、装置、无人机及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920376

Country of ref document: EP

Kind code of ref document: A1