WO2019196330A1 - 判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器 - Google Patents

判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器 Download PDF

Info

Publication number
WO2019196330A1
WO2019196330A1 PCT/CN2018/105294 CN2018105294W WO2019196330A1 WO 2019196330 A1 WO2019196330 A1 WO 2019196330A1 CN 2018105294 W CN2018105294 W CN 2018105294W WO 2019196330 A1 WO2019196330 A1 WO 2019196330A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
motor
current
state
peak
Prior art date
Application number
PCT/CN2018/105294
Other languages
English (en)
French (fr)
Inventor
陈毅东
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019196330A1 publication Critical patent/WO2019196330A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • B64D31/12Initiating means actuated automatically for equalising or synchronising power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • B64C11/28Collapsible or foldable blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • B64C27/50Blades foldable to facilitate stowage of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the embodiments of the present invention relate to the field of aircraft technologies, and in particular, to a method and device for determining whether an aircraft has a paddle, an electric power, a power system, and an aircraft.
  • UAV Unmanned Aerial Vehicle
  • ESC electronic governor
  • the propeller is connected to the rotating shaft of the motor, and one propeller is mounted on one motor.
  • each motor drives the corresponding propeller rotation to complete the drone.
  • Each prescribed action (or posture); and, in order to facilitate storage and space saving, the propeller is usually a foldable propeller.
  • a first-time user or a curious user will have fewer or more propellers installed on the aircraft.
  • detecting whether the aircraft has a propeller is critical to the flight of the aircraft. In the current technology, there is no method of detecting whether the aircraft has a paddle.
  • the main purpose of the present application is to provide a method and device for judging whether an aircraft has a paddle, an ESC, a power system and an aircraft, and can determine whether the aircraft has a foldable propeller, thereby avoiding the rollover of the aircraft and improving the safety of the flight of the aircraft.
  • the embodiment of the present application provides a method for determining whether an aircraft has a paddle, and the method includes:
  • the state of the aircraft includes a closed state and an open state, the closed state being a state in which the propeller of the aircraft is in a folded state, the open state being a state in which the propeller of the aircraft is in an unfolded state;
  • the state switching of the aircraft includes:
  • the aircraft is switched from a closed state to an open state
  • the aircraft is switched from an open state to a closed state.
  • the obtaining a current waveform of a motor that drives the aircraft to perform state switching includes:
  • a current peak of the motor is obtained from the current waveform.
  • the obtaining a current peak of the motor from the current waveform comprises:
  • a current peak of the motor is obtained from the current waveform according to the reactive current and the active current.
  • determining whether the motor of the aircraft has a foldable propeller according to the current waveform comprises:
  • the motor is determined to have a foldable propeller; otherwise, the motor is determined to have no foldable propeller.
  • the operating state of the electric machine includes: a first state and a second state, in which the motor is stably operated; In the second state, the electric machine includes a shifting phase of the shifting operation, a stabilizing phase of the steady operation, and a deceleration phase of the decelerating operation.
  • the preset current threshold is a value determined according to the first peak value and the second peak value
  • the first peak-to-peak value is a peak-to-peak current of the motor when the motor is in a stable phase before being detected in the paddle state;
  • the second peak-to-peak value is a peak-to-peak current of the motor when the motor is in a stable phase in the absence of the paddle state.
  • the method further includes:
  • a flight command is transmitted based on the flag, the flight command being used to control the aircraft to fly.
  • the embodiment of the present application further provides a device for determining whether an aircraft has a paddle, and the device includes:
  • a current waveform acquisition module configured to acquire a current waveform of a motor that drives the aircraft to perform state switching when the aircraft performs state switching
  • a judging module configured to determine, according to the current waveform, whether the motor of the aircraft has a foldable propeller.
  • the state of the aircraft includes a closed state and an open state, the closed state being a state in which the propeller of the aircraft is in a folded state, the open state being a state in which the propeller of the aircraft is in an unfolded state;
  • the state switching of the aircraft includes:
  • the aircraft is switched from a closed state to an open state
  • the aircraft is switched from an open state to a closed state.
  • the current waveform acquisition module acquires a current waveform of a motor that drives the aircraft to perform state switching, including:
  • a current peak of the motor is obtained from the current waveform.
  • the current waveform acquisition module acquires a current peak of the motor from the current waveform, including:
  • a current peak of the motor is obtained from the current waveform according to the reactive current and the active current.
  • the determining module is specifically configured to:
  • the motor is determined to have a foldable propeller; otherwise, the motor is determined to have no foldable propeller.
  • the operating state of the electric machine includes: a first state and a second state, in which the motor is stably operated; In the second state, the electric machine includes a shifting phase of the shifting operation, a stabilizing phase of the steady operation, and a deceleration phase of the decelerating operation.
  • the preset current threshold is a value determined according to the first peak value and the second peak value
  • the first peak-to-peak value is a peak-to-peak current of the motor when the motor is in a stable phase before being detected in the paddle state;
  • the second peak-to-peak value is a peak-to-peak current of the motor when the motor is in a stable phase in the absence of the paddle state.
  • the apparatus further includes:
  • a flag determining module configured to determine, according to the first number of times and the second number of times, a flag bit of the motor, wherein the flag bit is used to indicate whether the motor has a paddle;
  • a flight instruction transmitting module is configured to send a flight instruction according to the flag bit, and the flight instruction is used to control the aircraft to fly.
  • an ESC including:
  • At least one processor and,
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform a method of determining whether an aircraft has a paddle as described above .
  • the embodiment of the present application further provides a power system, including:
  • the ESC is electrically coupled to the motor for determining whether the motor has a foldable propeller and controlling operation of the motor.
  • an embodiment of the present application further provides an aircraft, including:
  • a power system as described above is mounted on the fuselage for providing flight power to the aircraft.
  • the embodiment of the present application further provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when When the program instructions are executed by the computer, the ESC is caused to perform the method of determining whether the aircraft has a paddle as described above.
  • an embodiment of the present application further provides a non-transitory computer readable storage medium storing computer executable instructions for causing a computer to execute The method of judging whether the aircraft has a paddle as described above.
  • the embodiment of the present application provides a method for judging whether an aircraft has a foldable propeller according to a current waveform, and by which the aircraft can be prevented from rolling over. Improve the safety of aircraft flight.
  • FIG. 1 is a schematic structural diagram of a drone provided by an embodiment of the present application.
  • FIG. 2 is a block diagram showing the connection of the power system of the drone shown in Figure 1;
  • FIG. 3 is a schematic flow chart of a method for determining whether an aircraft has a paddle according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of current peaks as a function of time according to an embodiment of the present application.
  • FIG. 5 is a schematic flow chart of a method for determining whether an aircraft has a paddle according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a device for determining whether an aircraft has a paddle according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of a device for determining whether an aircraft has a paddle according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an ESC hardware provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a power system according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an aircraft provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another aircraft provided by an embodiment of the present application.
  • the method for determining whether an aircraft has a paddle can be applied to various aircraft, including but not limited to: a drone, a spacecraft, an unmanned ship, and the like.
  • the drone 1 includes a fuselage 101, a boom 102, and a power system 103.
  • the arm 102 is integrally or fixedly coupled to the body 101, and the power system 103 is mounted on the arm 102 for providing flight power to the drone 1.
  • the power system 103 includes an ESC 1031, a motor 1032, and a propeller 1033.
  • the ESC 1031 is located within the cavity formed by the arm 102 or the housing of the body 101.
  • the ESC 1031 is electrically connected to the motor 1032, and the motor 1032 is mounted on the arm 102.
  • the rotating shaft of the motor 1032 is connected to the propeller 1033.
  • the drone 1 is caused by the power system 103 to complete a prescribed flight mission.
  • the specific process mainly includes: the ESC 1031 sends a flight instruction to the motor 1032, and the flight command is used to control the rotation speed and acceleration of the motor 1032; when the motor 1032 receives the flight instruction, the propeller 1033 is driven, so that the propeller 1033 will
  • the rotational power of the motor 1032 is converted into a force that causes the drone 1 to move, for example, a lift or thrust that causes the drone 1 to move, thereby causing the drone 1 to complete a prescribed flight mission.
  • the first-time user or the curious user has less one or more propellers installed on the aircraft such as the drone due to misoperation or curiosity. If one or more propellers are installed less, the ESC Sending a flight command, such as performing a putter operation to cause the aircraft to fly, can cause the aircraft to roll over. Rollover can cause aircraft to wear, etc., and can even cause unpredictable consequences such as personal injury. Therefore, detecting whether the aircraft has a propeller is critical to the flight of the aircraft. In the current technology, there is no method of detecting whether the aircraft has a paddle.
  • the main object of the present application is to provide a method and apparatus for determining whether an aircraft has a paddle, an ESC, a power system, and an aircraft.
  • foldable propellers are currently used on the market.
  • the motor is controlled by ESC to drive the opening or closing of the foldable propeller.
  • the motor is controlled by the ESC to drive the foldable propeller to open, and when the aircraft is not used, the motor is controlled by the ESC to drive the foldable propeller to close.
  • the drive current of the corresponding motor is different.
  • the present application is a method for judging whether an aircraft (such as a drone, etc.) is equipped with a paddle based on the above principle. Specifically, the idea of the present application is: first, when the aircraft performs state switching, acquiring and driving the aircraft is performed. The current waveform of the state-switched motor; then, based on the current waveform, it is determined whether the motor of the aircraft has a foldable propeller.
  • the motor of the aircraft has a foldable propeller to solve the problem that the prior art does not provide a method for detecting whether the aircraft has a paddle, and whether the aircraft has a foldable propeller to avoid The aircraft is turned over to improve the safety of the aircraft flight.
  • FIG. 3 is a schematic flow chart of a method for determining whether an aircraft has a paddle according to an embodiment of the present application.
  • a method for determining whether an aircraft has a paddle according to an embodiment of the present application may be performed by an ESC of the above-described aircraft (such as a drone or the like).
  • the method for determining whether an aircraft has a paddle includes:
  • the state of the aircraft includes a closed state and an open state.
  • the closed state of the aircraft is a state in which the propeller of the aircraft is in a folded state
  • the open state is a state in which the propeller of the aircraft is in an unfolded state.
  • the propeller of the aircraft is a foldable propeller, so as to increase the size of the propeller blade while not increasing the size of the aircraft, and facilitating the storage of the aircraft.
  • a collapsible propeller is a propeller that can be driven by an ESC to drive a folded or unfolded blade.
  • the state in which the propeller is in a folded state refers to a state in which the angle formed by the propeller blade and the central axis of the aircraft is smaller than the first predetermined angle, and the state in which the propeller is in the unfolded state refers to the central axis of the propeller blade and the aircraft.
  • the angle formed is greater than the state at the second predetermined angle.
  • the first preset angle and the second preset angle may be customized according to user requirements or set according to aircraft flight standards.
  • the first preset angle may be 5°, and the first preset angle may be 85°, etc., at this time, if the angle formed by the propeller blade and the central axis of the aircraft is less than 5°, the propeller of the aircraft is in a folded state; if the angle is greater than 85°, the propeller of the aircraft is in an unfolded state. .
  • the state switching of the aircraft includes: switching the aircraft from a closed state to an open state; or switching the aircraft from an open state to a closed state. That is, the state in which the propeller of the aircraft is in the folded state is switched to the state in the unfolded state; or the state in which the propeller of the aircraft is in the unfolded state is switched to the state in the folded state.
  • the ESC will first send a control command to start the propeller opening to the motor to control the motor to drive the propeller of the aircraft to switch from the folded state to the unfolded state.
  • the ESC can obtain the motor in real time.
  • the current that is, the current waveform of the motor during the process of driving the aircraft from the closed state to the open state.
  • the current waveform of the motor during the process of the ESC acquisition driving the aircraft from the open state to the closed state is similar to the above process, and therefore will not be described herein.
  • the current waveform may be a current curve of the motor with time, and the current peak of the motor is obtained from the current waveform.
  • the current waveform of the motor that drives the aircraft to perform state switching includes: A current peak of the motor is obtained from the current waveform.
  • the current peak value is the maximum value of the motor current in one cycle during the state switching of the aircraft.
  • other parameters of the motor may also be obtained from the current waveform, such as the frequency of the current of the motor during the state of the aircraft being switched.
  • the current waveform is a current waveform of a phase current of the motor.
  • Obtaining a current waveform of the motor that drives the aircraft to perform state switching that is, acquiring a current of the motor in real time during the state switching of the aircraft to obtain a current waveform, and obtaining a current peak from the current waveform, thereby obtaining A curve of current peaks as a function of time during this switching.
  • the obtaining a current peak of the motor from the current waveform specifically includes: acquiring a reactive current and an active current of the motor during a state switching of the aircraft; The current and the active current are used to obtain a current peak of the motor from the current waveform.
  • the reactive current of the motor refers to a current whose current direction is perpendicular to the voltage direction
  • the active current of the motor refers to a current whose current direction is parallel to the voltage direction.
  • the reactive current and the active current of the motor can be obtained by any suitable means, for example, the reactive current and the active current are obtained by using an oscilloscope.
  • the current peak value of the motor can be determined by a current peak calculation formula. The formula for calculating the current peak is as follows:
  • the motor of the aircraft can usually use two (or multiple) acceleration and deceleration to drive the aircraft to perform state switching.
  • the corresponding current waveform is different, so the The current waveform is used to determine if the motor of the aircraft has a foldable propeller.
  • the ESC determines whether the motor of the aircraft has a foldable propeller according to the current waveform.
  • FIG. 4 is a schematic diagram of current peaks varying with time during the state switching of the aircraft.
  • the operating state of the motor includes: a first state and a second state, wherein the motor is stably operated in the first state; and in the second state in the second state
  • the motor includes a shifting phase during variable speed operation, a steady phase of stable operation, and a deceleration phase of decelerating operation.
  • the motor is stably operated in the first state for t 0 time; then, enters the second state, and after the t 1 time in the shifting phase of the shifting operation of the second state, the stable phase of the stable operation in the second state run time t 2, the deceleration operation in a second phase of deceleration state t 3 of the time, wherein the shift operation comprises a first accelerating motor operation, then stable operation, then deceleration; Finally, a first operating state into the steady t 4 of Time, thereby driving the aircraft to complete state switching.
  • t 0 , t 1 , t 3 , t 4 are determined according to the actual operation of the motor, and the length of each time shown in FIG.
  • the stable phase of the stable operation or the stable operation is not that the current peak is stable during the operation, and in actual conditions, the current peak during the operation due to external interference and internal characteristics of the motor. There will also be some fluctuations, that is, the current peak has a certain value in the stable phase of stable operation.
  • determining whether the motor of the aircraft has a foldable propeller according to the current waveform specifically includes: comparing a current peak when the motor is in a stable phase with a preset current threshold, Obtaining a first number of times and a second number of times, the first number of times is a number of times the current peak value is greater than the preset current threshold value, and the second number of times is that the current peak value is less than the preset current threshold The number of times; when the first number of times is greater than the second number, determining that the motor has a foldable propeller; otherwise, determining that the motor does not have a foldable propeller.
  • the motor is in a stable phase corresponding to the stable phase of the stable operation of the motor in time t 2 in FIG. 4 .
  • the judgment formula is as follows:
  • I 1 is a current peak;
  • the preset current threshold is; N 1 is the first number of times; N 2 is the second number.
  • the motor When the first number N 1 is greater than the second number N 2 , it is determined that the motor has a foldable propeller; otherwise, the motor is determined not to have a foldable propeller.
  • the preset current threshold It is a value determined based on the first peak value I'pp1 and the second peak value I'pp2 .
  • the first peak-to-peak value I' pp1 is a peak-to-peak current of the motor when the motor is in a stable phase before being detected in the paddle state.
  • the second peak-to-peak value I' pp2 is a peak-to-peak current of the motor when the motor is in a stable phase in the absence of the paddle state.
  • the pre-detection means that the ESC performs the function test of the aircraft after the aircraft is installed, before performing the method of judging whether the aircraft has the paddle.
  • the current peak-to-peak value I' pp1 when the motor is in the stable phase when the foldable propeller is installed and the current peak-to-peak value I' pp2 when the motor is in the stable phase when the foldable propeller is not installed are obtained.
  • the two current peak-to-peak values I' pp1 , I' pp2 may be pre-configured in the ESC to determine a preset current threshold.
  • the preset current threshold is; I' pp1 is the first peak-to-peak value; I' pp2 is the second peak-to-peak value.
  • acceleration and deceleration are only for the purpose of illustration, and should not be construed as limiting the embodiments of the present application.
  • any suitable number of accelerations and decelerations may be employed to drive the aircraft for state transitions, such as 3 or more times.
  • the method for determining whether an aircraft has a paddle provided by the embodiment of the present application is applied to an ESC, and the ESC determines whether the motor of the aircraft has a foldable propeller according to a current waveform, so as to solve whether the detecting aircraft is not provided in the prior art.
  • the problem with the method of paddles by judging whether the aircraft has a collapsible propeller, can avoid the aircraft rollover caused by the flight of the aircraft without the paddle, and improve the safety of the flight of the aircraft.
  • the embodiment of the present application is another embodiment of a method for determining whether an aircraft has a paddle provided by the present application.
  • FIG. 5 is a schematic flowchart of a method for determining whether an aircraft has a paddle according to another embodiment of the present application.
  • a method of determining whether an aircraft has a paddle according to another embodiment of the present application may be performed by an ESC of the above-described aircraft (such as a drone or the like).
  • the method for determining whether an aircraft has a paddle includes:
  • the state of the aircraft includes a closed state and a closed state, wherein the closed state is a state in which the propeller of the aircraft is in a folded state, the open state is a state in which the propeller of the aircraft is in an unfolded state; and the state switching of the aircraft includes: The aircraft is switched from a closed state to an open state; or the aircraft is switched from an open state to a closed state.
  • the current waveform may be a current curve of the motor with time, and the current peak of the motor is obtained from the current waveform.
  • the current waveform of the motor that drives the aircraft to perform state switching includes: A current peak of the motor is obtained from the current waveform.
  • the current peak value is the maximum value of the motor current in one cycle during the state switching of the aircraft.
  • other parameters of the motor may also be obtained from the current waveform, such as the frequency of the current of the motor during the state of the aircraft being switched.
  • the current peak value is the maximum value of the motor current in one cycle during the state switching of the aircraft.
  • other parameters of the motor may also be obtained from the current waveform, such as the frequency of the current of the motor during the state of the aircraft being switched.
  • the current waveform is a current waveform of a phase current of the motor.
  • Obtaining a current waveform of the motor that drives the aircraft to perform state switching that is, acquiring a current of the motor in real time during the state switching of the aircraft to obtain a current waveform, and obtaining a current peak from the current waveform, thereby obtaining A curve of current peaks as a function of time during this switching.
  • the obtaining a current peak of the motor from the current waveform specifically includes: acquiring a reactive current and an active current of the motor during a state switching of the aircraft; The current and the active current are used to obtain a current peak of the motor from the current waveform.
  • Determining, according to the current waveform, whether the motor of the aircraft has a foldable propeller comprises: comparing a current peak when the motor is in a stable phase with a preset current threshold to obtain a first number and a first Two times, the first number of times is the number of times the current peak is greater than the preset current threshold, and the second number is the number of times the current peak is less than the preset current threshold; when the first time When the number is greater than the second number, the motor is determined to have a foldable propeller; otherwise, the motor is determined to have no foldable propeller.
  • the preset current threshold is a value determined according to the first peak-to-peak value and the second peak-to-peak value; the first peak-to-peak value is a peak-to-peak current when the motor is in a stable phase before being detected in the paddle state; The second peak-to-peak value is a peak-to-peak current of the motor when the motor is in a stable phase in the absence of the paddle state.
  • step 501 in the embodiment of the present application is similar to step 301 in the foregoing embodiment, and step 502 is similar to step 502 in the foregoing embodiment, and therefore, details are not described herein again.
  • steps 501-502 in the embodiments of the present application reference may be made to the specific description of steps 302-302 in the foregoing embodiment.
  • the ESC sends a flight command only when it is judged that each of the 4 motors has a foldable propeller, so that the aircraft completes the specified flight mission according to the flight instruction; otherwise, it does not send Flight instructions.
  • the ESC sends a flight command to the motor to fly the aircraft;
  • the ESC controls four motors.
  • the aircraft In the state of waiting for speed, the aircraft is prohibited from flying, so as to avoid the occurrence of the situation that the aircraft motor has no paddle but the aircraft is flying, and the safety of the aircraft flight is improved.
  • the method for determining whether an aircraft has a paddle provided by the embodiment of the present application is applied to an ESC, and the ESC determines whether the motor of the aircraft has a foldable propeller according to a current waveform, so as to solve whether the detecting aircraft is not provided in the prior art.
  • the problem with the method of paddles is to determine whether the aircraft is flying by judging whether the aircraft has a foldable propeller, and to avoid the aircraft rollover caused by the aircraft flying without the paddle, thereby improving the safety of the aircraft flight.
  • FIG. 6 is a schematic diagram of a device for determining whether an aircraft has a paddle according to an embodiment of the present application.
  • the device for judging whether the aircraft has a paddle may be disposed in an electric tone of the above-mentioned aircraft (such as a drone, etc.).
  • the means 60 for determining whether an aircraft has a paddle includes:
  • the current waveform acquisition module 601 is configured to acquire a current waveform of a motor that drives the aircraft to perform state switching when the aircraft performs state switching.
  • the state of the aircraft includes a closed state and an open state.
  • the closed state of the aircraft is a state in which the propeller of the aircraft is in a folded state
  • the open state is a state in which the propeller of the aircraft is in an unfolded state.
  • the state switching of the aircraft includes: switching the aircraft from a closed state to an open state; or switching the aircraft from an open state to a closed state. That is, the state in which the propeller of the aircraft is in the folded state is switched to the state in the unfolded state; or the state in which the propeller of the aircraft is in the unfolded state is switched to the state in the folded state.
  • the current waveform may be a curve of current of the motor as a function of time.
  • the current waveform acquisition module 601 acquires a current waveform of a motor that drives the aircraft to perform state switching, including: acquiring current of the motor from the current waveform. Peak.
  • the current waveform obtaining module 601 acquires a current peak of the motor from the current waveform, including: acquiring a reactive current and an active current of the motor during a state switching of the aircraft; The reactive current and the active current acquire a current peak of the motor from the current waveform.
  • the current waveform obtaining module 601 can obtain the reactive current and the active current of the motor by any suitable method.
  • the current waveform acquiring module 601 receives the reactive current and the active current collected by the oscilloscope. To obtain the reactive current and the active current.
  • the current peak value of the motor can be determined by the current peak calculation formula.
  • the determining module 602 is configured to determine, according to the current waveform, whether the motor of the aircraft has a foldable propeller.
  • the motor of the aircraft can usually use two (or multiple) acceleration and deceleration to drive the aircraft to perform state switching, and for the case of the aircraft with and without the paddle, the corresponding current waveform is different, therefore, the determination module 602
  • the current waveform can be used to determine if the motor of the aircraft has a foldable propeller.
  • the operating state of the motor includes: a first state and a second state, wherein the motor is stably operated in the first state; and in the second state in the second state
  • the motor includes a shifting phase during variable speed operation, a steady phase of stable operation, and a deceleration phase of decelerating operation.
  • the stable phase of the stable operation or the stable operation is not that the current peak is stable during the operation, and in actual conditions, the current peak during the operation due to external interference and internal characteristics of the motor. There will also be some fluctuations, that is, the current peak has a certain value in the stable phase of stable operation.
  • the determining module 602 is specifically configured to: compare a current peak when the motor is in a stable phase with a preset current threshold to obtain a first number of times and a second number of times, where the first number of times is The number of times the current peak is greater than the preset current threshold, the second number being the number of times the current peak is less than the preset current threshold; when the first number is greater than the second number, determining The motor has a foldable propeller; otherwise, it is determined that the motor does not have a foldable propeller.
  • the motor is in a stable phase corresponding to the stable phase of the stable operation of the motor in time t 2 in FIG. 4 .
  • the judging module 602 can pass The first number and the second number are used to determine whether or not to have a paddle. Specifically, when the first number N 1 is greater than the second number N 2 , the determining module 602 determines that the motor has a foldable propeller; otherwise, the determining module 602 determines that the motor does not have a foldable propeller .
  • the preset current threshold It is a value determined based on the first peak value I'pp1 and the second peak value I'pp2 .
  • the first peak-to-peak value I' pp1 is a peak-to-peak current of the current when the motor is in a stable phase detected by the determination module 602 in the paddle state.
  • the second peak-to-peak value I' pp2 is a peak-to-peak current of the current when the motor is in a stable phase detected by the determination module 602 in the no-pasting state.
  • the pre-detection means that the ESC performs the function test of the aircraft after the aircraft is installed, before performing the method of judging whether the aircraft has the paddle.
  • the current peak-to-peak value I' pp1 when the motor is in the stable phase when the foldable propeller is installed and the current peak-to-peak value I' pp2 when the motor is in the stable phase when the foldable propeller is not installed are obtained.
  • the two current peak-to-peak values I′ pp1 , I′ pp2 may be pre-configured in the ESC, so that the determining module 602 determines the preset according to the first peak-to-peak value I′ pp1 and the second peak-to-peak value I′ pp2 .
  • Current threshold is the current peak-to-peak value I' pp1 when the motor is in the stable phase when the foldable propeller is installed.
  • the formula of the determination module 602 determining the preset current threshold is as follows:
  • the preset current threshold is; I' pp1 is the first peak-to-peak value; I' pp2 is the second peak-to-peak value.
  • the device 60 for determining whether the aircraft has a paddle may perform the method for determining whether the aircraft has a paddle provided by Embodiment 1 of the present application, and has a function module and a beneficial effect corresponding to the execution method. .
  • the method of determining whether the aircraft has a paddle as provided in Embodiment 1 of the present application.
  • FIG. 7 is a schematic diagram of a device for determining whether an aircraft has a paddle according to an embodiment of the present application.
  • the device 70 for judging whether the aircraft has a paddle may be disposed in an ESC of the above-mentioned aircraft (such as a drone, etc.).
  • the apparatus 70 for determining whether an aircraft has a paddle includes:
  • the current waveform acquisition module 701 is configured to acquire a current waveform of a motor that drives the aircraft to perform state switching when the aircraft performs state switching.
  • the state of the aircraft includes a closed state and an open state.
  • the closed state of the aircraft is a state in which the propeller of the aircraft is in a folded state
  • the open state is a state in which the propeller of the aircraft is in an unfolded state.
  • the state switching of the aircraft includes: switching the aircraft from a closed state to an open state; or switching the aircraft from an open state to a closed state. That is, the state in which the propeller of the aircraft is in the folded state is switched to the state in the unfolded state; or the state in which the propeller of the aircraft is in the unfolded state is switched to the state in the folded state.
  • the current waveform may be a curve of current of the motor as a function of time.
  • the current waveform acquisition module 701 acquires a current waveform of a motor that drives the aircraft to perform state switching, including: acquiring current of the motor from the current waveform. Peak.
  • the current waveform obtaining module 701 acquires a current peak of the motor from the current waveform, including: acquiring a reactive current and an active current of the motor during a state switching of the aircraft; The reactive current and the active current acquire a current peak of the motor from the current waveform.
  • the current waveform obtaining module 701 can obtain the reactive current and the active current of the motor by any suitable method.
  • the current waveform acquiring module 701 receives the reactive current and the active current collected by the oscilloscope. To obtain the reactive current and the active current.
  • the current peak value of the motor can be determined by the current peak calculation formula.
  • the determining module 702 is configured to determine, according to the current waveform, whether the motor of the aircraft has a foldable propeller.
  • the motor of the aircraft can usually use two (or multiple) acceleration and deceleration to drive the aircraft to perform state switching. For the case where the aircraft is paddled or not, the corresponding current waveform is different. Therefore, the judging module 702 The current waveform can be used to determine if the motor of the aircraft has a foldable propeller.
  • the operating state of the motor includes: a first state and a second state, wherein the motor is stably operated in the first state; and in the second state in the second state
  • the motor includes a shifting phase during variable speed operation, a steady phase of stable operation, and a deceleration phase of decelerating operation.
  • the stable phase of the stable operation or the stable operation is not that the current peak is stable during the operation, and in actual conditions, the current peak during the operation due to external interference and internal characteristics of the motor. There will also be some fluctuations, that is, the current peak has a certain value in the stable phase of stable operation.
  • the determining module 702 is specifically configured to compare a current peak when the motor is in a stable phase with a preset current threshold to obtain a first number of times and a second number of times, where the first number of times is The number of times the current peak is greater than the preset current threshold, the second number being the number of times the current peak is less than the preset current threshold; when the first number is greater than the second number, determining The motor has a foldable propeller; otherwise, it is determined that the motor does not have a foldable propeller.
  • the motor is in a stable phase corresponding to the stable phase of the stable operation of the motor in time t 2 in FIG. 4 .
  • the judging module 702 can pass The first number and the second number are used to determine whether or not to have a paddle. Specifically, when the first number N 1 is greater than the second number N 2 , the determining module 702 determines that the motor has a foldable propeller; otherwise, the determining module 702 determines that the motor does not have a foldable propeller .
  • the preset current threshold It is a value determined based on the first peak value I'pp1 and the second peak value I'pp2 .
  • the first peak-to-peak value I' pp1 is a current peak-to-peak value when the motor detected by the determination module 702 is in a stable phase in the paddle state.
  • the second peak-to-peak value I' pp2 is the peak-to-peak current of the motor when the motor 301 is detected in advance in the non-paving state.
  • the pre-detection means that the ESC performs the function test of the aircraft after the aircraft is installed, before performing the method of judging whether the aircraft has the paddle.
  • the current peak-to-peak value I' pp1 when the motor is in the stable phase when the foldable propeller is installed and the current peak-to-peak value I' pp2 when the motor is in the stable phase when the foldable propeller is not installed are obtained.
  • the two current peak-to-peak values I′ pp1 , I′ pp2 may be pre-configured in the ESC, so that the determining module 702 determines the preset according to the first peak-to-peak value I′ pp1 and the second peak-to-peak value I′ pp2 .
  • Current threshold is the current peak-to-peak value I' pp1 when the motor is in the stable phase when the foldable propeller is installed.
  • the formula of the determination module 702 determining the preset current threshold is as follows:
  • the preset current threshold is; I' pp1 is the first peak-to-peak value; I' pp2 is the second peak-to-peak value.
  • the flag determining module 703 is configured to determine, according to the first number of times and the second number of times, a flag bit of the motor, where the flag bit is used to indicate whether the motor has a paddle.
  • the flight instruction sending module 704 is configured to send a flight instruction according to the flag bit, where the flight instruction is used to control the aircraft to fly.
  • the flight command transmitting module 704 sends a flight command when it is determined that each of the four motors has a foldable propeller, so that the aircraft completes the specified flight task according to the flight instruction. Otherwise, the flight instruction transmitting module 704 does not send a flight instruction.
  • the device 70 for determining whether an aircraft has a paddle can perform the method for determining whether an aircraft has a paddle provided by Embodiment 2 of the present application, and has a function module and a beneficial effect corresponding to the execution method. .
  • the method of determining whether the aircraft has a paddle provided in Embodiment 2 of the present application can perform the method for determining whether an aircraft has a paddle provided in Embodiment 2 of the present application.
  • FIG. 8 is a schematic structural diagram of an ESC hardware provided by an embodiment of the present application. As shown in FIG. 8, the ESC 80 includes:
  • One or more processors 801 and memory 802, one processor 801 is taken as an example in FIG.
  • the processor 801 and the memory 802 may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 802 is a non-volatile computer readable storage medium, and can be used for storing non-volatile software programs, non-volatile computer-executable programs, and modules, such as a method for determining whether an aircraft has a paddle in the embodiment of the present application.
  • Corresponding program instructions/modules for example, current waveform acquisition module 701, determination module 702, flag determination module 703, and flight instruction transmission module 704 shown in FIG. 7).
  • the processor 801 performs various functional applications and data processing of the ESC by running non-volatile software programs, instructions, and modules stored in the memory 802, that is, a method for determining whether the aircraft has a paddle by implementing the method embodiment .
  • the memory 802 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to the use of the ESC, and the like.
  • memory 802 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the memory 802 can optionally include memory remotely located relative to the processor 801 that can be connected to the ESC via a network.
  • Embodiments of the network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more modules are stored in the memory 802, and when executed by the one or more processors 801, perform the determination in the arbitrary method embodiment 1 and/or embodiment 2 whether the aircraft has a paddle
  • the method for example, performs the method steps 501 through 504 of FIG. 5 described above to implement the functions of the modules 701-704 of FIG.
  • the ESC can perform the method for determining whether an aircraft has a paddle provided by Embodiment 1 and/or Embodiment 2 of the present application, and has a function module and a beneficial effect corresponding to the execution method.
  • a function module and a beneficial effect corresponding to the execution method For details of the technical details that are not described in detail in the ESC embodiment, reference may be made to the method of determining whether the aircraft is equipped with paddles as provided in Embodiment 1 and/or Embodiment 2 of the present application.
  • the embodiment of the present application provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instruction is When the ESC is executed, the ESC is caused to perform the method of determining whether the aircraft has a paddle as described above. For example, performing the method steps 501 through 504 of FIG. 5 described above, the functions of the modules 701-704 of FIG. 7 are implemented.
  • An embodiment of the present application provides a non-transitory computer readable storage medium storing computer-executable instructions that, when electrically executed, cause the ESC to execute as above
  • the method of determining whether an aircraft has a paddle For example, performing the method steps 501 through 504 of FIG. 5 described above, the functions of the modules 701-704 of FIG. 7 are implemented.
  • the power system 90 includes a motor 91 and an ESC 80 as described above, wherein the ESC 80 is electrically coupled to the motor 91 for determining whether the motor 91 has a foldable propeller and controlling the motor 91. Running.
  • an embodiment of the present application further provides an aircraft.
  • the aircraft 100 includes a fuselage 1001 and a power system 90 as described above that is mounted on the fuselage 1001 for providing flight power to the aircraft 100.
  • an embodiment of the present application further provides another aircraft.
  • the aircraft 110 includes:
  • An arm 1102, the arm is connected to the center housing;
  • the ESC 80 is electrically coupled to the motor 1103 for performing all or part of the steps of the method of determining whether the aircraft has a paddle as shown in FIG. 3 or 5.
  • the ESC 80 includes:
  • At least one processor and,
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform as illustrated in any of the above-described exemplary embodiments The method of judging whether the aircraft has a paddle.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical. Modules can be located in one place or distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the embodiments can be implemented by means of software plus a general hardware platform, and of course, by hardware.
  • One of ordinary skill in the art can understand that all or part of the process of implementing the embodiment method can be completed by computer program related hardware, the program can be stored in a computer readable storage medium, and the program is executed.
  • the flow of an embodiment of the methods as described may be included.
  • the storage medium may be a read-only memory (ROM) or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种判断飞行器(100,110)是否带桨的方法和使用该方法的装置(60,70)、电调(1031,80)、动力系统(90,103)及飞行器(100,110)。方法包括:当飞行器(100,110)进行状态切换时,获取驱动飞行器(100,110)进行状态切换的电机(91,1032,1103)的电流波形(301,501),根据电流波形,判断飞行器(100,110)的电机(91,1032,1103)是否带有可折叠螺旋桨(302,502)。通过该方法可以避免飞行器(100,110)侧翻,提高飞行器(100,110)飞行的安全性。

Description

判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器
本申请要求于2018年04月11日提交中国专利局、申请号为2018103205938、申请名称为“判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及飞行器技术领域,尤其涉及一种判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器。
背景技术
目前大多数飞行器,如无人机(Unmanned Aerial Vehicle,UAV)、航天器、无人船等,通常通过电子调速器(简称电调)控制电机以驱动螺旋桨旋转方式实现运动控制。以无人机为例,其通过包括4个螺旋桨,螺旋桨与电机的转动轴连接,一个电机上安装有一个螺旋桨,各个电机在电调的控制下,驱动对应的螺旋桨旋转以使无人机完成各个规定动作(或姿态);并且,为了方便收纳及节约空间,通常该螺旋桨为可折叠螺旋桨。但存在初次使用者或充满好奇的用户会在飞行器上少安装一个或多个螺旋桨的情况。如果在少安装一个或多个螺旋桨的情况下,电调进行推杆操作使飞行器飞行时,会导致飞行器侧翻。而侧翻会导致飞行器磨损,甚至会造成人身伤害。因此,检测飞行器是否带螺旋桨对于飞行器的飞行至关重要。而在现用技术中,没有检测飞行器是否带桨的方法。
发明内容
本申请的主要目的在于提供一种判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器,能够判断飞行器是否带有可折叠螺旋桨,从而避免飞行器侧翻,提高飞行器飞行的安全性。
本申请实施例公开了如下技术方案:
为解决上述技术问题,本申请实施例提供了一种判断飞行器是否带桨的方法,所述方法包括:
当所述飞行器进行状态切换时,获取驱动所述飞行器进行状态切换的电机的电流波形;
根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨。
在一些实施例中,所述飞行器的状态包括闭合状态和打开状态,所述闭合状态为飞行器的螺旋桨处于折叠时的状态,所述打开状态为飞行器的螺旋桨处于展开时的状态;
所述飞行器进行状态切换包括:
所述飞行器由闭合状态切换为打开状态;或者,
所述飞行器由打开状态切换为闭合状态。
在一些实施例中,所述获取驱动所述飞行器进行状态切换的电机的电流波形,包括:
从所述电流波形中获取所述电机的电流峰值。
在一些实施例中,所述从所述电流波形中获取所述电机的电流峰值,包括:
获取在所述飞行器进行状态切换的过程中的所述电机的无功电流和有功电流;
根据所述无功电流和所述有功电流,从所述电流波形中获取所述电机的电流峰值。
在一些实施例中,所述根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨,包括:
将所述电机处于稳定阶段时的电流峰值与预设电流阈值进行比较,以得到第一次数和第二次数,所述第一次数为所述电流峰值大于所述预设电流阈值的次数,所述第二次数为所述电流峰值小于所述预设电流阈值的次数;
当所述第一次数大于所述第二次数时,确定所述电机带有可折叠螺旋桨;否则,确定所述电机未带可折叠螺旋桨。
在一些实施例中,在所述飞行器进行状态切换的过程中,所述电机的运行状态包括:第一状态和第二状态,在所述第一状态时,所述电机稳定运行;在所述第二状态时,所述电机包括变速运行的变速阶段、稳定运行的稳定阶段以及减速运行的减速阶段。
在一些实施例中,所述预设电流阈值为根据第一峰峰值及第二峰峰值确定的值;
所述第一峰峰值为在带桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值;
所述第二峰峰值为在无桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值。
在一些实施例中,所述方法还包括:
根据所述第一次数和所述第二次数,确定所述电机的标志位,所述标志位用于表征电机是否带桨;
根据所述标志位,发送飞行指令,所述飞行指令用于控制所述飞行器进行飞行。
为解决上述技术问题,本申请实施例还提供了一种判断飞行器是否带桨的装置,所述装置包括:
电流波形获取模块,用于当所述飞行器进行状态切换时,获取驱动所述飞行器进行状态切换的电机的电流波形;
判断模块,用于根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨。
在一些实施例中,所述飞行器的状态包括闭合状态和打开状态,所述闭合状态为飞行器的螺旋桨处于折叠时的状态,所述打开状态为飞行器的螺旋桨处于展开时的状态;
所述飞行器进行状态切换包括:
所述飞行器由闭合状态切换为打开状态;或者,
所述飞行器由打开状态切换为闭合状态。
在一些实施例中,所述电流波形获取模块获取驱动所述飞行器进行状态切换的电机的电流波形,包括:
从所述电流波形中获取所述电机的电流峰值。
在一些实施例中,所述电流波形获取模块从所述电流波形中获取所述电机的电流峰值,包括:
获取在所述飞行器进行状态切换的过程中的所述电机的无功电流和有功电流;
根据所述无功电流和所述有功电流,从所述电流波形中获取所述电机的电流峰值。
在一些实施例中,所述判断模块具体用于:
将所述电机处于稳定阶段时的电流峰值与预设电流阈值进行比较,以得到第一次数和第二次数,所述第一次数为所述电流峰值大于所述预设电流阈值的次数,所述第二次数为所述电流峰值小于所述预设电流阈值的次数;
当所述第一次数大于所述第二次数时,确定所述电机带有可折叠螺旋桨;否则,确定所述电机未带可折叠螺旋桨。
在一些实施例中,在所述飞行器进行状态切换的过程中,所述电机的运行状态包括:第一状态和第二状态,在所述第一状态时,所述电机稳定运行;在所述第二状态时,所述电机包括变速运行的变速阶段、稳定运行的稳定阶段以及减速运行的减速阶段。
在一些实施例中,所述预设电流阈值为根据第一峰峰值及第二峰峰值确定的值;
所述第一峰峰值为在带桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值;
所述第二峰峰值为在无桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值。
在一些实施例中,所述装置还包括:
标志位确定模块,用于根据所述第一次数和所述第二次数,确定所述电机的标志位,所述标志位用于表征电机是否带桨;
飞行指令发送模块,用于根据所述标志位,发送飞行指令,所述飞行指 令用于控制所述飞行器进行飞行。
为解决上述技术问题,本申请实施例还提供了一种电调,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的判断飞行器是否带桨的方法。
为解决上述技术问题,本申请实施例还提供一种动力系统,包括:
电机;以及
如上所述的电调,所述电调与所述电机电连接,用于判断所述电机是否带有可折叠螺旋桨以及控制所述电机的运行。
为解决上述技术问题,本申请实施例还提供一种飞行器,包括:
机身;以及
如上所述的动力系统,安装在所述机身上,用于为所述飞行器提供飞行动力。
为解决上述技术问题,本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所 述电调执行如上所述的判断飞行器是否带桨的方法。
为解决上述技术问题,本申请实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上所述的判断飞行器是否带桨的方法。
本申请实施例的有益效果是:区别于现有技术的情况,本申请实施例提供了一种根据电流波形判断飞行器是否带有可折叠螺旋桨的方法,并且,通过该方法可以避免飞行器侧翻,提高飞行器飞行的安全性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供的无人机的结构示意图;
图2是图1所示的无人机的动力系统的连接框图;
图3是本申请其中一实施例提供的一种判断飞行器是否带桨的方法的流程示意图;
图4是本申请实施例提供的电流峰值随时间变化的示意图;
图5是本申请另一实施例提供的一种判断飞行器是否带桨的方法的流程示意图;
图6是本申请其中一实施例提供的一种判断飞行器是否带桨的装置示意图;
图7是本申请另一实施例提供的一种判断飞行器是否带桨的装置示意图;
图8是本申请实施例提供的电调硬件结构示意图;
图9是本申请实施例提供的一种动力系统的示意图;
图10是本申请实施例提供的一种飞行器的示意图;
图11是本申请实施例提供的另一种飞行器的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本申请实施例提供的判断飞行器是否带桨的方法可以应用到各种飞行器上,包括但不限于:无人机、航天器、无人船等。现以无人机为例进行说明。如图1所示,无人机1包括机身101、机臂102和动力系统103。机臂102与机身101一体连接或者固定连接,动力系统103安装于机臂102上,用于为无人机1提供飞行动力。具体的,如图2所示,动力系统103包括电调1031、电机1032和螺旋桨1033。电调1031位于机臂102或机身101的壳体所形成的空腔内。电调1031与电机1032电连接,电机1032安装在机臂102上,电机1032的转动轴连接螺旋桨1033。通过该动力系统103使得无人机1完成规定的飞行任务。其具体过程主要包括:电调1031发送飞行指令给电机1032,通过该飞行指令以控制电机1032的转速和加速度等;当电机1032接收到所述飞行指令后,驱动螺旋桨1033,从而使得螺旋桨1033将电机1032的转动 功率转化为可使无人机1移动的力,例如,使得无人机1移动的升力或者推力,进而使得无人机1完成规定的飞行任务。
但是存在初次使用者或充满好奇的用户由于误操作或者出于好奇心在无人机等飞行器上少安装一个或多个螺旋桨的情况,如果在少安装一个或多个螺旋桨的情况下,电调发送飞行指令如进行推杆操作使飞行器飞行时,会导致飞行器的侧翻。而侧翻会导致飞行器磨损等,甚至会造成人身伤害等不可预计的后果。因此,检测飞行器是否带螺旋桨对于飞行器的飞行至关重要。而在现用技术中,没有检测飞行器是否带桨的方法。
因此,基于上述问题,本申请的主要目的在于提供一种判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器。
对于无人机等飞行器的螺旋桨来说,为了尽可能在增大螺旋桨桨叶翼展的同时不增加飞行器的尺寸及便于飞行器的收纳,目前市面上通常采用可折叠螺旋桨。通过电调控制电机以驱动可折叠螺旋桨的打开或关闭。具体的,在使用飞行器时,通过电调控制电机以驱动可折叠螺旋桨打开,而在不使用飞行器时,通过电调控制电机以驱动可折叠螺旋桨关闭。而对于带桨或不带桨情况,对应的电机的驱动电流是不同的。
本申请便是基于上述原理提供的判断飞行器(如无人机等)是否带桨的方法,具体的,本申请的思路是:首先,当所述飞行器进行状态切换时,获取驱动所述飞行器进行状态切换的电机的电流波形;然后,根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨。
通过根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨,以解决现有技术中没有提供检测飞行器是否带桨的方法的问题,通过判断飞 行器是否带有可折叠螺旋桨,从而避免飞行器侧翻,提高飞行器飞行的安全性。
下面结合附图,对本申请实施例作进一步阐述。
实施例1:
本申请实施例为本申请提供的一种判断飞行器是否带桨的方法的其中一实施例。如图3为本申请其中一实施例提供的一种判断飞行器是否带桨的方法的流程示意图。本申请其中一实施例的一种判断飞行器是否带桨的可由上述飞行器(如无人机等)的电调执行。
参照图3,所述判断飞行器是否带桨的方法包括:
301:当所述飞行器进行状态切换时,获取驱动所述飞行器进行状态切换的电机的电流波形。
其中,所述飞行器的状态包括闭合状态和打开状态。具体的,所述飞行器的闭合状态为飞行器的螺旋桨处于折叠时的状态,所述打开状态为飞行器的螺旋桨处于展开时的状态。其中,飞行器的螺旋桨为可折叠螺旋桨,以便在增大螺旋桨桨叶翼展的同时不增加飞行器的尺寸,便于飞行器的收纳。可折叠螺旋桨是指可以通过电调控制电机来驱动桨叶的折叠或展开的螺旋桨。所述螺旋桨处于折叠时的状态是指螺旋桨桨叶与飞行器的中心轴线所形成的角度小于第一预设角度时的状态,所述螺旋桨处于展开时的状态是指螺旋桨桨叶与飞行器的中心轴线所形成的角度大于第二预设角度时的状态。其中,第一预设角度和第二预设角度可以根据用户需要自定义设置或者根据飞行器飞行标准进行设置,例如,所述第一预设角度可以为5°,所述第一预设角度 可以为85°等,此时,若螺旋桨桨叶与飞行器的中心轴线所形成的角度小于5°,则飞行器的螺旋桨处于折叠时的状态;若角度大于85°,则飞行器的螺旋桨处于展开时的状态。
进一步的,所述飞行器进行状态切换包括:所述飞行器由闭合状态切换为打开状态;或者,所述飞行器由打开状态切换为闭合状态。也即,所述飞行器的螺旋桨处于折叠时的状态切换为展开时的状态;或者所述飞行器的螺旋桨处于展开时的状态切换为折叠时的状态。
对于飞行器的电调来说,通常不会进行判断飞行器是否带桨的操作,在电调的控制飞行器飞行的控制逻辑中默认飞行器是带桨的,因此,无论飞行器是否带桨,在飞行器进行飞行任务前,电调都会首先会发送启动螺旋桨张开的控制指令给电机,以控制电机驱动所述飞行器的螺旋桨由折叠状态切换为展开状态,而在该过程中,电调可以实时获取该电机的电流,也即获取驱动所述飞行器由闭合状态切换为打开状态的过程中电机的电流波形。电调获取驱动所述飞行器由打开状态切换为闭合状态的过程中电机的电流波形与上述过程类似,因此,在此处不作赘述。
其中,该电流波形可以为电机的电流随时间的变化曲线,从该电流波形中获取所述电机的电流峰值,具体的,所述获取驱动所述飞行器进行状态切换的电机的电流波形,包括:从所述电流波形中获取所述电机的电流峰值。该电流峰值是指在飞行器进行状态切换的过程中的一个周期内,电机电流的最大值。在一些实施例中,还可从该电流波形中获取电机的其它参数,如在飞行器进行状态切换的过程中电机的电流的频率等。进一步的,该电流波形为电机的相电流的电流波形。所述获取驱动所述飞行器进行状态切换的电机 的电流波形也即在所述飞行器进行状态切换过程中,实时获取电机的电流,以得到电流波形,并从该电流波形中获取电流峰值,从而得到该切换过程中电流峰值随时间变化的曲线。
进一步的,所述从所述电流波形中获取所述电机的电流峰值,具体包括:获取在所述飞行器进行状态切换的过程中的所述电机的无功电流和有功电流;根据所述无功电流和所述有功电流,从所述电流波形中获取所述电机的电流峰值。其中,所述电机的无功电流是指电流方向和电压方向垂直的电流,所述电机的有功电流是指电流方向和电压方向平行的电流。在本申请实施例中,可以通过任何合适的方式获取所述电机的无功电流和有功电流,例如,借助示波器获取得到所述无功电流和有功电流。获取得到所述无功电流和有功电流后,可以通过电流峰值计算公式,确定所述电机的电流峰值。其电流峰值计算公式具体如下:
Figure PCTCN2018105294-appb-000001
其中,I 1为电流峰值;I d为无功电流;I q为无功电流。
302:根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨。
飞行器的电机通常可以采用2次(或多次)加减速来驱动所述飞行器进行状态切换,而对于飞行器带桨与不带桨的情况,其对应的电流波形是不同的,因此,可以通过该电流波形来确定所述飞行器的电机是否带有可折叠螺旋桨。
下面以采用2次加减速为例对电调根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨进行具体说明。
在所述飞行器进行状态切换的过程中,采用2次加减速,电调获取得到 的电流波形大致如图4所示。也即,图4为在所述飞行器进行状态切换的过程中,电流峰值随时间变化的示意图。
其中,在所述飞行器进行状态切换的过程中,所述电机的运行状态包括:第一状态和第二状态,在所述第一状态时,所述电机稳定运行;在所述第二状态时,所述电机包括在变速运行的变速阶段、稳定运行的稳定阶段以及减速运行的减速阶段。具体的,首先电机在第一状态的稳定运行t 0时间;然后,进入第二状态,并在第二状态的变速运行的变速阶段运行t 1时间后,在第二状态的稳定运行的稳定阶段运行t 2时间,在第二状态的减速运行的减速阶段运行t 3时间,其中,变速运行包括电机先加速运行、再稳定运行、再减速运行;最后,再进入第一状态的稳定运行t 4时间,从而驱动所述飞行器完成状态切换。其中,t 0、t 1、t 3、t 4根据电机实际运行的情况确定,图4中所示各个时间的长度并不能理解为对其具体时间的限制。需要说明的是,所述稳定运行或稳定运行的稳定阶段并非电流峰值在该运行过程中一直稳定不变,而在实际情况下,由于外界的干扰以及电机内部特性,在该运行过程中电流峰值也会有一定的波动,也即电流峰值在稳定运行的稳定阶段其值存在一定的变化。
在本申请实施例中,所述根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨,具体包括:将所述电机处于稳定阶段时的电流峰值与预设电流阈值进行比较,以得到第一次数和第二次数,所述第一次数为所述电流峰值大于所述预设电流阈值的次数,所述第二次数为所述电流峰值小于所述预设电流阈值的次数;当所述第一次数大于所述第二次数时,确定所述电机带有可折叠螺旋桨;否则,确定所述电机未带可折叠螺旋桨。其中,所述电机处于稳定阶段对应于图4中t 2时间内电机稳定运行的稳定阶段。通过确 定飞行器是否带有可折叠螺旋桨,可以避免飞行器在没有带桨时进行飞行而导致的飞行器侧翻,提高飞行器飞行的安全性。
由于外界的干扰以及电机内部特性使得在实际情况下,电流峰值在稳定运行的稳定阶段其值存在一定的变化,因此,为了提高判断电机是否带有可折叠螺旋桨的准确性,通过第一次数及第二次数来确定是否带桨。具体的,其判断公式如下所示:
Figure PCTCN2018105294-appb-000002
其中,I 1为电流峰值;
Figure PCTCN2018105294-appb-000003
为预设电流阈值;N 1为第一次数;N 2为第二次数。
当所述第一次数N 1大于所述第二次数N 2为时,确定所述电机带有可折叠螺旋桨;否则,确定所述电机未带可折叠螺旋桨。例如,当比较得到电流峰值I 1大于预设电流阈值
Figure PCTCN2018105294-appb-000004
的次数为10,也即N 1=10,且电流峰值I 1小于预设电流阈值
Figure PCTCN2018105294-appb-000005
的次数为5,也即N 2=5时,可以确定所述电机带有可折叠螺旋桨。
其中,所述预设电流阈值
Figure PCTCN2018105294-appb-000006
为根据第一峰峰值I′ pp1及第二峰峰值I′ pp2确定的值。所述第一峰峰值I′ pp1为在带桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值。所述第二峰峰值I′ pp2为在无桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值。该预先检测是指电调在执行判断飞行器是否带桨的方法之前,在飞行器装机后进行飞行器的功能测试等。例如,通过多次飞行器的功能测试,得到安装有可折叠螺旋桨时电机处于稳定阶段时的电流峰峰值I′ pp1以及未安装可折叠螺旋桨时电机处于稳定阶段时的电流峰峰值I′ pp2,便可为将该两个电流峰峰值I′ pp1、I′ pp2预先配置在电调中,以便确定预设电流阈值。
进一步的,确定预设电流阈值的公式如下所示:
Figure PCTCN2018105294-appb-000007
其中,
Figure PCTCN2018105294-appb-000008
为预设电流阈值;I′ pp1为第一峰峰值;I′ pp2为第二峰峰值。
需要说明的是,上述对于采用2次加减速仅是出于举例说明的目的,并不应理解为对本申请的实施例的限制。在一些实施例中,可以采用任何合适的加减速次数以驱动飞行器进行状态转换,如3次或更多次等。
本申请实施例提供的判断飞行器是否带桨的方法应用于电调,该电调通过根据电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨,以解决现有技术中没有提供检测飞行器是否带桨的方法的问题,通过判断飞行器是否带有可折叠螺旋桨,可以避免飞行器在没有带桨时进行飞行而导致的飞行器侧翻,提高飞行器飞行的安全性。
实施例2:
本申请实施例为本申请提供的一种判断飞行器是否带桨的方法的另一实施例。如图5为本申请另一实施例提供的一种判断飞行器是否带桨的方法的流程示意图。本申请另一实施例的一种判断飞行器是否带桨的方法可由上述飞行器(如无人机等)的电调执行。
参照图5,所述判断飞行器是否带桨的方法包括:
501:当所述飞行器进行状态切换时,获取驱动所述飞行器进行状态切换的电机的电流波形。
其中,所述飞行器的状态包括闭合状态和打开状态,所述闭合状态为飞行器的螺旋桨处于折叠时的状态,所述打开状态为飞行器的螺旋桨处于展开时的状态;所述飞行器进行状态切换包括:所述飞行器由闭合状态切换为打 开状态;或者,所述飞行器由打开状态切换为闭合状态。
其中,该电流波形可以为电机的电流随时间的变化曲线,从该电流波形中获取所述电机的电流峰值,具体的,所述获取驱动所述飞行器进行状态切换的电机的电流波形,包括:从所述电流波形中获取所述电机的电流峰值。该电流峰值是指在飞行器进行状态切换的过程中的一个周期内,电机电流的最大值。在一些实施例中,还可从该电流波形中获取电机的其它参数,如在飞行器进行状态切换的过程中电机的电流的频率等。该电流峰值是指在飞行器进行状态切换的过程中的一个周期内,电机电流的最大值。在一些实施例中,还可从该电流波形中获取电机的其它参数,如在飞行器进行状态切换的过程中电机的电流的频率等。进一步的,该电流波形为电机的相电流的电流波形。所述获取驱动所述飞行器进行状态切换的电机的电流波形也即在所述飞行器进行状态切换过程中,实时获取电机的电流,以得到电流波形,并从该电流波形中获取电流峰值,从而得到该切换过程中电流峰值随时间变化的曲线。
进一步的,所述从所述电流波形中获取所述电机的电流峰值,具体包括:获取在所述飞行器进行状态切换的过程中的所述电机的无功电流和有功电流;根据所述无功电流和所述有功电流,从所述电流波形中获取所述电机的电流峰值。
502:根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨。
所述根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨,包括:将所述电机处于稳定阶段时的电流峰值与预设电流阈值进行比较,以得到第一次数和第二次数,所述第一次数为所述电流峰值大于所述预设电流 阈值的次数,所述第二次数为所述电流峰值小于所述预设电流阈值的次数;当所述第一次数大于所述第二次数时,确定所述电机带有可折叠螺旋桨;否则,确定所述电机未带可折叠螺旋桨。
其中,所述预设电流阈值为根据第一峰峰值及第二峰峰值确定的值;所述第一峰峰值为在带桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值;所述第二峰峰值为在无桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值。
需要说明的是,本申请实施例中的步骤501与上述实施例中的步骤301相似,步骤502与上述实施例中的步骤502相似,因此,在此处便不再赘述。本申请实施例中所述步骤501-502中未详尽描述的技术细节,可参考上述实施例中步骤302-302的具体描述。
503:根据所述第一次数和所述第二次数,确定所述电机的标志位,所述标志位用于表征电机是否带桨。
在本申请实施例中,所述根据所述第一次数和所述第二次数,确定所述电机的标志位具体为:当第一次数N 1大于所述第二次数N 2时,所述标志位flag=0,此时表征该电机带有可折叠螺旋桨;当第一次数N 1小于所述第二次数N 2时,所述标志位flag=1,此时表征该电机未带可折叠螺旋桨。
504:根据所述标志位,发送飞行指令,所述飞行指令用于控制所述飞行器进行飞行。
对于有4个电机的飞行器,只有在判断4个电机中的各个电机均带有可折叠螺旋桨时电调才发送飞行指令,以使得飞行器根据所述飞行指令完成指定的飞行任务;否则,不发送飞行指令。例如,当4个电机的标记位flag=0时, 电调给电机发送飞行指令,以使飞行器飞行;当4个电机中的存在电机的标记位flag=1时,电调控制4个电机均处于待速状态,禁止飞行器飞行,从而避免飞行器的电机存在未带桨但飞行器进行飞行的情况的发生,提高飞行器飞行的安全性。
本申请实施例提供的判断飞行器是否带桨的方法应用于电调,该电调通过根据电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨,以解决现有技术中没有提供检测飞行器是否带桨的方法的问题,通过判断飞行器是否带有可折叠螺旋桨,进而确定飞行器是否飞行,可以避免飞行器在没有带桨时进行飞行而导致的飞行器侧翻,提高飞行器飞行的安全性。
实施例3:
本申请实施例为本申请提供的一种判断飞行器是否带桨的装置的实施例。如图6为本申请实施例提供的一种判断飞行器是否带桨的装置示意图。其中,所述判断飞行器是否带桨的装置可配置于上述飞行器(如无人机等)的电调中。
参照图6,所述判断飞行器是否带桨的装置60包括:
电流波形获取模块601,用于当所述飞行器进行状态切换时,获取驱动所述飞行器进行状态切换的电机的电流波形。
其中,所述飞行器的状态包括闭合状态和打开状态。具体的,所述飞行器的闭合状态为飞行器的螺旋桨处于折叠时的状态,所述打开状态为飞行器的螺旋桨处于展开时的状态。进一步的,所述飞行器进行状态切换包括:所述飞行器由闭合状态切换为打开状态;或者,所述飞行器由打开状态切换为 闭合状态。也即,所述飞行器的螺旋桨处于折叠时的状态切换为展开时的状态;或者所述飞行器的螺旋桨处于展开时的状态切换为折叠时的状态。
所述电流波形可以为电机的电流随时间变化的曲线,所述电流波形获取模块601获取驱动所述飞行器进行状态切换的电机的电流波形,包括:从所述电流波形中获取所述电机的电流峰值。
进一步的,所述电流波形获取模块601从所述电流波形中获取所述电机的电流峰值,包括:获取在所述飞行器进行状态切换的过程中的所述电机的无功电流和有功电流;根据所述无功电流和所述有功电流,从所述电流波形中获取所述电机的电流峰值。
在本申请实施例中,电流波形获取模块601可以通过任何合适的方式获取所述电机的无功电流和有功电流,例如,电流波形获取模块601接收示波器采集到的所述无功电流和有功电流,以获取得到所述无功电流和有功电流。电流波形获取模块601获取得到所述无功电流和有功电流后,便可以通过电流峰值计算公式,确定所述电机的电流峰值。
判断模块602,用于根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨。
飞行器的电机通常可以采用2次(或多次)加减速来驱动所述飞行器进行状态切换,而对于飞行器带桨与不带桨的情况,其对应的电流波形是不同的,因此,判断模块602可以通过该电流波形来确定所述飞行器的电机是否带有可折叠螺旋桨。
其中,在所述飞行器进行状态切换的过程中,所述电机的运行状态包括:第一状态和第二状态,在所述第一状态时,所述电机稳定运行;在所述第二 状态时,所述电机包括在变速运行的变速阶段、稳定运行的稳定阶段以及减速运行的减速阶段。需要说明的是,所述稳定运行或稳定运行的稳定阶段并非电流峰值在该运行过程中一直稳定不变,而在实际情况下,由于外界的干扰以及电机内部特性,在该运行过程中电流峰值也会有一定的波动,也即电流峰值在稳定运行的稳定阶段其值存在一定的变化。
进一步的,所述判断模块602具体用于:将所述电机处于稳定阶段时的电流峰值与预设电流阈值进行比较,以得到第一次数和第二次数,所述第一次数为所述电流峰值大于所述预设电流阈值的次数,所述第二次数为所述电流峰值小于所述预设电流阈值的次数;当所述第一次数大于所述第二次数时,确定所述电机带有可折叠螺旋桨;否则,确定所述电机未带可折叠螺旋桨。
其中,所述电机处于稳定阶段对应于图4中t 2时间内电机稳定运行的稳定阶段。通过判断模块602来确定飞行器是否带有可折叠螺旋桨,可以避免飞行器在没有带桨时进行飞行而导致的飞行器侧翻,提高飞行器飞行的安全性。
由于外界的干扰以及电机内部特性使得在实际情况下,电流峰值在稳定运行的稳定阶段其值存在一定的变化,因此,为了提高判断电机是否带有可折叠螺旋桨的准确性,判断模块602可以通过第一次数及第二次数来确定是否带桨。具体的,当所述第一次数N 1大于所述第二次数N 2为时,判断模块602确定所述电机带有可折叠螺旋桨;否则,判断模块602确定所述电机未带可折叠螺旋桨。
其中,所述预设电流阈值
Figure PCTCN2018105294-appb-000009
为根据第一峰峰值I′ pp1及第二峰峰值I′ pp2确定的值。所述第一峰峰值I′ pp1为在带桨状态下,判断模块602预先检测出的电机处于稳定阶段时的电流峰峰值。所述第二峰峰值I′ pp2为在无桨状态下,判断模 块602预先检测出的电机处于稳定阶段时的电流峰峰值。该预先检测是指电调在执行判断飞行器是否带桨的方法之前,在飞行器装机后进行飞行器的功能测试等。例如,通过多次飞行器的功能测试,得到安装有可折叠螺旋桨时电机处于稳定阶段时的电流峰峰值I′ pp1以及未安装可折叠螺旋桨时电机处于稳定阶段时的电流峰峰值I′ pp2,便可为将该两个电流峰峰值I′ pp1、I′ pp2预先配置在电调中,以便判断模块602根据所述第一峰峰值I′ pp1和所述第二峰峰值I′ pp2确定预设电流阈值。
进一步的,判断模块602确定预设电流阈值的公式如下所示:
Figure PCTCN2018105294-appb-000010
其中,
Figure PCTCN2018105294-appb-000011
为预设电流阈值;I′ pp1为第一峰峰值;I′ pp2为第二峰峰值。
需要说明的是,在本申请实施例中,所述判断飞行器是否带桨的装置60可执行本申请实施例1所提供的判断飞行器是否带桨的方法,具备执行方法相应的功能模块和有益效果。未在判断飞行器是否带桨的装置60的实施例中详尽描述的技术细节,可参见本申请实施例1所提供的判断飞行器是否带桨的方法。
实施例4:
本申请实施例为本申请提供的一种判断飞行器是否带桨的装置的实施例。如图7为本申请实施例提供的一种判断飞行器是否带桨的装置示意图。其中,所述判断飞行器是否带桨的装置70可配置于上述飞行器(如无人机等)的电调中。
参照图7,所述判断飞行器是否带桨的装置70包括:
电流波形获取模块701,用于当所述飞行器进行状态切换时,获取驱动所述飞行器进行状态切换的电机的电流波形。
其中,所述飞行器的状态包括闭合状态和打开状态。具体的,所述飞行器的闭合状态为飞行器的螺旋桨处于折叠时的状态,所述打开状态为飞行器的螺旋桨处于展开时的状态。进一步的,所述飞行器进行状态切换包括:所述飞行器由闭合状态切换为打开状态;或者,所述飞行器由打开状态切换为闭合状态。也即,所述飞行器的螺旋桨处于折叠时的状态切换为展开时的状态;或者所述飞行器的螺旋桨处于展开时的状态切换为折叠时的状态。
所述电流波形可以为电机的电流随时间变化的曲线,所述电流波形获取模块701获取驱动所述飞行器进行状态切换的电机的电流波形,包括:从所述电流波形中获取所述电机的电流峰值。
进一步的,所述电流波形获取模块701从所述电流波形中获取所述电机的电流峰值,包括:获取在所述飞行器进行状态切换的过程中的所述电机的无功电流和有功电流;根据所述无功电流和所述有功电流,从所述电流波形中获取所述电机的电流峰值。在本申请实施例中,电流波形获取模块701可以通过任何合适的方式获取所述电机的无功电流和有功电流,例如,电流波形获取模块701接收示波器采集到的所述无功电流和有功电流,以获取得到所述无功电流和有功电流。电流波形获取模块701获取得到所述无功电流和有功电流后,便可以通过电流峰值计算公式,确定所述电机的电流峰值。
判断模块702,用于根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨。
飞行器的电机通常可以采用2次(或多次)加减速来驱动所述飞行器进 行状态切换,而对于飞行器带桨与不带桨的情况,其对应的电流波形是不同的,因此,判断模块702可以通过该电流波形来确定所述飞行器的电机是否带有可折叠螺旋桨。
其中,在所述飞行器进行状态切换的过程中,所述电机的运行状态包括:第一状态和第二状态,在所述第一状态时,所述电机稳定运行;在所述第二状态时,所述电机包括在变速运行的变速阶段、稳定运行的稳定阶段以及减速运行的减速阶段。需要说明的是,所述稳定运行或稳定运行的稳定阶段并非电流峰值在该运行过程中一直稳定不变,而在实际情况下,由于外界的干扰以及电机内部特性,在该运行过程中电流峰值也会有一定的波动,也即电流峰值在稳定运行的稳定阶段其值存在一定的变化。
进一步的,所述判断模块702具体用于:将所述电机处于稳定阶段时的电流峰值与预设电流阈值进行比较,以得到第一次数和第二次数,所述第一次数为所述电流峰值大于所述预设电流阈值的次数,所述第二次数为所述电流峰值小于所述预设电流阈值的次数;当所述第一次数大于所述第二次数时,确定所述电机带有可折叠螺旋桨;否则,确定所述电机未带可折叠螺旋桨。
其中,所述电机处于稳定阶段对应于图4中t 2时间内电机稳定运行的稳定阶段。通过判断模块702来确定飞行器是否带有可折叠螺旋桨,可以避免飞行器在没有带桨时进行飞行而导致的飞行器侧翻,提高飞行器飞行的安全性。
由于外界的干扰以及电机内部特性使得在实际情况下,电流峰值在稳定运行的稳定阶段其值存在一定的变化,因此,为了提高判断电机是否带有可折叠螺旋桨的准确性,判断模块702可以通过第一次数及第二次数来确定是否带桨。具体的,当所述第一次数N 1大于所述第二次数N 2为时,判断模块 702确定所述电机带有可折叠螺旋桨;否则,判断模块702确定所述电机未带可折叠螺旋桨。
其中,所述预设电流阈值
Figure PCTCN2018105294-appb-000012
为根据第一峰峰值I′ pp1及第二峰峰值I′ pp2确定的值。所述第一峰峰值I′ pp1为在带桨状态下,判断模块702预先检测出的电机处于稳定阶段时的电流峰峰值。所述第二峰峰值I′ pp2为在无桨状态下,判断模块702预先检测出的电机处于稳定阶段时的电流峰峰值。该预先检测是指电调在执行判断飞行器是否带桨的方法之前,在飞行器装机后进行飞行器的功能测试等。例如,通过多次飞行器的功能测试,得到安装有可折叠螺旋桨时电机处于稳定阶段时的电流峰峰值I′ pp1以及未安装可折叠螺旋桨时电机处于稳定阶段时的电流峰峰值I′ pp2,便可为将该两个电流峰峰值I′ pp1、I′ pp2预先配置在电调中,以便判断模块702根据所述第一峰峰值I′ pp1和所述第二峰峰值I′ pp2确定预设电流阈值。
进一步的,判断模块702确定预设电流阈值的公式如下所示:
Figure PCTCN2018105294-appb-000013
其中,
Figure PCTCN2018105294-appb-000014
为预设电流阈值;I′ pp1为第一峰峰值;I′ pp2为第二峰峰值。
标志位确定模块703,用于根据所述第一次数和所述第二次数,确定所述电机的标志位,所述标志位用于表征电机是否带桨。
在本申请实施例中,所述标志位确定模块703根据所述第一次数和所述第二次数,确定所述电机的标志位具体为:当第一次数N 1大于所述第二次数N 2时,所述标志位flag=0,此时表征该电机带有可折叠螺旋桨;当第一次数N 1小于所述第二次数N 2时,所述标志位flag=1,此时表征该电机未带可折叠螺旋桨。
飞行指令发送模块704,用于根据所述标志位,发送飞行指令,所述飞行指令用于控制所述飞行器进行飞行。
对于有4个电机的飞行器,只有飞行指令发送模块704在判断4个电机中的各个电机均带有可折叠螺旋桨时电调才发送飞行指令,以使得飞行器根据所述飞行指令完成指定的飞行任务;否则,飞行指令发送模块704不发送飞行指令。例如,当4个电机的标记位flag=0时,飞行指令发送模块704给电机发送飞行指令,以使飞行器飞行;当4个电机中的存在电机的标记位flag=1时,飞行指令发送模块704控制4个电机均处于待速状态,禁止飞行器飞行,从而避免飞行器的电机存在未带桨但飞行器进行飞行的情况的发生,提高飞行器飞行的安全性。
需要说明的是,在本申请实施例中,所述判断飞行器是否带桨的装置70可执行本申请实施例2所提供的判断飞行器是否带桨的方法,具备执行方法相应的功能模块和有益效果。未在判断飞行器是否带桨的装置70的实施例中详尽描述的技术细节,可参见本申请实施例2所提供的判断飞行器是否带桨的方法。
实施例5:
图8是本申请实施例提供的电调硬件结构示意图,如图8所示,所述电调80包括:
一个或多个处理器801以及存储器802,图8中以一个处理器801为例。
处理器801和存储器802可以通过总线或者其他方式连接,图8中以通过总线连接为例。
存储器802作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的判断飞行器是否带桨的方法对应的程序指令/模块(例如,附图7所示的电流波形获取模块701、判断模块702、标志位确定模块703以及飞行指令发送模块704)。处理器801通过运行存储在存储器802中的非易失性软件程序、指令以及模块,从而执行电调的各种功能应用以及数据处理,即实现所述方法实施例的判断飞行器是否带桨的方法。
存储器802可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电调使用所创建的数据等。此外,存储器802可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器802可选包括相对于处理器801远程设置的存储器,这些远程存储器可以通过网络连接至电调。所述网络的实施例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器802中,当被所述一个或者多个处理器801执行时,执行所述任意方法实施例1和/或实施例2中的判断飞行器是否带桨的方法,例如,执行以上描述的图5中的方法步骤501至步骤504,实现图7中的模块701-704的功能。
所述电调可执行本申请实施例1和/或实施例2所提供的判断飞行器是否带桨的方法,具备执行方法相应的功能模块和有益效果。未在电调实施例中详尽描述的技术细节,可参见本申请实施例1和/或实施例2所提供的判断飞 行器是否带桨的方法。
本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被所述电调执行时,使所述电调执行如上所述的判断飞行器是否带桨的方法。例如,执行以上描述的图5中的方法步骤501至步骤504,实现图7中的模块701-704的功能。
本申请实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被电调执行时,使所述电调执行如上所述的判断飞行器是否带桨的方法。例如,执行以上描述的图5中的方法步骤501至步骤504,实现图7中的模块701-704的功能。
实施例6:
请参考图9,本申请实施例提供一种动力系统。该动力系统90包括电机91以及如上所述的电调80,其中,所述电调80与所述电机91电连接,用于判断所述电机91是否带有可折叠螺旋桨以及控制所述电机91的运行。
请参考图10,本申请实施例还提供一种飞行器。该飞行器100包括机身1001和上述所述的动力系统90,该动力系统90安装在机身1001上,用于为飞行器100提供飞行动力。
请参考图11,本申请实施例还提供另一种飞行器。该飞行器110包括:
中心壳体1101;
机臂1102,所述机臂与所述中心壳体连接;
电机1103,所述电机与所述机臂连接;
电调80,与所述电机1103电连接,所述电调80用于执行图3或图5所示的判断飞行器是否带桨的方法的全部或者部分步骤。该电调80包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上述任一个示例性实施例所示出的判断飞行器是否带桨的方法。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现所述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如所述各方法的实施例的流程。其中,所述的存储介质可为只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也 可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (19)

  1. 一种判断飞行器是否带桨的方法,其特征在于,所述方法包括:
    当所述飞行器进行状态切换时,获取驱动所述飞行器进行状态切换的电机的电流波形;
    根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨。
  2. 根据权利要求1所述的方法,其特征在于,所述飞行器的状态包括闭合状态和打开状态,所述闭合状态为飞行器的螺旋桨处于折叠时的状态,所述打开状态为飞行器的螺旋桨处于展开时的状态;
    所述飞行器进行状态切换包括:
    所述飞行器由闭合状态切换为打开状态;或者,
    所述飞行器由打开状态切换为闭合状态。
  3. 根据权利要求2所述的方法,其特征在于,所述获取驱动所述飞行器进行状态切换的电机的电流波形,包括:
    从所述电流波形中获取所述电机的电流峰值。
  4. 根据权利要求3所述的方法,其特征在于,所述从所述电流波形中获取所述电机的电流峰值,包括:
    获取在所述飞行器进行状态切换的过程中的所述电机的无功电流和有功电流;
    根据所述无功电流和所述有功电流,从所述电流波形中获取所述电机的电流峰值。
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述电流波形,判断所述飞行器的电机是否带有可折叠螺旋桨,包括:
    将所述电机处于稳定阶段时的电流峰值与预设电流阈值进行比较,以得 到第一次数和第二次数,所述第一次数为所述电流峰值大于所述预设电流阈值的次数,所述第二次数为所述电流峰值小于所述预设电流阈值的次数;
    当所述第一次数大于所述第二次数时,确定所述电机带有可折叠螺旋桨;否则,确定所述电机未带可折叠螺旋桨。
  6. 根据权利要求5所述的方法,其特征在于,在所述飞行器进行状态切换的过程中,所述电机的运行状态包括:第一状态和第二状态,在所述第一状态时,所述电机稳定运行;在所述第二状态时,所述电机包括变速运行的变速阶段、稳定运行的稳定阶段以及减速运行的减速阶段。
  7. 根据权利要求5所述的方法,其特征在于,所述预设电流阈值为根据第一峰峰值及第二峰峰值确定的值;
    所述第一峰峰值为在带桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值;
    所述第二峰峰值为在无桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一次数和所述第二次数,确定所述电机的标志位,所述标志位用于表征电机是否带桨;
    根据所述标志位,发送飞行指令,所述飞行指令用于控制所述飞行器进行飞行。
  9. 一种判断飞行器是否带桨的装置,其特征在于,所述装置包括:
    电流波形获取模块,用于当所述飞行器进行状态切换时,获取驱动所述飞行器进行状态切换的电机的电流波形;
    判断模块,用于根据所述电流波形,判断所述飞行器的电机是否带有可 折叠螺旋桨。
  10. 根据权利要求9所述的装置,其特征在于,所述飞行器的状态包括闭合状态和打开状态,所述闭合状态为飞行器的螺旋桨处于折叠时的状态,所述打开状态为飞行器的螺旋桨处于展开时的状态;
    所述飞行器进行状态切换包括:
    所述飞行器由闭合状态切换为打开状态;或者,
    所述飞行器由打开状态切换为闭合状态。
  11. 根据权利要求10所述的装置,其特征在于,所述电流波形获取模块获取驱动所述飞行器进行状态切换的电机的电流波形,包括:
    从所述电流波形中获取所述电机的电流峰值。
  12. 根据权利要求11所述的装置,其特征在于,所述电流波形获取模块从所述电流波形中获取所述电机的电流峰值,包括:
    获取在所述飞行器进行状态切换的过程中的所述电机的无功电流和有功电流;
    根据所述无功电流和所述有功电流,从所述电流波形中获取所述电机的电流峰值。
  13. 根据权利要求10所述的装置,其特征在于,所述判断模块具体用于:
    将所述电机处于稳定阶段时的电流峰值与预设电流阈值进行比较,以得到第一次数和第二次数,所述第一次数为所述电流峰值大于所述预设电流阈值的次数,所述第二次数为所述电流峰值小于所述预设电流阈值的次数;
    当所述第一次数大于所述第二次数时,确定所述电机带有可折叠螺旋桨;否则,确定所述电机未带可折叠螺旋桨。
  14. 根据权利要求13所述的装置,其特征在于,在所述飞行器进行状态切换的过程中,所述电机的运行状态包括:第一状态和第二状态,在所述第一状态时,所述电机稳定运行;在所述第二状态时,所述电机包括变速运行的变速阶段、稳定运行的稳定阶段以及减速运行的减速阶段。
  15. 根据权利要求13所述的装置,其特征在于,所述预设电流阈值为根据第一峰峰值及第二峰峰值确定的值;
    所述第一峰峰值为在带桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值;
    所述第二峰峰值为在无桨状态下,预先检测出的电机处于稳定阶段时的电流峰峰值。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,所述装置还包括:
    标志位确定模块,用于根据所述第一次数和所述第二次数,确定所述电机的标志位,所述标志位用于表征电机是否带桨;
    飞行指令发送模块,用于根据所述标志位,发送飞行指令,所述飞行指令用于控制所述飞行器进行飞行。
  17. 一种电调,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-8的任一项所述的方法。
  18. 一种动力系统,其特征在于,包括:
    电机;以及
    如权利要求17所述的电调,所述电调与所述电机电连接,用于判断所述电机是否带有可折叠螺旋桨以及控制所述电机的运行。
  19. 一种飞行器,其特征在于,包括:
    机身;以及
    权利要求18所述的动力系统,安装在所述机身上,用于为所述飞行器提供飞行动力。
PCT/CN2018/105294 2018-04-11 2018-09-12 判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器 WO2019196330A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810320593.8A CN108466699B (zh) 2018-04-11 2018-04-11 判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器
CN201810320593.8 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019196330A1 true WO2019196330A1 (zh) 2019-10-17

Family

ID=63263149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105294 WO2019196330A1 (zh) 2018-04-11 2018-09-12 判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器

Country Status (2)

Country Link
CN (1) CN108466699B (zh)
WO (1) WO2019196330A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108466699B (zh) * 2018-04-11 2020-04-10 深圳市道通智能软件开发有限公司 判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105843241A (zh) * 2016-04-11 2016-08-10 零度智控(北京)智能科技有限公司 无人机、无人机起飞控制方法及装置
CN106123941A (zh) * 2016-06-13 2016-11-16 零度智控(北京)智能科技有限公司 无人机旋翼检测方法与装置
CN106564606A (zh) * 2016-11-02 2017-04-19 重庆零度智控智能科技有限公司 无人机打桨及射桨的判定方法、装置和无人机
CN107390123A (zh) * 2017-07-25 2017-11-24 上海俏动智能化科技有限公司 一种多旋翼无人机动力失效监测方法以及监测系统
CN108466699A (zh) * 2018-04-11 2018-08-31 深圳市道通智能航空技术有限公司 判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340384B2 (ja) * 2016-05-25 2018-06-06 ヤマハ発動機株式会社 無人飛行体
WO2018076149A1 (zh) * 2016-10-25 2018-05-03 深圳市大疆创新科技有限公司 多旋翼飞行器及其控制方法、控制装置及飞行控制系统
CN106516157B (zh) * 2016-11-02 2019-01-18 重庆零度智控智能科技有限公司 无人机打桨的判定方法、装置和无人机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105843241A (zh) * 2016-04-11 2016-08-10 零度智控(北京)智能科技有限公司 无人机、无人机起飞控制方法及装置
CN106123941A (zh) * 2016-06-13 2016-11-16 零度智控(北京)智能科技有限公司 无人机旋翼检测方法与装置
CN106564606A (zh) * 2016-11-02 2017-04-19 重庆零度智控智能科技有限公司 无人机打桨及射桨的判定方法、装置和无人机
CN107390123A (zh) * 2017-07-25 2017-11-24 上海俏动智能化科技有限公司 一种多旋翼无人机动力失效监测方法以及监测系统
CN108466699A (zh) * 2018-04-11 2018-08-31 深圳市道通智能航空技术有限公司 判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器

Also Published As

Publication number Publication date
CN108466699A (zh) 2018-08-31
CN108466699B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
US10035604B2 (en) Vertical take-off and landing aircraft using hybrid-electric propulsion system
WO2019233001A1 (zh) 电机过流堵转保护方法、装置、电子调速器和无人飞行器
CN106414238B (zh) 无人机配置和用于无人机内燃机的电池增大,以及相关的系统和方法
US10901414B2 (en) Systems and methods for providing redundancy to electronic speed control systems
CN110884652B (zh) 有最小阻力的巡航旋翼定位控制的垂直起降(vtol)飞行器
WO2019242197A1 (zh) 折叠螺旋桨控制方法、装置和设备
JP2016088111A (ja) ヘリコプター
CN108494292B (zh) 电机控制方法和装置
CN110254696B (zh) 无人机模式切换控制方法、装置,存储介质及电子设备
WO2019223211A1 (zh) 控制无人飞行器的电机加速的方法、装置和电子调速器
EP3828661A1 (en) Gimbal and unmanned aerial vehicle control method, gimbal, and unmanned aerial vehicle
WO2020187092A1 (zh) 一种无人机控制装置和无人机
WO2019196330A1 (zh) 判断飞行器是否带桨的方法和装置、电调、动力系统及飞行器
CN107425771A (zh) 一种无人机中电机的控制方法及电子调速器
JP2021160437A (ja) 飛行体及びプログラム
WO2019233021A1 (zh) 电机控制方法、装置、电子调速器和无人飞行器
WO2020187094A1 (zh) 一种无人机控制装置和无人机
JP7342523B2 (ja) 電動垂直離着陸機および電動垂直離着陸機の制御装置
WO2020035042A1 (zh) 飞行器的供电方法、装置、飞行控制系统及飞行器
JP2021079869A (ja) 電駆動システムの制御装置および電動航空機
CN106347683B (zh) 飞行器的控制方法、装置及飞行器
EP4212430A1 (en) Flying vehicle
WO2021212520A1 (zh) 电机的控制方法、装置、设备及存储介质
KR102004123B1 (ko) 직렬 하이브리드 전력 장치 및 운용 방법
JP2022045996A (ja) ヘリコプタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914631

Country of ref document: EP

Kind code of ref document: A1