WO2019098425A1 - 적산 열량계 및 이를 이용한 소비 열량 산출 방법 - Google Patents

적산 열량계 및 이를 이용한 소비 열량 산출 방법 Download PDF

Info

Publication number
WO2019098425A1
WO2019098425A1 PCT/KR2017/013087 KR2017013087W WO2019098425A1 WO 2019098425 A1 WO2019098425 A1 WO 2019098425A1 KR 2017013087 W KR2017013087 W KR 2017013087W WO 2019098425 A1 WO2019098425 A1 WO 2019098425A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
flow
temperature
calculating
impeller
Prior art date
Application number
PCT/KR2017/013087
Other languages
English (en)
French (fr)
Inventor
장명훈
홍석표
정호기
Original Assignee
(주)위지트에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)위지트에너지 filed Critical (주)위지트에너지
Publication of WO2019098425A1 publication Critical patent/WO2019098425A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature

Definitions

  • the present invention relates to an integrated calorimeter, and more particularly, to an integrated calorimeter in which accurate calculation of a calorific value is performed by accurately measuring a flow rate even when reverse flow occurs, and a calorific value calculation method using the same.
  • heating is divided into individual heating, central heating and district heating depending on the heat supply system.
  • Individual heating is a method of supplying heat from individual heat sources to each room requiring heating.
  • Central heating is a method of supplying necessary heat from a building in one place, and district heating is a method of continuously supplying necessary heat in the area at the same time .
  • An integrated calorimeter is used to efficiently manage the heat supplied from such a heating system.
  • the integrated calorimeter measures the calorific value of the heating water in a system that supplies heat to the heat load using the heating water as the heating medium.
  • an integrated calorimeter used in a heating system includes an impeller rotating according to the flow of the heating water, a flow meter for generating a pulse per unit flow based on the rotation of the impeller, and a flow meter for measuring the flow rate And an operation unit.
  • An object of the present invention is to provide an integrated calorimeter and a method for calculating the calorific value using the same.
  • Another object of the present invention is to provide an integrated calorimeter in which the flow rate is accurately measured even when reverse flow of the heating water occurs, and the accuracy of calculation of the calorific consumption is improved, and a method of calculating the calorific value of heat using the same.
  • an impeller for rotating an impeller in accordance with a flow of a working fluid used for heat transfer and an impeller for generating an electric pulse at a predetermined unit flow rate based on rotation of the impeller
  • a flow meter having a pulse output unit;
  • a supply side temperature sensor for measuring the temperature of the working fluid flowing into the heat transfer object;
  • a heat exchange side temperature sensor for measuring the temperature of the working fluid discharged from the heat transfer object;
  • a calculation unit for calculating a flow rate by calculating a pulse generated from the pulse output unit and calculating a consumed calorie using the supply side working fluid temperature measured by the supply side temperature sensor and the return side fluid temperature measured by the return side temperature sensor,
  • the pulse output unit senses the direction of rotation of the impeller and adds the flow rate when the impeller rotates in the direction of rotation corresponding to the forward flow, and when the impeller rotates in the direction of rotation corresponding to the reverse flow, To generate a pulse, and a method for calculating a heat consumption using the same.
  • an impeller for rotating an impeller in accordance with a flow of a working fluid used for heat transfer A flow meter having a pulse output unit; A supply side temperature sensor for measuring the temperature of the working fluid flowing into the heat transfer object; A heat exchange side temperature sensor for measuring the temperature of the working fluid discharged from the heat transfer object; And a calculation unit for calculating a flow rate by calculating a pulse generated from the pulse output unit and calculating a consumed calorie using the supply side working fluid temperature measured by the supply side temperature sensor and the return side fluid temperature measured by the return side temperature sensor,
  • the pulse output unit senses the direction of rotation of the impeller and generates a forward pulse when the impeller rotates in the direction of rotation corresponding to the forward flow.
  • an integrated calorimeter for generating a reverse pulse and a method for calculating a calorie consumption using the same.
  • the integrated calorimeter further includes a pressure sensor for measuring the pressure of the working fluid, and the calculating unit can correct the specific heat of the working fluid in real time according to the pressure of the working fluid measured by the pressure sensor.
  • the operation fluid is a mixed water of water and ethanol and the operation unit can correct the specific heat of the working fluid in real time according to the use period of the working fluid, And a memory unit for storing specific heat data of the working fluid according to the use period.
  • the pulse output of the impeller is added to the flow rate, and the impeller is rotated in the direction of rotation corresponding to the reverse direction
  • a pulse is generated by a set flow unit by subtracting the flow rate, or a forward pulse is generated when the flow is in a forward direction, a reverse pulse is generated when the flow is in a reverse direction, So that it is possible to calculate the accurate flow rate even in the presence of the reverse flow, thereby improving the accuracy of the calculation of the calorie consumption.
  • FIG. 1 is a schematic view showing a configuration of a heating system in which an integrated calorimeter according to an embodiment of the present invention is used.
  • FIG. 2 is a block diagram showing a configuration of an integrated calorimeter according to an embodiment of the present invention shown in FIG. 1. Referring to FIG. 1
  • FIG. 3 is a graph showing two examples of pulse generation generated by the flow meter shown in FIG. 2, in comparison with a conventional pulse generation method.
  • FIG. 4 is a flowchart illustrating a method of calculating a calorie consumption using the integrated calorimeter according to an embodiment of the present invention shown in FIG. 2. Referring to FIG. 4
  • FIG. 1 schematically shows a configuration of a heating system in which an integrated calorimeter according to an embodiment of the present invention is used.
  • the heating system includes a heat exchange unit H for performing heat exchange between a heat source and a heating water, and a heating water supply unit for supplying heating water as a heating oil discharged from the heat exchange unit H to a heating target Side piping D2 for returning the heating water discharged from the heating target T to the heat exchange unit H and a circulation side piping D2 for returning the amount of heat consumed by the heating water used for heating the heating target T
  • an integrated calorimeter 100 according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the integrated calorimeter 100 according to an embodiment of the present invention.
  • an integrated calorimeter 100 includes a flow meter 110 installed in a return water pipe D2 to measure the flow rate of hot water, a supply pipe D1 Side temperature sensor 120 for measuring the temperature of the heating water introduced into the heating target T and measuring the temperature of the heating water discharged from the heating target T provided on the return-side pipe D2
  • a pressure sensor 140 installed in the return pipe D2 for measuring the pressure of the heating water discharged from the heating target T and a pressure sensor 140 for measuring the amount of heat
  • a memory unit 150 for storing the measured data and the measurement data provided from the flow meter 110 and the sensors 120, 130 and 140 and stored data stored in the memory unit 150,
  • An arithmetic unit 160, and an output unit 160 for outputting information such as the amount of heat consumed
  • a communication unit 180 for communicating with the outside
  • a measurement unit 170 for receiving measurement data measured by the flow meter 110 and the sensors 120, 130
  • the flowmeter 110 is installed in the return pipe D2 to measure the flow rate of the heating water used for heating the heating target T.
  • the flow meter 110 includes an impeller that rotates according to the flow of the heating water, and has a pulse output unit that generates an electrical pulse based on the rotation of the impeller.
  • the pulse generated by the pulse output unit is transmitted to the control unit 190.
  • the pulse output section can operate in the following two ways.
  • the pulse output unit senses the direction of rotation of the impeller and detects the direction of rotation of the impeller in the forward direction (direction in which the heating water flows from the heating target T to the heat exchange unit H as indicated by the arrow direction in the heating water D2 on the return-
  • the flow rate is added, and when the impeller rotates in the rotational direction corresponding to the reverse direction (opposite direction to the forward direction), the flow rate is subtracted to set the flow rate unit Or 10L).
  • the pulse output section generates one pulse per 100L.
  • the pulse output unit generates one pulse by a set flow unit (for example, 100 L or 10 L). It senses the direction of rotation of the impeller and generates a forward pulse when the flow is in the forward direction. When the flow is in the reverse direction, . In the present embodiment, it is assumed that the pulse output section generates one pulse per 100L.
  • a set flow unit for example, 100 L or 10 L. It senses the direction of rotation of the impeller and generates a forward pulse when the flow is in the forward direction. When the flow is in the reverse direction, . In the present embodiment, it is assumed that the pulse output section generates one pulse per 100L.
  • FIG. 3 shows graphs of pulse generation for the first method and the second method described above.
  • the point indicated by a dot in FIG. 3 means a position of a pulse generated per 100 L flow rate.
  • (c) corresponds to pulse generation according to the first scheme
  • (d) corresponds to pulse generation according to the second scheme.
  • FIGS. 3 (c) and 3 (d) there is a reverse flow in the middle.
  • FIG. 3 (c) in the case of the forward flow, the sum is subtracted, and in the case of the reverse flow, one pulse is generated per 100 L, so that four pulses are generated as a whole.
  • Fig. 3 (d) five forward pulses are generated and one reverse pulse d1 is generated, so that the total flow rate can be calculated to be 400L.
  • the supply side temperature sensor 120 is installed in the supply side piping D1 to measure the temperature of the heating water flowing into the heating target T and delivers the measured temperature to the control unit 190.
  • the supply-side temperature sensor 120 may be a temperature sensor using platinum Pt.
  • the water-return-side temperature sensor 130 measures the temperature of the heating water discharged from the heating target T and transfers the measured temperature to the control unit 190.
  • the return-side temperature sensor 130 may be a temperature sensor using platinum Pt.
  • the pressure sensor 140 is installed in the return pipe D2 to measure the pressure of the heating water discharged from the heating target T and transmits it to the control unit 190.
  • the memory unit 150 stores the heating water history data and the specific heat data of the heating water according to the heating water usage period.
  • the heating water history data includes the heating water use period and the supplement timing. In order to prevent freezing, mixed water containing ethanol mixed with water is used for the heating water, and the specific heat gradually decreases with time in the mixed water of water and ethanol.
  • the heating water history data stored in the memory unit 150 and the specific heat data of the heating water according to the heating water use period can be used for correction of the heating water specific heat considering the heating water use period.
  • the calculation unit 160 calculates the instantaneous calorie value using the measurement data provided from the flow meter 110 and the sensors 120, 130 and 140 and the stored data stored in the memory unit 150, Thereby calculating the integrated calorific value.
  • the instantaneous calorie value and the integrated calorie value calculated by the calculator 160 are transmitted to the controller 190.
  • the output unit 170 is controlled by the control unit 190 and outputs the consumed heat quantity and the heating water replenishment timing information including the instantaneous calorific value calculated by the operation unit 160 and the accumulated softness value.
  • the heating water replenishment timing information may be information related to the remaining time until the heating water replenishment and the heating water replenishment timing, such as a notification of the heating water replenishment message.
  • the output unit 170 is described as being a display device, but a speaker may be used together.
  • the communication unit 180 is controlled by the control unit 190 and externally transmits all the data used and calculated in the integrated calorimeter 100 and receives control signals from the outside.
  • the communication unit 180 includes all kinds of wired / wireless communication means.
  • the control unit 190 receives the measurement data measured by the flow meter 110 and the sensors 120, 130 and 140 and controls the memory unit 150, the operation unit 160 and the communication unit 180, To provide output data. More specifically, the control unit 190 controls the flow rate pulse signal generated by the flow meter 110, the supply side heating water temperature measured by the supply side temperature sensor 120, the heating side water temperature measured by the water side temperature sensor 130, Temperature and the pressure of the heating water measured by the pressure sensor 140 to the arithmetic unit 160 and the memory unit 150. The control unit 190 transmits the consumption calorific value data including the instantaneous calorie value and the integrated calorific value calculated by the calculation unit 160 to the memory unit 150, the output unit 170 and the communication unit 180. The control unit 190 transmits the heating water hysteresis data stored in the memory unit 150 and the specific heat data of the heating water according to the heating water usage period to the operation unit 160.
  • FIG. 4 is a flowchart showing a method of calculating the heat consumption using the integrated calorimeter according to an embodiment of the present invention shown in FIG.
  • the method for calculating the consumed heat amount includes a flow measuring step S10, a temperature measuring step S20, a pressure measuring step S30, a heating water history checking step S40, S50), a consumed heat quantity calculation step S60, a consumed heat energy output step S70, a heating water supplement cycle arrival confirmation step S80, and a guidance step S90.
  • the flow measuring step S10 the flow rate of the heating water used for heating the object to be heated (T in Fig. 1) is accurately measured.
  • the flow measuring step S10 is performed by calculating the flow pulse signal generated by the flow measuring instrument 110 (FIG. 2) in the manner as shown in FIG. 3 (c) or FIG. 3 (d)
  • the supply side heating water temperature and the return water side heating water temperature are measured.
  • the temperature measurement step S20 is performed by the supply side temperature sensor 120 for measuring the supply side heating water temperature and the return side temperature sensor 130 for measuring the return water side heating water temperature.
  • the pressure of the heating water used for heating the object to be heated (T in Fig. 1) is measured.
  • the pressure measuring step S30 is performed by a pressure sensor (140 in Fig. 2) that measures the pressure of the heating water.
  • the specific heat data of the heating water according to the use period of the water and the heating water used as the mixed water of ethanol and the heating water use period is confirmed.
  • the heating water history confirmation step (S40) is performed by checking the heating water history data stored in the memory unit (150 in Fig. 2) and the specific heat data of the heating water according to the heating water usage period.
  • the specific heat of the heating water used for heating the heating target (T in Fig. 1) is calculated.
  • the specific heat calculation step S50 is performed in the operation unit 160 using the pressure of the heating water measured by the pressure sensor (140 in FIG. 2) and the heating water history data stored in the memory unit (150 in FIG. That is, the pressure correction by the real time pressure of the heating water measured by the pressure sensor (140 in Fig. 2) and the heating water hysteresis correction by the heating water history data stored in the memory unit (150 in Fig. 2) Specific heat is calculated more accurately.
  • the heat consumption amount of the heating water used for heating the heating target (T in Fig. 1) is calculated. 2).
  • the calculation unit 160 calculates flow rate data measured through the flow rate measurement step S10, and the flow rate data measured through the temperature measurement step S20 (step S20)
  • the instantaneous calorific value and the instantaneous calorie value are accumulated using the corrected real time specific heat data of the heating water calculated through the specific heat calculation step (S50) and the accumulated calorific value .
  • the heating water supplement cycle arrival checking step (S80) determines whether or not the heating water replenishment cycle has arrived.
  • the heating water supplement cycle arrival confirmation step (S80) is performed by checking the heating water history data stored in the memory unit (150 in Fig. 2) by the control unit (190 in Fig. 2).
  • the heating water supplement cycle arrival confirmation step S80 if it is confirmed that the heating water supplement cycle has arrived, the arrival of the supplement cycle is notified through the output unit (170 in FIG. 2).
  • the integrated calorimeter and the calorific heat calculation method using the calorimeter are applied to the heating water flowing in and out of the heating object, but the present invention is not limited thereto.
  • the present invention is applied to a working fluid circulating between a geothermal heat exchanger and a geothermal exchanger as a heat source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

본 발명은 적산 열량계에 관한 것으로서, 본 발명에 의하면, 열전달에 사용되는 작동 유체의 유동에 따라 회전하는 임펠러와, 상기 임펠러의 회전에 근거하여 설정된 단위 유량에서 전기적 펄스를 발생시키는 펄스 출력부를 구비하는 유량 측정기; 열전달 대상으로 유입되는 작동 유체의 온도를 측정하는 공급측 온도센서; 상기 열전달 대상으로부터 배출되는 작동 유체의 온도를 측정하는 환수측 온도센서; 및 상기 펄스 출력부로부터 발생한 펄스를 계산하여 유량을 산출하고, 상기 공급측 온도센서에서 측정된 공급측 작동 유체 온도 및 상기 환수측 온도센서에서 측정된 환수측 작동 유체 온도를 이용하여 소비 열량을 산출하는 연산부를 포함하며, 상기 펄스 출력부는 상기 임펠러의 회전방향을 감지하여 정방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 유량을 가산하고, 역방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 유량을 감산하여 펄스를 발생시키는 적산 열량계 및 이를 이용한 소비 열량 산출 방법이 제공된다.

Description

적산 열량계 및 이를 이용한 소비 열량 산출 방법
본 발명은 적산 열량계에 관한 것으로서, 더욱 상세하게는 역방향 유동이 발생하더라도 유량을 정확하게 측정하여 소비 열량의 산출 정확도가 향상된 적산 열량계 및 이를 이용한 소비 열량 산출 방법에 관한 것이다.
일반적으로 난방은 열공급 시스템에 따라 개별난방, 중앙난방 및 지역난방으로 구분된다. 개별난방은 난방이 필요한 방마다 개별의 열원으로부터 열을 공급하는 방식이고, 중앙난방은 한 건물에서 필요한 난방을 한 곳에서 공급하는 방식이며, 지역난방은 지역 내 필요한 열을 동시에 연속적으로 공급하는 방식이다.
이러한 난방 시스템에서 공급되는 열을 효율적으로 관리하기 위해 적산 열량계가 사용된다. 적산 열량계는 난방수를 열매체로 하여 열부하에 열을 공급하는 시스템에서 난방수의 소비 열량을 측정하는 계기이다.
일반적으로 난방 시스템에서 사용되는 적산 열량계는 난방수의 유동에 따라 회전하는 임펠러와, 임펠러의 회전에 기초하여 단위 유량 당 펄스를 발생시키는 유량 측정기와, 유량 측정기에서 발생한 펄스를 계산하여 유량을 측정하는 연산부를 구비한다. 종래의 유량 측정기에서는 압력 등의 변화로 인해 역방향 유동이 발생하는 경우 정확한 유량을 계산하기 어렵다는 문제가 있다. 이러한 문제는 도 3의 그래프에 도시된 (a)와 (b)를 통해 개략적으로 설명된다. 도 3의 (a)의 경우 역방향 유동이 없이 정방향 유동만이 존재한다. 이때, 펄스가 100L마다 발생한다고 할 경우에, 도 3의 (a)에서는 4개의 펄스가 발생하여 총 4000L의 유량으로 정확하게 계산된다(도면에서 점으로 표시된 지점이 펄스가 발생한 것을 의미). 하지만, 도 3의 (b)에 도시된 바와 같이, 중간에 역방향 유동이 존재하는 경우, 실질적으로 총 400L의 유량이지만, 6번의 펄스가 발생하여 600L의 유량으로 계산된다.
본 발명의 목적은 적산 열량계 및 이를 이용한 소비 열량 산출 방법을 제공하는 것이다.
본 발명의 다른 목적은 난방수의 역방향 유동이 발생하더라도 유량을 정확하게 측정하여 소비 열량의 산출 정확도가 향상된 적산 열량계 및 이를 이용한 소비 열량 산출 방법을 제공하는 것이다.
상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 일 측면에 따르면, 열전달에 사용되는 작동 유체의 유동에 따라 회전하는 임펠러와, 상기 임펠러의 회전에 근거하여 설정된 단위 유량에서 전기적 펄스를 발생시키는 펄스 출력부를 구비하는 유량 측정기; 열전달 대상으로 유입되는 작동 유체의 온도를 측정하는 공급측 온도센서; 상기 열전달 대상으로부터 배출되는 작동 유체의 온도를 측정하는 환수측 온도센서; 및 상기 펄스 출력부로부터 발생한 펄스를 계산하여 유량을 산출하고, 상기 공급측 온도센서에서 측정된 공급측 작동 유체 온도 및 상기 환수측 온도센서에서 측정된 환수측 작동 유체 온도를 이용하여 소비 열량을 산출하는 연산부를 포함하며, 상기 펄스 출력부는 상기 임펠러의 회전방향을 감지하여 정방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 유량을 가산하고, 역방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 유량을 감산하여 펄스를 발생시키는 적산 열량계 및 이를 이용한 소비 열량 산출 방법이 제공된다.
상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 다른 측면에 따르면, 열전달에 사용되는 작동 유체의 유동에 따라 회전하는 임펠러와, 상기 임펠러의 회전에 근거하여 설정된 단위 유량에서 전기적 펄스를 발생시키는 펄스 출력부를 구비하는 유량 측정기; 열전달 대상으로 유입되는 작동 유체의 온도를 측정하는 공급측 온도센서; 상기 열전달 대상으로부터 배출되는 작동 유체의 온도를 측정하는 환수측 온도센서; 및 상기 펄스 출력부로부터 발생한 펄스를 계산하여 유량을 산출하고, 상기 공급측 온도센서에서 측정된 공급측 작동 유체 온도 및 상기 환수측 온도센서에서 측정된 환수측 작동 유체 온도를 이용하여 소비 열량을 산출하는 연산부를 포함하며, 상기 펄스 출력부는 상기 임펠러의 회전방향을 감지하여 정방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 정방향 펄스를 발생시키고, 역방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 역방향 펄스를 발생시키는 적산 열량계 및 이를 이용한 소비 열량 산출 방법이 제공된다.
상기 적산 열량계는 상기 작동 유체의 압력을 측정하는 압력센서를 더 포함하며, 상기 연산부는 상기 압력센서에서 측정된 작동 유체의 압력에 따라 작동 유체의 비열을 실시간으로 보정할 수 있다.
상기 작동 유체는 물과 에탄올의 혼합수이고, 상기 연산부는 상기 작동 유체의 사용 기간에 따라 작동 유체의 비열을 실시간으로 보정할 수 있으며, 상기 적산 열량계는 상기 작동 유체의 이력 데이터 및 상기 작동 유체의 사용 기간에 따른 작동 유체의 비열 데이터가 저장된 메모리부를 더 포함할 수 있다.
본 발명에 의하면 앞서서 기재한 본 발명의 목적을 모두 달성할 수 있다. 구체적으로는, 유량 측정기에 구비되는 펄스 출력부가 임펠러의 회전방향을 감지하여 유동이 정방향에 대응하는 회전방향으로 임펠러가 회전하는 경우에는 유량을 가산하고, 유동이 역방향에 대응하는 회전방향으로 임펠러가 회전하는 경우에는 유량을 감산하여 설정된 유량 단위로 하나의 펄스를 발생시키거나, 임펠러의 회전방향을 감지하여 유동이 정방향인 경우 정방향 펄스를 발생시키고, 유동이 역방향인 경우 역방향 펄스를 발생시켜서 연산부에 제공하므로 역방향의 유동이 존재하더라도 정확한 유량의 계산이 가능하고, 그에 따라 소비 열량 산출의 정확도가 향상된다.
또한, 난방수의 압력과 사용 기간을 고려하여 비열을 보정하므로, 소비 열량의 산출 정확도가 더욱 향상된다.
도 1은 본 발명의 일 실시예에 따른 적산 열량계가 사용되는 난방 시스템의 구성을 개략적으로 도시한 구성도이다.
도 2는 도 1에 도시된 본 발명의 일 실시예에 따른 적산 열량계의 구성을 도시한 블록도이다.
도 3은 도 2에 도시된 유량 측정기에 의해 발생되는 펄스 발생의 두 가지 예를 종래의 펄스 발생 방식과 비교하여 도시한 그래프이다.
도 4는 도 2에 도시된 본 발명의 일 실시예에 따른 적산 열량계를 이용한 소비 열량 산출 방법을 도시한 순서도이다.
이하, 도면을 참조하여 본 발명의 실시예의 구성 및 작용을 상세히 설명한다.
도 1에는 본 발명의 일 실시예에 따른 적산 열량계가 사용되는 난방 시스템의 구성이 개략적으로 도시되어 있다. 도 1을 참조하면, 난방 시스템은 열원과 난방수 사이의 열교환이 이루어지는 열교환부(H)와, 열교환부(H)부터 배출되는 작동유체인 난방수를 난방 대상(열전달 대상)(T)으로 공급하는 공급측 배관(D1)과, 난방 대상(T)으로부터 배출되는 난방수를 열교환부(H)로 환수하는 환수측 배관(D2)과, 난방 대상(T)의 난방에 사용된 난방수의 소비열량을 산출하는 본 발명의 일 실시예에 따른 적산 열량계(100)를 구비한다.
도 2에는 본 발명의 일 실시예에 따른 적산 열량계(100)의 구성이 블록도로서 도시되어 있다. 도 1과 도 2를 참조하면, 본 발명의 일 실시예에 따른 적산 열량계(100)는 환수측 배관(D2)에 설치되어서 난방수의 유량을 측정하는 유량 측정기(110)와, 공급측 배관(D1)에 설치되어서 난방 대상(T)으로 유입되는 난방수의 온도를 측정하는 공급측 온도센서(120)와, 환수측 배관(D2)에 설치되어서 난방 대상(T)으로부터 배출되는 난방수의 온도를 측정하는 환수측 온도센서(130)와, 환수측 배관(D2)에 설치되어서 난방 대상(T)으로부터 배출되는 난방수의 압력을 측정하는 압력센서(140)와, 소비 열량 산출을 위한 정보 및 데이터가 저장되는 메모리부(150)와, 유량 측정기(110)와 각 센서(120, 130, 140)로부터 제공된 측정 데이터 및 메모리부(150)에 저장된 저장 데이터를 이용하여 소비 열량 산출에 필요한 연산을 수행하는 연산부(160)와, 소비 열량 등의 정보를 출력하는 출력부(170)와, 외부와의 통신을 지원하는 통신부(180)와, 유량 측정기(110) 및 각 센서(120, 130, 140)에서 측정된 측정 데이터를 제공받으며 메모리부(150), 연산부(160) 및 통신부(180)를 제어하고 출력부(170)로 출력 데이터를 제공하는 제어부(190)를 포함한다.
유량 측정기(110)는 환수측 배관(D2)에 설치되어서 난방 대상(T)의 난방에 사용된 난방수의 유량을 측정한다. 도시되지는 않았으나, 유량 측정기(110)는 난방수의 유동에 따라 회전하는 임펠러를 구비하며, 임펠러의 회전에 근거하여 전기적 펄스를 발생시키는 펄스 출력부를 구비한다. 펄스 출력부에 의해 발생한 펄스는 제어부(190)로 전달된다. 펄스 출력부는 다음 두 가지 방식으로 작동할 수 있다.
첫째, 펄스 출력부는 임펠러의 회전방향을 감지하여 유동이 정방향(도 1에서 난방수가 환수측 배관(D2)에서 화살표 방향으로 표시된 바와 같이 난방 대상(T)으로부터 열교환부(H) 쪽으로 흐르는 방향)에 대응하는 회전방향으로 임펠러가 회전하는 경우에는 유량을 가산하고, 유동이 역방향(정방향의 반대방향)에 대응하는 회전방향으로 임펠러가 회전하는 경우에는 유량을 감산하여 설정된 유량 단위(예를 들어, 100L 또는 10L)로 하나의 펄스를 발생시킨다. 본 실시예에서는 펄스 출력부가 100L당 하나의 펄스를 발생시키는 것으로 설명한다.
둘째, 펄스 출력부는 설정된 유량 단위(예를 들어, 100L 또는 10L)로 하나의 펄스를 발생시키는데, 임펠러의 회전방향을 감지하여 유동이 정방향인 경우 정방향 펄스를 발생시키고, 유동이 역방향인 경우 역방향 펄스를 발생시킨다. 본 실시예에서는 펄스 출력부가 100L당 하나의 펄스를 발생시키는 것으로 설명한다.
도 3에는 상술한 첫 번째 방식과 두 번째 방식 각각에 대한 펄스 발생 예가 그래프로서 도시되어 있다. 도 3에서 점으로 표시된 지점은 100L의 유량당 발생하는 펄스의 위치를 의미한다. 도 3에서 (c)가 첫 번째 방식에 따른 펄스 발생에 해당하고, (d)가 두 번째 방식에 따른 펄스 발생에 해당한다. 도 3의 (c)와 (d)에는 중간에 역방향 유동이 존재한다. 도 3의 (c)에서는 정방향 유동의 경우 가산하고 역방향 유동의 경우 감산하여 100L당 하나의 펄스를 발생시킴으로써, 전체적으로 4개의 펄스가 발생하므로 전체 유량은 400L로 계산될 수 있다. 도 3의 (d)에서는 정방향 펄스가 5개 발생하고 역방향 펄스(d1)가 하나 발생함으로써, 전체 유량은 400L로 계산될 수 있다. 도 3의 (b)에 도시된 바와 같은, 종래의 방식에서는 정방향과 역방향의 구분없이 모두 6개의 펄스가 발생하므로, 전체 유량이 600L로 계산되어서 오차가 발생하게 된다. 즉, 본 발명에 따른 유량 측정기를 사용하면 역방향 유동이 발생하더라도 이를 보정하여 정확한 정방향 유량을 계산할 수 있도록 한다.
공급측 온도센서(120)는 공급측 배관(D1)에 설치되어서 난방 대상(T)으로 유입되는 난방수의 온도를 측정하여 제어부(190)로 전달한다. 공급측 온도센서(120)는 백금(Pt)을 이용한 온도센서일 수 있다.
환수측 온도센서(130)는 환수측 배관(D2)에 설치되어서 난방 대상(T)으로부터 배출되는 난방수의 온도를 측정하여 제어부(190)로 전달한다. 환수측 온도센서(130)는 백금(Pt)을 이용한 온도센서일 수 있다.
압력센서(140)는 환수측 배관(D2)에 설치되어서 난방 대상(T)으로부터 배출되는 난방수의 압력을 측정하여 제어부(190)로 전달한다.
메모리부(150)에는 공급측 온도센서(120)에 의해 측정된 공급측 난방수 온도, 환수측 온도센서(130)에 의해 측정된 환수측 난방수 온도, 압력센서에 의해 측정된 난방수 압력 데이터가 제어부(190)로부터 전달되어서 저장된다. 또한, 메모리부(150)에는 난방수 이력 데이터 및 난방수 사용 기간에 따른 난방수의 비열 데이터도 저장된다. 본 발명에서 난방수 이력 데이터는 난방수 사용 기간 및 보충 시기를 포함한다. 난방수는 결빙 방지를 위해 물에 에탄올이 혼합된 혼합수가 사용되는데, 이러한 물과 에탄올의 혼합수는 시간이 지남에 따라 비열이 점차 감소하게 된다. 메모리부(150)에 저장된 난방수 이력 데이터 및 난방수 사용 기간에 따른 난방수의 비열 데이터는 난방수 사용 기간을 고려한 난방수 비열의 보정에 사용될 수 있다.
연산부(160)는 유량 측정기(110)와 각 센서(120, 130, 140)로부터 제공된 측정 데이터 및 메모리부(150)에 저장된 저장 데이터를 이용하여 순시 열량값을 산출하고, 순시 열량값을 누적하여 적산 열량값을 산출한다. 연산부(160)에서 산출된 순시 열량값 및 적산 열량값은 제어부(190)로 전달된다.
출력부(170)는 제어부(190)에 의해 제어되어서, 연산부(160)에서 계산된 순시 열량값과 적산 연량값을 포함하는 소비 열량 및 난방수 보충 시기 정보를 출력한다. 여기서 난방수 보충 시기 정보는 난방수 보충까지 남은 기간 및 난방수 보충 알림 메시지 등 난방수 보충 시기와 관련된 정보일 수 있다. 본 실시예에서는 출력부(170)가 디스플레이 장치인 것으로 설명하는데, 이와는 달리 스피커가 함께 사용되는 구성일 수도 있다.
통신부(180)는 제어부(190)에 의해 제어되어서 적산 열량계(100)에서 이용되고 산출되는 모든 데이터를 외부로 송신하고, 외부로부터의 제어신호를 입력받는다. 통신부(180)는 모든 종류의 유무선 통신 수단을 포함한다.
제어부(190)는 유량 측정기(110) 및 각 센서(120, 130, 140)에서 측정된 측정 데이터를 제공받으며 메모리부(150), 연산부(160) 및 통신부(180)를 제어하고 출력부(170)로 출력 데이터를 제공한다. 더욱 구체적으로 설명하면, 제어부(190)는 유량 측정기(110)에서 발생한 유량 펄스 신호, 공급측 온도 센서(120)에서 측정된 공급측 난방수 온도, 환수측 온도센서(130)에서 측정된 환수측 난방수 온도, 압력센서(140)에서 측정된 난방수의 압력을 연산부(160) 및 메모리부(150)로 전달한다. 또한, 제어부(190)는 연산부(160)에서 산출된 순시 열량값과 적산 열량값을 포함하는 소비 열량 데이터를 메모리부(150), 출력부(170) 및 통신부(180)로 전달한다. 그리고, 제어부(190)는 메모리부(150)에 저장된 난방수 이력 데이터 및 난방수 사용 기간에 따른 난방수의 비열 데이터를 연산부(160)로 전달한다.
도 4에는 도 2에 도시된 본 발명의 일 실시예에 따른 적산 열량계를 이용한 소비 열량 산출 방법이 순서도로서, 도시되어 있다. 도 4를 참조하면, 소비 열량 산출 방법은, 유량 측정 단계(S10)와, 온도 측정 단계(S20)와, 압력 측정 단계(S30)와, 난방수 이력 확인 단계(S40)와, 비열 계산 단계(S50)와, 소비 열량 산출 단계(S60)와, 소비 열량 출력 단계(S70)와, 난방수 보충 주기 도래 확인 단계(S80)와, 안내 단계(S90)를 포함한다.
유량 측정 단계(S10)에서는 난방 대상(도 1의 T)의 난방에 사용되는 난방수의 유량이 정확하게 측정된다. 유량 측정 단계(S10)는 유량 측정기(도 2의 110)에서 발생하는 유량 펄스 신호를 연산부(도 2의 160)가 도 3의 (c) 또는 (d)와 같은 방식으로 계산함으로써 수행된다.
온도 측정 단계(S20)에서는 공급측 난방수 온도와 환수측 난방수 온도가 측정된다. 온도 측정 단계(S20)는 공급측 난방수 온도를 측정하는 공급측 온도센서(120)와 환수측 난방수 온도를 측정하는 환수측 온도센서(130)에 의해 수행된다.
압력 측정 단계(S30)에서는 난방 대상(도 1의 T)의 난방에 사용되는 난방수의 압력이 측정된다. 압력 측정 단계(S30)는 난방수의 압력을 측정하는 압력센서(도 2의 140)에 의해 수행된다.
난방수 이력 확인 단계(S40)에서는 물과 에탄올 혼합수인 난방수의 사용 기간 및 난방수 사용 기간에 따른 난방수의 비열 데이터가 확인된다. 난방수 이력 확인 단계(S40)는 메모리부(도 2의 150)에 저장된 난방수 이력 데이터 및 난방수 사용 기간에 따른 난방수의 비열 데이터를 제어부가 확인함으로써 수행된다.
비열 계산 단계(S50)에서는 난방 대상(도 1의 T)의 난방에 사용되는 난방수의 비열이 계산된다. 비열 계산 단계(S50)는 압력센서(도 2의 140)에 의해 측정된 난방수의 압력과 메모리부(도 2의 150)에 저장된 난방수 이력 데이터를 이용하여 연산부(160)에서 수행된다. 즉, 압력센서(도 2의 140)에 의해 측정된 난방수의 실시간 압력에 의한 압력 보정 및 메모리부(도 2의 150)에 저장된 난방수 이력 데이터에 의한 난방수 이력 보정이 반영되어서 난방수의 비열이 더욱 정확하게 계산된다.
소비 열량 산출 단계(S60)에서는 난방 대상(도 1의 T)의 난방에 사용된 난방수의 소비 열량이 산출된다. 소비 열량 산출 단계(S60)는 연산부(도 2의 160)에 의해 수행되는데, 구체적으로는, 연산부(160)가 유량 측정 단계(S10)를 통해 측정된 유량 데이터, 온도 측정 단계(S20)를 통해 측정된 공급측 난방수 온도와 환수측 난방수 온도의 차이 데이터, 비열 계산 단계(S50)를 통해 계산된 난방수의 보정된 실시간 비열 데이터를 이용하여 순시 열량값 및 순시 열량값을 누적하여 적산 열량값을 계산하게 된다.
난방수 보충 주기 도래 확인 단계(S80)에서는 난방수의 보충 주기 도래 여부가 확인된다. 난방수 보충 주기 도래 확인 단계(S80)는 메모리부(도 2의 150)에 저장된 난방수 이력 데이터를 제어부(도 2의 190)가 확인함으로써 수행된다. 난방수 보충 주기 도래 확인 단계(S80)에서 난방수의 보충 주기가 도래한 것으로 확인되면 출력부(도 2의 170)를 통해 보충 주기 도래가 안내된다.
상기 실시예에서는 적산 열량계 및 이를 이용한 소비 열량 산출 방법이 난방 대상을 유출입하는 난방수에 적용되는 것으로 설명하였으나, 본 발명은 이에 제한되지 않는다. 예를 들어, 지열 시스템에서 열원인 지중과 열전달 대상인 지열 교환부 사이에 순환하는 작동 유체에 적용되는 것도 본 발명의 범위에 속하는 것이다.
이상 실시예를 통해 본 발명을 설명하였으나, 본 발명은 이에 제한되는 것은 아니다. 상기 실시예는 본 발명의 취지 및 범위를 벗어나지 않고 수정되거나 변경될 수 있으며, 본 기술분야의 통상의 기술자는 이러한 수정과 변경도 본 발명에 속하는 것임을 알 수 있을 것이다.

Claims (10)

  1. 열전달에 사용되는 작동 유체의 유동에 따라 회전하는 임펠러와, 상기 임펠러의 회전에 근거하여 설정된 단위 유량에서 전기적 펄스를 발생시키는 펄스 출력부를 구비하는 유량 측정기;
    열전달 대상으로 유입되는 작동 유체의 온도를 측정하는 공급측 온도센서;
    상기 열전달 대상으로부터 배출되는 작동 유체의 온도를 측정하는 환수측 온도센서; 및
    상기 펄스 출력부로부터 발생한 펄스를 계산하여 유량을 산출하고, 상기 공급측 온도센서에서 측정된 공급측 작동 유체 온도 및 상기 환수측 온도센서에서 측정된 환수측 작동 유체 온도를 이용하여 소비 열량을 산출하는 연산부를 포함하며,
    상기 펄스 출력부는 상기 임펠러의 회전방향을 감지하여 정방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 유량을 가산하고, 역방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 유량을 감산하여 펄스를 발생시키는 적산 열량계.
  2. 열전달에 사용되는 작동 유체의 유동에 따라 회전하는 임펠러와, 상기 임펠러의 회전에 근거하여 설정된 단위 유량에서 전기적 펄스를 발생시키는 펄스 출력부를 구비하는 유량 측정기;
    열전달 대상으로 유입되는 작동 유체의 온도를 측정하는 공급측 온도센서;
    상기 열전달 대상으로부터 배출되는 작동 유체의 온도를 측정하는 환수측 온도센서; 및
    상기 펄스 출력부로부터 발생한 펄스를 계산하여 유량을 산출하고, 상기 공급측 온도센서에서 측정된 공급측 작동 유체 온도 및 상기 환수측 온도센서에서 측정된 환수측 작동유체 온도를 이용하여 소비 열량을 산출하는 연산부를 포함하며,
    상기 펄스 출력부는 상기 임펠러의 회전방향을 감지하여 정방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 정방향 펄스를 발생시키고, 역방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 역방향 펄스를 발생시키는 적산 열량계.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 작동 유체의 압력을 측정하는 압력센서를 더 포함하며,
    상기 연산부는 상기 압력센서에서 측정된 작동 유체의 압력에 따라 작동 유체의 비열을 실시간으로 보정하는 적산 열량계.
  4. 청구항 1 또는 청구항 2에 있어서,
    상기 작동 유체는 물과 에탄올을 포함하는 혼합수이며,
    상기 연산부는 상기 작동 유체의 사용 기간에 따라 작동 유체의 비열을 실시간으로 보정하는 적산 열량계.
  5. 청구항 4에 있어서,
    상기 작동 유체의 이력 데이터 및 상기 작동 유체의 사용 기간에 따른 작동 유체의 비열 데이터가 저장된 메모리부를 더 포함하는 적산 열량계.
  6. 청구항 5에 있어서,
    상기 작동 유체의 보충 시기를 안내하는 출력부를 더 포함하는 적산 열량계.
  7. 열전달에 사용되는 작동 유체의 유동에 따라 회전하는 임펠러와, 상기 임펠러의 회전에 근거하여 설정된 단위 유량에서 전기적 펄스를 발생시키는 펄스 출력부를 구비하는 유량 측정기; 열전달 대상으로 유입되는 작동 유체의 온도를 측정하는 공급측 온도센서; 상기 열전달 대상으로부터 배출되는 작동 유체의 온도를 측정하는 환수측 온도센서; 및 상기 펄스 출력부로부터 발생한 펄스를 계산하여 유량을 산출하고, 상기 공급측 온도센서에서 측정된 공급측 작동 유체 온도 및 상기 환수측 온도센서에서 측정된 환수측 작동 유체 온도를 이용하여 소비 열량을 산출하는 연산부를 포함하는 적산 열량계를 이용한 소비 열량 산출 방법으로서,
    열전달에 사용되는 작동 유체의 유량이 측정되는 유량 측정 단계;
    상기 공급측 온도센서에 의해 공급측 작동 유체 온도가 측정되고 상기 환수측 온도센서에 의해 환수측 작동 유체 온도가 측정되는 온도 측정 단계; 및
    상기 유량 측정 단계에서 측정된 작동 유체의 유량 및 상기 온도 측정 단계에서 측정된 상기 공급측 작동 유체 온도와 상기 환수측 작동 유체 온도의 차이에 의해 소비 열량이 산출되는 소비 열량 산출 단계를 포함하며,
    상기 유량 측정 단계에서는, 상기 펄스 출력부가 상기 임펠러의 회전방향을 감지하여 정방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 유량을 가산하고, 역방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 유량을 감산하여 펄스를 발생시켜서 상기 연산부로 전달하는 소비 열량 산출 방법.
  8. 열전달에 사용되는 작동 유체의 유동에 따라 회전하는 임펠러와, 상기 임펠러의 회전에 근거하여 설정된 단위 유량에서 전기적 펄스를 발생시키는 펄스 출력부를 구비하는 유량 측정기; 열전달 대상으로 유입되는 작동 유체의 온도를 측정하는 공급측 온도센서; 상기 열전달 대상으로부터 배출되는 작동 유체의 온도를 측정하는 환수측 온도센서; 및 상기 펄스 출력부로부터 발생한 펄스를 계산하여 유량을 산출하고, 상기 공급측 온도센서에서 측정된 공급측 작동 유체 온도 및 상기 환수측 온도센서에서 측정된 환수측 작동 유체 온도를 이용하여 소비 열량을 산출하는 연산부를 포함하는 적산 열량계를 이용한 소비 열량 산출 방법으로서,
    열전달에 사용되는 작동 유체의 유량이 측정되는 유량 측정 단계;
    상기 공급측 온도센서에 의해 공급측 작동 유체 온도가 측정되고 상기 환수측 온도센서에 의해 환수측 작동 유체 온도가 측정되는 온도 측정 단계; 및
    상기 유량 측정 단계에서 측정된 작동 유체의 유량 및 상기 온도 측정 단계에서 측정된 상기 공급측 작동 유체 온도와 상기 환수측 작동 유체 온도의 차이에 의해 소비 열량이 산출되는 소비 열량 산출 단계를 포함하며,
    상기 유량 측정 단계에서는, 상기 펄스 출력부가 상기 임펠러의 회전방향을 감지하여 정방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 정방향 펄스를 발생시키고, 역방향 유동에 대응하는 회전방향으로 임펠러가 회전하는 경우에 역방향 펄스를 발생시켜서 상기 연산부로 전달하는 소비 열량 산출 방법.
  9. 청구항 7 또는 청구항 8에 있어서,
    상기 적산 열량계는 상기 작동 유체의 압력을 측정하는 압력센서를 더 포함하며,
    상기 압력센서에서 측정된 상기 작동 유체의 압력 데이터를 이용하여 상기 작동 유체의 비열을 보정하는 비열 계산 단계를 더 포함하는 소비 열량 산출 방법.
  10. 청구항 7 또는 청구항 8에 있어서,
    상기 작동 유체는 물과 에탄올을 포함하는 혼합수이며,
    상기 적산 열량계는 상기 작동 유체의 이력 데이터 및 상기 작동 유체의 사용 기간에 따른 작동 유체의 비열 데이터가 저장된 메모리부를 더 포함하며,
    상기 메모리부에 저장된 상기 작동 유체의 이력 데이터 및 상기 작동 유체의 사용 기간에 따라 작동 유체의 비열 데이터를 이용하여 상기 작동 유체의 비열을 보정하는 비열 계산 단계를 더 포함하는 소비 열량 산출 방법.
PCT/KR2017/013087 2017-11-16 2017-11-17 적산 열량계 및 이를 이용한 소비 열량 산출 방법 WO2019098425A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0152850 2017-11-16
KR20170152850 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019098425A1 true WO2019098425A1 (ko) 2019-05-23

Family

ID=66538688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013087 WO2019098425A1 (ko) 2017-11-16 2017-11-17 적산 열량계 및 이를 이용한 소비 열량 산출 방법

Country Status (1)

Country Link
WO (1) WO2019098425A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221439A (ja) * 2001-01-25 2002-08-09 Toyo Keiki Co Ltd 電子式水道メータシステム
KR200289185Y1 (ko) * 2002-06-10 2002-09-13 (주)제노텔 열량계의 원격 검침 시스템
KR20140059639A (ko) * 2012-11-08 2014-05-16 한국에너지기술연구원 양방향 열량계
KR101519073B1 (ko) * 2013-11-04 2015-05-08 한국에너지기술연구원 양방향 열량계 및 이를 구비하는 열에너지 공급 시스템
KR101606057B1 (ko) * 2014-08-21 2016-03-24 주식회사 엔박 에너지 표시 가정용 가스미터 및 가스량 측정방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221439A (ja) * 2001-01-25 2002-08-09 Toyo Keiki Co Ltd 電子式水道メータシステム
KR200289185Y1 (ko) * 2002-06-10 2002-09-13 (주)제노텔 열량계의 원격 검침 시스템
KR20140059639A (ko) * 2012-11-08 2014-05-16 한국에너지기술연구원 양방향 열량계
KR101519073B1 (ko) * 2013-11-04 2015-05-08 한국에너지기술연구원 양방향 열량계 및 이를 구비하는 열에너지 공급 시스템
KR101606057B1 (ko) * 2014-08-21 2016-03-24 주식회사 엔박 에너지 표시 가정용 가스미터 및 가스량 측정방법

Similar Documents

Publication Publication Date Title
CN103228996B (zh) 用于控制加热通风和空调系统中的阀的开度的装置和方法
KR101886229B1 (ko) 적산 열량계 및 이를 이용한 소비 열량 산출 방법
KR100737169B1 (ko) 통합형 난방제어시스템
CN108463672B (zh) 用于控制离心泵的方法以及相关的泵系统
JP6599026B2 (ja) 貯湯式給湯装置
CN102635894B (zh) 供暖系统及其平衡控制方法
KR101574708B1 (ko) 원격 검침 열량계, 그의 동작 방법 및 시스템
WO2019098425A1 (ko) 적산 열량계 및 이를 이용한 소비 열량 산출 방법
CZ291373B6 (cs) Způsob měření spotřeby tepelné energie a zařízení k provádění tohoto způsobu
DK3098575T3 (en) Hot water meter and measuring method therefore
KR101263240B1 (ko) 적산열량계의 측정값을 이용한 오차 보정 제어 장치 및 방법
CN107743601A (zh) 热交换器控制与诊断装置
KR102148136B1 (ko) 탱크 급수온도 센서의 고장을 검출할 수 있는 열량 측정 시스템 및 이의 제어 방법
KR101500943B1 (ko) 난방공급 및 난방환수 온도센서를 이용한 보일러의 난방 연소 제어방법
US20210088230A1 (en) One-pipe hydronic heating control device
KR101508475B1 (ko) 하나의 열원을 사용하는 다수 세대의 난방 ems 시스템
KR102082405B1 (ko) 급탕계량기
WO2019098424A1 (ko) 열량 측정 시스템 및 이의 제어 방법
KR20200013954A (ko) 적산 열량계를 이용한 지열원 히트펌프 시스템의 성능계수 산출 방법
JP6864469B2 (ja) 計測機器およびデータ表示方法
KR102640053B1 (ko) 디지털 수도계량기의 보조 전원 공급 및 감지 신호 전달 장치, 및 그 제어 방법
CZ31889U1 (cs) Zařízení pro řízení tepelného výměníku v jednopotrubní otopné síti
JP2677099B2 (ja) 熱交換装置
JP2001208364A (ja) 温水の使用熱量管理装置
SE439200B (sv) Vermemengdsmetare

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932356

Country of ref document: EP

Kind code of ref document: A1