WO2019098264A1 - Cd31陽性cd45陰性cd200陽性の哺乳動物細胞からなる細胞集団、およびその利用 - Google Patents

Cd31陽性cd45陰性cd200陽性の哺乳動物細胞からなる細胞集団、およびその利用 Download PDF

Info

Publication number
WO2019098264A1
WO2019098264A1 PCT/JP2018/042255 JP2018042255W WO2019098264A1 WO 2019098264 A1 WO2019098264 A1 WO 2019098264A1 JP 2018042255 W JP2018042255 W JP 2018042255W WO 2019098264 A1 WO2019098264 A1 WO 2019098264A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
vascular endothelial
positive
cell
cell population
Prior art date
Application number
PCT/JP2018/042255
Other languages
English (en)
French (fr)
Inventor
伸幸 ▲高▼倉
尚道 内藤
卓 若林
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to AU2018367552A priority Critical patent/AU2018367552A1/en
Priority to CN201880073912.8A priority patent/CN111417718B/zh
Priority to JP2019554274A priority patent/JP7176766B2/ja
Priority to US16/763,938 priority patent/US11920161B2/en
Priority to CA3082528A priority patent/CA3082528A1/en
Priority to EP18878102.5A priority patent/EP3712256A4/en
Publication of WO2019098264A1 publication Critical patent/WO2019098264A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0692Stem cells; Progenitor cells; Precursor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/44Vessels; Vascular smooth muscle cells; Endothelial cells; Endothelial progenitor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5073Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • C12N2509/10Mechanical dissociation

Definitions

  • the present invention relates to a cell population consisting of mammalian cells of CD31-positive, CD45-negative and CD200-positive, and a medicament containing the cell population as an active ingredient.
  • Hematopoietic stem cells present in the bone marrow maintain myelopoiesis over a long period of time by their ability to divide in an undifferentiated state (self-replication ability) and to differentiate into mature blood cells such as red blood cells and white blood cells and platelet-producing precursor cells. It is known to do.
  • vascular endothelial cells that form the lumen of blood vessels have been considered to maintain blood vessels for a lifetime by slow division as mature vascular endothelial cells when they occur in the fetal stage. That is, in the vascular system, it was not thought that stem cells supporting the blood vessel for a long time were present.
  • the present inventors consider that there may be cells such as vascular endothelial stem cells capable of producing a large amount of vascular endothelial cells even in existing blood vessels, and Hoechst is known as a tissue stem cell isolation method. Methods were used to determine if the vascular endothelial cells were heterologous.
  • the Hoechst method is a method utilizing the fact that tissue stem cells have higher ability to excrete drugs (foreign substances) compared to other differentiated cells.
  • the DNA staining dye Hoechst 33342 is incorporated into cells, some of the cells having high ability to excrete Hoechst 33342 exhibit stem cell nature.
  • SP cell population the population of the side endothelial cells
  • MP cell population the main population cells that can not excrete Hoechst
  • Non-Patent Document 1 Conventionally, it has been reported that vascular endothelial precursor cells are present in the bone marrow, and revascularization therapy using these cells is performed.
  • Non-patent Document 1 vascular endothelial stem cell-like cells found in muscle vascular endothelial cells are not cells derived from bone marrow.
  • An object of the present invention is to identify a vascular endothelial stem cell and a vascular endothelial stem cell population by a cell surface marker, and to provide a drug containing the vascular endothelial stem cell and the vascular endothelial stem cell population as active ingredients.
  • the present invention includes the following inventions in order to solve the above-mentioned problems.
  • a cell population consisting essentially of mammalian cells positive for cell surface markers CD31 and CD200 and negative for CD45.
  • [8] The vascular endothelial stem cell according to the above [6] or [7], wherein the mammal is a human.
  • a medicament comprising the cell population of any one of [1] to [5] or the vascular endothelial stem cells of any of [6] to [8] as an active ingredient.
  • [10] For regeneration of blood vessels, for improving ischemia, for improving malnutrition, for treating vascular malformations, for improving blood flow failure due to vascular malformations, for promoting organ regeneration, or for abnormality of molecules secreted from vascular endothelial cells The medicine according to the above-mentioned [9], which is for the prevention and / or treatment of a resulting disease.
  • the disease to be ameliorated by the transgene product is hemophilia A, hemophilia B, von Willebrand's disease, cancer, age-related macular degeneration, autoimmune disease, rheumatism, dementia, diabetes, hypertension
  • a method for evaluating the toxicity of a test substance to blood vessels (1) culturing the cell population according to any one of the above [1] to [5] using a culture medium containing a test substance and a culture medium not containing the test substance; (2) measuring the cell proliferation level after culture; (3) Toxicity evaluation characterized in that it comprises a step of comparing the cell proliferation level when cultured with a medium containing a test substance with the cell proliferation level when cultured with a medium not containing a test substance Method.
  • the present invention can provide a vascular endothelial stem cell population and a vascular endothelial stem cell.
  • a vascular endothelial stem cell population for revascularization, for improving ischemia, for improving malnutrition, for treating vascular malformation, for improving blood flow failure due to vascular malformation, for promoting organ regeneration, or blood vessel
  • a vascular endothelial stem cell that expresses a transgene it is possible to provide a medicine for treating a disease that is improved by the transgene product.
  • FIG. 7 is a diagram showing the results of examination of revascularization of the liver. It is a figure which shows the result of having stained the frozen section of the liver of the hemophilia A model mouse which transplanted the CD157 positive CD200 positive vascular endothelial cell with anti-EGFP antibody and anti-CD31 antibody.
  • (A) shows the results of observing the liver of the SP cell population or the cells of the MP cell population in the liver of a mouse undergoing 70% partial hepatectomy and observing the liver after 7 days with a fluorescence microscope
  • (A) is a liver to which cells of the MP cell population have been transplanted. It is a figure which shows the result of having measured the weight of the liver 7 days after transplanting the cell of the cell of SP cell population, or the cell of MP cell population to the liver of the mouse which performed 70% partial hepatectomy.
  • FIG. 8 shows the results of measurement of mRNA expression levels of Wnt2 and HGF in cells (Pre) of the SP cell population of (A): results of Wnt2, (B): results of HGF.
  • Immunofluorescent staining was performed on cells prepared by digesting and dispersing mouse retina, brain, heart, skin, muscle tissue and lung, and each CD31 positive CD45 negative CD157 positive CD200 positive cells were collected for colony formation assay It is a figure which shows a result.
  • FIG. It is a figure which shows the result which immunofluorescently stained the liver of the recipient mouse of FIG. 11 and observed it with a confocal microscope, As a result of having stained with (A) anti-GFP antibody, (B) anti-CD31 antibody result, the lower berth is a figure It is an enlarged image within the dotted line frame of (around the sinusoid).
  • the cell suspension was prepared from the liver of the recipient mouse in FIG.
  • (A) shows the result of flow cytometric analysis with anti-GFP antibody staining and forward scattered light (FSC)
  • B shows (A) It is the result of performing flow cytometry analysis by staining cells (GFP positive cells) in the frame of) with anti-CD157 antibody and anti-CD200 antibody. It is a figure which shows the result of having performed immunofluorescence staining to the cell which digested and disperse
  • FIG. 14 (B) shows the result of flow cytometry analysis by staining the cells in the frame of (A) (CD31 positive CD45 negative cells) with anti-CD 157 antibody and anti-CD 200 antibody. . It is the result of performing a colony formation assay about each cell of CD200 positive fraction (CD31 positive CD45 negative CD200 positive) and CD200 negative fraction (CD31 positive CD45 negative CD200 negative) of FIG. 14 (B), respectively. It is a figure which shows the result of having performed immunofluorescence staining to the cell which digested and disperse
  • (B) shows the result of flow cytometric analysis by staining the cells in the frame of (A) (CD31 positive CD45 negative cells) with anti-CD 157 antibody and anti-CD 31 antibody. . It is a figure which shows the result of having performed the immunofluorescent staining to the cell which prepared the human placental tissue by digesting and disperse
  • Cell population containing vascular endothelial stem cells and vascular endothelial stem cells The present inventors have found that about 1% of cells (SP cell population) having high ability to excrete drugs (foreign matter) exist in vascular endothelial cells obtained from blood vessels of muscle tissue, among which vascular endothelial stem cell-like cells are present. It has been found that the existence of the vascular endothelial stem cell-like cells is substantially absent in the majority of vascular endothelial cells (MP cell population) having a low ability to excrete a drug (foreign substance) (Non-patent Document 1).
  • the present inventors can similarly divide vascular endothelial cells obtained from the blood vessels of the liver into SP cell population fractions with high drug (foreign substance) efflux capacity and low MP cell population fractions. It was confirmed that about 10% of vascular endothelial stem cell-like cells were present and almost absent in the MP cell population.
  • Cell surface that comprehensively analyzes high expression genes in SP cell population and can identify vascular endothelial stem cell-like cells (hereinafter referred to as “vascular endothelial stem cells”) from among over 100 SP cell population high expression genes I found a marker.
  • the present invention provides a cell population comprising mammalian vascular endothelial stem cells.
  • vascular endothelial stem cells mean cells having the ability to divide in an undifferentiated state (self-replication ability) and the ability to differentiate into vascular endothelial cells.
  • the first cell population of the present invention is a cell population consisting essentially of mammalian cells positive for cell surface markers CD31 and CD200 and negative for CD45.
  • the first cell population of the present invention may contain impure cells (cells other than CD31 positive / CD200 positive / CD45 negative cells) at a rate that is difficult to eliminate by ordinary manipulation.
  • CD31 is a single-chain membrane glycoprotein with a molecular weight of 140 kDa that belongs to the immunoglobulin superfamily, also called PECAM-1, and is used as a cell surface marker for endothelial cells.
  • CD45 is a single chain transmembrane protein known as Leukocyte common antigen (LCA), and at least five isoforms exist.
  • CD31 positive CD45 negative is positioned as a cell surface marker of vascular endothelial cells.
  • CD31 positive CD45 negative cells are used synonymously with vascular endothelial cells.
  • CD200 is a highly conserved membrane glycoprotein belonging to the immunoglobulin superfamily that contains two immunoglobulin-like domains (V, C) and a single transmembrane and short cytoplasmic domain, thymus, B cells, A variety of cells such as activated T and B cells, dendritic cells, neurons, endothelial cells, and the like express CD200 on the cell surface.
  • the present inventors found that vascular endothelial stem cells are present in CD200 positive vascular endothelial cells (CD31 positive CD45 negative cells).
  • the vascular endothelial stem cells contained in the first cell population of the present invention may be about 2%, about 3%, about 4%, or about 5%.
  • the vascular endothelial stem cells contained in the first cell population of the present invention may be 1 to 3%, may be 2 to 4%, may be 3 to 5%, or 4 to 6%. , 5 to 7%, 6 to 8%, 7 to 9%, or 8 to 10%.
  • the second cell population of the present invention is a cell population consisting essentially of mammalian cells positive for cell surface markers CD31, CD157 and CD200 and negative for CD45.
  • the second cell population of the present invention may contain impure cells (cells other than CD31 positive / CD157 positive / CD200 positive / CD45 negative cells) at a rate that is difficult to eliminate by ordinary manipulation. Good.
  • CD157 is a glycosyl-phosphatidylinositol linked membrane protein and is expressed on monocytes, neutrophils, and all lymphoid and myeloid progenitor cells.
  • the present inventors found that CD200-positive vascular endothelial cells (first cell population) have two cell populations, CD157-positive and CD157-negative, and the CD157-positive cell population is rich in vascular endothelial stem cells.
  • the CD157 negative cell population is rich in vascular endothelial precursor cells whose differentiation stage is advanced more than vascular endothelial stem cells.
  • the vascular endothelial stem cells contained in the second cell population of the present invention may be about 20%, about 30%, about 40% or about 50%.
  • the vascular endothelial stem cells contained in the second cell population of the present invention may be 20 to 40%, 30 to 50%, or 40 to 60%, or 50 to 70%. , May be 60 to 80%, may be 70 to 90%, may be 80 to 95%, and may be 90 to 99%.
  • the cell population of the present invention may be a cell population consisting of mammalian cells. Mammals are not particularly limited, and examples include humans, monkeys, cows, pigs, dogs, mice, rats, rabbits and the like. When the cell population of the present invention is a human cell population, it can be safely transplanted to human.
  • the present invention may be vascular endothelial stem cells that do not form a cell population. That is, the present invention includes vascular endothelial stem cells.
  • the vascular endothelial stem cells of the present invention may be mammalian vascular endothelial stem cells positive for cell surface markers CD31 and CD200 and negative for CD45, positive for cell surface markers CD31, CD157 and CD200, CD45 It may be a mammalian vascular endothelial stem cell that is negative. Mammals are not particularly limited, and examples include humans, monkeys, cows, pigs, dogs, mice, rats, rabbits and the like. When the vascular endothelial stem cells of the present invention are human vascular endothelial stem cells, they can be safely transplanted to humans.
  • the cell population of the present invention and the vascular endothelial stem cells of the present invention can be prepared from any organ.
  • the method for preparing the cell population of the present invention is not particularly limited.
  • the isolated organ is digested and dispersed with a commercially available reagent for cell dispersion to prepare a cell suspension, and this cell suspension is used as an anti-CD31 antibody.
  • a method of recovering CD31-positive CD45-negative CD200-positive cells (first cell population) using a flow cytometry technique can be used.
  • the cell suspension is stained with anti-CD31 antibody, anti-CD45 antibody, anti-CD157 antibody, and anti-CD200 antibody, and then CD31 positive CD45 negative CD157 positive CD200 positive cells (second cell population) using flow cytometry technology ) Can be used (see Example 1).
  • the vascular endothelial stem cells may be vascular endothelial stem cells that express a transgene.
  • Vascular endothelial stem cells expressing a transgene, and cell populations comprising vascular endothelial stem cells expressing a transgene are also encompassed by the present invention.
  • the transgene is not particularly limited, and may be a gene encoding a gene product that exerts an advantageous effect on a living organism.
  • the transgene may also be a gene encoding a gene product that is secreted extracellularly.
  • transgene a gene encoding an antibody that recognizes a specific antigen, a gene encoding a cytokine, a gene encoding a nucleic acid that hybridizes to a specific nucleic acid sequence, and the like can be mentioned.
  • Vascular endothelial stem cells that express a transgene can be prepared using known genetic engineering techniques. For example, it can be produced by transfecting the expression vector into which the desired gene has been incorporated into the CD31 + CD45 + CD200 + cells or CD31 + CD45 + CD157 + CD200 + cells prepared as described above.
  • the present invention provides a medicament comprising the cell population of the present invention as an active ingredient.
  • the present inventors confirmed that, when the cell population of the present invention is transplanted into the liver of a liver vascular injury model mouse, blood vessels are regenerated by the vascular endothelial stem cells contained in the cell population of the present invention (Example 1) reference).
  • the present invention also provides a medicament comprising the vascular endothelial stem cell of the present invention as an active ingredient.
  • the present inventors confirmed that when one vascular endothelial stem cell of the present invention is transplanted into the liver of a recipient mouse, it is established, proliferated and maintained as a vascular endothelial cell constituting a blood vessel (Example Example) 5).
  • the medicament of the present invention can be suitably used as a medicament for revascularization. Since the medicament of the present invention can regenerate blood vessels, it can be used to improve ischemia and malnutrition resulting from the reduction in vascular function. Therefore, the medicament of the present invention is effective for the treatment of ischemic diseases such as cerebral infarction, myocardial infarction and Burgers disease. These ischemic diseases may be caused by arterial diseases such as arteriosclerosis, thrombosis and arteritis, and are caused by lifestyle-related diseases such as hyperlipidemia, diabetes, hypertension, gout and aging. It may be In addition, the medicament of the present invention can be suitably used for the treatment of vascular malformation or the treatment of blood flow failure caused by vascular malformation. As vascular malformations, arteriovenous fistula, moyamoya disease and the like can be mentioned. Furthermore, the medicament of the present invention can be used for wound healing.
  • ischemic diseases such as cerebral infarction, myocardial infarction and
  • the medicament of the present invention can be used to promote organ regeneration.
  • the present inventors have confirmed that transplantation of the cell population of the present invention into the livers of 70% hepatectomized mice promotes liver regeneration (see Example 3).
  • the target organ is not particularly limited, and any organ that can regenerate blood vessels by the medicament of the present invention can promote regeneration. It has been revealed that, in all organs, organ-specific cells (including stem cells) have long-term cell survival and cell proliferation induced by humoral factors and adhesion factors secreted by vascular endothelial cells. Therefore, the regeneration of the organ is promoted along with the regeneration of the blood vessel of the organ. Therefore, the medicament of the present invention can treat a disease which is ameliorated by organ regeneration. For example, if regeneration of the liver is promoted, prevention or treatment of liver cirrhosis, liver fibrosis, hepatitis, fatty liver, liver failure and the like becomes possible. The same applies to other organs.
  • the medicament of the present invention can be used for the treatment of diseases caused by the abnormality of molecules secreted from vascular endothelial cells.
  • the medicament of the present invention including vascular endothelial stem cells having a normal gene is applied to a patient suffering from a disease in which a molecule is not secreted due to genetic abnormality or the amount of secreted molecule decreases, Necessary amounts of molecules are secreted from cells and diseases can be treated efficiently.
  • the cell population of the present invention prepared from the liver of a mouse having a normal coagulation factor VIII gene to the liver of hemophilia A model mice, the present inventors notice that the time from hemorrhage to hemostasis is remarkable. It has been confirmed that the length is short (see Example 2).
  • diseases caused by abnormalities in molecules secreted from vascular endothelial cells include hemophilia A, hemophilia B, von Willebrand's disease, hypertension, glucose intolerance, dyslipidemia, metabolic syndrome, Osteoporosis etc. are mentioned. The correspondence between these diseases and secreted molecules is shown in Table 1.
  • the pharmaceutical agent of the present invention can be used by selecting the cell population of the present invention or the vascular endothelial stem cells of the present invention suitable for the organ to be regenerated blood vessels.
  • the cell population of the present invention suitable for the organ to be subjected to blood vessel regeneration includes the cells of the present invention prepared from the same germ-derived organ in three developmental germ layers (endoderm, mesoderm, outer lung lobe) It may be a group. Organs derived from endoderm are stomach, intestine, lung, liver, pancreas, etc.
  • Organs derived from mesoderm are muscle, bone, blood vessels, heart, kidney, spleen, testis, uterus etc., and they are derived from outer lung lobe
  • the organs are brain, nerve, skin, lens and the like.
  • the cell population of the present invention prepared from the same organ as the target organ is used.
  • the present invention provides a medicament comprising, as an active ingredient, a cell population comprising vascular endothelial stem cells expressing a transgene or vascular endothelial stem cells expressing a transgene.
  • vascular endothelial stem cells that express a transgene establish as vascular endothelial cells in the blood vessels of a transplanted organ or tissue, and continuously and persistently express the transgene product and secrete it into the blood, causing a disease through the bloodstream Since the transgene product can be delivered to a site, it can be suitably used for the prevention and / or treatment of a disease that is ameliorated by the action of the transgene product.
  • a cell population containing vascular endothelial stem cells expressing a transgene or a medicament comprising vascular endothelial stem cells expressing a transgene as active ingredients can treat all diseases for which a transgene product is effective for treatment.
  • a drug for treating hemophilia containing vascular endothelial stem cells into which a gene encoding coagulation factor VIII has been introduced a drug for treating haemophilia containing vascular endothelial stem cells into which a gene encoding coagulation factor IX has been introduced, anticoagulation
  • drugs for treating vascular proliferative diseases cancer, age-related
  • the medicament of the present invention can be administered to a living body in the form of a cell suspension in which the cell population of the present invention or the vascular endothelial stem cells of the present invention is suspended in a suitable solution that can be administered to the living body.
  • suitable solution examples include saline, PBS (phosphate buffered saline), and other physiological salt solutions.
  • preparation of a cell population or vascular endothelial stem cells is usually performed immediately before administration, it may be prepared at the time of use with a cryopreserved cell population or vascular endothelial stem cells.
  • the medicament of the present invention is to administer the cell population of the present invention or the cell suspension of vascular endothelial stem cells directly to the organ to be regenerated the blood vessel or in the vein upstream of the organ to be regenerated the blood vessel.
  • Can. Although the dose varies depending on the organ, the patient's age, body weight, etc. of the subject that is to regenerate blood vessels, it can not be uniquely identified, but the physician should appropriately determine the appropriate dose based on the above situation. Can. For example, 1 to 1 ⁇ 10 9 cells may be administered at one time.
  • the frequency of administration can be appropriately selected in the range of once / day to once / week.
  • the dosage and frequency of administration can be increased or decreased depending on the patient.
  • the present invention provides a method of evaluating vascular toxicity using the cell population of the present invention.
  • the method for evaluating vascular toxicity of the present invention can be carried out by contacting a test substance with the cell population of the present invention and measuring the level of cell proliferation.
  • a method including the following steps can be mentioned. (1) culturing the cell population according to any one of the above [1] to [3] using a culture medium containing a test substance and a culture medium not containing the test substance; (2) measuring the cell proliferation level after culture; (3) a step of comparing the level of cell proliferation when cultured with a medium containing a test substance with the level of cell proliferation when cultured with a medium containing no test substance
  • the test substance is not particularly limited, and, for example, nucleic acids, peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, cell culture supernatants, plant extracts, mammalian tissue extracts, plasma, etc. Can be mentioned. However, it is not limited to these.
  • the test substance may be a novel substance or a known substance. These test substances may form salts.
  • the salt of the test substance may be a salt with a physiologically acceptable acid or base.
  • the medium used to culture the cell population of the present invention can be appropriately selected from known media that can be used to culture vascular endothelial cells. Also as the culture method, a known culture method of vascular endothelial cells can be appropriately selected and used.
  • the culture period is not particularly limited, and is preferably set appropriately according to the test substance to be used.
  • the method for measuring the cell proliferation level is not particularly limited, and can be appropriately selected from known methods and used. Specifically, for example, a method of counting the number of cells visually or using a cell counter, a crystal violet method, an MTT method, a method of using other various cell proliferation measurement kits, and the like can be mentioned.
  • the test substance When the cell proliferation level when cultured with the medium containing the test substance is lower than the cell proliferation level when cultured with the medium not containing the test substance, that is, the test substance is a vascular endothelial stem cell When it is a substance that inhibits proliferation, the test substance can be evaluated as toxic to blood vessels.
  • the cell proliferation level when cultured using a medium containing a test substance is 90% or less, 80% or less, 70% or less, 60% or less of the cell growth level when cultured using a medium not containing a test substance
  • the test substance may be evaluated to be toxic to blood vessels when it is less than 50%.
  • the test substance when the cell proliferation level when cultured with the medium containing the test substance is significantly higher than the cell proliferation level when cultured with the medium not containing the test substance, that is, the test substance is Even in the case of a substance that abnormally promotes the proliferation of vascular endothelial stem cells, the test substance can be evaluated as having toxicity to blood vessels.
  • the cell proliferation level when cultured using a medium containing a test substance is 200% or more, 250% or more, 300% or more of the cell growth level when cultured using a medium not containing a test substance
  • the test substance may be evaluated as toxic to blood vessels.
  • the method for evaluating vascular toxicity according to the present invention is very useful in that the vascular toxicity of a test substance can be evaluated easily and rapidly.
  • the vascular toxicity evaluation method of the present invention is particularly useful when it is desired to evaluate toxicity to vascular endothelial cells.
  • preparation of the cell population of the present invention from the patient itself is very useful in that the influence of the test substance on the patient's own blood vessels can be evaluated.
  • the present invention also includes the following inventions.
  • a method for revascularization comprising the step of administering the cell population according to any one of [1] to [5] or the vascular endothelial stem cells according to any one of [6] to [8].
  • [B] The method according to [A], which improves ischemia and malnutrition.
  • [C] The method according to [A], for treating blood flow defect caused by vascular malformation or vascular malformation.
  • [D] The method according to [A], which promotes organ regeneration.
  • E The method according to [A], which treats a disease caused by an abnormality in a molecule secreted from vascular endothelial cells.
  • [F] Diseases caused by abnormalities in molecules secreted from vascular endothelial cells include hemophilia A, hemophilia B, von Willebrand's disease, hypertension, glucose intolerance, dyslipidemia, metabolic syndrome or The method according to [E], which is osteoporosis.
  • [I] A cell population or vascular endothelial stem cells for use as described in [G] for treating blood flow defect caused by vascular malformation or vascular malformation.
  • [J] A cell population or vascular endothelial stem cells for use as described in [G] for promoting organ regeneration.
  • [K] A cell population or vascular endothelial stem cells for use as described in [G] for treating a disease caused by an abnormality in a molecule secreted from vascular endothelial cells.
  • [L] Diseases caused by abnormalities in molecules secreted from vascular endothelial cells include hemophilia A, hemophilia B, von Willebrand's disease, hypertension, glucose intolerance, dyslipidemia, metabolic syndrome or The cell population or vascular endothelial stem cells according to [K], which is osteoporosis.
  • Diseases caused by abnormalities in molecules secreted from vascular endothelial cells include hemophilia A, hemophilia B, von Willebrand's disease, hypertension, glucose intolerance, dyslipidemia, metabolic syndrome or Use according to [Q], which is osteoporosis.
  • [S] A method for treating a disease ameliorated by a transgene product, comprising the step of administering the cell population of the above-mentioned [4] or the vascular endothelial stem cells of the above-mentioned [7].
  • [T] The cell population of the above-mentioned [4] or the vascular endothelial stem cell of the above-mentioned [7], for use in the treatment of a disease ameliorated by a transgene product.
  • [U] Use of the cell population of the above-mentioned [4] or the vascular endothelial stem cells of the above-mentioned [7] for the manufacture of a medicament for the treatment of a disease ameliorated by a transgene product.
  • Example 1 Identification of Mouse Liver Vascular Endothelial Stem Cells by Cell Surface Markers
  • SP cell population and MP cell population obtained from mouse liver vascular endothelial cells CD31 positive CD45 negative cells
  • genes comprehensively expressed in the SP cell population compared to the MP cell population are comprehensively analyzed, and over 100 I found a gene.
  • mice were purchased from Japan SLC. 8-12 week old mice were used for the experiment. The mouse was opened under anesthesia and the liver was removed. After mincing the liver, it is immersed in a mixed solution of Dispase II (Roche Applied Science), collagenase (Wako) and type II collagenase (Worthington Biochemical Corp.), shaken at 37 ° C, and extracellular matrix Digested. The digested liver was passed through a filter with a pore size of 40 ⁇ m to obtain a dispersed cell suspension.
  • CAG-EGFP CAG-EGFP
  • the erythrocytes were hemolyzed with an ACK (Ammonium-Chloride-Potassium) solution (0.15 M NH 4 Cl, 10 mM KHCO 3 , and 0.1 mM Na 2 -EDTA), and the remaining cells were subjected to the following experiment.
  • ACK Ammonium-Chloride-Potassium
  • PI Propidium iodide
  • FACS Aria II SORP manufactured by BD Bioscience
  • FlowJo Software manufactured by Treestar Software
  • CD157-positive, CD200-positive cells are the vascular endothelial cell stem cell fraction, and starting from these cells, blood vessels that partially retain the stem cell function of CD157-negative CD200-positive (fraction B) It was considered to differentiate into endothelial progenitor cells and terminally differentiate into CD157 negative CD200 negative mature vascular endothelial cells. That is, the second cell population of the present invention is a cell population mainly composed of vascular endothelial cell stem cells, and the first cell population of the present invention is vascular endothelial cell stem cells and vascular endothelial precursor cells partially retaining stem cell function. It was considered to be a mixed cell population.
  • liver angiopathy model mouse C57BL / 6 mice were intraperitoneally administered monocrotaline (Sigma-Aldrich) at a dose of 300 mg / kg on the same day The whole body was irradiated with 30 rads / g of radiation to produce a liver vascular injury model mouse.
  • liver is removed, a cell suspension is prepared by the method described in the above-mentioned 1-1 (1), and immunofluorescent staining is performed with anti-CD31 antibody, anti-CD157 antibody and anti-CD200 antibody, and flow cytometric analysis went.
  • FIG. The left side is a fluorescent stereomicroscopic image of the liver.
  • the GFP-positive area was very wide, and the GFP-positive transplanted cells constructed numerous blood vessel areas.
  • the GFP-positive area of the liver (middle) into which CD157-negative CD200-positive cells of fraction B were transplanted was smaller than when cells of fraction A were transplanted. That is, it was revealed that the cells of fraction B maintain the ability to construct a blood vessel region, but the ability is inferior to the cells of fraction A.
  • GFP-positive CD31-positive cells are collected from the liver to which cells of each fraction have been transplanted (middle), and the amount of CD157 expression (X-axis) and CD200 expression (Y-axis) in the collected cells The dot plot is shown on the right.
  • the liver upper row
  • CD157 positive CD200 positive cells of fraction A were transplanted
  • differentiation progressed from CD157 positive CD200 positive cells to CD157 negative CD200 positive cells and further CD157 negative CD200 negative cells .
  • the liver (middle) in which CD157 negative CD200 positive cells of fraction B were transplanted, it was revealed that differentiation was progressing to CD157 negative CD200 negative cells.
  • the liver (lower row) into which CD157 negative CD200 negative cells of fraction C were transplanted it became clear that the transplanted cells survived as GFP positive cells.
  • CD157 positive CD200 positive vascular endothelial cells are cells that can greatly contribute to angiogenesis as stem cells. It turned out to be.
  • the CD157-positive, CD200-positive, vascular endothelial stem cells are differentiated to become CD157-negative, CD200-positive cells, although they do not correspond to stem cells, but still possess proliferative potential (some vascular endothelium with so-called stem cell function remains) Cells that were precursor cells) and became CD157 negative CD200 negative were considered to be terminally differentiated vascular endothelial cells whose proliferation activity was extremely attenuated.
  • the present inventors have found that there is a hierarchy among vascular endothelial cells, and the vascular system has a differentiation lineage from vascular endothelial stem cells to vascular endothelial precursor cells and further to terminally differentiated vascular endothelial cells. Discovered for the first time in the world. Although no data is shown, the present inventors confirmed that the blood vessels formed by the transplanted CD157-positive CD200-positive cells remained without reduction even in mice one year after transplantation. ing.
  • Example 2 Treatment of hemophilia by transplantation of CD157-positive CD200-positive vascular endothelial cells
  • stem cells continuously produce terminally differentiated somatic cells while maintaining undifferentiated properties
  • long-term transplantation of CD157-positive CD200-positive cells which are considered to be vascular endothelial stem cells, as vascular endothelial cells
  • the disease may be completely cured. Therefore, it was examined whether normal CD157 positive CD200 positive cells were transplanted into the liver of hemophilia A model mice to suppress the bleeding tendency of hemophilia A model mice.
  • thrombocheck FVIII kit manufactured by Sysmex Corporation was used for measurement of coagulation factor VIII in plasma.
  • Hemophilia A model mice transplanted with CD157 + CD200 + vascular endothelial cells and Hemophilia A model mice transplanted with CD157 negative CD 200 negative vascular endothelial cells were opened under anesthesia 6 weeks after transplantation and the liver was removed did.
  • the excised livers were cryosectioned according to a standard method, stained with anti-EGFP antibody and anti-CD31 antibody, and the presence of EGFP positive CD31 positive cells was observed with a fluorescence microscope.
  • coagulation factor VIII was not detected in the plasma of hemophilia A model mice, in hemophilia A model mice transplanted with CD157 positive CD200 positive vascular endothelial cells, coagulation of about 70% level of wild type mice was observed Factor VIII was detected. This level was higher than that of coagulation factor VIII gene heterozygous mice.
  • the hemophilia A model mouse transplanted with CD157 negative CD200 negative vascular endothelial cells expression of coagulation factor VIII was hardly restored.
  • FIG. (A) shows the results of hemophilia A model mice not transplanted with cells
  • (B) shows the results of hemophiliac A model mice transplanted with CD157 positive CD200 positive vascular endothelial cells.
  • Hemophilia A model mice not transplanted with cells did not stop bleeding even after 60 minutes, while the hemophiliac A model mice transplanted with CD157 positive CD200 positive vascular endothelial cells took less than 5 minutes He had a hemostasis. From these results, it has become clear that transplantation of CD157-positive CD200-positive vascular endothelial cells (vascular endothelial stem cells) is effective for the treatment of diseases caused by vascular endothelial cell dysfunction.
  • Example 3 Liver regeneration by CD157 positive CD200 positive vascular endothelial cell transplantation
  • vascular endothelial cells play an important function in tissue homeostasis maintenance and tissue remodeling, and also in the liver, hepatocytes by vascular endothelial cells in the sinusoids of the liver. Maintenance mechanisms have been identified. Since it became clear that CD157-positive CD200-positive vascular endothelial cells greatly contribute to the formation of sinusoidal sinus blood in the liver, it was examined whether transplantation of CD157-positive CD200-positive vascular endothelial cells would promote regeneration of the liver.
  • 3-1 Liver regeneration experiment 1 (1) Experimental method C57BL / 6 mice were subjected to 70% partial hepatectomy according to a standard method. CD157 positive CD200 positive vascular endothelial cells and CD157 negative CD200 negative vascular endothelial cells were prepared from the liver of C57BL / 6-Tg (CAG-EGFP) mice by the method described in 1-1 in Example 1. CD157-positive CD200-positive vascular endothelial cells and CD157-negative CD200-negative vascular endothelial cells are transplanted into the livers of 70% hepatectomized mice respectively via the splenic vein, and after 8 days the liver is removed from the mice under anesthesia and weighed Was measured.
  • mice transplanted with CD157-positive CD200-positive vascular endothelial cells promote liver regeneration compared to mice transplanted with CD157-negative CD200-negative vascular endothelial cells.
  • transplantation of CD157-positive CD200-positive vascular endothelial cells is considered to be effective for the treatment of diseases such as liver fibrosis and cirrhosis.
  • CD31 positive CD45 negative non Hoechst stained cells were collected as SP cell population and CD31 positive CD45 negative Hoechst stained cells were collected as MP cell population.
  • About 70% of the SP cell population is CD157 positive CD200 positive, and it has been confirmed by the present inventors that the MP cell population contains almost no CD157 positive CD200 positive.
  • a 70% partial hepatectomy was performed according to a standard method for C57BL / 6 mice. 2 ⁇ 10 4 cells of each of the SP cell population and the MP cell population were transplanted through the splenic vein into the livers of 70% hepatectomized mice. After 7 days, the liver was excised from the mouse under anesthesia, weighed and observed with a fluorescence microscope.
  • GFP positive vascular endothelial cells (GFP positive CD31 positive CD45 negative cells) were prepared by the method described in 1-1 of Example 1.
  • the total RNA is prepared from the GFP-positive vascular endothelial cells after transplantation and the cells of the SP cell population before transplantation (each 1 ⁇ 10 4 cells) using the RNAeasy kit (Qiagen), and the ExScript RT reagent Kit ( CDNA was synthesized using Takara Bio Inc.).
  • the expression levels of Wnt2 and HGF mRNA were analyzed by real-time PCR using the obtained cDNA (Pre and Post) before and after transplantation as samples.
  • vascular endothelial cells in the liver secrete cytokines such as Wnt2 and HGF to the liver and are known to be involved in long-term maintenance of hepatocytes or regeneration of the liver.
  • cytokines such as Wnt2 and HGF
  • the expression level of mRNA of glycation enzyme GAPDH was measured.
  • Stratagene MX3000P manufactured by Stratagene was used for real-time PCR.
  • the primers used for real time PCR are as follows.
  • Wnt2 5'-AAGGACAGCAAGGGCCACCTT-3 '(SEQ ID NO: 1) 5'-GAGCCACTCACACCATGACA-3 '(SEQ ID NO: 2) HGF 5'-ACCCTGGTGTTTCACAAGCA-3 '(sequence number 3) 5'-CAAGAACTTGTGCCGGTGTG-3 '(SEQ ID NO: 4) GAPDH 5'-AACTTTGGCATTGTGGAAGG-3 '(SEQ ID NO: 5) 5'-GGATGCAGGGATGATGTTCT-3 '(SEQ ID NO: 6)
  • FIG. (A) shows the result of liver transplanted with cells of the SP cell population
  • (B) shows the result of liver transplanted with cells of the MP cell population. It was observed that GFP-positive cells were forming blood vessels in the liver into which cells of the SP cell population were transplanted, but almost no GFP-positive cells were observed in the liver into which cells of the MP cell population were transplanted.
  • transplantation of vascular endothelial stem cells into the liver is effective for the treatment of diseases such as liver fibrosis and cirrhosis.
  • Example 4 CD157 positive CD200 positive vascular endothelial cells in organs other than liver
  • vascular endothelial stem cells in organs can be isolated by using CD31 positive CD45 negative CD157 positive CD200 positive cells as an index. Therefore, whether or not such vascular endothelial stem cells were present was examined in organs other than the liver.
  • Example 5 Transplantation of Transgenic Vascular Endothelial Stem Cells
  • CD157 positive CD200 positive vascular endothelial cells were prepared from the liver of C57BL / 6-Tg (CAG-EGFP) mice by the method described in 1-1 of Example 1.
  • the 200 CD157 positive CD200 positive vascular endothelial cells were suspended in phosphate buffered saline (PBS, ThermoFisher) containing 4000 ⁇ L of 4% fetal bovine serum (FBS, Sigma-Aldrich) supplemented with 10 ng / mL of VEGF.
  • PBS phosphate buffered saline
  • FBS fetal bovine serum
  • 20 ⁇ L of the cell suspension was aliquoted into a 96 well plate (ThermoFisher) using a pipetman (trade name, GILSON).
  • the wells containing single cells were visually selected with a microscope (DM IL LED, Leica), and it was further confirmed with a fluorescence microscope (DMi8, Leica) that GFP was expressed.
  • C57BL / 6 mice (Japan SLC) were used as recipients.
  • a 20 ⁇ L solution containing one CD157 positive CD200 positive vascular endothelial cell was directly percutaneously injected into the liver of a recipient mouse using a syringe with a needle.
  • recipient mice were opened under anesthesia, and the liver was observed using a stereofluorescent microscope (MZ 16 FA, Leica), and then euthanized to excise the liver.
  • the portion containing the GFP positive hemangio-colony was excised under a microscope and analyzed using fluorescence immunostaining and flow cytometer.
  • the fluorescent immunostaining is fixed with 4% paraformaldehyde (Wako), then stained with anti-GFP antibody (MBL) and anti-CD31 antibody (Clone 30-F11, BD Biosciences), and nuclear stained with SYTOX orange (ThermoFisher) And observed with a confocal microscope (Leica).
  • the preparation of the cell suspension was performed in the same manner as in 1-1 (1) of Example 1, and the flow cytometry analysis was performed in the same manner as in 1-1 (2) of Example 1.
  • FIG. 1 The results of immunofluorescence staining of livers of recipient mice and observation with a confocal microscope are shown in FIG.
  • FIG. 1 As a result of staining with (A) with the anti-GFP antibody, (B) shows the result of the anti-CD31 antibody, and the lower part is a magnified image in the upper dotted frame (around the sinusoid). CD31 positive cells expressing GFP were observed.
  • Example 6 Confirmation of vascular endothelial stem cells in human liver. It was examined whether vascular endothelial stem cells identified in mouse liver were also present in humans.
  • vascular endothelial stem cells commonly exist in mammals, greatly contributing to angiogenesis in various organs, and that treatment by transplantation of this vascular endothelial stem cell is effective also in various human diseases. Conceivable.
  • Example 7 Confirmation of CD157 positive in human vascular endothelial cells
  • mice it was revealed that vascular endothelial stem cells express CD157 in any organ, organ or tissue (Example 4).
  • human liver the presence of vascular endothelial stem cells was confirmed in CD200 positive cells, but the presence of CD157 positive cells was not clear. Therefore, it was examined whether the presence of CD157 positive vascular endothelial cells could be confirmed in human tissues other than liver.
  • Example 8 Confirmation of SP cell population in human vascular endothelial cells
  • the present inventors have confirmed that side population cells (SP cell population) exist in mouse vascular endothelial cells (Non-patent Document 1).
  • SP cell population side population cells
  • human tissues the existence of SP cell populations in vascular endothelial cells has not yet been confirmed. Therefore, it was examined whether the presence of an SP cell population can be confirmed in vascular endothelial cells also in human tissues.
  • Example 1 (1) Experimental Method A cell suspension was prepared from human skin tissue by the method described in 1-1 (1) of Example 1. The obtained cells were subjected to Hoechst staining and immunofluorescent staining, and flow cytometric analysis was performed. Hoechst staining was performed using DMEM (Sigma) containing Hoechst stain (2% FBS (Sigma-Aldrich), 1 mM HEPES (Gibco), 5 ⁇ g / mL Hoechst 33342 (Sigma-Aldrich) in a cell suspension at 1 ⁇ 10 6 cells / mL. -Aldrich) was added and performed for 90 minutes at 37 ° C.
  • an anti-CD31 antibody (clone WM59, manufactured by BioLegend) and an anti-CD45 antibody (Clone HI30, manufactured by BioLegend) were used.
  • PI (2 ⁇ g / mL, manufactured by Sigma-Aldrich) was added to the stained cells to remove dead cells.
  • CD31 positive CD45 negative PI negative cells (vascular endothelial cells from which dead cells were removed) were collected, and Hoechst analysis was performed with a flow cytometer.
  • FACS Aria II SORP manufactured by BD Bioscience
  • FlowJo Software manufactured by Treestar Software

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Diabetes (AREA)
  • Developmental Biology & Embryology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Vascular Medicine (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Obesity (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)

Abstract

細胞表面マーカーCD31およびCD200が陽性であり、CD45が陰性である哺乳動物細胞から本質的になる細胞集団、細胞表面マーカーCD31、CD157およびCD200が陽性であり、CD45が陰性である哺乳動物細胞から本質的になる細胞集団、細胞表面マーカーCD31が陽性、CD157およびCD200の少なくとも一方が陽性、CD45が陰性である哺乳動物の血管内皮幹細胞、ならびに、当該細胞集団または当該血管内皮幹細胞を有効成分とする血管再生用医薬を提供する。

Description

CD31陽性CD45陰性CD200陽性の哺乳動物細胞からなる細胞集団、およびその利用
 本発明は、CD31陽性CD45陰性CD200陽性の哺乳動物細胞からなる細胞集団、および当該細胞集団を有効成分とする医薬に関するものである。
 骨髄に存在する造血幹細胞は、未分化な状態で分裂する能力(自己複製能)と成熟した血液細胞である赤血球や白血球、血小板を産生する前駆細胞に分化する能力によって、長期にわたり骨髄造血を維持することが知られている。一方、血管の内腔を形成する血管内皮細胞は、胎児期に発生すると、成熟した血管内皮細胞として緩徐な分裂により生涯にわたって血管を維持していると考えられてきた。つまり、血管システムには、血管を長期にわたって支持する幹細胞が存在するとは考えられていなかった。
 本発明者らは、既存の血管の中にも大量の血管内皮細胞を産生し得る血管内皮幹細胞のような細胞が存在するのではないかと考え、組織幹細胞の単離法として知られているヘキスト法を用いて、血管内皮細胞に異種性があるかどうかを検討した。ヘキスト法とは、組織幹細胞は、他の分化細胞に比べて薬剤(異物)排出能が高いことを利用する方法である。DNA染色色素であるヘキスト33342を細胞に取り込ませるとヘキスト33342の排出能が高い細胞の一部が幹細胞性を示す。発明者らは、マウスの下肢の筋肉を実験材料として既存の血管を観察したところ、全体の血管内皮細胞中に1%程度ヘキスト33342の排出能が高い、side population細胞(以下、「SP細胞集団」と記す)が存在することを見出した。ヘキストを排出できないmain population細胞(以下、「MP細胞集団」と記す)とSP細胞集団を比較すると、SP細胞集団には一個の細胞から大量の血管内皮細胞を産生する細胞が約10%の割合で含まれており、MP細胞集団にはそのような能力を有する細胞はほぼ存在しないことが判明した。また、マウスの大腿動脈を結紮して虚血を誘導したマウスの大腿筋の中にこれらの血管内皮細胞を移植すると、SP細胞集団は、自身が分化した血管内皮細胞により完全な血管を形成することができるが、MP細胞集団にはその能力がほぼないことが判明した。移植されたSP細胞集団はMP細胞集団として血管に貢献しており、SP細胞集団の中に血管内皮幹細胞様の細胞が存在して、この細胞が、新たな血管を再生できる能力を有すると考えられた(非特許文献1)。従来、骨髄中には血管内皮前駆細胞が存在することが報告され、この細胞を用いた血管再生治療が行われている。しかし、この細胞は一過性に血管内皮細胞様の細胞に分化するが継続的に血管内皮細胞として貢献できないことが判明している。また、発明者らは、筋肉の血管内皮細胞中に見出した血管内皮幹細胞様の細胞は骨髄に由来する細胞でないことを確認している(非特許文献1)。
Naito H, Kidoya H, Sakimoto S, Wakabayashi T, Takakura N. Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels. EMBO J. 2012 Feb 15;31(4):842-55.
 本発明は、血管内皮幹細胞および血管内皮幹細胞集団を細胞表面マーカーにより特定し、当該血管内皮幹細胞および血管内皮幹細胞集団を有効成分とする医薬を提供することを課題とする。
 本発明は、上記課題を解決するために、以下の各発明を包含する。
[1]細胞表面マーカーCD31およびCD200が陽性であり、CD45が陰性である哺乳動物細胞から本質的になる細胞集団。
[2]細胞表面マーカーCD31、CD157およびCD200が陽性であり、CD45が陰性である哺乳動物細胞から本質的になる細胞集団。
[3]血管内皮幹細胞を含む前記[1]または[2]に記載の細胞集団。
[4]前記哺乳動物細胞が導入遺伝子を発現する血管内皮幹細胞を含む前記[1]または[2]に記載の細胞集団。
[5]哺乳動物がヒトである前記[1]~[4]のいずれかに記載の細胞集団。
[6]細胞表面マーカーCD31が陽性、CD157およびCD200の少なくとも一方が陽性、CD45が陰性である哺乳動物の血管内皮幹細胞。
[7]導入遺伝子を発現する前記[6]に記載の血管内皮幹細胞。
[8]哺乳動物がヒトである前記[6]または[7]に記載の血管内皮幹細胞。
[9]前記[1]~[5]のいずれかに記載の細胞集団または前記[6]~[8]のいずれかに記載の血管内皮幹細胞を有効成分とする医薬。
[10]血管再生用、虚血改善用、低栄養改善用、血管奇形治療用、血管奇形に起因する血流不全改善用、臓器再生促進用、または血管内皮細胞から分泌される分子の異常に起因する疾患の予防および/または治療用である前記[9]に記載の医薬。
[11]血管内皮細胞から分泌される分子の異常に起因する疾患が、血友病A、血友病B、フォン・ヴィレブランド病、高血圧、耐糖能異常症、脂質代謝異常症、メタボリックシンドロームまたは骨粗鬆症である前記[10]に記載の医薬。
[12]前記[4]に記載の細胞集団または前記[7]に記載の血管内皮幹細胞を有効成分とする導入遺伝子産物により改善される疾患の予防および/または治療用医薬。
[13]導入遺伝子産物により改善される疾患が、血友病A、血友病B、フォン・ヴィレブランド病、がん、加齢黄斑変性症、自己免疫疾患、リウマチ、認知症、糖尿病、高血圧症、糖尿病性腎症、骨粗鬆症、肥満または感染症である前記[12]に記載の医薬。
[14]被験物質の血管に対する毒性を評価する方法であって、
(1)被験物質を含有する培地および被験物質を含有しない培地を用いて前記[1]~[5]のいずれかに記載の細胞集団を培養する工程と、
(2)培養後の細胞増殖レベルを測定する工程と、
(3)被験物質を含有する培地を用いて培養した場合の細胞増殖レベルを、被験物質を含有しない培地を用いて培養した場合の細胞増殖レベルと比較する工程
を含むことを特徴とする毒性評価方法。
 本発明により、血管内皮幹細胞集団および血管内皮幹細胞を提供することができる。本発明の細胞集団または血管内皮幹細胞を用いて、血管再生用、虚血改善用、低栄養改善用、血管奇形治療用、血管奇形に起因する血流不全改善用、臓器再生促進用、または血管内皮細胞から分泌される分子の異常に起因する疾患の治療用の医薬を提供することができる。また、導入遺伝子を発現する血管内皮幹細胞を用いることにより、導入遺伝子産物により改善される疾患治療用の医薬を提供することができる。
マウスの肝臓を消化・分散して調製した細胞に免疫蛍光染色を行い、フローサイトメトリー解析を行った結果を示す図であり、(A)は抗CD31抗体と抗CD45抗体で染色してフローサイトメトリー解析を行った結果であり、(B)は(A)の枠内の細胞(CD31陽性CD45陰性細胞)を抗CD157抗体と抗CD200抗体で染色してフローサイトメトリー解析を行った結果である。 図1(B)の画分A(CD157陽性CD200陽性)、画分B(CD157陰性CD200陽性)および画分C(CD157陰性CD200陰性)の各細胞について、それぞれコロニー形成アッセイを行った結果である。 肝血管障害モデルマウスの肝臓に、図1(B)の画分A(CD157陽性CD200陽性)、画分B(CD157陰性CD200陽性)および画分C(CD157陰性CD200陰性)の各細胞を移植し、肝臓の血管再生について検討した結果を示す図である。 CD157陽性CD200陽性血管内皮細胞を移植した血友病Aモデルマウスの肝臓の凍結切片を抗EGFP抗体および抗CD31抗体で染色した結果を示す図である。 野生型マウス、凝固第VIII因子遺伝子ヘテロ欠損マウス、血友病モデルマウス(凝固第VIII因子遺伝子欠損マウス)、CD157陽性CD200陽性血管内皮細胞を移植した血友病AモデルマウスおよびCD157陰性CD200陰性血管内皮細胞を移植した血友病Aモデルマウスにおける、血漿中凝固第VIII因子を測定した結果を示す図である。 CD157陽性CD200陽性血管内皮細胞を移植した血友病Aモデルマウスと細胞を移植していない血友病Aモデルマウスの出血時間を測定した結果を示す図である。 70%部分肝切除術を行ったマウスの肝臓に、SP細胞集団の細胞またはMP細胞集団の細胞を移植し、7日後の肝臓を蛍光顕微鏡で観察した結果を示す図であり、(A)はSP細胞集団の細胞を移植した肝臓、(B)はMP細胞集団の細胞を移植した肝臓である。 70%部分肝切除術を行ったマウスの肝臓に、SP細胞集団の細胞またはMP細胞集団の細胞を移植し、7日後の肝臓の重量を測定した結果を示す図である。 70%部分肝切除術を行ったマウスの肝臓にSP細胞集団の細胞を移植し、7日後の肝臓から調製したGFP陽性血管内皮細胞(GFP陽性CD31陽性CD45陰性細胞)(Post)と、移植前のSP細胞集団の細胞(Pre)におけるWnt2およびHGFのmRNA発現量を測定した結果を示す図であり、(A)はWnt2の結果、(B)はHGFの結果である。 マウスの網膜、脳、心臓、皮膚、筋組織および肺を消化・分散して調製した細胞に免疫蛍光染色を行い、各CD31陽性CD45陰性CD157陽性CD200陽性細胞を回収してコロニー形成アッセイを行った結果を示す図である。 C57BL/6-Tg(CAG-EGFP)マウスの肝臓から調製した1個のCD157陽性CD200陽性血管内皮細胞を肝臓に移植し、1か月後のレシピエントマウスの肝臓を実体蛍光顕微鏡で観察した結果を示す図である。 図11のレシピエントマウスの肝臓を免疫蛍光染色し共焦点顕微鏡で観察した結果を示す図であり、(A)が抗GFP抗体で染色した結果、(B)が抗CD31抗体結果、下段は上段の点線枠内(類洞周囲)の拡大画像である。 図11のレシピエントマウスの肝臓から細胞懸濁液を調製し、(A)は抗GFP抗体染色と前方散乱光(FSC)でフローサイトメトリー解析を行った結果であり、(B)は(A)の枠内の細胞(GFP陽性細胞)を抗CD157抗体と抗CD200抗体で染色してフローサイトメトリー解析を行った結果である。 ヒトの肝臓を消化・分散して調製した細胞に免疫蛍光染色を行い、フローサイトメトリー解析を行った結果を示す図であり、(A)は抗CD31抗体と抗CD45抗体で染色してフローサイトメトリー解析を行った結果であり、(B)は(A)の枠内の細胞(CD31陽性CD45陰性細胞)を抗CD157抗体と抗CD200抗体で染色してフローサイトメトリー解析を行った結果である。 図14(B)のCD200陽性画分(CD31陽性CD45陰性CD200陽性)およびCD200陰性画分(CD31陽性CD45陰性CD200陰性)の各細胞について、それぞれコロニー形成アッセイを行った結果である。 ヒト腎臓組織を消化・分散して調製した細胞に免疫蛍光染色を行い、フローサイトメトリー解析を行った結果を示す図であり、(A)は抗CD31抗体と抗CD45抗体で染色してフローサイトメトリー解析を行った結果であり、(B)は(A)の枠内の細胞(CD31陽性CD45陰性細胞)を抗CD157抗体と抗CD31抗体で染色してフローサイトメトリー解析を行った結果である。 ヒト胎盤組織を消化・分散して調製した細胞に免疫蛍光染色を行い、フローサイトメトリー解析を行った結果を示す図であり、(A)は抗CD31抗体と抗CD45抗体で染色してフローサイトメトリー解析を行った結果であり、(B)は(A)の枠内の細胞(CD31陽性CD45陰性細胞)を抗CD157抗体と抗CD31抗体で染色してフローサイトメトリー解析を行った結果である。 ヒト皮膚組織を消化・分散して調製した細胞に免疫蛍光染色およびヘキスト染色を行い、CD31陽性CD45陰性回収した後フローサイトメーターでヘキスト解析を行った結果を示す図である。
〔血管内皮幹細胞および血管内皮幹細胞を含む細胞集団〕
 本発明者らは、筋肉組織の血管から取得した血管内皮細胞中に、薬剤(異物)排出能が高い細胞(SP細胞集団)が1%程度存在し、この中に血管内皮幹細胞様の細胞が存在すること、薬剤(異物)排出能が低い大多数の血管内皮細胞(MP細胞集団)には、血管内皮幹細胞様の細胞はほぼ存在しないことを見出した(非特許文献1)。その後本発明者らは、肝臓の血管から取得した血管内皮細胞も同様に、薬剤(異物)排出能が高いSP細胞集団画分と低いMP細胞集団画分に分けることができ、SP細胞集団中に血管内皮幹細胞様の細胞が10%程度存在し、MP細胞集団中にはほぼ存在しないことを確認した。今回、本発明者らは、血管内皮幹細胞様の細胞を他の血管内皮細胞と効率よく区別できるマーカー分子を見出すために、肝臓のSP細胞集団とMP細胞集団を用いて、MP細胞集団と比べSP細胞集団で発現が高い遺伝子を網羅的に解析し、100を超えるSP細胞集団高発現遺伝子の中から、血管内皮幹細胞様の細胞(以下、「血管内皮幹細胞」と記す)を特定できる細胞表面マーカーを見出した。
 本発明は、哺乳動物の血管内皮幹細胞を含む細胞集団を提供する。本明細書において、血管内皮幹細胞は未分化な状態で分裂する能力(自己複製能)と血管内皮細胞に分化する能力を有する細胞を意味する。本発明の第1の細胞集団は、細胞表面マーカーCD31およびCD200が陽性であり、CD45が陰性である哺乳動物細胞から本質的になる細胞集団である。本発明の第1の細胞集団には、通常の操作によって排除することが困難な程度の割合で不純細胞(CD31陽性/CD200陽性/CD45陰性細胞以外の細胞)が含まれていてもよい。
 CD31は、免疫グロブリン・スーパーファミリーに属する分子量140kDaの単鎖膜糖タンパクで、PECAM-1とも呼ばれ、内皮細胞の細胞表面マーカーとして使用されている。CD45は、白血球共通抗原(LCA: Leukocyte common antigen)として知られている単鎖膜貫通タンパクで、少なくとも5つのアイソフォームが存在する。本発明において、CD31陽性CD45陰性は血管内皮細胞の細胞表面マーカーと位置づけられる。したがって、本明細書において、CD31陽性CD45陰性細胞は血管内皮細胞と同義に使用される。
 CD200は、二つの免疫グロブリン様ドメイン(V、C)と単一の膜貫通および短い細胞質ドメインを含有する免疫グロブリン・スーパーファミリーに属する高度に保存された膜糖タンパクであり、胸腺、B細胞、活性化TおよびB細胞、樹状細胞、ニューロン、内皮細胞等、多様な細胞がCD200を細胞表面に発現している。本発明者らは、CD200陽性の血管内皮細胞(CD31陽性CD45陰性細胞)に、血管内皮幹細胞が存在することを見出した。本発明の第1の細胞集団に含まれる血管内皮幹細胞は約2%であってもよく、約3%であってもよく、約4%であってもよく、約5%であってもよく、約6%であってもよく、約7%であってもよく、約8%であってもよく、約9%であってもよく、約10%であってもよい。本発明の第1の細胞集団に含まれる血管内皮幹細胞は、1~3%であってもよく、2~4%であってもよく、3~5%であってもよく、4~6%であってもよく、5~7%であってもよく、6~8%であってもよく、7~9%であってもよく、8~10%であってもよい。
 本発明の第2の細胞集団は、細胞表面マーカーCD31、CD157およびCD200が陽性であり、CD45が陰性である哺乳動物細胞から本質的になる細胞集団である。本発明の第2の細胞集団には、通常の操作によって排除することが困難な程度の割合で不純細胞(CD31陽性/CD157陽性/CD200陽性/CD45陰性細胞以外の細胞)が含まれていてもよい。
 CD157は、グリコシル-ホスファチジルイノシトール結合型膜タンパクであり、単球、好中球、全てのリンパ系および骨髄系の前駆細胞に発現している。本発明者らは、CD200陽性の血管内皮細胞(第1の細胞集団)にはCD157陽性とCD157陰性の2つの細胞集団が存在することを見出し、CD157陽性細胞集団に血管内皮幹細胞が多く含まれ、CD157陰性細胞集団に血管内皮幹細胞より分化のステージが進んだ血管内皮前駆細胞が多く含まれることを見出した。本発明の第2の細胞集団に含まれる血管内皮幹細胞は約20%であってもよく、約30%であってもよく、約40%であってもよく、約50%であってもよく、約60%であってもよく、約70%であってもよく、約80%であってもよく、約90%であってもよく、約95%であってもよい。本発明の第2の細胞集団に含まれる血管内皮幹細胞は、20~40%であってもよく、30~50%であってもよく、40~60%であってもよく、50~70%であってもよく、60~80%であってもよく、70~90%であってもよく、80~95%であってもよく、90~99%であってもよい。
 本発明の細胞集団は、哺乳動物細胞からなる細胞集団であればよい。哺乳動物は特に限定されないが、例えばヒト、サル、ウシ、ブタ、イヌ、マウス、ラット、ウサギ等が挙げられる。本発明の細胞集団がヒトの細胞集団である場合、ヒトに対して安全に移植することができる。
 本発明は、細胞集団を形成しない血管内皮幹細胞であってもよい。すなわち、本発明には血管内皮幹細胞が含まれる。本発明の血管内皮幹細胞は、細胞表面マーカーCD31およびCD200が陽性であり、CD45が陰性である哺乳動物の血管内皮幹細胞であってもよく、細胞表面マーカーCD31、CD157およびCD200が陽性であり、CD45が陰性である哺乳動物の血管内皮幹細胞であってもよい。哺乳動物は特に限定されないが、例えばヒト、サル、ウシ、ブタ、イヌ、マウス、ラット、ウサギ等が挙げられる。本発明の血管内皮幹細胞がヒトの血管内皮幹細胞である場合、ヒトに対して安全に移植することができる。
 本発明の細胞集団および本発明の血管内皮幹細胞は、任意の臓器から調製することができる。例えば、肝臓、網膜、脳、心臓、皮膚、筋肉(骨格筋)、肺、腎臓、胎盤などから調製できることが確認されている(実施例1、4、6、7参照)。本発明の細胞集団の調製方法は特に限定されないが、例えば、単離した臓器を市販の細胞分散用試薬で消化・分散して細胞懸濁液を調製し、この細胞懸濁液を抗CD31抗体、抗CD45抗体、抗CD200抗体で染色した後、フローサイトメトリー技術を用いてCD31陽性CD45陰性CD200陽性細胞(第1の細胞集団)を回収する方法を用いることができる。あるいは、上記細胞懸濁液を抗CD31抗体、抗CD45抗体、抗CD157抗体、抗CD200抗体で染色した後、フローサイトメトリー技術を用いてCD31陽性CD45陰性CD157陽性CD200陽性細胞(第2の細胞集団)を回収する方法を用いることができる(実施例1参照)。
 血管内皮幹細胞は、導入遺伝子を発現する血管内皮幹細胞であってもよい。導入遺伝子を発現する血管内皮幹細胞、および導入遺伝子を発現する血管内皮幹細胞を含む細胞集団も本発明に含まれる。導入遺伝子は特に限定されず、生体に有利な効果を奏する遺伝子産物をコードする遺伝子であってもよい。また、導入遺伝子は、細胞外に分泌される遺伝子産物をコードする遺伝子であってもよい。このような導入遺伝子としては、特定の抗原を認識する抗体をコードする遺伝子、サイトカインをコードする遺伝子、特定の核酸配列にハイブリダイズする核酸をコードする遺伝子などが挙げられる。
 導入遺伝子を発現する血管内皮幹細胞は、公知の遺伝子組み換え技術を用いて作製することができる。例えば、上記のように調製したCD31陽性CD45陰性CD200陽性細胞またはCD31陽性CD45陰性CD157陽性CD200陽性細胞に、所望の遺伝子が組み込まれた発現ベクターをトランスフェクションすることにより作製することができる。
〔医薬〕
 本発明は、上記本発明の細胞集団を有効成分とする医薬を提供する。本発明者らは、肝血管障害モデルマウスの肝臓に本発明の細胞集団を移植すると、本発明の細胞集団に含まれる血管内皮幹細胞によって血管が再生されることを確認している(実施例1参照)。また、本発明は、上記本発明の血管内皮幹細胞を有効成分とする医薬を提供する。本発明者らは、本発明の血管内皮幹細胞を1個、レシピエントマウスの肝臓に移植すると血管を構成する血管内皮細胞として定着、増殖し長期間維持されることを確認している(実施例5参照)。
 本発明の医薬は、血管再生用の医薬として好適に用いることができる。本発明の医薬は血管を再生することができるので、血管機能の低下に起因する虚血および低栄養を改善するために用いることができる。それゆえ、本発明の医薬は、脳梗塞、心筋梗塞、バージャー病などの虚血性疾患の治療に有効である。これらの虚血性疾患は、動脈硬化症、血栓症、動脈炎などの動脈性疾患に起因するものであってもよく、高脂血症、糖尿病、高血圧、痛風、老化などの生活習慣病に起因するものであってもよい。また、本発明の医薬は、血管奇形の治療または血管奇形に起因する血流不全の治療に好適に用いることができる。血管奇形としては、動静脈瘻、もやもや病などが挙げられる。さらに、本発明の医薬は創傷治癒にも用いることができる。
 本発明の医薬は、臓器の再生促進に用いることができる。本発明者らは、70%部分肝切除したマウスの肝臓に本発明の細胞集団を移植すると、肝臓の再生が促進されることを確認している(実施例3参照)。対象の臓器は特に限定されず、本発明の医薬により血管を再生できる臓器であればいずれの臓器であっても再生を促進することができる。あらゆる臓器において臓器特有の細胞(幹細胞を含む)は、血管内皮細胞が分泌する液性因子や接着因子により、長期の細胞生存や細胞増殖が誘導されていることが明らかになっている。そのため、臓器の血管が再生されることに伴い、当該臓器の再生が促進される。したがって、本発明の医薬は、臓器再生により改善される疾患を治療することができる。例えば肝臓の再生が促進されると、肝硬変、肝線維症、肝炎、脂肪肝、肝不全等の予防または治療が可能になる。他の臓器についても同様である。
 本発明の医薬は、血管内皮細胞から分泌される分子の異常に起因する疾患の治療に用いることができる。例えば、遺伝子異常により分子が分泌されない、または分子の分泌量が減少することが原因の疾患患者に、正常な遺伝子を有する血管内皮幹細胞を含む本発明の医薬を適用すれば、再生血管の血管内皮細胞から必要な量の分子が分泌されるようになり、疾患を効率よく治療することができる。本発明者らは、血友病Aモデルマウスの肝臓に、正常な凝固第VIII因子遺伝子を有するマウスの肝臓から調製した本発明の細胞集団を投与した結果、出血から止血までの時間が顕著に短くなることを確認している(実施例2参照)。
 血管内皮細胞から分泌される分子の異常に起因する疾患としては、例えば、血友病A、血友病B、フォン・ヴィレブランド病、高血圧、耐糖能異常症、脂質代謝異常症、メタボリックシンドローム、骨粗鬆症などが挙げられる。これらの疾患と分泌される分子の対応を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の医薬は、血管を再生させる対象の臓器に適した本発明の細胞集団または本発明の血管内皮幹細胞を選択して使用することができる。血管を再生させる対象の臓器に適した本発明の細胞集団としては、発生段階の3つの胚葉(内胚葉、中胚葉、外肺葉)の中の、同じ胚葉由来の臓器から調製した本発明の細胞集団であってもよい。内胚葉由来の臓器は、胃、腸、肺、肝臓、膵臓などであり、中胚葉由来の臓器は、筋肉、骨、血管、心臓、腎臓、脾臓、精巣、子宮などであり、外肺葉由来の臓器は、脳、神経、皮膚、水晶体などである。好ましくは、当該対象臓器と同じ臓器から調製した本発明の細胞集団を使用する。
 本発明は、導入遺伝子を発現する血管内皮幹細胞を含む細胞集団または導入遺伝子を発現する血管内皮幹細胞を有効成分とする医薬を提供する。導入遺伝子を発現する血管内皮幹細胞は移植した臓器または組織の血管に血管内皮細胞として定着すると共に、導入遺伝子産物を継続的かつ持続的に発現して血液中に分泌し、血流を介して疾患部位に導入遺伝子産物を送達することができるので、導入遺伝子産物の作用により改善される疾患の予防および/または治療に好適に用いることができる。
 導入遺伝子を発現する血管内皮幹細胞を含む細胞集団または導入遺伝子を発現する血管内皮幹細胞を有効成分とする医薬は、導入遺伝子産物が治療に有効な全ての疾患を治療対象とすることができる。例えば、凝固第VIII因子をコードする遺伝子を導入した血管内皮幹細胞を含む血友病治療用医薬、凝固第IX因子をコードする遺伝子を導入した血管内皮幹細胞を含む血友病治療用医薬、抗凝固第VIII因子抗体をコードする遺伝子を導入した血管内皮幹細胞を含む血友病治療用医薬、フォンビルブランド因子をコードする遺伝子を導入した血管内皮幹細胞を含む出血性疾患用医薬(フォン・ヴィレブランド病など)、抗VEGF抗体または抗VEGF受容体抗体をコードする遺伝子を導入した血管内皮幹細胞を含む血管増殖性疾患(がん、加齢黄斑変性症など)治療用医薬、抗炎症性サイトカイン(IL6など)抗体をコードする遺伝子を導入した血管内皮幹細胞を含む自己免疫疾患(リウマチなど)治療用医薬、抗アミロイドβ抗体をコードする遺伝子を導入した血管内皮幹細胞を含む認知症治療用医薬、インシュリンをコードする遺伝子を導入した血管内皮幹細胞を含む糖尿病治療用医薬、サイトメガロウイルス遺伝子のIE2のmRNAのアンチセンス核酸をコードする遺伝子を導入した血管内皮幹細胞を含む後天性免疫不全症候群(AIDS)治療用医薬、Tie2のアゴニストであるアンジオポエチン-1をコードする遺伝子を導入した血管内皮幹細胞を含む血管透過性疾患(高血圧症、糖尿病性腎症など)治療用医薬、Nogginをコードする遺伝子を導入した血管内皮幹細胞を含む骨粗鬆症治療用医薬、肥満遺伝子産物(レプチンなど)をコードする遺伝子を導入した血管内皮幹細胞を含む肥満抑制用医薬、がん抗原をコードする遺伝子を導入した血管内皮幹細胞を含むがんワクチン療法用医薬、ウイルス抗原をコードする遺伝子を導入した血管内皮幹細胞を含む感染症予防および治療用医薬などが挙げられる。
 本発明の医薬は、本発明の細胞集団または本発明の血管内皮幹細胞を、生体に投与可能な適当な溶液に懸濁した細胞懸濁液の形態で生体に投与することができる。生体に投与可能な溶液としては、例えば、生理食塩水、PBS(リン酸緩衝生理食塩水)、その他の生理的塩類溶液が挙げられる。細胞集団または血管内皮幹細胞の調製は、通常投与直前に行うが、凍結保存した細胞集団または血管内皮幹細胞を用いて用時調製してもよい。本発明の医薬は、本発明の細胞集団または血管内皮幹細胞の細胞懸濁液を、血管を再生させる対象の臓器に直接、または、血管を再生させる対象の臓器の上流の静脈内に投与することができる。投与量は、血管を再生させる対象の臓器、患者年齢、体重などにより異なるので一義的には言えないが、医師が前記状況を考慮して判断することにより、適宜適当な投与量を決定することができる。例えば、1回あたり1個~1×10個の細胞を投与してもよい。投与の頻度は、1回/日~1回/週の範囲で適宜選択することができる。投与量および投与頻度は、患者に応じて適宜増減することができる。
〔血管毒性の評価方法〕
 本発明は、上記本発明の細胞集団を用いる血管毒性の評価方法を提供する。本発明の血管毒性評価方法は、被験物質を上記本発明の細胞集団に接触させ、細胞増殖レベルを測定することにより実施することができる。具体的には、例えば、以下の工程を含む方法が挙げられる。
(1)被験物質を含有する培地および被験物質を含有しない培地を用いて前記[1]~[3]のいずれかに記載の細胞集団を培養する工程と、
(2)培養後の細胞増殖レベルを測定する工程と、
(3)被験物質を含有する培地を用いて培養した場合の細胞増殖レベルを、被験物質を含有しない培地を用いて培養した場合の細胞増殖レベルと比較する工程
 被験物質は特に限定されず、例えば、核酸、ペプチド、タンパク質、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、細胞培養上清、植物抽出液、哺乳動物の組織抽出液、血漿等が挙げられる。ただし、これらに限定されない。被験物質は、新規な物質であってもよいし、公知の物質であってもよい。これら被験物質は塩を形成していてもよい。被験物質の塩としては、生理学的に許容される酸や塩基との塩であってもよい。
 本発明の細胞集団の培養に用いる培地は、血管内皮細胞の培養に使用できる公知の培地から適宜選択することができる。培養方法も、公知の血管内皮細胞の培養方法を適宜選択して用いることができる。培養期間は特に限定されず、使用する被験物質に応じて、適宜設定することが好ましい。
 細胞増殖レベルを測定する方法は特に限定されず、公知の方法から適宜選択して使用することができる。具体的には、例えば、目視またはセルカウンターを用いて細胞数を計数する方法、クリスタルバイオレット法、MTT法、その他の各種細胞増殖測定キットを用いる方法などが挙げられる。
 被験物質を含有する培地を用いて培養した場合の細胞増殖レベルが、被験物質を含有しない培地を用いて培養した場合の細胞増殖レベルより低下している場合、すなわち、被験物質が血管内皮幹細胞の増殖を抑制する物質である場合、当該被験物質は血管に対して毒性を有すると評価することができる。例えば、被験物質を含有する培地を用いて培養した場合の細胞増殖レベルが、被験物質を含有しない培地を用いて培養した場合の細胞増殖レベルの90%以下、80%以下、70%以下、60%以下、50%以下である場合に、当該被験物質は血管に対して毒性を有すると評価してもよい。
 また、被験物質を含有する培地を用いて培養した場合の細胞増殖レベルが、被験物質を含有しない培地を用いて培養した場合の細胞増殖レベルより大幅に上昇している場合、すなわち、被験物質が血管内皮幹細胞の増殖を異常に促進する物質である場合も、当該被験物質は血管に対して毒性を有すると評価することができる。例えば、被験物質を含有する培地を用いて培養した場合の細胞増殖レベルが、被験物質を含有しない培地を用いて培養した場合の細胞増殖レベルの200%以上、250%以上、300%以上である場合に、当該被験物質は血管に対して毒性を有すると評価してもよい。
 哺乳動物の成体から回収した血管内皮細胞はインビトロでほとんど増殖しないので、細胞増殖を指標としたインビトロの血管毒性評価に用いることが難しい。一方、本発明の細胞集団はインビトロで増殖できるので、細胞増殖を指標としたインビトロの血管毒性評価に用いることができる。したがって、本発明の血管毒性評価方法は、簡便かつ迅速に被験物質の血管毒性を評価できる点で非常に有用である。本発明の血管毒性評価方法は、特に血管内皮細胞に対する毒性を評価したい場合に有用である。さらに、患者自身から本発明の細胞集団を調製することにより、患者等自身の血管に対する被検物質の影響を評価することができる点で非常に有用である。
 本発明には、以下の各発明も含まれる。
[A]前記[1]~[5]のいずれかに記載の細胞集団または前記[6]~[8]のいずれかに記載の血管内皮幹細胞を投与する工程を含む血管再生方法。
[B]虚血および低栄養を改善する[A]に記載の方法。
[C]血管奇形または血管奇形に起因する血流不全を治療する[A]に記載の方法。
[D]臓器の再生を促進する[A]に記載の方法。
[E]血管内皮細胞から分泌される分子の異常に起因する疾患を治療する[A]に記載の方法。
[F]血管内皮細胞から分泌される分子の異常に起因する疾患が、血友病A、血友病B、フォン・ヴィレブランド病、高血圧、耐糖能異常症、脂質代謝異常症、メタボリックシンドロームまたは骨粗鬆症である[E]に記載の方法。
[G]血管の再生に使用するための前記[1]~[5]のいずれかに記載の細胞集団または前記[6]~[8]のいずれかに記載の血管内皮幹細胞。
[H]虚血および低栄養を改善する[G]に記載の使用するための細胞集団または血管内皮幹細胞。
[I]血管奇形または血管奇形に起因する血流不全を治療する[G]に記載の使用するための細胞集団または血管内皮幹細胞。
[J]臓器の再生を促進する[G]に記載の使用するための細胞集団または血管内皮幹細胞。
[K]血管内皮細胞から分泌される分子の異常に起因する疾患を治療する[G]に記載の使用するための細胞集団または血管内皮幹細胞。
[L]血管内皮細胞から分泌される分子の異常に起因する疾患が、血友病A、血友病B、フォン・ヴィレブランド病、高血圧、耐糖能異常症、脂質代謝異常症、メタボリックシンドロームまたは骨粗鬆症である[K]に記載の細胞集団または血管内皮幹細胞。
[M]血管再生用医薬を製造するための前記[1]~[5]のいずれかに記載の細胞集団または前記[6]~[8]のいずれかに記載の血管内皮幹細胞の使用。
[N]血管再生用医薬が、虚血および低栄養を改善する[M]に記載の使用。
[O]血管再生用医薬が、血管奇形または血管奇形に起因する血流不全を治療する[M]に記載の使用。
[P]血管再生用医薬が、臓器再生を促進する[M]に記載の使用。
[Q]血管再生用医薬が、血管内皮細胞から分泌される分子の異常に起因する疾患を治療する[M]に記載の使用。
[R]血管内皮細胞から分泌される分子の異常に起因する疾患が、血友病A、血友病B、フォン・ヴィレブランド病、高血圧、耐糖能異常症、脂質代謝異常症、メタボリックシンドロームまたは骨粗鬆症である[Q]に記載の使用。
[S]前記[4]に記載の細胞集団または前記[7]に記載の血管内皮幹細胞を投与する工程を含む導入遺伝子産物により改善される疾患の治療方法。
[T]導入遺伝子産物により改善される疾患の治療に使用するための前記[4]に記載の細胞集団または前記[7]に記載の血管内皮幹細胞。
[U]導入遺伝子産物により改善される疾患の治療用医薬を製造するための、前記[4]に記載の細胞集団または前記[7]に記載の血管内皮幹細胞の使用。
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
〔実施例1:細胞表面マーカーによるマウス肝臓血管内皮幹細胞の特定〕
 マウス肝臓の血管内皮細胞(CD31陽性CD45陰性細胞)から取得したSP細胞集団およびMP細胞集団を用いて、MP細胞集団と比べSP細胞集団で発現が高い遺伝子を網羅的に解析し、100を超える遺伝子を見出した。これらの遺伝子の中から、SP細胞集団中に10%程度存在する血管内皮幹細胞の細胞表面マーカーの特定を試みた。
1-1 マウス肝臓血管内皮細胞の表面マーカー解析
(1)使用動物および細胞調製
 C57BL/6マウスおよびC57BL/6-Tg(CAG-EGFP)マウス(通称グリーンマウス)を日本エスエルシーから購入した。8~12週齢のマウスを実験に使用した。麻酔下でマウスを開腹し、肝臓を摘出した。肝臓を細切した後、Dispase II(Roche Applied Science社製)、collagenase(Wako社製)およびtypeII collagenase(Worthington Biochemical Corp.社製)の混合溶液に浸漬し、37℃で振盪して細胞外マトリックスを消化した。消化後の肝臓を孔径40μmのフィルターに通し、分散した細胞懸濁液を得た。ACK(Ammonium-Chloride-Potassium)溶液(0.15M NH4Cl, 10mM KHCO3, and 0.1mM Na2-EDTA)で赤血球を溶血させ、残りの細胞を以下の実験に供した。
(2)免疫蛍光染色およびフローサイトメトリー解析
 上記(1)で調製した細胞に免疫蛍光染色を行い、フローサイトメトリー解析を行った。モノクローナル抗体として、抗CD31抗体(clone MEC13.3, BD Biosciences社製)、抗CD45抗体(Clone 30-F11, BD Biosciences社製)、抗CD157抗体(clone BP3, Biolegend社製)、抗CD200抗体(clone OX90, Biolegend社製)を使用した。フローサイトメトリー解析において死細胞を除去するために、染色した細胞にPropidium iodide(PI, 2μg/mL, Sigma-Aldrich社製)を加え死細胞の核を染色した。フローサイトメトリー解析には、FACS Aria II SORP(BD Bioscience社製)およびFlowJo Software(Treestar Software社製)を使用した。
(3)結果
 結果を図1に示した。(A)のドットプロットの枠内の細胞(CD31陽性CD45陰性細胞)を肝臓の血管内皮細胞として回収した。続いて回収した細胞におけるCD157発現量(X軸)とCD200発現量(Y軸)を解析した結果を(B)のドットプロットに示した。その結果、肝臓の血管内皮細胞は、CD157陽性CD200陽性の画分A、CD157陰性CD200陽性の画分BおよびCD157陰性CD200陰性の画分Cの3つの画分に分かれることが明らかになった。そこで、各画分をそれぞれ回収し、以下の実験を行った。
1-2 CD157およびCD200で分画した細胞のコロニー形成アッセイ
(1)実験方法
 画分A(CD157陽性CD200陽性)、画分B(CD157陰性CD200陽性)および画分C(CD157陰性CD200陰性)の細胞を24ウェル培養プレートに播種した。OP9ストローマ細胞(RIKEN cell bank)をフィーダー細胞とし、それぞれ5000個/ウェルを播種した。培地には、10%FCSおよびVEGF(10 ng/mL; PeproTech社製)を含むRPMI培地(Sigma-Aldrich Japan)を用いた。10日間培養後、ウェルの細胞を固定して、抗CD31抗体(BD Biosciences社製)で染色した。なお、画分Aの細胞集団が本発明の第2の細胞集団であり、画分Aと画分Bの混合細胞集団が本発明の第1の細胞集団である。
(2)結果
 結果を図2に示した。左は画分C、中央は画分B、右は画分Aの結果である。画分AのCD157陽性CD200陽性細胞は、CD31陽性の大型のコロニーを多数形成した。画分BのCD157陰性CD200陽性細胞は、コロニー形成能を有しているが、コロニーの大きさや数は、画分Aの細胞に及ばなかった。画分CのCD157陰性CD200陰性細胞は、CD31陽性細胞として生存していたが、コロニー形成能はほぼ消失していた。これらの結果から、CD157陽性CD200陽性細胞(画分A)が血管内皮細胞幹細胞画分であり、この細胞からスタートして、CD157陰性CD200陽性(画分B)の幹細胞機能を一部残した血管内皮前駆細胞へ分化し、CD157陰性CD200陰性の成熟血管内皮細胞に終末分化すると考えられた。すなわち、本発明の第2の細胞集団は血管内皮細胞幹細胞を主とする細胞集団、本発明の第1の細胞集団は血管内皮細胞幹細胞と、幹細胞機能を一部残した血管内皮前駆細胞との混合細胞集団であると考えられた。
1-3 肝血管障害モデルマウスを用いた幹細胞能の確認
(1)肝血管障害モデルマウス
 C57BL/6マウスにモノクロタリン(Sigma-Aldrich 社製)を300mg/kgの用量で腹腔内投与し、同日に30rads/gの放射線を全身照射して、肝血管障害モデルマウスを作製した。
(2)実験方法
 C57BL/6-Tg(CAG-EGFP)マウスの肝臓から回収した画分A(CD157陽性CD200陽性)、画分B(CD157陰性CD200陽性)および画分C(CD157陰性CD200陰性)の細胞を使用した。各画分の細胞2×10個を、それぞれ肝血管障害モデルマウスの脾静脈から肝臓に移植した。移植後4週間目に、麻酔下でマウスを開腹し、肝臓を蛍光実体顕微鏡(Leica社製)で観察した。さらに、肝臓を摘出して上記1-1(1)に記載の方法で細胞懸濁液を調製し、抗CD31抗体、抗CD157抗体および抗CD200抗体で免疫蛍光染色して、フローサイトメトリー解析を行った。
(3)結果
 結果を図3に示した。左側は肝臓の蛍光実体顕微鏡観察像である。画分AのCD157陽性CD200陽性細胞を移植した肝臓(上段)では、GFP陽性領域が非常に広く、GFP陽性の移植細胞が無数の血管領域を構築していることが明らかになった。画分BのCD157陰性CD200陽性細胞を移植した肝臓(中段)のGFP陽性領域は、画分Aの細胞を移植した場合より小さかった。すなわち、画分Bの細胞は、血管領域を構築する能力を維持しているが、その能力は画分Aの細胞より劣っていることが明らかになった。画分CのCD157陰性CD200陰性細胞を移植した肝臓(下段)では、移植した細胞がGFP陽性細胞として生存していることのみが観察され、画分Cの細胞には新たな血管領域を構築する能力はないことが明らかになった。
 各画分の細胞を移植した肝臓からGFP陽性CD31陽性細胞(移植した細胞由来の細胞)を回収し(中央)、回収した細胞におけるCD157発現量(X軸)とCD200発現量(Y軸)のドットプロットを右側に示した。画分AのCD157陽性CD200陽性細胞を移植した肝臓(上段)では、CD157陽性CD200陽性細胞から、CD157陰性CD200陽性細胞、さらにCD157陰性CD200陰性細胞に分化が進行していることが明らかになった。画分BのCD157陰性CD200陽性細胞を移植した肝臓(中段)では、CD157陰性CD200陰性細胞に分化が進行していることが明らかになった。画分CのCD157陰性CD200陰性細胞を移植した肝臓(下段)では、移植した細胞がGFP陽性細胞として生存していることが明らかになった。
1-4 小括
 以上の解析結果から、血管内皮細胞(CD31陽性CD45陰性細胞)をCD157とCD200によって分画すると、CD157陽性CD200陽性の血管内皮細胞が、幹細胞として血管形成に大いに貢献できる細胞であることが判明した。当該CD157陽性CD200陽性の血管内皮幹細胞が分化して、CD157陰性CD200陽性になった細胞は、幹細胞には及ばないが、未だ増殖能を保有した細胞(一部幹細胞機能を残した、いわゆる血管内皮前駆細胞)であり、CD157陰性CD200陰性となった細胞は、増殖活性が極めて減弱している終末分化した血管内皮細胞であると考えられた。この研究成果により、本発明者らは、血管内皮細胞の中に階層性が存在し、血管内皮幹細胞から血管内皮前駆細胞、さらに終末分化した血管内皮細胞への分化系譜を血管システムが有していることを、世界で初めて発見した。
 なお、データを示していないが、本発明者らは、移植したCD157陽性CD200陽性細胞により形成された血管は、移植後1年を経過したマウスでも減少することなく残存していることを確認している。
〔実施例2:CD157陽性CD200陽性血管内皮細胞移植による血友病の治療〕
 幹細胞は、未分化性を維持しつつ、終末分化した体細胞を継続的に産生していくことから、血管内皮幹細胞と考えられるCD157陽性CD200陽性細胞を移植すれば、長期的に血管内皮細胞として貢献し続けることが期待できる。それゆえ、血管内皮細胞の機能不全に起因する疾患患者にこの細胞を移植すれば、当該疾患を完治できる可能性があると考えられる。そこで、血友病Aモデルマウスの肝臓に正常なCD157陽性CD200陽性細胞を移植し、血友病Aモデルマウスの出血傾向を抑制できるかについて検討した。
(1)実験方法
 血友病Aモデルマウス(凝固第VIII因子遺伝子欠損マウス)は、Jackson Laboratory社から購入した。CD157陽性CD200陽性血管内皮細胞およびCD157陰性CD200陰性血管内皮細胞は、C57BL/6-Tg(CAG-EGFP)マウスの肝臓から、実施例1の1-1に記載の方法で調製した。血友病Aモデルマウスの肝臓に、C57BL/6-TgマウスのCD157陽性CD200陽性血管内皮細胞およびCD157陰性CD200陰性血管内皮細胞をそれぞれ脾静脈から移植し、6週間後に採血し血漿を回収した。これら以外に、野生型マウス、凝固第VIII因子遺伝子ヘテロ欠損マウス、細胞を移植していない凝固第VIII因子遺伝子欠損マウスからも採血を行い、血漿を回収した。血漿中の凝固第VIII因子の測定には、Thrombocheck FVIII kit(Sysmex Corporation社製)を使用した。
 CD157陽性CD200陽性血管内皮細胞を移植した血友病AモデルマウスおよびCD157陰性CD200陰性血管内皮細胞を移植した血友病Aモデルマウスについては、移植から6週間後に麻酔下で開腹し、肝臓を摘出した。摘出した肝臓は、定法に従い凍結切片を作製し、抗EGFP抗体および抗CD31抗体で染色して、EGFP陽性CD31陽性細胞の存在を蛍光顕微鏡で観察した。さらに、CD157陽性CD200陽性血管内皮細胞を移植した血友病Aモデルマウスと細胞を移植していない血友病Aモデルマウスの尾を切断し、1分毎に浸み出した血液を濾紙に吸着させ、止血するまでの時間を記録した。
(2)結果
 CD157陽性CD200陽性血管内皮細胞を移植した血友病Aモデルマウスの肝臓の凍結切片を抗EGFP抗体および抗CD31抗体で染色し、蛍光顕微鏡で観察した結果を図4に示した。移植されたEGFP陽性の血管内皮細胞によって血管が構築されており、類洞様血管網がEGFP陽性の血管によって置き換わっていることが明らかになった。
 血漿中の凝固第VIII因子の測定結果を図5に示した(N=4、Student T test)。各測定値は、標準血漿の凝固第VIII因子の測定値を100%とする相対値で示した。血友病Aモデルマウスの血漿中に凝固第VIII因子は検出されなかったが、CD157陽性CD200陽性血管内皮細胞を移植した血友病Aモデルマウスでは、野生型マウスの約70%レベルの凝固第VIII因子が検出された。このレベルは、凝固第VIII因子遺伝子ヘテロ欠損マウスの凝固第VIII因子レベルより高いものであった。一方、CD157陰性CD200陰性血管内皮細胞を移植した血友病Aモデルマウスでは、凝固第VIII因子の発現はほとんど回復しなかった。
 CD157陽性CD200陽性血管内皮細胞を移植した血友病Aモデルマウスと細胞を移植していない血友病Aモデルマウスの出血時間を測定した結果を図6に示した。(A)が細胞を移植していない血友病Aモデルマウスの結果、(B)がCD157陽性CD200陽性血管内皮細胞を移植した血友病Aモデルマウスの結果である。細胞を移植していない血友病Aモデルマウスは、60分経過後も止血しなかったのに対して、CD157陽性CD200陽性血管内皮細胞を移植した血友病Aモデルマウスは、5分弱で止血した。
 これらの結果から、CD157陽性CD200陽性血管内皮細胞(血管内皮幹細胞)の移植は、血管内皮細胞の機能不全に起因する疾患の治療に有効であることが明らかになった。
〔実施例3:CD157陽性CD200陽性血管内皮細胞移植による肝再生〕
 近年、血管内皮細胞から分泌される分子が、組織の恒常性維持や組織再構築に重要な機能を果たすことが報告されており、肝臓についても肝臓の類洞血管の血管内皮細胞による肝細胞の維持機構が明らかにされている。CD157陽性CD200陽性血管内皮細胞は、肝臓の類洞血管の形成に大きく貢献することが明らかになったため、CD157陽性CD200陽性血管内皮細胞の移植により、肝臓の再生が促進するかどうかを検討した。
3-1 肝再生実験1
(1)実験方法
 C57BL/6マウスに対して定法に従い70%部分肝切除術を行った。CD157陽性CD200陽性血管内皮細胞およびCD157陰性CD200陰性血管内皮細胞は、C57BL/6-Tg(CAG-EGFP)マウスの肝臓から、実施例1の1-1に記載の方法で調製した。70%部分肝切除したマウスの肝臓に、CD157陽性CD200陽性血管内皮細胞およびCD157陰性CD200陰性血管内皮細胞を、それぞれ脾静脈を介して移植し、8日後に麻酔下でマウスから肝臓を取り出し、重量を測定した。
(2)結果
 データを示していないが、CD157陽性CD200陽性血管内皮細胞を移植したマウスは、CD157陰性CD200陰性血管内皮細胞を移植したマウスに比べ肝臓の再生が促進されていることが明らかになった。したがって、CD157陽性CD200陽性血管内皮細胞(血管内皮幹細胞)の移植は、例えば肝線維症、肝硬変などの疾患の治療に有効であると考えられる。
3-2 肝再生実験2
(1)実験方法
 C57BL/6-Tg(CAG-EGFP)マウスの肝臓から、実施例1の1-1(1)に記載の方法で細胞懸濁液を調製した。得られた細胞にヘキスト染色と免疫蛍光染色を行い、フローサイトメトリー解析を行った。ヘキスト染色は、1×10細胞/mLの細胞懸濁液に、ヘキスト染色液(2% FBS (Sigma-Aldrich), 1mM HEPES (Gibco), 5μg/mL Hoechst33342 (Sigma-Aldrich)含有DMEM (Sigma-Aldrich))を添加して、37℃で90分間行った。免疫蛍光染色には、実施例1で使用した抗CD31抗体および抗CD45抗体と同じモノクローナル抗体を使用した。染色した細胞にPI(2μg/mL, Sigma-Aldrich社製)を加え死細胞の除去を行った。CD31陽性CD45陰性PI陰性細胞(死細胞を除去した血管内皮細胞)を回収し、ヘキスト解析をフローサイトメーターで行った。フローサイトメトリー解析には、FACS Aria II SORP(BD Bioscience社製)およびFlowJo Software(Treestar Software社製)を使用した。CD31陽性CD45陰性でヘキスト染色されない細胞をSP細胞集団として回収し、CD31陽性CD45陰性でヘキスト染色される細胞をMP細胞集団として回収した。SP細胞集団の約70%はCD157陽性CD200陽性であり、MP細胞集団にはCD157陽性CD200陽性はほとんど含まれないことが本発明者らにより確認されている。
 C57BL/6マウスに対して定法に従い70%部分肝切除術を行った。SP細胞集団およびMP細胞集団の細胞それぞれ2×10個を、70%部分肝切除したマウスの肝臓に脾静脈を介して移植した。7日後に麻酔下でマウスから肝臓を摘出し、重量を測定し、蛍光顕微鏡で観察した。
 摘出した肝臓から実施例1の1-1に記載の方法で、GFP陽性血管内皮細胞(GFP陽性CD31陽性CD45陰性細胞)を調製した。この移植後のGFP陽性血管内皮細胞と、移植前のSP細胞集団の細胞(各1×10個)から、RNAeasy kit(Qiagen社)を用いてそれぞれトータルRNAを調製し、ExScript RT reagent Kit(タカラバイオ社)を用いてcDNAを合成した。得られた移植前後のcDNA(PreおよびPost)を試料として、Wnt2とHGFのmRNAの発現量をリアルタイムPCR法によって解析した。肝臓内の、血管内皮細胞は、肝臓に対してWnt2やHGFなどのサイトカインを分泌して肝細胞の長期的な維持、あるいは肝臓の再生に関わることが知られているからである。対照として解糖系酵素であるGAPDH(Glyceraldehyde-3-phosphate dehydrogenase)のmRNAの発現量を測定した。リアルタイムPCRには、Stratagene MX3000P(Stratagene社製)を用いた。リアルタイムPCRに用いたプライマーは以下のとおりである。
Wnt2
5'-AAGGACAGCAAAGGCACCTT-3'(配列番号1)
5'-GAGCCACTCACACCATGACA-3'(配列番号2)
HGF
5'-ACCCTGGTGTTTCACAAGCA-3'(配列番号3)
5'-CAAGAACTTGTGCCGGTGTG-3'(配列番号4)
GAPDH
5'-AACTTTGGCATTGTGGAAGG-3'(配列番号5)
5'-GGATGCAGGGATGATGTTCT-3'(配列番号6)
(2)結果
 蛍光顕微鏡による観察結果を図7に示した。(A)がSP細胞集団の細胞を移植した肝臓の結果、(B)がMP細胞集団の細胞を移植した肝臓の結果である。SP細胞集団の細胞を移植した肝臓ではGFP陽性細胞が血管を形成していることが観察されたが、MP細胞集団の細胞を移植した肝臓ではGFP陽性細胞がほとんど観察されなかった。
 肝重量を測定した結果を図8に示した(N=6、Student T test)。SP細胞集団の細胞を移植した肝臓の重量は、MP細胞集団の細胞を移植した肝臓の重量より重く、SP細胞集団の細胞の移植により肝臓の再生が促進していることが判明した。
 移植前のSP細胞集団の細胞および移植後のGFP陽性CD31陽性CD45陰性血管内皮細胞における、Wnt2およびHGFのmRNA発現量の結果を図9に示した(N=3、Student T test)。(A)がWnt2の結果、(B)がHGFの結果である。Wnt2およびHGFとも、移植前(Pre)より移植後(Post)の発現が上昇していることが判明した。
 これらの結果から、血管内皮幹細胞の肝臓への移植は、例えば肝線維症、肝硬変などの疾患の治療に有効であると考えられる。
〔実施例4:肝臓以外の臓器におけるCD157陽性CD200陽性血管内皮細胞〕
 肝臓では、CD31陽性CD45陰性CD157陽性CD200陽性細胞を指標として、臓器内の血管内皮幹細胞を単離できることが判明した。そこで、肝臓以外の臓器においても、このような血管内皮幹細胞が存在するかどうかを検討した。
(1)実験方法
 8週齢のC57BL/6マウスから、網膜、脳、心臓、皮膚、筋肉、肺を採取した。実施例1の1-1(1)に記載の方法で細胞懸濁液をそれぞれ調製した。各細胞懸濁液を抗CD31抗体、抗CD45抗体、抗CD157抗体および抗CD200抗体で免疫蛍光染色して、CD31陽性CD45陰性CD157陽性CD200陽性細胞(CD157陽性CD200陽性血管内皮細胞)およびCD31陽性CD45陰性CD157陰性CD200陰性細胞(CD157陰性CD200陰性血管内皮細胞)を回収した。これらの細胞を用いて、実施例1の1-2(1)に記載の方法で、コロニー形成アッセイを行った。
(2)結果
 結果を図10に示した。(A)は網膜、(B)は脳、(C)は心臓、(D)は皮膚(真皮)、(E)は筋組織、(F)は肺の結果である。いずれの臓器においても、CD157陽性CD200陽性血管内皮細胞を回収することができ、この細胞はCD31陽性の大型のコロニーを多数形成した。一方、CD157陰性CD200陰性血管内皮細胞のコロニー形成能は乏しいものであった。
 血管は臓器において特徴的な構造を維持し、その臓器の機能を支持している。したがって、各臓器の血管内皮幹細胞は当該臓器の再生を誘導し得ると考えられる。
〔実施例5:遺伝子導入された血管内皮幹細胞の移植〕
 遺伝子導入された血管内皮幹細胞を移植することで、移植された血管内皮幹細胞およびそれから分化した血管内皮細胞が、導入された遺伝子産物を継続的かつ持続的に発現するかどうかを検討した。
(1)実験方法
 実施例1の1-1に記載の方法で、C57BL/6-Tg(CAG-EGFP)マウスの肝臓から、CD157陽性CD200陽性血管内皮細胞を調製した。このCD157陽性CD200陽性血管内皮細胞200個を、10ng/mLのVEGFを添加した4000μLの4%ウシ胎児血清(FBS、Sigma-Aldrich)含有リン酸緩衝食塩水(PBS、ThermoFisher)に懸濁した。ピペットマン(商品名、GILSON)を用いて20μLの細胞懸濁液を96ウェルプレート(ThermoFisher)に分注した。1個の細胞が入っているウェルを顕微鏡(DM IL LED、Leica)で肉眼的に選別して、さらに蛍光顕微鏡(DMi8、Leica)でGFPが発現していることを確認した。
 レシピエントとしてC57BL/6マウス(日本SLC社)を用いた。CD157陽性CD200陽性血管内皮細胞1個を含む20μLの溶液を注射針付注射筒を用いてレシピエントマウスの肝臓に経皮的に直接注入した。1か月後にレシピエントマウスを麻酔下で開腹して実体蛍光顕微鏡(MZ 16 FA、Leica)を用いて肝臓の観察を行い、その後安楽死させて肝臓を摘出した。GFP陽性血管コロニーを含む部分を顕微鏡下で切除して、蛍光免疫染色およびフローサイトメーターを用いて解析した。蛍光免疫染色は、4%パラホルムアルデヒド(Wako)で固定した後、抗GFP抗体(MBL)および抗CD31抗体(Clone 30-F11, BD Biosciences社製)で染色し、SYTOX orange(ThermoFisher)で核染色を行い、共焦点顕微鏡(Leica)で観察した。細胞懸濁液の調製は実施例1の1-1(1)と同じ方法で行い、フローサイトメトリー解析は、実施例1の1-1(2)と同じ方法で行った。
(2)結果
 レシピエントマウスの肝臓の実体蛍光顕微鏡画像を図11に示した。GFPの発現を維持している血管構造が観察された。
 レシピエントマウスの肝臓を免疫蛍光染色し共焦点顕微鏡で観察した結果を図12に示した。(A)が抗GFP抗体で染色した結果、(B)が抗CD31抗体結果、下段は上段の点線枠内(類洞周囲)の拡大画像である。GFPを発現しているCD31陽性細胞が観察された。
 フローサイトメトリー解析の結果を図13に示した。GFP陽性の血管内皮細胞(CD157陰性CD200陰性)が多数存在することが示された。また、GFP陽性の血管内皮幹細胞(CD157陽性CD200陽性)も増殖していることが示された。
 これらの結果から、1個の血管内幹細胞であっても、定着すれば、長期的に血管内皮細胞および血管内皮幹細胞として生体内で維持することができること、その際に、移植する血管内皮幹細胞から目的分子が分泌されるように、目的分子をコードする遺伝子を導入した血管内皮幹細胞を移植することで、疾患の治療に有用な目的分子を生体で長期間発現し得ることが証明された。
〔実施例6:ヒト肝臓における血管内皮幹細胞の確認〕
 マウスの肝臓で確認された血管内皮幹細胞が、ヒトにも存在するかどうかを検討した。
6-1 ヒト肝臓血管内皮細胞の表面マーカー解析
(1)実験方法
 ヒト肝臓組織を用いて、実施例1の1-1(1)に記載の方法で細胞懸濁液を調製した。続いて実施例1の1-1(2)に記載の方法で、得られた細胞に免疫蛍光染色を行い、フローサイトメトリー解析を行った。
(2)結果
 結果を図14に示した。(A)のドットプロットの枠内の細胞(CD31陽性CD45陰性細胞)を肝臓の血管内皮細胞として回収した。続いて回収した細胞におけるCD157発現量(X軸)とCD200発現量(Y軸)を解析した結果を(B)のドットプロットに示した。図14(B)に示されたように、ヒト肝臓の血管内皮細胞(CD31陽性CD45陰性細胞)は、CD200の発現量により、CD200陰性とCD200陽性の2つの画分に分かれることが示された。一方、CD157陽性細胞数は非常に少ないが存在することが確認された。
6-2 CD200で分画した血管内皮細胞のコロニー形成アッセイ
(1)実験方法
 図14(B)のCD200陽性画分(本発明の第1の細胞集団:CD31陽性CD45陰性CD200陽性細胞)およびCD200陰性画分(CD31陽性CD45陰性CD200陰性細胞)をそれぞれ回収し、実施例1の1-2(1)に記載の方法で、コロニー形成アッセイを行った。
(2)結果
 結果を図15に示した。(A)がCD200陽性画分の結果、(B)がCD200陰性画分の結果である。(B)のCD200陰性画分には、CD31陽性のコロニーを形成する細胞は存在しなかったが、(A)のCD200陽性画分には、CD31陽性のコロニーを形成する細胞が含まれることが示された。すなわち、ヒト肝臓のCD31陽性CD45陰性CD200陽性細胞には、血管内皮細胞コロニー形成能を有する血管内皮幹細胞が含まれることが明らかになった。なお、本実施例ではCD157陽性CD200陽性血管内皮細胞(本発明の第2の細胞集団)の細胞数が少なかったため、CD157陽性CD200陽性血管内皮細胞を用いてコロニー形成アッセイを行わなかったが、ヒトの場合もマウスと同様に、CD157陽性CD200陽性血管内皮細胞集団(本発明の第2の細胞集団)は血管内皮細胞幹細胞を主とする細胞集団であると考えられる。
 以上の結果から、血管内皮幹細胞は哺乳動物に共通して存在しており、種々の臓器の血管形成に大きく貢献し、ヒトの各種疾患においてもこの血管内皮幹細胞の移植による治療が有効であると考えられる。
〔実施例7:ヒト血管内皮細胞におけるCD157陽性の確認〕
 マウスでは、いずれの臓器、器官、組織においても血管内皮幹細胞はCD157を発現していることが明らかになった(実施例4)。ヒトの肝臓においては、CD200陽性細胞中に血管内皮幹細胞の存在が確認されたが、CD157陽性細胞の存在は明確ではなかった。そこで、肝臓以外のヒト組織にCD157陽性血管内皮細胞の存在を確認できるかどうか検討した。
(1)実験方法
 ヒト腎臓組織およびヒト胎盤組織から、実施例1の1-1(1)に記載の方法で、それぞれ細胞懸濁液を調製した。得られた細胞に、抗CD31抗体(clone WM59, BioLegend社製)、抗CD45抗体(Clone HI30, BioLegend社製)および抗CD157抗体(clone SY11B5, BD社製)を用いて免疫蛍光染色を行い、フローサイトメトリー解析を行った。フローサイトメトリー解析には、FACS Aria II SORP(BD Bioscience社製)およびFlowJo Software(Treestar Software社製)を使用した。
(2)実験結果
 ヒト腎臓組織の結果を図16に、ヒト胎盤組織の結果を図17にそれぞれ示した。図16および17とも、(A)は抗CD31抗体と抗CD45抗体で染色してフローサイトメトリー解析を行った結果であり、(B)は(A)の枠内の細胞(CD31陽性CD45陰性細胞)中のCD157陽性細胞のフローサイトメトリー解析を行った結果である。腎臓および胎盤共に、(A)の枠内の細胞(CD31陽性CD45陰性細胞)を抗CD157抗体で染色してフローサイトメトリー解析を行った結果、CD157陽性血管内皮幹細胞画分の存在が観察された。
〔実施例8:ヒト血管内皮細胞におけるSP細胞集団の確認〕
 本発明者らは、マウス血管内皮細胞中にside population細胞(SP細胞集団)が存在することを確認している(非特許文献1)。しかし、ヒト組織においては、血管内皮細胞中にSP細胞集団が存在することは未だ確認されていない。そこで、ヒト組織においても、血管内皮細胞中にSP細胞集団の存在を確認できるかどうか検討した。
(1)実験方法
 ヒト皮膚組織から、実施例1の1-1(1)に記載の方法で細胞懸濁液を調製した。得られた細胞にヘキスト染色と免疫蛍光染色を行い、フローサイトメトリー解析を行った。ヘキスト染色は、1×10細胞/mLの細胞懸濁液に、ヘキスト染色液(2% FBS (Sigma-Aldrich), 1mM HEPES (Gibco), 5μg/mL Hoechst33342 (Sigma-Aldrich)含有DMEM (Sigma-Aldrich))を添加して、37℃で90分間行った。免疫蛍光染色には、抗CD31抗体(clone WM59, BioLegend社製)および抗CD45抗体(Clone HI30, BioLegend社製)を使用した。染色した細胞にPI(2μg/mL, Sigma-Aldrich社製)を加え死細胞の除去を行った。CD31陽性CD45陰性PI陰性細胞(死細胞を除去した血管内皮細胞)を回収し、ヘキスト解析をフローサイトメーターで行った。フローサイトメトリー解析には、FACS Aria II SORP(BD Bioscience社製)およびFlowJo Software(Treestar Software社製)を使用した。
(2)実験結果
 結果を図18に示した。ヒト皮膚組織にSP細胞集団画分(破線枠内)が存在することを確認した。
 なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。

Claims (14)

  1.  細胞表面マーカーCD31およびCD200が陽性であり、CD45が陰性である哺乳動物細胞から本質的になる細胞集団。
  2.  細胞表面マーカーCD31、CD157およびCD200が陽性であり、CD45が陰性である哺乳動物細胞から本質的になる細胞集団。
  3.  血管内皮幹細胞を含む請求項1または2に記載の細胞集団。
  4.  前記哺乳動物細胞が導入遺伝子を発現する血管内皮幹細胞を含む請求項1または2に記載の細胞集団。
  5.  哺乳動物がヒトである請求項1~4のいずれかに記載の細胞集団。
  6.  細胞表面マーカーCD31が陽性、CD157およびCD200の少なくとも一方が陽性、CD45が陰性である哺乳動物の血管内皮幹細胞。
  7.  導入遺伝子を発現する請求項6に記載の血管内皮幹細胞。
  8.  哺乳動物がヒトである請求項6または7に記載の血管内皮幹細胞。
  9.  請求項1~5のいずれかに記載の細胞集団または請求項6~8のいずれかに記載の血管内皮幹細胞を有効成分とする医薬。
  10.  血管再生用、虚血改善用、低栄養改善用、血管奇形治療用、血管奇形に起因する血流不全改善用、臓器再生促進用、または血管内皮細胞から分泌される分子の異常に起因する疾患の予防および/または治療用である請求項9に記載の医薬。
  11.  血管内皮細胞から分泌される分子の異常に起因する疾患が、血友病A、血友病B、フォン・ヴィレブランド病、高血圧、耐糖能異常症、脂質代謝異常症、メタボリックシンドロームまたは骨粗鬆症である請求項10に記載の医薬。
  12.  請求項4に記載の細胞集団または請求項7に記載の血管内皮幹細胞を有効成分とする導入遺伝子産物により改善される疾患の予防および/または治療用医薬。
  13.  導入遺伝子産物により改善される疾患が、血友病A、血友病B、フォン・ヴィレブランド病、がん、加齢黄斑変性症、自己免疫疾患、リウマチ、認知症、糖尿病、高血圧症、糖尿病性腎症、骨粗鬆症、肥満または感染症である請求項12に記載の医薬。
  14.  被験物質の血管に対する毒性を評価する方法であって、
    (1)被験物質を含有する培地および被験物質を含有しない培地を用いて請求項1~5のいずれかに記載の細胞集団を培養する工程と、
    (2)培養後の細胞増殖レベルを測定する工程と、
    (3)被験物質を含有する培地を用いて培養した場合の細胞増殖レベルを、被験物質を含有しない培地を用いて培養した場合の細胞増殖レベルと比較する工程
    を含むことを特徴とする毒性評価方法。
PCT/JP2018/042255 2017-11-17 2018-11-15 Cd31陽性cd45陰性cd200陽性の哺乳動物細胞からなる細胞集団、およびその利用 WO2019098264A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2018367552A AU2018367552A1 (en) 2017-11-17 2018-11-15 Cell populations comprising CD31-positive, CD45-negative, CD200-positive mammalian cells, and use thereof
CN201880073912.8A CN111417718B (zh) 2017-11-17 2018-11-15 由cd31阳性cd45阴性cd200阳性的哺乳动物细胞组成的细胞群及其应用
JP2019554274A JP7176766B2 (ja) 2017-11-17 2018-11-15 Cd31陽性cd45陰性cd200陽性の哺乳動物細胞からなる細胞集団、およびその利用
US16/763,938 US11920161B2 (en) 2017-11-17 2018-11-15 Cell populations of CD31-positive, CD45-negative, CD200-positive mammalian cells and use thereof
CA3082528A CA3082528A1 (en) 2017-11-17 2018-11-15 Cell population of cd31-positive, cd45-negative, cd200-positive mammalian cells and use thereof
EP18878102.5A EP3712256A4 (en) 2017-11-17 2018-11-15 CELL POPULATIONS WITH CD31-POSITIVE, CD45-NEGATIVE, CD200-POSITIVE Mammalian Cells, and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017221955 2017-11-17
JP2017-221955 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019098264A1 true WO2019098264A1 (ja) 2019-05-23

Family

ID=66538605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042255 WO2019098264A1 (ja) 2017-11-17 2018-11-15 Cd31陽性cd45陰性cd200陽性の哺乳動物細胞からなる細胞集団、およびその利用

Country Status (7)

Country Link
US (1) US11920161B2 (ja)
EP (1) EP3712256A4 (ja)
JP (1) JP7176766B2 (ja)
CN (1) CN111417718B (ja)
AU (1) AU2018367552A1 (ja)
CA (1) CA3082528A1 (ja)
WO (1) WO2019098264A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070874A1 (ja) 2019-10-09 2021-04-15 国立大学法人大阪大学 血管内皮幹細胞の製造方法
WO2023199951A1 (ja) * 2022-04-13 2023-10-19 株式会社セルージョン 抗vegf機能を有する多能性幹細胞及びその分化細胞

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009010885A2 (en) * 2007-07-13 2009-01-22 Institut National De La Sante Et De La Recherche M Use of cd200 as a mesenchymal stem cells marker
JP2013544089A (ja) * 2010-11-05 2013-12-12 国立大学法人京都大学 多発性嚢胞腎の検査方法および治療剤のスクリーニング方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120269774A1 (en) * 2006-09-21 2012-10-25 Medistem Laboratories, Inc Allogeneic stem cell transplants in non-conditioned recipients
US10149864B2 (en) 2013-03-13 2018-12-11 The University Of Queensland Method of isolating cells for therapy and prophylaxis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009010885A2 (en) * 2007-07-13 2009-01-22 Institut National De La Sante Et De La Recherche M Use of cd200 as a mesenchymal stem cells marker
JP2013544089A (ja) * 2010-11-05 2013-12-12 国立大学法人京都大学 多発性嚢胞腎の検査方法および治療剤のスクリーニング方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BARCIA R. N. ET AL.: "Umbilical cord tissue-derived mesenchymal stromal cells maintain immunomodulatory and angiogenic potencies after cryopreservation and subsequent thawing", CYTOTHERAPY, vol. 19, no. 3, 28 December 2016 (2016-12-28) - March 2017 (2017-03-01), pages 360 - 370, XP055609375 *
BELKIN D. A. ET AL.: "CD 200 upregulation in vascular endothelium surrounding cutaneous squamous cell carcinoma.", JAMA DERMATOLOGY, vol. 149, no. 2, February 2013 (2013-02-01), pages 178 - 186, XP055609370 *
NAITO H. ET AL.: "Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels", THE EMBO JOURNAL, vol. 31, no. 4, 15 February 2012 (2012-02-15), pages 842 - 855, XP055609361 *
NAITO HKIDOYA HSAKIMOTO SWAKABAYASHI TTAKAKURA N: "Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels", EMBO J., vol. 31, no. 4, 15 February 2012 (2012-02-15), pages 842 - 55, XP055609361, DOI: 10.1038/emboj.2011.465
TAKAKURA NOBUYUKI: "Isolation of endothelial stem cells of existing blood vessels- Discovery of vascular resident endothelial stem/progenitor cell population", JAPANESE JOURNAL OF THROMBOSIS AND HEMOSTASIS, vol. 25, no. 5, 2014, pages 603 - 608, XP009521077, ISSN: 1880-8808 *
WAKABAYASHI T. ET AL.: "CD 157 Marks Tissue-Resident Endothelial Stem Cells with Homeostatic and Regenerative Properties", CELL STEM CELL, vol. 22, no. 3, 1 March 2018 (2018-03-01), pages 384 - 397, XP055609373 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070874A1 (ja) 2019-10-09 2021-04-15 国立大学法人大阪大学 血管内皮幹細胞の製造方法
CN114341347A (zh) * 2019-10-09 2022-04-12 国立大学法人大阪大学 血管内皮干细胞的制造方法
WO2023199951A1 (ja) * 2022-04-13 2023-10-19 株式会社セルージョン 抗vegf機能を有する多能性幹細胞及びその分化細胞

Also Published As

Publication number Publication date
US20200385684A1 (en) 2020-12-10
JP7176766B2 (ja) 2022-11-22
EP3712256A1 (en) 2020-09-23
JPWO2019098264A1 (ja) 2020-12-24
CN111417718B (zh) 2023-10-20
CN111417718A (zh) 2020-07-14
CA3082528A1 (en) 2019-05-23
US11920161B2 (en) 2024-03-05
EP3712256A4 (en) 2021-01-20
AU2018367552A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
AU2019210647B2 (en) Peptide for inducing regeneration of tissue and use thereof
KR102388828B1 (ko) 콜로니 형성 배지 및 그 용도
JP6189216B2 (ja) 器官再生方法
JP6351799B2 (ja) 癌治療用医薬組成物の製造方法及びその方法によって製造された癌治療用医薬組成物
Haddad‐Mashadrizeh et al. Human adipose‐derived mesenchymal stem cells can survive and integrate into the adult rat eye following xenotransplantation
Lin et al. Induction of erythropoiesis using human vascular networks genetically engineered for controlled erythropoietin release
JP6591434B2 (ja) 内皮コロニー形成細胞様細胞の生成方法
JPWO2018123968A1 (ja) 生体組織損傷の修復剤および当該修復剤の製造方法
KR20150104049A (ko) 체세포로부터 혈관 전구 세포로의 직접교차분화 유도용 조성물 및 이의 용도
JP2017132744A (ja) 腎臓病進行抑制細胞シート組成物、その製造方法、及び、それを用いた腎臓病進行抑制方法
JP7176766B2 (ja) Cd31陽性cd45陰性cd200陽性の哺乳動物細胞からなる細胞集団、およびその利用
JP2016210730A (ja) 医薬組成物及びその製造方法並びに医薬品
JPWO2007094301A1 (ja) 硝子体細胞株
EP4043554A1 (en) Production method for vascular endothelial stem cell
WO2003082305A1 (fr) Medicament renfermant des cellules mesenchymales d'origine placentaire et procede de production de vegf au moyen de ces cellules
JP7473207B2 (ja) 末梢血流障害の治療剤
US20190382728A1 (en) Menstrual Blood Derived Angiogenesis Stimulatory Cells
Melero-Martin et al. Induction of erythropoiesis using human vascular networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554274

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3082528

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018878102

Country of ref document: EP

Effective date: 20200617

ENP Entry into the national phase

Ref document number: 2018367552

Country of ref document: AU

Date of ref document: 20181115

Kind code of ref document: A