WO2019098173A1 - 認知機能障害診断装置および認知機能障害診断プログラム - Google Patents

認知機能障害診断装置および認知機能障害診断プログラム Download PDF

Info

Publication number
WO2019098173A1
WO2019098173A1 PCT/JP2018/041932 JP2018041932W WO2019098173A1 WO 2019098173 A1 WO2019098173 A1 WO 2019098173A1 JP 2018041932 W JP2018041932 W JP 2018041932W WO 2019098173 A1 WO2019098173 A1 WO 2019098173A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
diagnostic
unit
viewpoint
display
Prior art date
Application number
PCT/JP2018/041932
Other languages
English (en)
French (fr)
Inventor
朱公 武田
茜 大山
恒男 中嶋
森下 竜一
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to AU2018366644A priority Critical patent/AU2018366644B2/en
Priority to JP2019554215A priority patent/JP6867715B2/ja
Priority to EP18878289.0A priority patent/EP3711680A4/en
Priority to CN201880073126.8A priority patent/CN111343927B/zh
Priority to US16/763,829 priority patent/US11583221B2/en
Priority to KR1020207013560A priority patent/KR102581657B1/ko
Priority to CA3081199A priority patent/CA3081199A1/en
Priority to SG11202004441XA priority patent/SG11202004441XA/en
Publication of WO2019098173A1 publication Critical patent/WO2019098173A1/ja
Priority to PH12020550625A priority patent/PH12020550625A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots

Definitions

  • the present invention relates to a cognitive dysfunction diagnosis device and a cognitive dysfunction diagnosis program for diagnosing cognitive dysfunction.
  • Patent Document 1 and Patent Document 2 propose a medical diagnostic apparatus using line of sight detection capable of objectively diagnosing a disease related to brain function by detecting the movement of the head and the line of sight of a subject. There is.
  • Patent Document 3 proposes a system for detecting eye movement of a subject for the diagnosis of a neurological disorder.
  • Patent Document 4 and Patent Document 5 propose a chart for visual inspection for examining an optic neuropathy which appears in the case of an eye disease such as a retina or an optic nerve or an intracranial disease.
  • Patent documents 6 to 9 propose an autism diagnosis support system for diagnosing autism in a subject using a gaze detection unit including at least an imaging camera unit.
  • Patent Document 10 proposes a brain function disease diagnosis support device that detects the line of sight and the pupil of a subject to determine the possibility of brain disease of the subject.
  • Patent No. 5817582 Japanese Patent Application Laid-Open No. 6-70884 Japanese Patent Application Laid-Open No. 6-70885 Japanese Patent Application Publication No. 2016-523112 Patent No. 4560801 Patent No. 4116354 gazette Patent No. 5926210 Patent No. 5912351 gazette Patent No. 5761048 gazette Patent No. 5761049 Patent No. 5817582
  • the diagnosis can be completed in a few minutes without requiring a diagnosis time of several dozen minutes to several hours.
  • low cost for example, it is desirable that expensive dedicated equipment is not required and maintenance and operation costs of the diagnostic equipment not be incurred.
  • objectivity it is desirable that homogeneous diagnosis be possible without the skill and experience of the person involved in the diagnosis.
  • quantitativeness for example, it is desirable to be able to quantify the degree of dementia.
  • generality language independence
  • MMSE Mini-Mental State Exam
  • the MMSE is a method for evaluating cognitive function in the form of a question to a subject by an examiner, and has the following 1 to 4 problems. That is, 1, take time to implement. Specifically, it takes about 30 minutes. 2, The accurate evaluation requires trained inspectors. 3. The mental stress of the subject who is forced to answer is large. 4. The result is often different depending on the examiner, and the reproducibility and objectivity of the result are poor.
  • Dementia is known to have a variety of causal diseases (in addition to the most common forms of Alzheimer's disease, frontotemporal dementia, Lewy body dementia, etc.), and treatment policies differ, so accurate differentiation is important. It becomes. Differentiation of the cause of dementia depends on the evaluation of clinical symptoms by specialists (such as characteristic history and presence or absence of neurological findings) and special image evaluation (such as head MRI and PET imaging). There are problems with quantitative efficiency, cost and simplicity.
  • the present invention is to provide a cognitive dysfunction diagnosis device and a cognitive dysfunction diagnosis program having simplicity, low cost, objectivity, quantitativeness, and versatility (language independence) in diagnosis of cognitive dysfunction. To aim.
  • a cognitive function disorder diagnostic device includes a display unit that displays a diagnostic image of cognitive function disorder on a display surface, an imaging unit that captures an eye of a subject, and the imaging unit.
  • a detection unit that detects the viewpoint of the subject on the display surface in time series based on an image; a creation unit that creates a distribution map indicating a distribution of viewpoints detected by the detection unit;
  • a storage unit storing case feature data indicating features of viewpoint distribution corresponding to a typical example of the subject, and determining the cognitive dysfunction of the subject by determining whether the distribution map has features of the case feature data
  • a diagnostic unit for diagnosing includes a display unit that displays a diagnostic image of cognitive function disorder on a display surface, an imaging unit that captures an eye of a subject, and the imaging unit.
  • a detection unit that detects the viewpoint of the subject on the display surface in time series based on an image;
  • a creation unit that creates a distribution map indicating a distribution of viewpoints detected by the detection unit;
  • a storage unit storing
  • a cognitive function disorder diagnosis program stores case feature data connected to a display unit having a display surface and an imaging unit and showing features of a viewpoint distribution corresponding to a typical example of cognitive function disorder.
  • a cognitive function disorder diagnosis program executed by a computer including a storage unit, displaying an image for diagnosing cognitive function disorder on the display surface, capturing an eye of a subject by the imaging unit, and capturing an image by the imaging unit Based on the acquired image, the viewpoint of the subject on the display surface is detected in time series, and a distribution map indicating the distribution of the detected viewpoint is created, and the distribution map is characterized by the case feature data.
  • the computer is caused to diagnose the subject's cognitive dysfunction by determining whether or not the subject has the subject.
  • the cognitive function disorder diagnostic device and the cognitive function disorder diagnostic program according to one aspect of the present invention may combine simplicity, low cost, objectivity, quantitativeness, and versatility (language independence) in diagnosis of cognitive function disorder. it can.
  • FIG. 1 is a block diagram showing a configuration example of a cognitive dysfunction diagnostic device according to the embodiment.
  • FIG. 2 is a diagram showing an example of the appearance of the cognitive dysfunction diagnostic device according to the embodiment.
  • FIG. 3 is a diagram showing an example of the storage content of the storage unit in the embodiment.
  • FIG. 4 is a view showing an example of case feature data in the embodiment.
  • FIG. 5 is a flowchart showing an example of a diagnostic process by the cognitive function disorder diagnosis device according to the embodiment.
  • FIG. 6 is a diagram showing an example of the time required for the example of the diagnostic processing of FIG.
  • FIG. 7 is a flowchart showing an example of the first diagnostic process of FIG.
  • FIG. 8 is a flowchart showing an example of the second diagnosis process of FIG.
  • FIG. 1 is a block diagram showing a configuration example of a cognitive dysfunction diagnostic device according to the embodiment.
  • FIG. 2 is a diagram showing an example of the appearance of the cognitive dysfunction diagnostic device according to the embodiment.
  • FIG. 3
  • FIG. 9 is a flowchart showing an example of the third diagnosis process of FIG.
  • FIG. 10 is a flowchart showing an example of the fourth diagnostic process of FIG.
  • FIG. 11 is a flowchart showing an example of the fifth diagnosis process of FIG.
  • FIG. 12 is a flowchart showing an example of the sixth diagnosis process of FIG.
  • FIG. 13A is a diagram showing a display example of the first image in the embodiment.
  • FIG. 13B is a diagram showing a display example in which the first distribution map is superimposed on the first image of FIG. 13A.
  • FIG. 14A is a diagram showing a display example of the second image in the embodiment.
  • FIG. 14B is a diagram showing a display example in which the first partial map in the second distribution map is superimposed on the first image in the second image of FIG.
  • FIG. 14C is a diagram showing a display example in which the second partial map in the second distribution map of a healthy person is superimposed on the second image in the second image of FIG. 14A.
  • FIG. 14D is a diagram showing a display example in which a second partial map in the second distribution map of Alzheimer's disease patients is superimposed on the second image in the second image of FIG. 14A.
  • FIG. 15A is a diagram illustrating a first example of the third video in the embodiment.
  • FIG. 15B is a diagram showing a display example in which a third distribution map of a patient with cortical basal ganglia degeneration is superimposed on the third image of FIG. 15A.
  • FIG. 15C is a diagram illustrating a second example of the third video in the embodiment.
  • FIG. 15D is a diagram showing a display example in which a third distribution map of a patient with cortical basal ganglia degeneration is superimposed on the third image of FIG. 15C.
  • FIG. 15E is a diagram illustrating a third example of the third video in the embodiment.
  • FIG. 15F is a diagram showing a display example in which a third distribution map of a patient with cortical basal ganglia degeneration is superimposed on the third image of FIG. 15E.
  • FIG. 16A is a diagram illustrating an example of a fourth image in the embodiment.
  • FIG. 16B is a diagram showing a display example in which the fourth distribution map of patients with Alzheimer's disease is superimposed on the fourth image of FIG. 16A.
  • FIG. 16C is a diagram showing a display example in which the fourth distribution map of the patient with dementia with Lewy bodies is superimposed on the fourth image of FIG. 16A.
  • FIG. 17 is a diagram illustrating an example of the fifth image in the embodiment.
  • FIG. 18 is a diagram comparing the cognitive function score by the second diagnostic process in the embodiment with the cognitive function score by the conventional MMSE method.
  • FIG. 19 is a diagram showing a viewpoint acquisition rate by age of a subject.
  • FIG. 20 is a view showing the viewpoint acquisition rate by case of the subject.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Moreover, in each figure, the same code
  • FIG. 1 is a block diagram showing a configuration example of a cognitive dysfunction diagnostic device according to the embodiment.
  • FIG. 2 is a figure which shows the example of an external appearance of the cognitive function disorder-diagnosis apparatus in embodiment.
  • the cognitive function disorder diagnosis device 1 includes a display unit 10, an imaging device 20, and a PC (Personal Computer, personal computer) 30.
  • This cognitive function disorder diagnosis device 1 shows a configuration example in which a display unit 10 and an imaging device 20 are further added to the PC 30 with a general commercially available PC 30 as a main control device.
  • the display unit 10 is a flat panel display having a display surface 11 and displays an image for diagnosing cognitive dysfunction on the display surface 11. As shown in FIG. 2, the display unit 10 is a large liquid crystal display or an organic EL display that can be easily viewed by elderly people in order to show a diagnostic image to a subject.
  • the display unit 10 may be a monitor for a personal computer, or a commercially available large-sized television may be used as the monitor.
  • the display unit 10 may be configured of a screen as the display surface 11 and a projector instead of the flat panel display.
  • the imaging device 20 is a module attachable to the display unit 10, and includes at least an imaging unit 21 and a light source unit 24 for imaging the eye of the subject.
  • the imaging unit 21 is a stereo camera having a camera 22 and a camera 23.
  • the camera 22 and the camera 23 may each be, for example, an infrared camera.
  • camera 22 and camera 23 may each be a visible light camera.
  • the imaging unit 21 may be a single camera instead of a stereo camera, or may be three or more cameras.
  • the light source unit 24 includes a light source 25 and a light source 26 that irradiate the subject with infrared light as illumination light.
  • the light source 25 and the light source 26 may each be configured to have, for example, one or more infrared light emitting diodes (LEDs). In other examples, light source 25 and light source 26 may each be one or more white light emitting diodes (LEDs).
  • the imaging device 20 may not include the light source unit 24 when the illumination environment of the subject is sufficiently bright.
  • the imaging device 20 may be attached to the upper part of the display unit 10, or may be divided and attached to the left and right.
  • the PC 30 includes a processor 31, a storage unit 32, an input unit 33, an output unit 34, a display unit 35, an interface unit 36, a detection unit 37, a creation unit 38, and a diagnosis unit 39.
  • the processor 31, the storage unit 32, the input unit 33, the output unit 34, the display unit 35, and the interface unit 36 are configured by general hardware and software of a commercially available computer.
  • Other functional blocks, that is, the detection unit 37, the creation unit 38, and the diagnosis unit 39 mainly indicate components realized by the processor 31 executing the cognitive function failure diagnosis program in the present embodiment.
  • the processor 31 is a so-called central processing unit (CPU) that executes a program stored in the storage unit 32.
  • CPU central processing unit
  • the storage unit 32 stores a program executed by the processor 31 and data processed by the processor 31.
  • the programs stored in the storage unit 32 include, in addition to software such as various firmware, OS (Operating System), and driver software, a cognitive function failure diagnosis program in the present embodiment.
  • the data stored in the storage unit 32 includes diagnostic video data, case feature data, viewpoint data, distribution map data, and the like.
  • the diagnostic video data is a still image or a moving image created for the diagnosis of cognitive dysfunction.
  • the case feature data is data indicating features of the viewpoint distribution corresponding to a typical example of cognitive impairment.
  • the viewpoint data is time-series data indicating the position and time of the viewpoint detected by the detection unit 37.
  • the distribution map is created by the creating unit 38 and is a plot of time-sequential viewpoints sequentially in real time on a two-dimensional plane in accordance with viewpoint data, and indicates a two-dimensional distribution of viewpoints.
  • the storage unit 32 may be a main memory or primary memory configured with a dynamic random access memory (DRAM) or the like, and an auxiliary memory or secondary configured with a hard disc drive (HDD) device or a solid state drive (SSD) device. Memory and cache memory are included. That is, in this document, the storage unit 32 is used as a general term for components having a function of storing a program and data.
  • DRAM dynamic random access memory
  • HDD hard disc drive
  • SSD solid state drive
  • the input unit 33 includes, for example, a keyboard, a mouse, a track pad, and the like, and receives an operation of the operator.
  • the output unit 34 is, for example, a speaker, and outputs sound.
  • the display unit 35 is, for example, a liquid crystal display, and displays a diagnostic image or the like on which a distribution map is superimposed for monitoring of a user (here, a person to be inspected).
  • the interface unit 36 has a function of connecting and communicating the display unit 10 and the imaging device 20 via a cable.
  • the interface unit 36 has, for example, a high-definition multimedia interface (HDMI (registered trademark)) port and a universal serial bus (USB) port.
  • HDMI registered trademark
  • USB universal serial bus
  • the detection unit 37 detects the viewpoint of the subject on the display surface 11 in time series based on the image captured by the imaging unit 21. For example, the detection unit 37 detects the line of sight of the subject from the image captured by the imaging unit 21 and detects the coordinates of the point at which the line of sight intersects the display surface 11 as the position of the viewpoint of the subject on the display surface 11 Do. Detection of the position of the viewpoint is performed periodically. The period may be determined between several tens of mS and several hundreds of mS, for example, 100 mS.
  • the detection unit 37 generates, for example, a set of coordinate data (x, y, t) including time, in real time as viewpoint data representing a position of a viewpoint in time series.
  • x and y are coordinates of a plane (for example, the display surface 11 or a diagnostic image)
  • t is time.
  • the creation unit 38 creates a distribution map indicating the distribution of the viewpoints detected by the detection unit 37.
  • the distribution map is, for example, a diagram in which a mark (for example, colored dots) corresponding to the coordinate data (x, y, t) is plotted on a two-dimensional plane, and is used as a diagnostic image displayed on the display unit 35 of the PC 30. Superimposed in real time. The above mark may be displayed as bright as the latest viewpoint, for example.
  • the diagnosis unit 39 diagnoses the cognitive function of the subject by determining whether the distribution map has the feature of the case feature data.
  • the cognitive function disorder diagnosis device 1 shown in FIG. 1 includes the display unit 10 that displays a diagnostic image for cognitive function disorder on the display surface 11, the imaging unit 21 that captures the eye of the subject, and A detection unit 37 that detects the viewpoint of the subject on the display surface 11 in time series based on the image captured by the imaging unit 21, and a distribution map showing a distribution of viewpoints detected by the detection unit 37 Whether the distribution map has the features of the case feature data 310 or not, and whether or not the distribution map has the features of the case feature data 310. And a diagnosis unit 39 that diagnoses the cognitive dysfunction of the subject.
  • the PC 30 shown in FIGS. 1 and 2 may be a notebook computer or a desktop computer.
  • FIG. 3 is a diagram showing an example of the storage content of the storage unit 32 in the embodiment.
  • the storage unit 32 stores diagnostic video data 300, case feature data 310, a program 320, viewpoint data 322, and distribution map data 323.
  • the program 320 includes a cognitive dysfunction diagnosis program 321.
  • the diagnostic video data 300 is a collection of a plurality of video data including the first video data 301 to the fifth video data 305.
  • Each of the plurality of video data is a video created to diagnose the presence or absence or degree of cognitive dysfunction, or a video created to distinguish cases of cognitive dysfunction.
  • the case feature data 310 is data indicating the feature of the viewpoint distribution corresponding to the typical example of the cognitive dysfunction, and is a collection of a plurality of feature data including the first feature data 311 to the fifth feature data 315.
  • the first feature data 311 to the fifth feature data 315 correspond to the first video data 301 to the fifth video data 305, respectively.
  • the program 320 includes software such as various firmware, OS (Operating System), driver software and the like, and a cognitive function failure diagnosis program 321.
  • the cognitive function disorder diagnosis program 321 is a program executed by a computer, that is, the PC 30, displays a diagnostic image for cognitive function disorder on the display surface 11, captures an image of the subject's eye by the imaging unit 21, Detects the viewpoints of the subject on the display surface 11 based on the image captured by the time series, creates a distribution map showing the distribution of the detected viewpoints, and the distribution map is a feature map of the case feature data Causing the computer to diagnose the subject's cognitive impairment by determining if it has Among these, it is a function of the detection unit 37 that the viewpoint of the subject on the display surface 11 is detected in time series based on the image captured by the imaging unit 21 by the PC 30.
  • the creating unit 38 It is a function of the creating unit 38 that the PC 30 creates a distribution map indicating the distribution of the detected viewpoints. It is a function of the diagnosis unit 39 that the PC 30 diagnoses the cognitive dysfunction of the subject by determining whether the distribution map has the feature of the case feature data.
  • the viewpoint data 322 is time-series data indicating the position and time of the viewpoint detected by the detection unit 37, and is, for example, a set of coordinate data (x, y, t) including the time already described.
  • the distribution map data 323 is data indicating the distribution map described above.
  • the storage unit 32 also relates to diagnostic data indicating the diagnosis result of the subject, data to associate viewpoint data 322 for each subject, distribution map data 323 and diagnostic data.
  • FIG. 4 is a view showing an example of the case feature data 310 in the embodiment.
  • the case feature data 310 in the same figure includes first feature data 311 to sixth feature data 316.
  • the features of the first feature data 311 to the sixth feature data 316 and the cases of the corresponding cognitive dysfunction are described.
  • the first feature data 311 associates the first feature with frontotemporal dementia.
  • Frontotemporal dementia is sometimes abbreviated as FTD (Fronto-Temporal Dementia).
  • the first feature is a feature that typically appears in patients with a case of frontotemporal dementia. Specifically, the first feature is characterized in that the viewpoints are continuously concentrated on a local part centered on one point. This first feature is also referred to as a one-point gaze pattern.
  • the first feature is based on the assumption that the first image, which is a diagnostic image based on the first image data 301, is shown to the subject. In this case, the first image may be, for example, an image representing at least one of a person, an object, a landscape, and a figure.
  • the second feature data 312 associates the second feature with the decrease in cognitive function. That is, the second feature is a feature that typically appears in patients with reduced cognitive function. Specifically, the second feature is characterized in that the lower the ratio of the subject's viewpoint in the display area of the correct figure in the distribution map, the lower the cognitive function.
  • the second feature presupposes that the subject is shown a second image which is a diagnostic image by the second image data 302.
  • the second image may be an image including a first image including a correct figure and not including a figure other than the correct figure, and a second image including a correct figure and a plurality of similar figures.
  • the second image is displayed immediately after displaying the first image.
  • the above distribution map is a distribution of viewpoints when the subject is looking at the second image.
  • the third feature data 313 associates the third feature with the cortical basal ganglia degeneration. That is, the third feature is a feature that typically appears in patients with cortical basal ganglia degeneration. Specifically, the third feature is the feature that no viewpoint exists in the left half of the image, in other words, the feature that the left half space is ignored. This third feature presupposes that the subject is shown a third video which is a diagnostic video based on the third video data 303. In this case, the third image may be, for example, a still image representing at least one of a person, an object, a landscape, and a figure.
  • Fourth feature data 314 associates the fourth feature with Lewy-Body Dementia. That is, the fourth feature is a feature that typically appears in patients with Lewy-Body Dementia. Specifically, the fourth feature is characterized in that the viewpoint is concentrated on the induced image that induces the vision of the human face. This fourth feature is based on the premise that the fourth video, which is a diagnostic video based on the fourth video data 304, is shown to the subject. In this case, the fourth image may be a still image including both of the induced image and a plurality of non-induced images that do not induce the vision of the human face.
  • the fifth feature data 315 associates the fifth feature with the decrease in cognitive function. That is, the fifth feature is a feature that typically appears in patients with reduced cognitive function. Specifically, the fifth feature is a feature that it is difficult to follow the moving object in the video. This fifth feature is based on the assumption that the fifth video, which is a diagnostic video based on the fifth video data 305, is shown to the subject. In this case, the fifth image may be, for example, a moving image representing an object moving on the display surface 11.
  • the sixth feature data 316 associates the sixth feature with frontotemporal dementia. That is, the sixth feature is a feature that typically appears in patients with frontotemporal dementia. Specifically, the sixth feature is the feature that the viewpoint acquisition rate is equal to or less than a predetermined value (this predetermined value is referred to as a second threshold th2).
  • the viewpoint acquisition rate refers to the ratio of the viewpoint in the display surface 11 in the distribution map.
  • This sixth feature presupposes that the subject is shown an arbitrary diagnostic image. This diagnostic video may be shared with all or part of the first to fifth videos.
  • the above-mentioned viewpoint acquisition rate is an index indicating the effectiveness of diagnosis of cognitive dysfunction by the cognitive dysfunction diagnosis device 1. That is, if the rate at which the viewpoint deviates from the display surface 11 in the distribution map is large, the effectiveness of the diagnostic result of cognitive dysfunction by feature data other than the sixth feature data 316 by the cognitive dysfunction diagnostic device 1 can not be secured. Therefore, when the viewpoint acquisition rate is equal to or less than the predetermined value (the predetermined value is called the first threshold th1), the diagnosis result by feature data other than the sixth feature data 316 is invalidated, and the viewpoint acquisition rate is When it is larger than the threshold value of 1, the diagnosis result by the dementia dysfunction diagnosis device 1 is made effective.
  • the viewpoint acquisition rate is represented by a value from 0 to 1
  • the first threshold th1 is, for example, 0.8.
  • the second threshold th2 may be the same as or different from the first threshold th1.
  • FIG. 5 is a flowchart showing an example of a diagnostic process by the cognitive function disorder diagnosis device 1 according to the embodiment.
  • 6 is a diagram showing an example of the time required for the example of the diagnostic processing of FIG.
  • the cognitive function disorder diagnosis device 1 sequentially executes the first diagnosis process (S10) to the fifth diagnosis process (S50).
  • the sixth diagnostic process is executed in parallel with the first diagnostic process to the fifth diagnostic process as shown in FIG.
  • the example of the diagnostic processing in FIG. 5 and FIG. 6 is processing that is realized mainly by the PC 30 executing the cognitive function failure diagnosis program 321.
  • times t0 to t5 on the horizontal axis in FIG. 6 indicate the start time or end time of each diagnostic process. In FIG. 6, the times t0 to t5 are equally spaced by 0.5 minutes (30 seconds).
  • the first diagnosis process is a diagnosis process using the first video data 301 and the first feature data 311.
  • the second diagnosis process is a diagnosis process using the second video data 302 and the second feature data 312.
  • the third diagnosis process is a diagnosis process using the third video data 303 and the third feature data 313.
  • the fourth diagnostic process is a diagnostic process using the fourth video data 304 and the fourth feature data 314.
  • the fifth diagnosis process is a diagnosis process using the fifth video data 305 and the fifth feature data 315.
  • the sixth diagnostic process is a diagnostic process using the sixth feature data 316.
  • the distribution map data 323 includes first to fifth distribution maps corresponding to the first to fifth images.
  • the time of each of the first to fifth diagnosis processes is 0.5 minutes.
  • the time of the sixth diagnosis process is 2 minutes and 30 seconds because it is performed in parallel with the first diagnosis process to the fifth diagnosis process.
  • the time required for the six diagnostic processes from the first diagnostic process to the sixth diagnostic process is about 2 minutes and 30 seconds. This is because the cognitive function diagnostic device 1 significantly reduces the time for multiple diagnostic processes, as compared to the point that it takes about 30 minutes for diagnostic methods for cognitive function in the query format by MMSE, which are still used today. Shortened to
  • the time for each of the first to fifth diagnosis processes may not be 0.5 minutes (30 seconds), and may be set between about 10 seconds and several tens of seconds.
  • the entire processing time from the first diagnostic processing to the sixth diagnostic processing may be set to several minutes or less, for example, 3 minutes or less.
  • the process may be completed halfway.
  • the order of the first diagnosis process to the fifth diagnosis process may be different from those in FIGS. 5 and 6. For example, after executing the second diagnostic process and the fifth diagnostic process for diagnosing a decrease in cognitive function, the first diagnostic process, the third diagnostic process, and the fourth diagnostic process that can distinguish cases of cognitive dysfunction are performed It is also good.
  • At least one of the first diagnosis processing to the sixth diagnosis processing may be selected and executed.
  • the second diagnostic process and the fifth diagnostic process for diagnosing the decline in cognitive function may be selected and executed.
  • the first diagnosis process, the third diagnosis process, and the fourth diagnosis process that can distinguish a case of cognitive dysfunction may be selected and executed.
  • any one of the first diagnosis process to the sixth diagnosis process may be selected and executed.
  • a second diagnostic process and a fifth diagnostic process that diagnoses a decline in cognitive function and a sixth diagnostic process that also determines the effectiveness of the diagnostic process are executed, and it is diagnosed that a cognitive function declines. In this case, other first diagnosis processing, third diagnosis processing, and fourth diagnosis processing may be executed.
  • calibration processing of viewpoint detection may be performed before the start of the diagnostic processing example of FIGS. 5 and 6.
  • the first diagnostic process utilizes the first feature described above. That is, the first diagnostic process utilizes the feature that a patient with frontotemporal dementia has a one-point gaze pattern that keeps gazing at one point.
  • FIG. 7 is a flowchart showing an example of the first diagnosis process (S10) of FIG. As shown in FIG. 7, first, the PC 30 reads the first video data 301 from the storage unit 32, and causes the display unit 10 to start displaying the first video indicated by the first video data 301 (S11).
  • FIG. 13A is a diagram showing a display example of the first image in the embodiment.
  • an image V11 obtained by imaging a plurality of people falling in the air by sky diving and the ground is displayed.
  • the image V11 is represented by a line drawing for convenience in FIG. 13A, but may be a full color image in practice.
  • the PC 30 displays an image V11 as shown in FIG. 13A from time t0 to t1 in FIG. Alternatively, another image may be displayed after the image V11 as shown in FIG. 13A is displayed.
  • the PC 30 starts imaging of the eye of the subject in the imaging unit 21 or continues imaging when imaging is in progress (S12), and starts detection of the viewpoint of the subject or detection If it is medium, the process continues (S13). Furthermore, the PC 30 acquires viewpoint data from the detection unit 37 from the display start time to the end time of the display of the first image, creates a first distribution map corresponding to the first image in real time (S14), One image is displayed, and the first distribution map is superimposed on the first image of the display unit 35. Display of the first image on the display unit 10 and the display unit 35, imaging by the imaging unit 21, detection of a viewpoint by the PC 30 (more specifically, the detection unit 37 of FIG. 1), and the PC 30 (more specifically, the generation unit 38 of FIG. The creation of the first map according to) is performed in parallel.
  • the PC 30 determines whether the first distribution map includes the first feature of the case characteristic data (S15), and if it is included (yes in S16), it is diagnosed that there is a possibility of frontotemporal dementia To do (S17).
  • the first feature is a one-point gaze pattern, in which a patient with frontotemporal dementia continues to gaze at a certain point, in other words, the viewpoint is concentrated on a local part centered on one point It shows the feature of.
  • FIG. 13B is a diagram showing a display example in which the first distribution map of viewpoints is superimposed on the first image of FIG. 13A.
  • FIG. 13B is a display example on the display unit 35 of the PC 30, which is a table in which the first distribution map is superimposed on the image V11 included in the first image when the patient with frontotemporal dementia is a subject. It is an illustrative example.
  • one black circle represents one detected viewpoint.
  • the dashed line frame A11 has a small number of viewpoints, and the dashed line frame A12 has an overwhelming majority of viewpoints.
  • This first distribution map includes the feature of a one-point gaze pattern in the dashed line frame A12.
  • the diagnostic image includes the image V representing at least one of a person, an object, a landscape, and a figure, and the case feature data 310 is a local one centered on one point.
  • the diagnosis unit 39 is a possibility of frontotemporal dementia among cognitive dysfunction when the distribution map has the feature. To diagnose.
  • the first diagnostic process can easily distinguish frontotemporal dementia in the cognitive dysfunction.
  • the first diagnostic process can be performed in a short time of several tens of seconds, and can have simplicity, low cost, objectivity, quantitativeness, and versatility (language independence).
  • the second diagnostic process is a diagnostic process of cognitive dysfunction by graphic pattern matching using the above-mentioned second feature. That is, the second diagnostic process presents a specific figure, and then presents a correct figure (that is, the specific figure presented first) together with a plurality of different figures, and how much the subject can gaze at the correct figure By assessing, cognitive impairment is diagnosed.
  • FIG. 8 is a flowchart showing an example of the second diagnosis process (S20) of FIG.
  • the PC 30 reads the second video data 302 from the storage unit 32, and causes the display unit 10 to start the display of the second video indicated by the second video data 302 (S21).
  • the second video is a video including a first image including a correct figure and not including a figure other than the correct figure, and a second image including the correct figure and a plurality of similar figures.
  • the second image is displayed immediately after the end of the display of the first image.
  • FIG. 14A is a diagram showing a display example of the second image in the embodiment.
  • the upper part of FIG. 14A is a display example of the first image V ⁇ b> 21 displayed on the display surface 11.
  • the first image V21 includes the correct figure P20 and does not include any other figure.
  • the correct figure refers to one figure initially presented to the subject, and refers to one figure in the first image initially displayed in the second diagnostic process.
  • the display time of the first image V21 may be, for example, 5 to 20 seconds.
  • the first image may include a message image prompting storage of a correct figure such as “please remember this figure well”.
  • the PC 30 may repeatedly transmit to the subject a message voice "Please remember this figure well" along with the display of the first image.
  • the PC 30 may use both a message image and a message voice.
  • the PC 30 starts imaging of the eye of the subject in the imaging unit 21 or continues imaging when imaging is in progress (S22), and starts detection of the viewpoint of the subject or detection If it is medium, the process continues (S23). Furthermore, the PC 30 acquires viewpoint data from the detection unit 37 from the display start time to the end time of the display of the first video, creates a second distribution map corresponding to the second video in real time (S24), The second distribution map is superimposed on the second image of the display unit 35. At this time, the PC 30 uses, as a second distribution map, a first partial map indicating a distribution of viewpoints during a period in which the first image is displayed, and a second distribution indicating a distribution of viewpoints in a period during which the second image is displayed.
  • Each partial map is generated in real time. That is, the second distribution map consists of two parts, the first partial map and the second partial map. Display of the second image on the display unit 10 and the display unit 35, imaging by the imaging unit 21, detection of the viewpoint by the PC 30 (more specifically, the detection unit 37 of FIG. 1), and creation of the PC 30 (more specifically, FIG. 1) The creation of the second distribution map by part 38) is performed in parallel.
  • the lower part of FIG. 14A is a display example of the second image V22 displayed on the display surface 11.
  • the second image V22 includes similar figures P21, P22 and P23 in addition to the correct figure P20.
  • the similar figures P21, P22, and P23 are figures similar to the correct figure, and have the same part as the correct figure and a different part.
  • the display time of the second image V22 may be, for example, 5 seconds to 15 seconds.
  • the second image may include a message image prompting a gaze on a correct figure such as “please look at the same figure as the previous figure”.
  • the PC 30 may repeatedly transmit to the subject a message voice prompting a gaze on a correct figure such as “please look at the same figure as the previous figure” while the second image is displayed.
  • the PC 30 may use both a message image and a message voice.
  • the PC 30 determines whether the second distribution map includes the second feature of the case feature data. Specifically, the PC 30 calculates the proportion of the viewpoint in the display area of the correct figure in the second partial map, and determines whether the calculated proportion is equal to or less than the threshold (S25). Furthermore, if the ratio is equal to or less than the threshold (yes in S26), the PC 30 diagnoses that there is a possibility of cognitive decline (S27). This threshold may be, for example, 0.5 (or 50%). Further, the PC 30 makes a score by normalizing the ratio of the viewpoint in the display area of the correct figure (S 28), and displays the score on the display unit 35.
  • PC 30 is 1 point if the above ratio is 0% to 20%, 2 points if it is 20% to 40%, 3 points if it is 40% to 60%, 4 points if it is 60% to 80%, 80% to 100% If it is five points, you may score five points full point. About the meaning of the score in such scoring, 5 points
  • Four points indicate that almost no decline in cognitive function is seen, that is, healthy people.
  • Three points indicate that there is a slight decrease in cognitive function and a slight decrease in cognitive function, that is, it is on the borderline between health and dementia.
  • Two points indicate that there is a slight decline in cognitive function, that is, a patient with early non-heavy dementia.
  • One point indicates that cognitive decline is large, that is, severe dementia.
  • FIG. 14B is a diagram showing a display example in which the first partial map in the second distribution map is superimposed on the first image V21 in the second image of FIG. 14A.
  • FIG. 14B is a display example on the display unit 35 of the PC 30.
  • One black circle in the figure represents one detected viewpoint.
  • the first image V21 in FIG. 14B prompts the subject to store the correct figure P20.
  • FIG. 14C is a diagram showing a display example in which the second partial map in the second distribution map of a healthy subject is superimposed on the second image V22 in the second image of FIG. 14A.
  • the figure shows a display example on the display unit 35.
  • the PC 30 may determine no in step S26 and the cognitive function may be degraded.
  • step S28 it is calculated as 5 points or 4 points out of 5 points by scoring.
  • FIG. 14D is a diagram showing a display example in which a second partial map of a patient with Alzheimer's disease is superimposed on the second image V22 in the second image of FIG. 14A. This figure also shows a display example on the display unit 35.
  • the viewpoints are randomly present in the display areas of the correct figure P20 and the similar figures P21 to P23 without gathering in the display area of the correct figure P20.
  • the PC 30 determines yes in step S26, and the cognitive function determines in step S27. It is diagnosed that there is a possibility of decrease, and it is calculated as one point or two points out of five points by scoring of step S28.
  • FIG. 18 is a diagram comparing the cognitive function score by the second diagnostic process in the embodiment with the cognitive function score by the conventional MMSE method.
  • the vertical axis in the figure is the cognitive function score in the second diagnostic process, and indicates the score of the above-mentioned five full marks in the scoring of step S28.
  • the horizontal axis shows cognitive function scores by the conventional MMSE.
  • the cognitive function score by the MMSE is a full score of 30. When the score is 30 points, the lower the score, the lower the cognitive function.
  • the cognitive function score by the second diagnostic process and the cognitive function score by the conventional MMSE method are roughly correlated. That is, the second diagnostic process can evaluate the cognitive function of the subject as in the conventional MMSE.
  • the second diagnostic process as indicated by the dashed line frame A18, although the MMSE has a high score and is evaluated as a healthy person, it is possible to detect an initial patient who has developed dementia.
  • the subject in the broken line frame A18 is diagnosed as having initial dementia by a cerebrospinal fluid test.
  • the second diagnostic process can diagnose cognitive dysfunction with higher sensitivity than conventional MMSE.
  • the diagnostic image includes the first image including the correct figure P20 and not including any figure other than the correct figure P20, the first correct image, and the plurality of similar figures P21 to P23.
  • the display unit 10 is a video including two images, and the display unit 10 displays the first image to store the correct figure in the subject, and the display unit 10 displays the first image immediately after the display of the first image is finished.
  • the second image is displayed to diagnose the memory of the examiner, and the case characteristic data is recognized as the proportion of the subject's viewpoint in the display area of the correct figure being smaller in the second image.
  • the feature is low, and the diagnosis unit 39 calculates the proportion of viewpoints present in the display area of the correct figure in the distribution map, and the cognitive function is determined if the calculated proportion is equal to or less than a threshold value. In decline That possibility has to be diagnosed.
  • the second diagnostic process can easily diagnose the deterioration of the cognitive function.
  • the second diagnostic process can be performed in a short time of several tens of seconds, and can have simplicity, low cost, objectivity, quantitativeness, and versatility (language independence).
  • diagnosis unit 39 may further score by normalizing the proportion of the viewpoints present in the display area of the correct figure.
  • the second diagnostic process can provide diagnostic results similar to conventional MMSE, and additionally can detect early-stage dementia that can not be detected by conventional MMSE.
  • step S28 may be performed between steps S25 and S26, and the threshold value of step S26 may be a predetermined score (for example, two out of five points).
  • the PC 30 is scored by normalizing the calculated ratio, and then, if the score is equal to or less than the threshold value, the PC 30 diagnoses that there is a possibility of cognitive decline. You may do so.
  • the above-mentioned correct figure is not limited to a figure, but may be a character or an image, or any combination of a figure, a character, an image, etc.
  • similar figures are not limited to figures, but may be characters or images, or any combination of figures, characters, images, etc.
  • the third diagnostic process utilizes the third feature described above. That is, the third diagnostic process utilizes the fact that the patient with cortical basal ganglia degeneration has the characteristic of ignoring the left lateral space.
  • FIG. 9 is a flowchart showing an example of the third diagnosis process (S30) of FIG.
  • the PC 30 first reads the third video data 303 from the storage unit 32, and causes the display unit 10 to start displaying the third video indicated by the third video data 303 (S31).
  • FIG. 15A, FIG. 15C, and FIG. 15E are diagrams showing a first example, a second example, and a third example, respectively, of the third image in the embodiment.
  • FIG. 15A the image V31 of the school of fish is displayed on the display surface 11 as a third image.
  • FIG. 15C on the display surface 11, an image V32 representing a pedestrian crossing, a traffic light, a child and an automatic difference is displayed as a third image.
  • FIG. 15E on the display surface 11, an image V33 representing a shelf of a supermarket and a customer is displayed as a third image.
  • the images V31 to V33 are represented by line drawings for the sake of convenience, they may actually be full color images.
  • the PC 30 may display one of the images V31 to V33 during the period of the third diagnosis process (during the period from time t2 to t3 in FIG. 6), the image of the images V31 to V33 may be displayed. A plurality may be sequentially switched and displayed.
  • the PC 30 starts imaging of the eye of the subject in the imaging unit 21, or continues imaging when imaging is in progress (S32), and starts detection of the viewpoint of the subject or detection If it is medium, the process continues (S33). Furthermore, the PC 30 acquires viewpoint data from the detection unit 37 from the start to the end of the display of the third video, creates a third distribution map corresponding to the third video in real time (S34), The third distribution map is superimposed on the third image of the display unit 35. Display of the third image on the display unit 10 and the display unit 35, imaging by the imaging unit 21, detection of a viewpoint by the PC 30 (more specifically, the detection unit 37 of FIG. 1), and creation of the PC 30 (more specifically, FIG. 1) The creation of the third distribution map by part 38) is performed in parallel.
  • the PC 30 determines whether the third distribution map includes the third feature of the case characteristic data (S35), and if it includes (Yes in S36), it is diagnosed that there is a possibility of cortical basal ganglia degeneration (S37).
  • the third feature is the feature of left half space neglect and the feature that the viewpoint is not present in the left half of the image.
  • FIGS. 15B, 15D, and 15F are diagrams showing display examples in which the third distribution map is superimposed on the third image of FIGS. 15A, 15C, and 15E.
  • the 3rd distribution map by the subject of cortical basal ganglia degeneration is superimposed.
  • the PC 30 determines in step S35 that the third distribution map includes the third feature, and diagnoses that there is a possibility of cortical basal ganglia degeneration in step S37. It will be.
  • the diagnostic image includes a still image representing at least one of a person, an object, a landscape, and a figure, and the case feature data ignores the space on the left side. And indicates that the feature corresponds to corticobasal degeneration among cognitive dysfunctions, and the diagnostic unit 39 determines the cerebral cortex of cognitive dysfunction when the distribution map corresponds to the features. Diagnosed as potential basal ganglia degeneration.
  • the third diagnostic process can easily distinguish cerebral cortex basement degeneration among cognitive dysfunction.
  • the third diagnostic process can be performed in a short time of several tens of seconds, and can have simplicity, low cost, objectivity, quantitativeness, and versatility (language independence).
  • the fourth diagnostic process utilizes the fourth feature described above. That is, the fourth diagnostic process utilizes the fact that, in a patient with Lewy-Body Dementia, the feature that the viewpoint is concentrated on the induced image that induces the vision of the human face is seen.
  • FIG. 10 is a flowchart showing an example of the fourth diagnosis process (S40) of FIG.
  • the PC 30 first reads the fourth video data 304 from the storage unit 32, and causes the display unit 10 to start displaying the fourth video indicated by the fourth video data 304 (S41).
  • FIG. 16A is a diagram illustrating an example of a fourth image in the embodiment.
  • a still image V41 is displayed on the display surface 11 as a fourth image.
  • the still image V41 includes an induced image P40 that induces vision of a human face and a plurality of non-induced images P41 and P42 that do not induce vision.
  • the induced image P40 and the non-induced images P41 and P42 are all flower images.
  • the fourth image is a line drawing in FIG. 16A, it may be a full color image.
  • the PC 30 may display one still image V41 during the fourth diagnostic process (during the period from time t3 to t4 in FIG. 6), or may be a plurality of stills including a induced image and a plurality of non-induced images. Images may be sequentially switched and displayed. Note that the fourth image may include a message image prompting a gaze such as "please look at something to be concerned about”. In addition, the PC 30 may repeatedly transmit to the subject a message sound prompting a gaze such as “please look at something you are interested in” while displaying the fourth video. Furthermore, the PC 30 may use both a message image and a message voice.
  • the PC 30 starts imaging of the eye of the subject in the imaging unit 21, or continues imaging when imaging is in progress (S42), and starts detection of the viewpoint of the subject or detection If it is medium, the process continues (S43). Furthermore, the PC 30 acquires viewpoint data from the detection unit 37 from the start to the end of the display of the fourth video, creates a fourth distribution map corresponding to the fourth video in real time (S44), The fourth distribution map is superimposed on the fourth image of the display unit 35. Display of the fourth image on the display unit 10 and the display unit 35, imaging by the imaging unit 21, detection of the viewpoint by the PC 30 (more specifically, the detection unit 37 of FIG. 1), and creation of the PC 30 (more specifically, FIG. 1) The creation of the fourth distribution map by the section 38) is performed in parallel.
  • the PC 30 determines whether the fourth distribution map includes the fourth feature of the case characteristic data (S45), and if it includes (Yes in S46), diagnoses that there is a possibility of Lewy-Body Dementia (S47).
  • FIG. 16B is a diagram showing a display example in which the fourth distribution map of patients with Alzheimer's disease is superimposed on the fourth image of FIG. 16A.
  • FIG. 16C is a diagram showing a display example in which a fourth distribution map of a patient with dementia with Lewy bodies is superimposed on the fourth image of FIG. 16A.
  • the fourth distribution map of FIG. 16B viewpoints are almost equally present in the induced image P40 and the non-induced images P41 and P42.
  • the viewpoint is concentrated on the induced image P40, and no viewpoints exist in the non-induced images P41 and P42. That is, while the fourth distribution map of FIG. 16B does not include the fourth feature, the fourth distribution map of FIG. 16C includes the fourth feature.
  • step S45 since the PC 30 determines in step S45 that the fourth distribution map does not include the fourth feature, it does not diagnose that there is a possibility of Lewy-Body Dementia.
  • the PC 30 determines in step S45 that the fourth distribution map includes the fourth feature, and diagnoses in step S47 that there is a possibility of Lewy-Body Dementia.
  • the diagnostic image includes a still image including a induced image that induces vision and a plurality of non-induced images that do not induce vision, and the case characteristic data includes the induced image.
  • the diagnostic unit 39 diagnoses that there is a possibility of Lewy-Body Dementia among cognitive dysfunctions when the viewpoints are concentrated on the induced image in the distribution map. Do.
  • the fourth diagnostic process can easily discriminate Lewy body type dementia in the cognitive dysfunction. Moreover, the fourth diagnostic process can be performed in a short time of several tens of seconds, and can have simplicity, low cost, objectivity, quantitativeness, and versatility (language independence).
  • the fifth diagnostic process utilizes the fifth feature described above. That is, the fifth diagnostic process utilizes the fact that it is difficult for a patient whose cognitive function is impaired to follow an object moving in an image.
  • FIG. 11 is a flowchart showing an example of the fifth diagnosis process (S50) of FIG. As shown in FIG. 11, first, the PC 30 reads the fifth video data 305 from the storage unit 32, and causes the display unit 10 to start the display of the fifth video indicated by the fifth video data 305 (S51).
  • FIG. 17 is a diagram illustrating an example of the fifth image in the embodiment.
  • a moving image V51 representing an object (coin C1 in the same drawing) moving with the passage of time is displayed on the display surface 11 as a fifth image.
  • the image of the coin C1 in the figure moves the display surface 11 vertically and horizontally as shown by a broken line in the figure.
  • the fifth image is a line drawing in FIG. 17, it may be a full color moving image.
  • the PC 30 may display one moving image V51 during the fifth diagnosis process (during the period from time t4 to t5 in FIG. 6), or sequentially switches and displays a plurality of moving images in which an object moves. It is also good.
  • the fifth image may include a message image prompting a gaze such as “please look at a coin”.
  • the PC 30 may repeatedly transmit to the subject a message sound prompting a gaze such as “please look at a coin” while the fifth image is displayed.
  • the PC 30 may use both a message image and a message voice.
  • the PC 30 starts imaging of the eye of the subject in the imaging unit 21 or continues imaging when imaging is in progress (S52), and starts detection of the viewpoint of the subject or detection If it is medium, the process continues (S53). Furthermore, the PC 30 acquires viewpoint data from the detection unit 37 from the display start time to the end time of the fifth video, creates a fifth distribution map corresponding to the fifth video in real time (S54), The fifth distribution map is superimposed on the fifth image of the display unit 35. Display of the fifth image on the display unit 10 and the display unit 35, imaging by the imaging unit 21, detection of a viewpoint by the PC 30 (more specifically, the detection unit 37 of FIG. 1), and creation of the PC 30 (more specifically, FIG. 1) The creation of the fifth distribution map by the section 38) is performed in parallel.
  • the PC 30 determines whether the fifth distribution map includes the fifth feature of the case characteristic data (S55), and if it is included (yes in S56), it is diagnosed that the cognitive function may be deteriorated. (S57).
  • the diagnostic image includes an image (V51) representing an object moving on the display surface, and the case characteristic data is such that the viewpoint can not follow the moving object If the viewpoint does not follow the movement of the object in the distribution map, the diagnosis unit 39 diagnoses that the cognitive function may be deteriorated.
  • the fifth diagnostic process can easily diagnose the deterioration of the cognitive function. Moreover, the fifth diagnostic process can be performed in a short time of several tens of seconds, and can have simplicity, low cost, objectivity, quantitativeness, and versatility (language independence).
  • the sixth diagnostic process utilizes the sixth feature described above. That is, the sixth diagnostic process utilizes the fact that patients with frontotemporal dementia have a feature that the acquisition rate of viewpoints is lower than those with dementia in other cases.
  • the viewpoint acquisition rate refers to a temporal ratio at which the viewpoint is present in the display surface 11. As the viewpoint deviates from the display surface 11, the viewpoint acquisition rate decreases.
  • FIG. 12 is a flowchart showing an example of the sixth diagnosis process (S60) of FIG.
  • the sixth diagnosis process of FIG. 6 shows an example in which the first diagnosis process to the fifth diagnosis process are performed in parallel as shown in FIG.
  • the loop 1 (S61 to S69) consists of five repetitions executed in synchronization with the first diagnosis processing to the fifth diagnosis processing.
  • the first image is displayed on the display unit 10.
  • the PC 30 calculates the viewpoint acquisition rate P1 in the period in which the first image is displayed at the end of the display of the first image (time t1 in FIG.
  • the calculated viewpoint acquisition rate P1 is If it is smaller than the threshold value th1 (yes in S65), the first diagnostic processing is invalidated (S66), and if the calculated viewpoint acquisition rate P1 is smaller than the second threshold th2 (yes in S67), the frontal temporal region It is diagnosed that there is a possibility of type dementia (S68).
  • the first threshold th1 is an index indicating whether or not the precondition that the first diagnosis processing is effectively established is satisfied. In other words, in the diagnosis processing of cognitive dysfunction by viewpoint detection, it is assumed that the subject is looking at the displayed diagnostic image.
  • the first threshold th1 may be, for example, 0.8 when the viewpoint acquisition rate P1 is in the range of 0 to 1.
  • the second threshold th2 is an index for determining the presence or absence of the above-mentioned sixth feature.
  • the second threshold th2 may be, for example, 0.8 when the viewpoint acquisition rate P1 is in the range of 0 to 1.
  • the first threshold th1 and the second threshold th2 may be the same value or different values.
  • step S65 are not necessarily the same in the five repetitions of FIG. 12, the five determination results may be displayed on the display unit 35 as they are.
  • step S67 are not necessarily the same in the five repetitions of FIG. 12, the five determination results may be displayed on the display unit 35 as they are.
  • FIG. 12 shows an example of loop processing having five repetitions as the sixth diagnostic processing
  • the present invention is not limited to this.
  • the sixth diagnostic process is a process corresponding to one repetition only during a period of any of the first diagnostic process to the fifth diagnostic process (that is, S62 to S68 in FIG. 12). It may be
  • the sixth diagnostic process can also be performed alone rather than in parallel.
  • the first to fifth videos may be displayed as the sixth video, or another video may be displayed, and S64 to S68 in FIG. 12 may be performed.
  • FIG. 19 is a diagram showing a viewpoint acquisition rate by age of a subject.
  • the horizontal axis of the figure shows the age of the subject.
  • the vertical axis represents the viewpoint acquisition rate in the diagnostic process for about 30 subjects.
  • a high viewpoint acquisition rate of 0.8 or more is obtained except for three subjects in the broken line frame A19. In other words, it can be seen that a high viewpoint acquisition rate can be obtained even for people aged 90 and over regardless of their age.
  • FIG. 20 is a view showing the viewpoint acquisition rate by case of the subject.
  • the horizontal axis of FIG. 20 shows the same classification by case of the subject as in FIG.
  • the vertical axis represents the viewpoint acquisition rate.
  • Each bar shows mean and standard error of mean (SEM).
  • subjects are classified into cases A to H.
  • A shows healthy subjects and multiple subjects aged 19-53.
  • B shows a plurality of subjects aged 64-83 years in a healthy elderly person.
  • C shows a super-aged person and a 92-year-old subject.
  • D shows a plurality of subjects with physiological forgiveness or MCI (mild failure).
  • E shows a plurality of subjects with Alzheimer's disease.
  • F shows multiple subjects with frontotemporal dementia.
  • G shows multiple subjects with Lewy-Body Dementia.
  • H indicates a subject with other dementia.
  • FIG. 20 supports the sixth feature described above.
  • the second threshold may be 0.8.
  • the viewpoint acquisition rate is considered to be influenced by environmental conditions such as the size of the display surface 11 and the distance between the display surface 11 and the subject.
  • the first threshold th1 and the second threshold th2 may not be 0.8 described above, and may be determined according to the environmental conditions and the like.
  • the diagnosis unit 39 further calculates a viewpoint acquisition rate indicating a ratio of the viewpoints existing in the display surface in the distribution map, and the viewpoint acquisition rate is less than or equal to a predetermined value. If it is, it is diagnosed that there is a possibility of frontotemporal dementia among cognitive dysfunction.
  • the sixth diagnostic process can easily diagnose frontotemporal dementia. Moreover, the sixth diagnostic process can be performed in a short time of several tens of seconds, and can have simplicity, low cost, objectivity, quantitativeness, and versatility (language independence).
  • the cognitive function disorder diagnosis device 1 captures the eye of the subject and the display unit 10 that displays the diagnostic image for cognitive function disorder on the display surface 11.
  • An imaging unit 21 a detection unit 37 that detects the viewpoint of the subject on the display surface 11 in time series based on an image captured by the imaging unit 21, and a viewpoint detected by the detection unit 37
  • a storage unit 32 for storing case feature data 310 indicating features of a viewpoint distribution corresponding to a typical example of cognitive impairment, and the distribution map is the case feature data.
  • a diagnostic unit 39 that diagnoses the cognitive dysfunction of the subject by determining whether the subject has a feature.
  • the diagnostic video may include first to fifth videos.
  • the first image may include an image representing at least one of a person, an object, a landscape, and a figure.
  • the second image may be an image including a first image not including a figure other than the correct figure, and a second image including the correct figure and a plurality of similar figures.
  • the third image may include a still image representing at least one of a person, an object, a landscape, and a figure.
  • the fourth image may include a still image including an induced figure that induces vision and a plurality of non-induced figures that do not induce vision.
  • the fifth image may include an image representing an object moving on the display surface.
  • the display unit 10 displays the first to fifth videos for a period of 10 seconds to 30 seconds, and the diagnosis unit 39 displays a distribution corresponding to the display periods of the first to fifth videos. Based on the map, the presence or absence of cognitive function decline, frontotemporal dementia, brain cortex degeneration, and the possibility of Lewy body dementia may be diagnosed.
  • the diagnosis using the first to fifth images is the diagnosis of the presence or absence of cognitive function deterioration and the discrimination of the case in the case of deterioration within only a few minutes. It can be carried out. For example, it is possible to realize a significant reduction in screening time, an improvement in the efficiency of mass screening, and to cope with the explosive growth of the elderly population.
  • the diagnosis unit 39 further calculates a viewpoint acquisition rate indicating a ratio at which a viewpoint is present in the display surface 11 in the distribution map corresponding to each of the first to fifth images, and the viewpoint acquisition rate Is less than a predetermined value, the corresponding diagnostic result may be invalidated to diagnose that there is a possibility of frontotemporal dementia among cognitive dysfunction.
  • the effectiveness of the diagnosis by the cognitive dysfunction diagnosis device 1 and the frontotemporal dementia can be distinguished by the viewpoint acquisition rate.
  • the cognitive function disorder diagnosis program is connected to the display unit 10 having the display surface 11 and the imaging unit 21 and has a feature of a viewpoint distribution corresponding to a typical example of the cognitive function disorder.
  • the cognitive dysfunction diagnosis device 1 may simultaneously target a plurality of subjects.
  • the imaging unit 21 images a plurality of subjects
  • the detection unit 37 detects a viewpoint for each subject
  • the creation unit 38 creates a distribution map for each subject
  • the diagnosis unit 39 It may be diagnosed for each examiner.
  • a plurality of imaging devices 20 may be provided.
  • the imaging device 20 and the subject may be one to one or one to many. Thereby, the cognitive dysfunction diagnostic device 1 can further improve the efficiency of the group examination.
  • the present invention can be used for a cognitive dysfunction diagnosis device and a cognitive dysfunction diagnosis program for diagnosing cognitive dysfunction.
  • DESCRIPTION OF SYMBOLS 1 cognitive function disorder diagnostic device 10 display part 11 display surface 20 imaging device 21 imaging part 22, 23 camera 24 light source part 25, 26 light source 30 PC 31 processor 32 storage unit 33 input unit 34 output unit 35 display unit 36 interface unit 37 detection unit 38 creation unit 39 diagnostic unit 300 diagnostic video data 301 first video data 302 second video data 303 third video data 304 fourth video Data 305 fifth video data 310 case feature data 311 first feature data 312 second feature data 313 third feature data 314 fourth feature data 315 fifth feature data 320 program 321 cognitive function disorder diagnosis program 322 viewpoint data 323 distribution map data

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Physiology (AREA)
  • Neurosurgery (AREA)
  • Social Psychology (AREA)
  • Educational Technology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Human Computer Interaction (AREA)
  • Ophthalmology & Optometry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

認知機能障害診断装置(1)は、認知機能障害の診断用映像を表示面(11)に表示する表示部(10)と、被検者の目を撮像する撮像部(21)と、撮像部(21)により撮像された画像に基づいて、表示面(11)における被検者の視点を時系列的に検出する検出部(37)と、検出部(37)によって検出された視点の分布を示す分布マップを作成する作成部(38)と、認知機能障害の典型例に対応する視点分布の特徴を示す症例特徴データ(310)を記憶する記憶部(32)と、分布マップが症例特徴データの特徴を有するかどうかを判定することによって被検者の認知機能障害を診断する診断部(39)とを備える。

Description

認知機能障害診断装置および認知機能障害診断プログラム
 本発明は、認知機能障害を診断する認知機能障害診断装置および認知機能障害診断プログラムに関する。
 従来、認知機能障害を診断する装置に関連する技術として次のようなものがある。
 特許文献1および特許文献2は、被検者の頭部と視線の動きを検出して、脳機能に関係する疾患を客観的に診断できるような視線検出を用いた医療診断装置を提案している。
 特許文献3は、神経障害の診断のために被検者の眼球運動を検出するシステムを提案している。
 特許文献4および特許文献5は、網膜や視神経等の目の疾患または頭蓋内疾患等の際に現れる視神経障害を検査するための視覚検査用チャートを提案している。
 特許文献6から特許文献9は、撮像カメラ部を少なくとも具備する視線検出ユニットを用いて、被検者の自閉症を診断する自閉症診断支援システムを提案している。
 特許文献10は、被検者の視線および瞳孔を検出して、被検者の脳疾患の可能性を判定する脳機能疾患診断支援装置を提案している。
特開平6-70884号公報 特開平6-70885号公報 特表2016-523112号公報 特許第4560801号公報 特許第4116354号公報 特許第5926210号公報 特許第5912351号公報 特許第5761048号公報 特許第5761049号公報 特許第5817582号公報
 しかしながら、上記従来技術を用いても、認知機能障害診断装置において、簡便性、低コスト、客観性、定量性および汎用性(言語非依存性)を兼ね備えることは困難である。
 日本では65歳以上の7人に1人が認知症(約440万人)であり、予備群(すなわち軽度認知機能障害者)を含めると900万人近くの高齢者が何らかの認知機能障害を有するといわれている(例えば、厚生労働省「認知症高齢者の現状」(平成22年))。また、世界の認知症患者数は2050年に1億3200万人、現在の3倍になる見込みといわれている。
 このように認知症患者が急増している現在では、診断装置による診断において簡便性、低コスト、客観性、定量性および汎用性を兼ね備えることが望ましい。ここで、簡便性については、例えば、数十分から数時間の診断時間を要せずに数分間で診断が完了できることが望ましい。低コストについては、例えば、高価な専用装置が不要であり、診断装置の維持および運用コストがかからないことが望ましい。客観性については、診断に携わる人の熟練や経験が不要で、均質に診断できることが望ましい。定量性については、例えば、認知症の程度を数値化できることが望ましい。汎用性(言語非依存性)については、言語の種類に依存することなく、また、会話能力が不十分な高齢者でも言語に依存しないで診断できることが望ましい。
 上記の従来技術によっても、診断装置による診断において簡便性、低コスト、客観性、定量性および汎用性を兼ね備えることは困難である。
 また、認知機能障害に関する現状の一般的な診断方法として、認知症の初期診断(スクリーニング)は、MMSE(Mini-Mental State Exam) など神経心理検査法に拠っている。MMSEは、検査者による被検者への質問形式による認知機能評価法であり、次の1から4の問題点を有する。すなわち、1、施行に時間がかかる。具体的には30分程度を要する。2、正確な評価にはトレーニングを受けた検査者を要する。3、回答を強いられる被検者の精神的ストレスが大きい。4、検査者によって結果が異なることが多く結果の再現性および客観性が乏しい。
 初期診断で認知症の疑いがかかった患者に対しては、その後専門外来などで精査が行われる。ここでは認知症の確定診断とともに、その原因疾患を特定することが主な目的となる。
 認知症には様々な原因疾患が知られており(最も多いアルツハイマー病の他に、前頭側頭型認知症、レビー小体型認知症など)、それぞれに治療方針が異なるため、正確な鑑別が重要となる。認知症の原因疾患の鑑別は、専門医による臨床症状の評価(特徴的な病歴や神経学的所見の有無など)や特殊な画像評価(頭部MRIやPET画像検査など)に依存しており、定量性、コスト、簡便性などに問題がある。
 上記のように認知症患者の急増が見込まれていることから、今後は専門医や特殊な画像診断を必要としない疾患鑑別法あるいはその補助診断法の開発が重要となる。
 さらには今後、日本のような先進長寿国のみならず、発展途上国での高齢者人口の爆発的増加が見込まれており、これらの人々に対する認知症の早期診断と早期介入が重要になる。
 そのためには、特定の言語を介さずに認知機能を評価することが出来る標準的な診断手法の確立が重要である。
 現時点で、このような簡便性、低コスト、客観性、定量性、汎用性(言語非依存性)を兼ね備えた認知機能障害診断装置は開発されていない。
 そこで、本発明は、認知機能障害の診断において簡便性、低コスト、客観性、定量性、汎用性(言語非依存性)を兼ね備える認知機能障害診断装置および認知機能障害診断プログラムを提供することを目的とする。
 本発明の一態様に係る認知機能障害診断装置は、認知機能障害の診断用映像を表示面に表示する表示部と、被検者の目を撮像する撮像部と、前記撮像部により撮像された画像に基づいて、前記表示面における前記被検者の視点を時系列的に検出する検出部と、前記検出部によって検出された視点の分布を示す分布マップを作成する作成部と、認知機能障害の典型例に対応する視点分布の特徴を示す症例特徴データを記憶する記憶部と、前記分布マップが前記症例特徴データの特徴を有するかどうかを判定することによって前記被検者の認知機能障害を診断する診断部とを備える。
 本発明の一態様に係る認知機能障害診断プログラムは、表示面を有する表示部と、撮像部とに接続され、認知機能障害の典型例に対応する視点分布の特徴を示す症例特徴データを記憶する記憶部を備えるコンピュータが実行する認知機能障害診断プログラムであって、認知機能障害の診断用映像を前記表示面に表示し、前記撮像部によって被検者の目を撮像し、前記撮像部により撮像された画像に基づいて、前記表示面における前記被検者の視点を時系列的に検出し、検出された視点の分布を示す分布マップを作成し、前記分布マップが前記症例特徴データの特徴を有するかどうかを判定することによって前記被検者の認知機能障害を診断することをコンピュータに実行させる。
 本発明の一態様に係る認知機能障害診断装置および認知機能障害診断プログラムは、認知機能障害の診断において簡便性、低コスト、客観性、定量性、汎用性(言語非依存性)を兼ね備えることができる。
図1は、実施の形態における認知機能障害診断装置の構成例を示すブロック図である。 図2は、実施の形態における認知機能障害診断装置の外観例を示す図である。 図3は、実施の形態における記憶部の記憶内容の一例を示す図である。 図4は、実施の形態における症例特徴データの一例を示す図である。 図5は、実施の形態における認知機能障害診断装置による診断処理例を示すフローチャートである。 図6は、図5の診断処理例に要する時間の一例を示す図である。 図7は、図5の第1診断処理の一例を示すフローチャートである。 図8は、図5の第2診断処理の一例を示すフローチャートである。 図9は、図5の第3診断処理の一例を示すフローチャートである。 図10は、図5の第4診断処理の一例を示すフローチャートである。 図11は、図5の第5診断処理の一例を示すフローチャートである。 図12は、図6の第6診断処理の一例を示すフローチャートである。 図13Aは、実施の形態における第1映像の表示例を示す図である。 図13Bは、図13Aの第1映像に第1分布マップを重ねた表示例を示す図である。 図14Aは、実施の形態における第2映像の表示例を示す図である。 図14Bは、図14Aの第2映像中の第1画像に、第2分布マップ中の第1部分マップを重ねた表示例を示す図である。 図14Cは、図14Aの第2映像中の第2画像に、健常者の第2分布マップ中の第2部分マップを重ねた表示例を示す図である。 図14Dは、図14Aの第2映像中の第2画像に、アルツハイマー型認知症患者の第2分布マップ中の第2部分マップを重ねた表示例を示す図である。 図15Aは、実施の形態における第3映像の第1例を示す図である。 図15Bは、図15Aの第3映像に、大脳皮質基底核変性症患者の第3分布マップを重ねた表示例を示す図である。 図15Cは、実施の形態における第3映像の第2例を示す図である。 図15Dは、図15Cの第3映像に、大脳皮質基底核変性症患者の第3分布マップを重ねた表示例を示す図である。 図15Eは、実施の形態における第3映像の第3例を示す図である。 図15Fは、図15Eの第3映像に、大脳皮質基底核変性症患者の第3分布マップを重ねた表示例を示す図である。 図16Aは、実施の形態における第4映像の例を示す図である。 図16Bは、図16Aの第4映像に、アルツハイマー型認知症患者の第4分布マップを重ねた表示例を示す図である。 図16Cは、図16Aの第4映像に、レビー小体型認知症患者の第4分布マップを重ねた表示例を示す図である。 図17は、実施の形態における第5映像の例を示す図である。 図18は、実施の形態における第2診断処理による認知機能スコアと従来のMMSE法による認知機能スコアとを対比した図である。 図19は、被検者の年齢別の視点取得率を示す図である。 図20は、被検者の症例別の視点取得率を示す図である。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。
 (実施の形態)
 以下、実施の形態における認知機能障害診断装置および認知機能障害診断プログラムについて図面を参照しながら説明する。
 [1.認知機能障害診断装置の構成]
 図1は、実施の形態における認知機能障害診断装置の構成例を示すブロック図である。また、図2は、実施の形態における認知機能障害診断装置の外観例を示す図である。
 図1に示すように認知機能障害診断装置1は、表示部10、撮像装置20およびPC(Personal Computer、パソコン)30を備える。この認知機能障害診断装置1は、市販されている一般的なPC30を主な制御装置として、さらに、PC30に表示部10および撮像装置20を付加した構成例を示している。
 表示部10は、表示面11を有するフラットパネル型のディスプレイであり、認知機能障害の診断用映像を表示面11に表示する。表示部10は、図2に示すように、診断用映像を被検者に見せるために、高齢者でも見やすい大型の液晶ディスプレイ、または有機ELディスプレイである。なお、表示部10は、パソコン用のモニターでもよいし、市販の大型テレビをモニターとしてもよい。また、表示部10は、フラットパネル型のディスプレイの代わりに、表示面11としてのスクリーンと、プロジェクタとから構成してもよい。
 撮像装置20は、表示部10に取り付け可能なモジュールであり、少なくとも被検者の目を撮像するための撮像部21および光源部24を備える。
 撮像部21は、カメラ22およびカメラ23を有するステレオカメラである。カメラ22およびカメラ23は、それぞれ例えば赤外線カメラでよい。他の例では、カメラ22およびカメラ23は、それぞれ可視光カメラでよい。また、撮像部21は、ステレオカメラではなく単体のカメラでもよいし、3つ以上のカメラであってもよい。
 光源部24は、赤外線を照明光として被検者に照射する光源25および光源26を備える。光源25および光源26はそれぞれ、例えば、1つまたは複数の赤外線LED(Light Emitting Diode)を有する構成でよい。他の例では、光源25および光源26はそれぞれ、1つまたは複数の白色LED(Light Emitting Diode)でもよい。なお、被検者の照明環境が十分に明るい場合には、撮像装置20は光源部24を備えなくてもよい。また、撮像装置20は、表示部10の上部に取り付けても良いし、分割して左右に取り付けてもよい。
 PC30は、プロセッサ31、記憶部32、入力部33、出力部34、表示部35、インターフェース部36、検出部37、作成部38および診断部39を備える。図1に示す機能ブロックのうち、プロセッサ31、記憶部32、入力部33、出力部34、表示部35およびインターフェース部36は、市販されているコンピュータの一般的なハードウェアおよびソフトウェアにより構成される。他の機能ブロック、つまり検出部37、作成部38および診断部39は、主に本実施の形態における認知機能障害診断プログラムをプロセッサ31が実行することによって実現される構成要素を示している。
 プロセッサ31は、記憶部32に記憶されたプログラムを実行するいわゆるCPU(Central Processing Unit)である。
 記憶部32は、プロセッサ31によって実行されるプログラムと、プロセッサ31により処理されるデータとを記憶する。記憶部32に記憶されるプログラムには、各種ファームウェア、OS(Operating System)、ドライバソフトウェア等のソフトウェアに他に、本実施形態における認知機能障害診断プログラムを含む。また、記憶部32に記憶されるデータには、診断用映像データ、症例特徴データ、視点データ、分布マップデータなどが含まれる。診断用映像データは、認知機能障害の診断用に作成された静止画像または動画像である。症例特徴データは、認知機能障害の典型例に対応する視点分布の特徴を示すデータである。視点データは、検出部37によって検出された視点の位置と時刻とを示す時系列的なデータである。分布マップは、作成部38によって作成され、視点データに従って時系列的な視点を二次元平面に順次リアルタイムにプロットしたものであり、視点の二次元的な分布を示す。
 なお、記憶部32は、DRAM(Dynamic Random Access Memory)等で構成されるメインメモリまたは一次メモリと、HDD(Hard Disc Drive)装置やSSD(Solid State Drive)装置で構成される補助メモリまたは二次メモリと、キャッシュメモリとを含む。つまり、本書では記憶部32は、プログラムおよびデータを記憶する機能を有する構成要素の総称として用いている。
 入力部33は、例えばキーボード、マウス、トラックパッド等を含み、操作者の操作を受け付ける。
 出力部34は、例えばスピーカであり、音声を出力する。
 表示部35は、例えば液晶ディスプレイであり、ユーザ(ここでは検査する人)のモニター用に分布マップが重畳された診断用映像などを表示する。
 インターフェース部36は、ケーブルを介して表示部10および撮像装置20を接続して通信する機能を有する。インターフェース部36は、例えば、HDMI(登録商標)(High-Definition Multimedia Interface)ポートおよびUSB(Universal Serial Bus)ポートを有する。この場合、インターフェース部36は、HDMI(登録商標)ケーブルを介して表示部10を接続し、USBケーブルを介して撮像部21および光源部24を接続する。
 検出部37は、撮像部21により撮像された画像に基づいて、表示面11における被検者の視点を時系列的に検出する。例えば、検出部37は、撮像部21により撮像された画像から被検者の視線を検出し、視線が表示面11に交差する点の座標を表示面11における被検者の視点の位置として検出する。視点の位置の検出は、周期的に行われる。周期は、数10mSから数100mSの間で定めればよく、例えば100mSでよい。検出部37は、例えば、時刻を含む座標データ(x、y、t)の集合を、時系列的な視点の位置を表す視点データとしてリアルタイムに生成する。ここで、x、yは平面(例えば、表示面11または診断用映像)の座標、tは時刻である。
 作成部38は、検出部37によって検出された視点の分布を示す分布マップを作成する。分布マップは、例えば、上記座標データ(x、y、t)に対応するマーク(例えば色付きドット)を二次元平面上にプロットした図であり、PC30の表示部35に表示される診断用映像にリアルタイムに重畳される。上記のマークは、例えば、最新の視点ほど明るく表示してもよい。
 診断部39は、分布マップが症例特徴データの特徴を有するかどうかを判定することによって被検者の認知機能を診断する。
 以上のように、図1に示す認知機能障害診断装置1は、認知機能障害の診断用映像を表示面11に表示する表示部10と、被検者の目を撮像する撮像部21と、前記撮像部21により撮像された画像に基づいて、前記表示面11における前記被検者の視点を時系列的に検出する検出部37と、前記検出部37によって検出された視点の分布を示す分布マップを作成する作成部38と、認知機能障害の典型例に対応する視点分布の特徴を示す症例特徴データ310を記憶する記憶部32と、前記分布マップが前記症例特徴データ310の特徴を有するかどうかを判定することによって前記被検者の認知機能障害を診断する診断部39とを備える。
 この構成によれば、認知機能障害診断装置1による認知機能の診断において、簡便性、低コスト、客観性、定量性、汎用性(言語非依存性)を兼ね備えることができる。
 なお、図1および図2に示すPC30は、ノート型のコンピュータであってもデスクトップ型のコンピュータであってもよい。
 [1.1 記憶部32のプログラムおよびデータ]
 次に、記憶部32に記憶されるプログラムおよびデータについて説明する。
 図3は、実施の形態における記憶部32の記憶内容の一例を示す図である。同図において記憶部32は、診断用映像データ300、症例特徴データ310、プログラム320、視点データ322、分布マップデータ323を記憶する。プログラム320は、認知機能障害診断プログラム321を含む。
 診断用映像データ300は、第1映像データ301から第5映像データ305を含む複数の映像データの集まりである。複数の映像データのそれぞれは、認知機能障害の有無もしくは程度を診断するために作成された映像、または、認知機能障害の症例を鑑別するために作成された映像である。
 症例特徴データ310は、認知機能障害の典型例に対応する視点分布の特徴を示すデータであって、第1特徴データ311から第5特徴データ315を含む複数の特徴データの集まりである。第1特徴データ311から第5特徴データ315は、第1映像データ301から第5映像データ305とそれぞれ対応する。
 プログラム320は、各種ファームウェア、OS(Operating System)、ドライバソフトウェア等のソフトウェアと、認知機能障害診断プログラム321とを含む。認知機能障害診断プログラム321は、コンピュータつまりPC30が実行するプログラムであって、認知機能障害の診断用映像を表示面11に表示し、撮像部21によって被検者の目を撮像し、撮像部21により撮像された画像に基づいて表示面11における被検者の視点を時系列的に検出し、検出された視点の分布を示す分布マップを作成し、分布マップが症例特徴データの特徴を分布マップが有するかどうかを判定することによって被検者の認知機能障害を診断することをコンピュータに実行させる。このうち、PC30が撮像部21により撮像された画像に基づいて前記表示面11における被検者の視点を時系列的に検出することは、検出部37の機能である。PC30が、検出された視点の分布を示す分布マップを作成することは、上記の作成部38の機能である。PC30が、分布マップが症例特徴データの特徴を有するかどうかを判定することによって被検者の認知機能障害を診断することは診断部39の機能である。
 視点データ322は、検出部37により検出された視点の位置と時刻とを示す時系列的なデータであり、例えば、既に説明した時刻を含む座標データ(x、y、t)の集合である。
 分布マップデータ323は、既に説明した分布マップを示すデータである。
 なお、記憶部32は、図3に示したプログラムおよびデータ以外に、被検者の診断結果を示す診断データや、被検者毎の視点データ322、分布マップデータ323および診断データを関連づけるデータも記憶する。
 続いて、症例特徴データ310の具体例について説明する。
 図4は、実施の形態における症例特徴データ310の一例を示す図である。同図の症例特徴データ310は、第1特徴データ311から第6特徴データ316を含む。同図では、第1特徴データ311から第6特徴データ316それぞれの特徴と対応する認知機能障害の症例とを記してある。
 第1特徴データ311は、第1特徴と前頭側頭型認知症とを対応付けている。前頭側頭型認知症は、FTD(Fronto-Temporal Dementia)と略記されることがある。第1特徴は、前頭側頭型認知症という症例の患者に典型的に現れる特徴である。具体的には、第1特徴は、一点を中心とする局所的な部分に視点が連続的に集中するという特徴を示す。この第1特徴は、一点注視パターンとも呼ばれる。第1特徴は、第1映像データ301による診断用映像である第1映像を被検者に見せていることを前提とする。この場合、第1映像は、例えば、人物、物体、風景および図形の少なくとも1つを表した画像でよい。
 第2特徴データ312は、第2特徴と認知機能の低下とを対応付けている。すなわち、第2特徴は、認知機能が低下している患者に典型的に現れる特徴である。具体的には、第2特徴は、分布マップにおいて被検者の視点が正解図形の表示領域に存在する割合が小さいほど、認知機能が低いという特徴を示す。この第2特徴は、第2映像データ302による診断用映像である第2映像を被検者に見せていることを前提とする。この場合、第2映像は、正解図形を含み正解図形以外の図形を含まない第1画像と、正解図形および複数の類似図形を含む第2画像とを含む映像でよい。第2画像は、第1画像を表示した直後に表示される。上記の分布マップは、被検者が第2画像を見ているときの視点の分布である。
 第3特徴データ313は、第3特徴と大脳皮質基底核変性症とを対応付けている。すなわち、第3特徴は、大脳皮質基底核変性症の患者に典型的に現れる特徴である。具体的には、第3特徴は、画像の左側半分に視点が存在しないという特徴、言い換えれば、左側半側空間を無視するという特徴を示す。この第3特徴は、第3映像データ303による診断用映像である第3映像を被検者に見せていることを前提とする。この場合、第3映像は、例えば、人物、物体、風景および図形の少なくとも1つを表した静止画でよい。
 第4特徴データ314は、第4特徴とレビー小体型認知症とを対応付けている。すなわち、第4特徴は、レビー小体型認知症の患者に典型的に現れる特徴である。具体的には、第4特徴は、人の顔の幻視を誘発する誘発画像に視点が集中するという特徴を示す。この第4特徴は、第4映像データ304による診断用映像である第4映像を被検者に見せていることを前提とする。この場合、第4映像は、誘発画像と、人の顔の幻視を誘発しない複数の非誘発画像の両方を含む静止画像でよい。
 第5特徴データ315は、第5特徴と認知機能の低下とを対応付けている。すなわち、第5特徴は、認知機能が低下している患者に典型的に現れる特徴である。具体的には、第5特徴は、映像中の移動する物体を追視するのが困難であるという特徴を示す。この第5特徴は、第5映像データ305による診断用映像である第5映像を被検者に見せていることを前提とする。この場合、第5映像は、例えば、表示面11を移動する物体を表した動画でよい。
 第6特徴データ316は、第6特徴と前頭側頭型認知症とを対応付けている。すなわち、第6特徴は、前頭側頭型認知症の患者に典型的に現れる特徴である。具体的には、第6特徴は、視点取得率が所定値(この所定値を第2のしきい値th2と呼ぶ)以下になるという特徴を示す。ここで、視点取得率は、分布マップにおいて視点が表示面11内に存在する割合をいう。この第6特徴は、任意の診断用映像を被検者に見せていることを前提とする。この診断用映像は、第1映像から第5映像の全部または一部と兼用してもよい。
 上記の視点取得率は、認知機能障害診断装置1による認知機能障害の診断の有効性を示す指標である。すなわち、分布マップにおいて視点が表示面11から外れている割合が大きければ、認知機能障害診断装置1による第6特徴データ316以外の特徴データによる、認知機能障害の診断結果の有効性を担保できない。そこで、視点取得率が所定値(所定値を第1のしきい値th1と呼ぶ)以下である場合には、第6特徴データ316以外の特徴データによる診断結果を無効化し、視点取得率が第1のしきい値より大きい場合には、認知症機能障害診断装置1による診断結果を有効なものとする。視点取得率が0から1までの値で表される場合、第1のしきい値th1は、例えば0.8である。また、第2のしきい値th2は、第1のしきい値th1と同じ値でもよいし、異なる値でもよい。
 [1.2 認知機能障害診断装置1の動作]
 以上のように構成された実施の形態における認知機能障害診断装置1について、その動作を説明する。
 図5は、実施の形態における認知機能障害診断装置1による診断処理例を示すフローチャートである。また、図6は、図5の診断処理例に要する時間の一例を示す図である。
 図5および図6に示すように、認知機能障害診断装置1は、第1診断処理(S10)から第5診断処理(S50)を逐次実行する。ただし、第6診断処理は、図6のように第1診断処理から第5診断処理と並列に実行される。図5および図6の診断処理例は、主にPC30が認知機能障害診断プログラム321を実行することにより実現する処理である。また、図6の横軸の時刻t0~t5は、各診断処理の開始時刻または終了時刻を示す。図6では、時刻t0~t5は、均等に0.5分(30秒)間隔としている。
 第1診断処理は、第1映像データ301および第1特徴データ311を用いる診断処理である。第2診断処理は、第2映像データ302および第2特徴データ312を用いる診断処理である。第3診断処理は、第3映像データ303および第3特徴データ313を用いる診断処理である。第4診断処理は、第4映像データ304および第4特徴データ314を用いる診断処理である。第5診断処理は、第5映像データ305および第5特徴データ315を用いる診断処理である。第6診断処理は、第6特徴データ316を用いる診断処理である。また、分布マップデータ323は、第1映像から第5映像に対応する第1分布マップから第5分布マップを含む。
 図6では、第1診断処理から第5診断処理それぞれの時間は、0.5分である。第6診断処理の時間は、第1診断処理から第5診断処理と並列に行うので2分30秒である。同図では、第1診断処理から第6診断処理までの6つの診断処理に要する時間は約2分30秒である。これは、現在でも利用されている一般的なMMSEによる質問形式の認知機能障害の診断方法が約30分かかる点と比較すれば、認知機能障害診断装置1は、複数の診断処理の時間を大幅に短縮している。
 なお、第1診断処理から第5診断処理それぞれの時間は、0.5分(30秒)でなくてもよく、約10秒から数10秒の間で定めてもよい。また、第1診断処理から第6診断処理までの全体の処理時間は、数分以下、例えば3分以下に定めてもよい。
 また、第1診断処理から第5診断処理のそれぞれにおいて認知機能の低下が全く見られず健常と判断される場合には、途中で処理を完了してもよい。
 なお、第1診断処理から第5診断処理の順番は、図5および図6とは異なる順番であってもよい。例えば、認知機能の低下を診断する第2診断処理および第5診断処理を実行した後に、認知機能障害の症例を鑑別可能な第1診断処理、第3診断処理、第4診断処理を実行してもよい。
 また、図5および図6において、第1診断処理から第6診断処理のうちの少なくとも1つを選択して実行してもよい。一例として、認知機能の低下を診断する第2診断処理および第5診断処理を選択して実行してもよい。他の例として、認知機能障害の症例を鑑別可能な第1診断処理、第3診断処理、第4診断処理を選択して実行してもよい。さらに他の例として、第1診断処理から第6診断処理のうちの何れか1つを選択して実行してもよい。さらに別の例として、認知機能の低下を診断する第2診断処理および第5診断処理と、診断処理の有効性も判定する第6診断処理とを実行し、認知機能の低下があると診断された場合には、他の第1診断処理、第3診断処理および第4診断処理を実行するようにしてもよい。
 なお、図5および図6の診断処理例の開始前に、視点検出のキャリブレーション処理を行ってもよい。
 [1.2.1 第1診断処理]
 次に、第1診断処理について詳しく説明する。第1診断処理は、上記の第1特徴を利用している。つまり、第1診断処理は、前頭側頭型認知症の患者には、一点を凝視し続けるという一点注視パターンが見られるという特徴を利用している。
 図7は、図5の第1診断処理(S10)の一例を示すフローチャートである。図7のようにPC30は、まず、記憶部32から第1映像データ301を読み出して、表示部10において第1映像データ301が示す第1映像の表示を開始させる(S11)。
 図13Aは、実施の形態における第1映像の表示例を示す図である。図13Aにおいて表示面11には、スカイダイビングで空中を落下する複数人と、地上とを撮像した画像V11が表示されている。画像V11は、図13Aでは便宜上線画で表しているが、実際はフルカラー画像でよい。
 PC30は、図6の時刻t0からt1まで、図13Aのような画像V11を表示する。あるいは、図13Aのような画像V11を表示した後に他の画像を表示してもよい。
 さらに、PC30は、撮像部21において被検者の目の撮像を開始させる、あるいは、撮像中である場合は撮像を継続させ(S12)、被検者の視点の検出を開始し、あるいは、検出中である場合は継続する(S13)。さらに、PC30は、第1映像の表示開始時から終了時まで検出部37から視点データを取得し、第1映像に対応する第1分布マップをリアルタイムに作成し(S14)、表示部35に第1映像を表示し、表示部35の第1映像に第1分布マップを重畳する。表示部10および表示部35における第1映像の表示、撮像部21による撮像、PC30(より詳しくは図1の検出部37)による視点の検出、および、PC30(より詳しくは図1の作成部38)による第1マップの作成は、並列に実行される。
 その後、PC30は、第1分布マップが症例特徴データの第1特徴を含むかどうかを判定し(S15)、含む場合には(S16でyes)前頭側頭型認知症の可能性があると診断する(S17)。第1特徴は、一点注視パターンであって、前頭側頭型認知症の患者は、ある一点を凝視し続けるという特徴があり、言い換えると、一点を中心とする局所的な部分に視点が集中するという特徴を示す。
 図13Bは、図13Aの第1映像に視点の第1分布マップを重ねた表示例を示す図である。図13Bでは、PC30の表示部35における表示例であって、前頭側頭型認知症の患者が被検者である場合に、第1映像に含まれる画像V11に第1分布マップを重畳した表示例である。図13Bにおいて、黒丸1つが検出された1つの視点を表している。破線枠A11には少数の視点があり、破線枠A12には圧倒的多数の視点が集まっている。この第1分布マップは、破線枠A12において、一点注視パターンという特徴を含んでいる。
 以上のように、第1診断処理において、前記診断用映像は、人物、物体、風景および図形の少なくとも1つを表した画像Vを含み、前記症例特徴データ310は、一点を中心とする局所的な部分に視点が連続的に集中する一点注視パターンという特徴を示し、前記診断部39は、前記分布マップが前記特徴を有する場合に、認知機能障害のうちの前頭側頭型認知症の可能性があると診断する。
 これにより、第1診断処理は、認知機能障害のうちの前頭側頭型認知症を簡便に鑑別することができる。しかも、第1診断処理は、数10秒という短時間で実行することができ、簡便性、低コスト、客観性、定量性、汎用性(言語非依存性)を兼ね備えることができる。
 [1.2.2 第2診断処理]
 次に、第2診断処理について詳しく説明する。第2診断処理は、上記の第2特徴を利用した図形パターンマッチングによる認知機能障害の診断処理である。すなわち、第2診断処理は、特定の図形を提示し、その後複数の異なる図形と共に正解図形(つまり初めに提示した特定の図形)を提示し、被検者が正解図形をどのくらい注視できているかを評価することによって、認知機能の低下を診断する。
 図8は、図5の第2診断処理(S20)の一例を示すフローチャートである。図8のようにPC30は、まず、記憶部32から第2映像データ302を読み出して、表示部10において第2映像データ302が示す第2映像の表示を開始させる(S21)。第2映像は、正解図形を含み正解図形以外の図形を含まない第1画像と、前記正解図形および複数の類似図形を含む第2画像とを含む映像である。第2画像は第1画像の表示が終了した直後に表示される。
 図14Aは、実施の形態における第2映像の表示例を示す図である。図14Aの上段は、表示面11表示された第1画像V21の表示例である。第1画像V21は、正解図形P20を含み、他の図形を含んでいない。なお、正解図形は、被検者に最初に提示される1つの図形をいい、第2診断処理で最初に表示される第1画像中の1つの図形をいう。この第1画像V21の表示時間は、例えば、5~20秒間でよい。なお、第1画像は、「この図形をよく覚えて下さい」等の正解図形の記憶を促すメッセージ画像を含んでいてもよい。また、PC30は、第1画像の表示と共に、「この図形をよく覚えて下さい」というメッセージ音声を被検者に繰り返し伝えてもよい。さらに、PC30は、メッセージ画像とメッセージ音声の両方を用いてもよい。
 さらに、PC30は、撮像部21において被検者の目の撮像を開始させる、あるいは、撮像中である場合は撮像を継続させ(S22)、被検者の視点の検出を開始し、あるいは、検出中である場合は継続する(S23)。さらに、PC30は、第1映像の表示開始時から終了時まで検出部37から視点データを取得し、第2映像に対応する第2分布マップをリアルタイムに作成し(S24)、表示部35に第2映像を表示し、表示部35の第2映像に第2分布マップを重畳する。このとき、PC30は、第2分布マップとして、第1画像が表示されている期間の視点の分布を示す第1部分マップと、第2画像が表示されている期間の視点の分布を示す第2部分マップとをそれぞれリアルタイムに生成する。つまり、第2分布マップは、第1部分マップと第2部分マップの2つからなる。なお、表示部10および表示部35における第2映像の表示、撮像部21による撮像、PC30(より詳しくは図1の検出部37)による視点の検出、および、PC30(より詳しくは図1の作成部38)による第2分布マップの作成は、並列に実行される。
 図14Aの下段は、表示面11表示された第2画像V22の表示例である。第2画像V22は、正解図形P20の他に、類似図形P21、P22、P23を含む。類似図形P21、P22、P23は、それぞれ正解図形に類似する図形であり、正解図形と同じ部分と異なる部分とを有する。この第2画像V22の表示時間は、例えば、5秒~15秒でよい。なお、第2画像は、「先の図形と同じ図形を見つめて下さい」等の正解図形への注視を促すメッセージ画像を含んでいてもよい。またに、PC30は、第2画像の表示中に、「先の図形と同じ図形を見つめて下さい」等の正解図形への注視を促すメッセージ音声を被検者に繰り返し伝えてもよい。さらに、PC30は、メッセージ画像とメッセージ音声の両方を用いてもよい。
 その後、PC30は、第2分布マップが症例特徴データの第2特徴を含むかどうかを判定する。具体的には、PC30は、第2部分マップにおいて正解図形の表示領域に視点が存在する割合を算出して、算出した割合がしきい値以下であるかどうかを判定する(S25)。さらに、PC30は、割合がしきい値以下である場合には(S26でyes)認知機能低下の可能性がある診断する(S27)。このしきい値は例えば0.5(つまり50%)でもよい。また、PC30は、視点が正解図形の表示領域に存在する割合を正規化することにより点数化し(S28)、表示部35に点数を表示する。例えば、PC30は、上記の割合が0%~20%なら1点、20%~40%なら2点、40%~60%なら3点、60%~80%なら4点、80%~100%なら5点というように、5点満点の点数化をしてもよい。このような点数化における点数の意味については、例えば、5点は健常者を示す。4点は認知機能の低下がほとんど見られないこと、つまり健常者を示す。3点は、認知機能の低下が少しあり、認知機能の軽微な低下があること、つまり健常と認知症のボーダーライン上にあることを示す。2点は、認知機能の軽い低下があること、つまり重くない初期認知症患者であることを示す。1点は、認知機能の低下が大きいこと、つまり重い認知症であることを示す。
 図14Bは、図14Aの第2映像中の第1画像V21に、第2分布マップ中の第1部分マップを重ねた表示例を示す図である。図14Bでは、PC30の表示部35における表示例である。図中の黒丸1つが検出された1つの視点を表している。図14Bの第1画像V21は、被検者に正解図形P20の記憶を促している。同図では、破線枠A20に示すように、正解図形P20の表示領域に多数の視点が集中していることから、被検者が正解図形P20を注視して正解図形P20の記憶に努めていることが分かる。
 図14Cは、図14Aの第2映像中の第2画像V22に、健常者の第2分布マップ中の第2部分マップを重ねた表示例を示す図である。同図は、表示部35における表示例を示す。同図の破線枠A21に示すように、正解図形P20に表示領域には、類似図形P21~P23の表示領域よりも多くの視点が存在している。この例では、正解図形の表示領域に視点が存在する割合がしきい値(例えば50%)以上になることから、PC30は、ステップS26でnoと判定し、認知機能が低下している可能性があると診断することなく、ステップS28の点数化で5点満点の5点または4点と算出することになる。
 図14Dは、図14Aの第2映像中の第2画像V22に、アルツハイマー型認知症患者の第2部分マップを重ねた表示例を示す図である。同図も表示部35における表示例を示す。図14Dは、図14Cと比べて、視点が正解図形P20の表示領域に集まることなく、正解図形P20および類似図形P21~P23の表示領域にランダムに存在している。図14Dの例では、正解図形P20の表示領域に視点が存在する割合がしきい値(例えば50%)より小さくなることから、PC30は、ステップS26でyesと判定し、ステップS27で認知機能が低下している可能性があると診断し、ステップS28の点数化で5点満点の1点または2点と算出することになる。
 続いて、第2診断処理の点数化における点数と一般的なMMSEによる点数とを比較して説明する。
 図18は、実施の形態における第2診断処理による認知機能スコアと従来のMMSE法による認知機能スコアとを対比した図である。同図の縦軸は、第2診断処理における認知機能スコアであり、ステップS28の点数化における上記の5点満点の点数を示す。横軸は、従来のMMSEによる認知機能スコアを示す。MMSEによる認知機能スコアは、30点満点であり、30点なら健常者、点数が低いほど認知機能が低下していることを示す。
 同図では、認知症の有無および病型(原因疾患)が予め分かっている約20人の被検者が第2診断処理とMMSEによる診断との両方を受けた結果を示している。同図において、バツ印は、アルツハイマー病またはMCI(Mild Cognitive Impairment:軽度認知機能障害)の被検者を示す。白丸印は、健常者または生理的物忘れのある被検者を示す。黒丸印は、レビー小体型認知症の被検者を示す。上に凸の三角印は、前頭側頭型認知症の被検者を示す。下の凸の三角印は、皮質基底核変性症の疑いのある被検者を示す。菱形印は、脳血管性認知症の疑いのある被検者を示す。四角印は、意味性認知症の被検者を示す。
 図18において、第2診断処理による認知機能スコアと従来のMMSE法による認知機能スコアとは、おおむね相関している。すなわち、第2診断処理が、従来のMMSEのように被検者の認知機能を評価できている。
 さらに、第2診断処理では、破線枠A18に示すように、MMSEでは高得点になり健常者と評価されるが、認知症が始まっている初期の患者を検出することができている。破線枠A18内の被検者は、脳脊髄液検査によって初期認知症であると診断されている。このように、第2診断処理は、従来のMMSEよりも高感度に認知機能障害を診断することができている。
 以上のように、第2診断処理において、前記診断用映像は、正解図形P20を含み正解図形P20以外の図形を含まない第1画像と、前記正解図形および複数の類似図形P21~P23を含む第2画像とを含む映像であって、前記表示部10は、前記正解図形を前記被検者に記憶させるために前記第1画像を表示し、前記第1画像の表示を終了した直後に前記被検者の記憶力を診断するために前記第2画像を表示し、前記症例特徴データは、前記第2画像において、被検者の視点が前記正解図形の表示領域に存在する割合が小さいほど、認知機能が低いという特徴を示し、前記診断部39は、前記分布マップにおいて前記正解図形の表示領域に存在する視点の割合を算出し、算出した割合がしきい値以下である場合に、認知機能が低下している可能性ありと診断する。
 これによれば、第2診断処理は、認知機能の低下を簡便に診断することができる。また、第2診断処理は、数10秒という短時間で実行することができ、簡便性、低コスト、客観性、定量性、汎用性(言語非依存性)を兼ね備えることができる。
 ここで、前記診断部39は、さらに、前記正解図形の表示領域に存在する視点の割合を正規化することにより点数化してもよい。
 これによれば、認知機能の低下の度合いを定量化することができる。第2診断処理は、従来のMMSEと同様の診断結果を得ることができ、加えて、従来のMMSEでは検出できない初期認知症を検出することができる。
 なお、図8において、ステップS28をステップS25とS26の間で実行し、ステップS26のしきい値を所定の点数(例えば5点満点中の2点)としてもよい。言い換えれば、PC30は、図8のステップS25の後に、算出した割合を正規化することにより点数化した後に、当該点数がしきい値以下である場合に認知機能低下の可能性があると診断するようにしてもよい。
 また、上記の正解図形は、図形に限らず文字または画像でもよいし、図形、文字および画像等の任意の組み合わせでもよい。同様に、類似図形は、図形に限らず文字または画像でもよいし、図形、文字および画像等の任意の組み合わせでもよい。
 [1.2.3 第3診断処理]
 次に、第3診断処理について詳しく説明する。第3診断処理は、上記の第3特徴を利用している。つまり、第3診断処理は、大脳皮質基底核変性症の患者には左側半側空間を無視するという特徴が見られることを利用している。
 図9は、図5の第3診断処理(S30)の一例を示すフローチャートである。図9のようにPC30は、まず、記憶部32から第3映像データ303を読み出して、表示部10において第3映像データ303が示す第3映像の表示を開始させる(S31)。
 図15A、図15C、図15Eは、実施の形態における第3映像の第1例、第2例、第3例をそれぞれ示す図である。
 図15Aにおいて表示面11には、第3映像として魚群の画像V31が表示されている。図15Cにおいて表示面11には、第3映像として横断歩道、信号機、子供および自動差を表した画像V32が表示されている。図15Eにおいて表示面11には、第3映像としてスーパーマーケットの棚および客を表した画像V33が表示されている。画像V31~画像V33は、便宜上線画で表しているが、実際はフルカラー画像でよい。
 PC30は、第3診断処理の期間中(図6では時刻t2からt3までの期間中)、画像V31~画像V33のうちの1つを表示しても良いし、画像V31~画像V33のうちの複数を順次切り替えて表示してもよい。
 さらに、PC30は、撮像部21において被検者の目の撮像を開始させる、あるいは、撮像中である場合は撮像を継続させ(S32)、被検者の視点の検出を開始し、あるいは、検出中である場合は継続する(S33)。さらに、PC30は、第3映像の表示開始時から終了時まで検出部37から視点データを取得し、第3映像に対応する第3分布マップをリアルタイムに作成し(S34)、表示部35に第3映像を表示し、表示部35の第3映像に第3分布マップを重畳する。上記の表示部10および表示部35における第3映像の表示、撮像部21による撮像、PC30(より詳しくは図1の検出部37)による視点の検出、および、PC30(より詳しくは図1の作成部38)による第3分布マップの作成は、並列に実行される。
 その後、PC30は、第3分布マップが症例特徴データの第3特徴を含むかどうかを判定し(S35)、含む場合には(S36でyes)大脳皮質基底核変性症の可能性があると診断する(S37)。第3特徴は、左側半側空間無視という特徴であって、画像の左側半分に視点が存在しないという特徴を示す。
 図15B、図15D、図15Fは、図15A、図15C、図15Eの第3映像に第3分布マップを重ねた表示例をそれぞれ示す図である。図15B、図15Dおよび図15Fでは、大脳皮質基底核変性症の被検者による第3分布マップを重畳している。これらの図のいずれも、画像の右側半分の破線枠A31、A32およびA33内には視点が存在するが左側半分には視点が存在しない。つまり、これらの図に重畳された第3分布マップは、第3特徴(つまり左側半側空間無視という特徴)を含んでいる。
 図15B、図15Dおよび図15Fの例では、PC30は、ステップS35において、第3分布マップが第3特徴を含むと判定し、ステップS37において大脳皮質基底核変性症の可能性があると診断することになる。
 以上のように、第3診断処理において、前記診断用映像は、人物、物体、風景および図形の少なくとも1つを表した静止画を含み、前記症例特徴データは、左側の空間を無視するという特徴と、当該特徴が認知機能障害のうちの大脳皮質基底核変性症に対応することを示し、前記診断部39は、前記分布マップが前記特徴に該当する場合に、認知機能障害のうちの大脳皮質基底核変性症の可能性があると診断する。
 これにより、第3診断処理は、認知機能障害のうちの大脳皮質基底核変性症を簡便に鑑別することができる。しかも、第3診断処理は、数10秒という短時間で実行することができ、簡便性、低コスト、客観性、定量性、汎用性(言語非依存性)を兼ね備えることができる。
 [1.2.4 第4診断処理]
 次に、第4診断処理について詳しく説明する。第4診断処理は、上記の第4特徴を利用している。つまり、第4診断処理は、レビー小体型認知症の患者には、人の顔の幻視を誘発する誘発画像に視点が集中するという特徴が見られることを利用している。
 図10は、図5の第4診断処理(S40)の一例を示すフローチャートである。図10のようにPC30は、まず、記憶部32から第4映像データ304を読み出して、表示部10において第4映像データ304が示す第4映像の表示を開始させる(S41)。
 図16Aは、実施の形態における第4映像の例を示す図である。図16Aにおいて表示面11には、第4映像として静止画像V41が表示されている。静止画像V41は、人の顔の幻視を誘発する誘発画像P40と、幻視を誘発しない複数の非誘発画像P41、P42とを含む。誘発画像P40、非誘発画像P41、P42は、いずれも花の画像である。なお、図16Aでは第4映像は線画であるが、フルカラー画像でよい。
 PC30は、第4診断処理の期間中(図6では時刻t3からt4までの期間中)、1つの静止画像V41を表示してもよいし、誘発画像と複数の非誘発画像を含む複数の静止画像を順次切り替えて表示してもよい。なお、第4映像は、「気になるものを見つめて下さい」等の注視を促すメッセージ画像を含んでいてもよい。また、PC30は、第4映像の表示中に、「気になるものを見つめて下さい」等の注視を促すメッセージ音声を被検者に繰り返し伝えてもよい。さらに、PC30は、メッセージ画像とメッセージ音声の両方を用いてもよい。
 さらに、PC30は、撮像部21において被検者の目の撮像を開始させる、あるいは、撮像中である場合は撮像を継続させ(S42)、被検者の視点の検出を開始し、あるいは、検出中である場合は継続する(S43)。さらに、PC30は、第4映像の表示開始時から終了時まで検出部37から視点データを取得し、第4映像に対応する第4分布マップをリアルタイムに作成し(S44)、表示部35に第4映像を表示し、表示部35の第4映像に第4分布マップを重畳する。上記の表示部10および表示部35における第4映像の表示、撮像部21による撮像、PC30(より詳しくは図1の検出部37)による視点の検出、および、PC30(より詳しくは図1の作成部38)による第4分布マップの作成は、並列に実行される。
 その後、PC30は、第4分布マップが症例特徴データの第4特徴を含むかどうかを判定し(S45)、含む場合には(S46でyes)レビー小体型認知症の可能性があると診断する(S47)。
 図16Bは、図16Aの第4映像に、アルツハイマー型認知症患者の第4分布マップを重ねた表示例を示す図である。また、図16Cは、図16Aの第4映像に、レビー小体型認知症患者の第4分布マップを重ねた表示例を示す図である。
 図16Bの第4分布マップでは誘発画像P40、非誘発画像P41およびP42にほぼ均等に視点が存在する。これに対して、図16Cの第4分布マップでは、誘発画像P40に視点が集中し、非誘発画像P41およびP42には視点が存在しない。つまり、図16Bの第4分布マップは第4特徴を含まないのに対して、図16Cの第4分布マップは、第4特徴を含む。
 図16Bの例では、PC30は、ステップS45において、第4分布マップが第4特徴を含まないと判定するので、レビー小体型認知症の可能性があるとは診断しない。
 図16Cの例では、PC30は、ステップS45において、第4分布マップが第4特徴を含むと判定し、ステップS47においてレビー小体型認知症の可能性があると診断することになる。
 以上のように、第4診断処理において、前記診断用映像は、幻視を誘発する誘発画像と、幻視を誘発しない複数の非誘発画像とを含む静止画像を含み、前記症例特徴データは、前記誘発画像への視点の集中を示し、前記診断部39は、前記分布マップにおいて視点が前記誘発画像に集中している場合に、認知機能障害のうちのレビー小体型認知症の可能性があると診断する。
 これにより、第4診断処理は、認知機能障害のうちのレビー小体型認知症を簡便に鑑別することができる。しかも、第4診断処理は、数10秒という短時間で実行することができ、簡便性、低コスト、客観性、定量性、汎用性(言語非依存性)を兼ね備えることができる。
 [1.2.5 第5診断処理]
 次に、第5診断処理について詳しく説明する。第5診断処理は、上記の第5特徴を利用している。つまり、第5診断処理は、認知機能が低下している患者には、映像において移動する物体を追視するのが困難であるという特徴が見られることを利用している。
 図11は、図5の第5診断処理(S50)の一例を示すフローチャートである。図11のようにPC30は、まず、記憶部32から第5映像データ305を読み出して、表示部10において第5映像データ305が示す第5映像の表示を開始させる(S51)。
 図17は、実施の形態における第5映像の例を示す図である。図17の上段、中段、下段は、時間の経過とともに移動する物体(同図ではコインC1)を表す動画V51が第5映像として表示面11に表示されている。同図のコインC1の画像は、図中の破線で示すように表示面11を上下左右に移動する。なお、図17では第5映像は線画であるが、フルカラー動画でよい。
 PC30は、第5診断処理の期間中(図6では時刻t4からt5までの期間中)、1つの動画V51を表示してもよいし、物体が移動する複数の動画を順次切り替えて表示してもよい。なお、第5映像は、「コインを見つめて下さい」等の注視を促すメッセージ画像を含んでいてもよい。また、PC30は、第5映像の表示中に、「コインを見つめて下さい」等の注視を促すメッセージ音声を被検者に繰り返し伝えてもよい。さらに、PC30は、メッセージ画像とメッセージ音声の両方を用いてもよい。
 さらに、PC30は、撮像部21において被検者の目の撮像を開始させる、あるいは、撮像中である場合は撮像を継続させ(S52)、被検者の視点の検出を開始し、あるいは、検出中である場合は継続する(S53)。さらに、PC30は、第5映像の表示開始時から終了時まで検出部37から視点データを取得し、第5映像に対応する第5分布マップをリアルタイムに作成し(S54)、表示部35に第5映像を表示し、表示部35の第5映像に第5分布マップを重畳する。上記の表示部10および表示部35における第5映像の表示、撮像部21による撮像、PC30(より詳しくは図1の検出部37)による視点の検出、および、PC30(より詳しくは図1の作成部38)による第5分布マップの作成は、並列に実行される。
 その後、PC30は、第5分布マップが症例特徴データの第5特徴を含むかどうかを判定し(S55)、含む場合には(S56でyes)認知機能が低下している可能性があると診断する(S57)。
 以上のように、第5診断処理において、前記診断用映像は、前記表示面を移動する物体を表した映像(V51)を含み、前記症例特徴データは、前記移動する物体に視点が追従できないことであり、前記診断部39は、前記分布マップにおいて視点が前記物体の移動に追従していない場合に、認知機能が低下している可能性ありと診断する。
 これにより、第5診断処理は、認知機能の低下を簡便に診断することができる。しかも、第5診断処理は、数10秒という短時間で実行することができ、簡便性、低コスト、客観性、定量性、汎用性(言語非依存性)を兼ね備えることができる。
 [1.2.6 第6診断処理]
 次に、第6診断処理について詳しく説明する。第6診断処理は、上記の第6特徴を利用している。つまり、第6診断処理は、前頭側頭型認知症の患者には、他の症例の認知症患者と比べて視点取得率が低い特徴が見られることを利用している。視点取得率は、視点が表示面11内に存在する時間的な割合をいう。視点が表示面11から外れるほど視点取得率は小さくなる。
 図12は、図6の第6診断処理(S60)の一例を示すフローチャートである。同図の第6診断処理は、図6のように、第1診断処理から第5診断処理と並列に実行する例を示している。ループ1(S61~S69)は、第1診断処理から第5診断処理に同期して実行される5回の繰り返しからなる。
 i=1(つまり1回目の繰り返し)のとき、表示部10には第1映像が表示されている。PC30は、第1映像が表示されている期間(図6では時刻t=0からt=t1までの期間)、検出部37から視点データを取得する(S62、S63)。PC30は、第1映像の表示終了時(図6では時刻t1)に、第1映像が表示されている期間における視点取得率P1を算出し(S64)、算出した視点取得率P1が第1しきい値th1よりも小さければ(S65でyes)、第1診断処理を無効化し(S66)、算出した視点取得率P1が第2しきい値th2よりも小さければ(S67でyes)、前頭側頭型認知症の可能性があると診断する(S68)。ここで、第1しきい値th1は、第1診断処理が有効に成立する前提条件を満たしているかどうかを示す指標である。言い換えれば、視点検出による認知機能障害の診断処理では被検者が表示された診断用映像を見ていることを前提条件としている。第1しきい値th1は、視点取得率P1が0から1の範囲である場合、例えば0.8でよい。また、第2しきい値th2は、上記の第6特徴の有無を判定する指標である。第2しきい値th2は、視点取得率P1が0から1の範囲である場合、例えば0.8でよい。なお、第1しきい値th1と第2しきい値th2は、同じ値でもよいし、異なる値でもよい。
 i=2~5(つまり2回目~5回目の繰り返し)のときも、i=1(つまり1回目の繰り返し)とほぼ同様である。
 なお、図12の5回の繰り返しにおいて、ステップS65の5回の判定結果が同じになるとは限らないが、5回の判定結果はそのまま表示部35に表示すればよい。同様に、図12の5回の繰り返しにおいて、ステップS67の5回の判定結果が同じになるとは限らないが、5回の判定結果はそのまま表示部35に表示すればよい。
 また、図12では、第6診断処理として5回の繰り返しをもつループ処理の例を示したが、これに限らない。例えば、第6診断処理は、第1診断処理から第5診断処理までの期間(図6ではt=0からt=t5までの期間)を通して、1回の繰り返しに相当する処理(つまり図12のS62~S68)であってもよい。また、他の例として、第6診断処理は、第1診断処理から第5診断処理までの何れかの診断処理の期間のみ、1回の繰り返しに相当する処理(つまり図12のS62~S68)であってもよい。
 さらに、第6診断処理を並列ではなく単体で実行することもできる。例えば、第6映像として、第1~第5映像を表示し、または、他の映像を表示して、図12のS64~S68を実行してもよい。
 続いて、複数の被検者を対象として本願発明者らが収集した視点取得率に関するデータを紹介する。
 図19は、被検者の年齢別の視点取得率を示す図である。同図の横軸は、被検者の年齢を示す。縦軸は、約30人の被検者を対象とした診断処理における視点取得率を示す。同図において、破線枠A19内の被検者3人を除いて、0.8以上の高い視点取得率が得られている。つまり、年齢に関わりなく90歳以上の超高齢者であっても高い視点取得率が得られることがわかる。
 図20は、被検者の症例別の視点取得率を示す図である。図20の横軸は、図19と同じ被検者の症例別の分類を示す。縦軸は、視点取得率を示す。各棒グラフは平均(mean)と標準誤差(SEM:Standard Error of Mean)とを示す。
 横軸に示すように、被検者はA~Hの症例に分類される。Aは、健常な成人で19~53歳の複数の被検者を示す。Bは、健常な高齢者で64~83歳の複数の被検者を示す。Cは、超高齢者で92歳の被検者を示す。Dは、生理的物忘れ、または、MCI(軽度任り障害)の複数の被検者を示す。Eは、アルツハイマー型認知症の複数の被検者を示す。Fは、前頭側頭型認知症の複数の被検者を示す。Gは、レビー小体型認知症の複数の被検者を示す。Hは、その他の認知症の被検者を示す。
 同図において、破線枠A20を付加したF(前頭側頭型認知症)を除いて、高い視点取得率が得られている。破線枠A20を付加したFの前頭側頭型認知症の被検者は、図19の破線枠A19の3人の被検者と同じである。このことから、前頭側頭型認知症の被検者は、視点取得率の平均値も、標準誤差を加えた視点取得率であっても、他の症例よりも低く(図20では0.8より小さい)、有意な差があることがわかる。言い換えれば、図20は、既に説明した第6特徴の裏付けになっている。図20のデータ例では、上記の第2しきい値は0.8でよいことがわかる。
 なお、視点取得率は、表示面11の大きさ、表示面11と被検者との距離等の環境条件に影響されると考えられる。第1しきい値th1、第2しきい値th2は、上記の0.8でなくてもよく、環境条件等に応じて定めればよい。
 以上のように、第6診断処理において、前記診断部39は、さらに、前記分布マップにおいて視点が前記表示面内に存在する割合を示す視点取得率を算出し、前記視点取得率が所定値以下である場合に、認知機能障害のうちの前頭側頭型認知症の可能性があると診断する。
 これにより、第6診断処理は、前頭側頭型認知症を簡便に診断することができる。しかも、第6診断処理は、数10秒という短時間で実行することができ、簡便性、低コスト、客観性、定量性、汎用性(言語非依存性)を兼ね備えることができる。
 以上説明してきたように本実施の形態の一態様に係る認知機能障害診断装置1は、認知機能障害の診断用映像を表示面11に表示する表示部10と、被検者の目を撮像する撮像部21と、前記撮像部21により撮像された画像に基づいて、前記表示面11における前記被検者の視点を時系列的に検出する検出部37と、前記検出部37によって検出された視点の分布を示す分布マップを作成する作成部38と、認知機能障害の典型例に対応する視点分布の特徴を示す症例特徴データ310を記憶する記憶部32と、前記分布マップが前記症例特徴データの特徴を有するかどうかを判定することによって前記被検者の認知機能障害を診断する診断部39とを備える。
 この構成によれば、認知機能障害診断装置1による認知機能障害の診断において簡便性、低コスト、客観性、定量性、汎用性(言語非依存性)を兼ね備えることができる。
 ここで、前記診断用映像は、第1映像から第5映像を含んでいてもよい。前記第1映像は、人物、物体、風景および図形の少なくとも1つを表した画像を含んでいてもよい。前記第2映像は、正解図形以外の図形を含まない第1画像と、前記正解図形および複数の類似図形を含む第2画像とを含む映像であってもよい。前記第3映像は、人物、物体、風景および図形の少なくとも1つを表した静止画を含んでいてもよい。前記第4映像は、幻視を誘発する誘発図形と、幻視を誘発しない複数の非誘発図形とを含む静止画像を含んでいてもよい。前記第5映像は、前記表示面を移動する物体を表した映像を含んでいてもよい。前記表示部10は、前記第1映像から第5映像をそれぞれ10秒から30秒までの期間表示し、前記診断部39は、前記第1映像から第5映像のそれぞれの表示期間に対応する分布マップに基づいて、認知機能の低下、前頭側頭型認知症、大脳皮質基底核変性症およびレビー小体型認知症の可能性の有無を診断してもよい。
 この構成によれば、第1映像から第5映像を用いた診断は、わずか数分間の間に、認知機能の低下の有無および低下の程度の診断と、低下している場合の症例の鑑別まで行うことができる。例えば、検診時間の大幅な短縮、集団検診の効率の向上を実現し、高齢者人口の爆発的増加に対応することができる。
 ここで、前記診断部39は、さらに、前記第1から第5映像のそれぞれに対応する分布マップにおいて視点が前記表示面11内に存在する割合を示す視点取得率を算出し、前記視点取得率が所定値以下である場合に、対応する診断結果を無効化し、認知機能障害のうちの前頭側頭型認知症の可能性があると診断してもよい。
 これによれば、視点取得率によって、認知機能障害診断装置1による診断の有効性と、前頭側頭型認知症の鑑別をすることができる。
 また、本実施の形態の一態様に係る認知機能障害診断プログラムは、表示面11を有する表示部10と、撮像部21とに接続され、認知機能障害の典型例に対応する視点分布の特徴を示す症例特徴データ310を記憶する記憶部32を備えるコンピュータが実行する認知機能障害診断プログラムであって、認知機能障害の診断用映像を前記表示面に表示し、前記撮像部21によって被検者の目を撮像し、前記撮像部21により撮像された画像に基づいて、前記表示面11における前記被検者の視点を時系列的に検出し、検出された視点の分布を示す分布マップを作成し、前記分布マップが前記症例特徴データの特徴を有するかどうかを判定することによって前記被検者の認知機能障害を診断することをコンピュータに実行させる。
 なお、認知機能障害診断装置1は、同時に複数の被検者を対象としてもよい。この場合、撮像部21は複数の被検者を撮像し、検出部37は被検者毎に視点を検出し、作成部38は被検者毎に分布マップの作成し、診断部39は被検者毎に診断すればよい。また、認知機能障害診断装置1が、同時に複数の被検者を対象とする場合に、撮像装置20を複数備えてもよい。この場合、撮像装置20と被検者とは、1対1でもよいし、1対多でもよい。これにより、認知機能障害診断装置1は、さらに、集団検診の効率を向上させることができる。
 上述の実施の形態及びその変形例は、本発明の技術内容を説明することを目的とする例示として記載されたものであり、本願に係る発明の技術的範囲をこの記載の内容に限定する趣旨ではない。本願に係る発明の技術的範囲は、明細書、図面および請求の範囲またはこれに均等の範囲において当業者が想到可能な限り、変更、置き換え、付加、省略されたものも含む。
 本発明は、認知機能障害を診断する認知機能障害診断装置および認知機能障害診断プログラムに利用することができる。
1 認知機能障害診断装置
10 表示部
11 表示面
20 撮像装置
21 撮像部
22、23 カメラ
24 光源部
25、26 光源
30 PC
31 プロセッサ
32 記憶部
33 入力部
34 出力部
35 表示部
36 インターフェース部
37 検出部
38 作成部
39 診断部
300 診断用映像データ
301 第1映像データ
302 第2映像データ
303 第3映像データ
304 第4映像データ
305 第5映像データ
310 症例特徴データ
311 第1特徴データ
312 第2特徴データ
313 第3特徴データ
314 第4特徴データ
315 第5特徴データ
320 プログラム
321 認知機能障害診断プログラム
322 視点データ
323 分布マップデータ

Claims (11)

  1.  認知機能障害の診断用映像を表示面に表示する表示部と、
     被検者の目を撮像する撮像部と、
     前記撮像部により撮像された画像に基づいて、前記表示面における前記被検者の視点を時系列的に検出する検出部と、
     前記検出部によって検出された視点の分布を示す分布マップを作成する作成部と、
     認知機能障害の典型例に対応する視点分布の特徴を示す症例特徴データを記憶する記憶部と、
     前記分布マップが前記症例特徴データの特徴を有するかどうかを判定することによって前記被検者の認知機能障害を診断する診断部とを備える
    認知機能障害診断装置。
  2.  前記診断用映像は、人物、物体、風景および図形の少なくとも1つを表した画像を含み、
     前記症例特徴データは、一点を中心とする局所的な部分に視点が連続的に集中する一点注視パターンという特徴を示し、
     前記診断部は、前記分布マップが前記特徴を有する場合に、認知機能障害のうちの前頭側頭型認知症の可能性があると診断する
    請求項1に記載の認知機能障害診断装置。
  3.  前記診断用映像は、正解図形を含み正解図形以外の図形を含まない第1画像と、前記正解図形および複数の類似図形を含む第2画像とを含む映像であって、
     前記表示部は、前記正解図形を前記被検者に記憶させるために前記第1画像を表示し、前記第1画像の表示を終了した直後に前記被検者の記憶力を診断するために前記第2画像を表示し、
     前記症例特徴データは、前記第2画像において、被検者の視点が前記正解図形の表示領域に存在する割合が小さいほど、認知機能が低いという特徴を示し、
     前記診断部は、前記分布マップにおいて前記正解図形の表示領域に存在する視点の割合を算出し、算出した割合がしきい値以下である場合に、認知機能が低下している可能性ありと診断する
    請求項1に記載の認知機能障害診断装置。
  4.  前記診断部は、さらに、前記正解図形の表示領域に存在する視点の割合を正規化することにより点数化する
    請求項3に記載の認知機能障害診断装置。
  5.  前記診断用映像は、人物、物体、風景および図形の少なくとも1つを表した静止画を含み、
     前記症例特徴データは、左側の空間を無視するという特徴と、当該特徴が認知機能障害のうちの大脳皮質基底核変性症に対応することを示し、
     前記診断部は、前記分布マップが前記特徴に該当する場合に、認知機能障害のうちの大脳皮質基底核変性症の可能性があると診断する
    請求項1に記載の認知機能障害診断装置。
  6.  前記診断用映像は、幻視を誘発する誘発画像と、幻視を誘発しない複数の非誘発画像とを含む静止画像を含み、
     前記症例特徴データは、前記誘発画像への視点の集中を示し、
     前記診断部は、前記分布マップにおいて視点が前記誘発画像に集中している場合に、認知機能障害のうちのレビー小体型認知症の可能性があると診断する
    請求項1に記載の認知機能障害診断装置。
  7.  前記診断用映像は、前記表示面を移動する物体を表した映像を含み、
     前記症例特徴データは、前記移動する物体に視点が追従できないことであり、
     前記診断部は、前記分布マップにおいて視点が前記物体の移動に追従していない場合に、認知機能が低下している可能性ありと診断する
    請求項1に記載の認知機能障害診断装置。
  8.  前記診断部は、さらに、前記分布マップにおいて視点が前記表示面内に存在する割合を示す視点取得率を算出し、前記視点取得率が所定値以下である場合に、認知機能障害のうちの前頭側頭型認知症の可能性があると診断する
    請求項1~7の何れか1項に記載の認知機能障害診断装置。
  9.  前記診断用映像は、第1映像から第5映像を含み、
     前記第1映像は、人物、物体、風景および図形の少なくとも1つを表した画像を含み、
     前記第2映像は、正解図形以外の図形を含まない第1画像と、前記正解図形および複数の類似図形を含む第2画像とを含む映像であって、
     前記第3映像は、人物、物体、風景および図形の少なくとも1つを表した静止画を含み、
     前記第4映像は、幻視を誘発する誘発図形と、幻視を誘発しない複数の非誘発図形とを含む静止画像を含み、
     前記第5映像は、前記表示面を移動する物体を表した映像を含み、
     前記表示部は、前記第1映像から第5映像をそれぞれ10秒から30秒までの期間表示し、
     前記診断部は、前記第1映像から第5映像のそれぞれの表示期間に対応する分布マップに基づいて、認知機能の低下、前頭側頭型認知症、大脳皮質基底核変性症およびレビー小体型認知症の可能性の有無を診断する
    請求項1に記載の認知機能障害診断装置。
  10.  前記診断部は、さらに、前記第1から第5映像のそれぞれに対応する分布マップにおいて視点が前記表示面内に存在する割合を示す視点取得率を算出し、前記視点取得率が所定値以下である場合に、対応する診断結果を無効化し、認知機能障害のうちの前頭側頭型認知症の可能性があると診断する
    請求項9に記載の認知機能障害診断装置。
  11.  表示面を有する表示部と、撮像部とに接続され、認知機能障害の典型例に対応する視点分布の特徴を示す症例特徴データを記憶する記憶部を備えるコンピュータが実行する認知機能障害診断プログラムであって、
     認知機能障害の診断用映像を前記表示面に表示し、
     前記撮像部によって被検者の目を撮像し、
     前記撮像部により撮像された画像に基づいて、前記表示面における前記被検者の視点を時系列的に検出し、
     検出された視点の分布を示す分布マップを作成し、
     前記分布マップが前記症例特徴データの特徴を有するかどうかを判定することによって前記被検者の認知機能障害を診断する
    ことをコンピュータに実行させる
    認知機能障害診断プログラム。
PCT/JP2018/041932 2017-11-14 2018-11-13 認知機能障害診断装置および認知機能障害診断プログラム WO2019098173A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2018366644A AU2018366644B2 (en) 2017-11-14 2018-11-13 Cognitive impairment diagnostic apparatus and cognitive impairment diagnostic program
JP2019554215A JP6867715B2 (ja) 2017-11-14 2018-11-13 認知機能障害診断装置および認知機能障害診断プログラム
EP18878289.0A EP3711680A4 (en) 2017-11-14 2018-11-13 COGNITIVE MALFUNCTION DIAGNOSIS AND COGNITIVE MALFUNCTION DIAGNOSIS PROGRAM
CN201880073126.8A CN111343927B (zh) 2017-11-14 2018-11-13 认知功能障碍诊断装置以及认知功能障碍诊断程序记录介质
US16/763,829 US11583221B2 (en) 2017-11-14 2018-11-13 Cognitive impairment diagnostic apparatus and cognitive impairment diagnostic program
KR1020207013560A KR102581657B1 (ko) 2017-11-14 2018-11-13 인지 기능 장애 진단 장치 및 인지 기능 장애 진단 프로그램
CA3081199A CA3081199A1 (en) 2017-11-14 2018-11-13 Cognitive impairment diagnostic apparatus and cognitive impairment diagnostic program
SG11202004441XA SG11202004441XA (en) 2017-11-14 2018-11-13 Cognitive impairment diagnostic apparatus and cognitive impairment diagnostic program
PH12020550625A PH12020550625A1 (en) 2017-11-14 2020-05-13 Cognitive impairment diagnostic apparatus and cognitive impairment diagnostic program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-219321 2017-11-14
JP2017219321 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019098173A1 true WO2019098173A1 (ja) 2019-05-23

Family

ID=66539550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041932 WO2019098173A1 (ja) 2017-11-14 2018-11-13 認知機能障害診断装置および認知機能障害診断プログラム

Country Status (10)

Country Link
US (1) US11583221B2 (ja)
EP (1) EP3711680A4 (ja)
JP (1) JP6867715B2 (ja)
KR (1) KR102581657B1 (ja)
CN (1) CN111343927B (ja)
AU (1) AU2018366644B2 (ja)
CA (1) CA3081199A1 (ja)
PH (1) PH12020550625A1 (ja)
SG (1) SG11202004441XA (ja)
WO (1) WO2019098173A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031471A1 (ja) * 2018-08-08 2020-02-13 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
WO2020044691A1 (ja) * 2018-08-31 2020-03-05 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
WO2020137029A1 (ja) * 2018-12-28 2020-07-02 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
WO2020137023A1 (ja) * 2018-12-28 2020-07-02 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
WO2020256148A1 (ja) * 2019-06-20 2020-12-24 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
WO2021010122A1 (ja) * 2019-07-17 2021-01-21 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
WO2021255632A1 (ja) * 2020-06-15 2021-12-23 フォーブ インコーポレーテッド 情報処理システム
KR20220158707A (ko) 2020-03-27 2022-12-01 오사카 유니버시티 인지 기능 장애 진단 장치 및 인지 기능 장애 진단 프로그램
WO2024101230A1 (ja) * 2022-11-09 2024-05-16 国立大学法人大阪大学 プログラム、情報処理方法、及び情報処理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013296A1 (ja) * 2018-07-13 2020-01-16 Pst株式会社 精神・神経系疾患を推定する装置
JP6868258B1 (ja) * 2020-05-08 2021-05-12 日本テクトシステムズ株式会社 認知機能検査システム
KR102488969B1 (ko) 2020-12-28 2023-01-13 한국로봇융합연구원 학습모델 기반의 발달 장애 조기 선별을 위한 데이터에 대한 레이블링을 위한 장치 및 이를 위한 방법
TWI813329B (zh) * 2021-06-11 2023-08-21 見臻科技股份有限公司 認知評估系統
KR102518690B1 (ko) 2021-08-26 2023-04-05 한국로봇융합연구원 학습 모델 기반의 발달 장애 조기 선별을 위한 데이터를 정제하기 위한 장치 및 이를 위한 방법
CN116098587B (zh) * 2023-01-13 2023-10-10 北京中科睿医信息科技有限公司 一种基于眼动的认知评估方法、装置、设备及介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761048B2 (ja) 1973-11-23 1982-12-22 Gen Electric
JPS5761049B2 (ja) 1974-11-11 1982-12-22 Nippon Zeon Co
JPS5817582B2 (ja) 1973-06-07 1983-04-08 ダイナポル サンカボウシザイニヨル カシヨクセイヒンノ アンテイカホウ
JPS5912351B2 (ja) 1976-06-21 1984-03-22 野田合板株式会社 外装用化粧合板
JPS5926210B2 (ja) 1977-04-12 1984-06-25 株式会社日立ホームテック 高周波加熱装置
JPH0670884A (ja) 1992-07-09 1994-03-15 A T R Shichokaku Kiko Kenkyusho:Kk 視線検出を用いた医療診断装置
JPH0670885A (ja) 1992-07-09 1994-03-15 A T R Shichokaku Kiko Kenkyusho:Kk 視線検出を用いた医療診断装置
JP4116354B2 (ja) 2001-08-27 2008-07-09 武敏 鈴木 視覚検査用チャート
JP4560801B2 (ja) 2007-01-19 2010-10-13 武敏 鈴木 視覚検査用チャート
JP2011515189A (ja) * 2008-03-27 2011-05-19 ニューロプティックス コーポレイション 眼の画像化
JP2017501848A (ja) * 2013-11-19 2017-01-19 プロセナ バイオサイエンシーズ リミテッド 便秘症状からのレビー小体病の免疫療法のモニター
JP2017158866A (ja) * 2016-03-10 2017-09-14 株式会社Jvcケンウッド 診断支援装置、診断支援方法、トレーニング支援装置、及びトレーニング支援方法
JP2017176302A (ja) * 2016-03-29 2017-10-05 ヤンマー株式会社 眼球運動計測装置、眼球運動計測方法および眼球運動計測プログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761048U (ja) 1980-09-27 1982-04-10
JPS5761049U (ja) 1980-09-29 1982-04-10
JPS5817582U (ja) 1981-07-27 1983-02-03 株式会社精工舎 時計
JPS5912351U (ja) 1982-07-15 1984-01-25 松下電工株式会社 廻縁
JPS5926210U (ja) 1982-08-12 1984-02-18 ティーディーケイ株式会社 ビ−ズインダクタ
JPH074345B2 (ja) * 1992-08-12 1995-01-25 株式会社エイ・ティ・アール視聴覚機構研究所 注視点マスキングによる医療診断装置
EP2331088A4 (en) * 2008-08-06 2011-10-12 Gosforth Ct Holdings Pty Ltd COMPOSITIONS AND METHODS FOR TREATING PSYCHIATRIC ILLNESSES
CN102245085B (zh) * 2008-10-14 2015-10-07 俄亥俄大学 利用眼跟踪的认知和语言评估
JP5912351B2 (ja) 2011-09-05 2016-04-27 国立大学法人浜松医科大学 自閉症診断支援システム及び自閉症診断支援装置
JP5761048B2 (ja) 2012-01-24 2015-08-12 株式会社Jvcケンウッド 自閉症診断支援装置、および自閉症診断支援方法
JP5761049B2 (ja) 2012-01-24 2015-08-12 株式会社Jvcケンウッド 自閉症診断支援装置、および自閉症診断支援方法
JP5817582B2 (ja) 2012-02-22 2015-11-18 株式会社Jvcケンウッド 脳機能疾患診断支援装置および脳機能疾患診断支援方法
JP5926210B2 (ja) 2012-03-21 2016-05-25 国立大学法人浜松医科大学 自閉症診断支援システム及び自閉症診断支援装置
US9962119B2 (en) 2013-05-31 2018-05-08 Dignity Health System and method for detecting neurological disease
KR101540895B1 (ko) * 2014-12-24 2015-07-30 이기범 히포테라피(Hippotherapy)용 인공지능말을 이용한 재활 시스템 및 그의 운용방법
JP2017140335A (ja) * 2016-02-13 2017-08-17 国立大学法人金沢大学 タッチパネル式認知機能検査装置及び検査システム
KR101977645B1 (ko) * 2017-08-25 2019-06-12 주식회사 메디웨일 안구영상 분석방법

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817582B2 (ja) 1973-06-07 1983-04-08 ダイナポル サンカボウシザイニヨル カシヨクセイヒンノ アンテイカホウ
JPS5761048B2 (ja) 1973-11-23 1982-12-22 Gen Electric
JPS5761049B2 (ja) 1974-11-11 1982-12-22 Nippon Zeon Co
JPS5912351B2 (ja) 1976-06-21 1984-03-22 野田合板株式会社 外装用化粧合板
JPS5926210B2 (ja) 1977-04-12 1984-06-25 株式会社日立ホームテック 高周波加熱装置
JPH0670885A (ja) 1992-07-09 1994-03-15 A T R Shichokaku Kiko Kenkyusho:Kk 視線検出を用いた医療診断装置
JPH0670884A (ja) 1992-07-09 1994-03-15 A T R Shichokaku Kiko Kenkyusho:Kk 視線検出を用いた医療診断装置
JP4116354B2 (ja) 2001-08-27 2008-07-09 武敏 鈴木 視覚検査用チャート
JP4560801B2 (ja) 2007-01-19 2010-10-13 武敏 鈴木 視覚検査用チャート
JP2011515189A (ja) * 2008-03-27 2011-05-19 ニューロプティックス コーポレイション 眼の画像化
JP2017501848A (ja) * 2013-11-19 2017-01-19 プロセナ バイオサイエンシーズ リミテッド 便秘症状からのレビー小体病の免疫療法のモニター
JP2017158866A (ja) * 2016-03-10 2017-09-14 株式会社Jvcケンウッド 診断支援装置、診断支援方法、トレーニング支援装置、及びトレーニング支援方法
JP2017176302A (ja) * 2016-03-29 2017-10-05 ヤンマー株式会社 眼球運動計測装置、眼球運動計測方法および眼球運動計測プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KENJI NAKAJIMA: "Cerebral corticobasal degeneration (CBD) medical care and care manual Ver. 2", FY2016 HEALTH AND LABOR SCIENCE RESEARCH GRANTS INTRACTABLE DISEASE POLICY RESEARCH PROJECT, vol. 28, 1 March 2017 (2017-03-01), pages 1 - 40, XP009520369 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031471A1 (ja) * 2018-08-08 2020-02-13 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
WO2020044691A1 (ja) * 2018-08-31 2020-03-05 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
JP7056550B2 (ja) 2018-12-28 2022-04-19 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
WO2020137029A1 (ja) * 2018-12-28 2020-07-02 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
WO2020137023A1 (ja) * 2018-12-28 2020-07-02 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
JP2020103855A (ja) * 2018-12-28 2020-07-09 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
JP2020103746A (ja) * 2018-12-28 2020-07-09 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
EP3970624A4 (en) * 2019-06-20 2022-06-29 JVCKenwood Corporation Evaluation device, evaluation method, and evaluation program
JP2021000200A (ja) * 2019-06-20 2021-01-07 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
WO2020256148A1 (ja) * 2019-06-20 2020-12-24 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
JP7115424B2 (ja) 2019-06-20 2022-08-09 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
WO2021010122A1 (ja) * 2019-07-17 2021-01-21 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
JP2021016429A (ja) * 2019-07-17 2021-02-15 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
JP7318380B2 (ja) 2019-07-17 2023-08-01 株式会社Jvcケンウッド 評価装置、評価方法、及び評価プログラム
KR20220158707A (ko) 2020-03-27 2022-12-01 오사카 유니버시티 인지 기능 장애 진단 장치 및 인지 기능 장애 진단 프로그램
EP4129200A4 (en) * 2020-03-27 2024-07-31 Univ Osaka DEVICE FOR DIAGNOSIS OF COGNITIVE IMPAIRMENT AND PROGRAM FOR DIAGNOSIS OF COGNITIVE IMPAIRMENT
WO2021255632A1 (ja) * 2020-06-15 2021-12-23 フォーブ インコーポレーテッド 情報処理システム
WO2024101230A1 (ja) * 2022-11-09 2024-05-16 国立大学法人大阪大学 プログラム、情報処理方法、及び情報処理装置

Also Published As

Publication number Publication date
CN111343927A (zh) 2020-06-26
EP3711680A4 (en) 2021-08-18
SG11202004441XA (en) 2020-06-29
JPWO2019098173A1 (ja) 2020-11-19
US11583221B2 (en) 2023-02-21
CA3081199A1 (en) 2019-05-23
JP6867715B2 (ja) 2021-05-12
US20200383626A1 (en) 2020-12-10
EP3711680A1 (en) 2020-09-23
KR20200085766A (ko) 2020-07-15
KR102581657B1 (ko) 2023-09-22
PH12020550625A1 (en) 2021-03-01
CN111343927B (zh) 2023-10-13
AU2018366644B2 (en) 2024-05-02
AU2018366644A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
WO2019098173A1 (ja) 認知機能障害診断装置および認知機能障害診断プログラム
US12042288B2 (en) Systems and methods for assessing and improving sustained attention
Pfleging et al. A model relating pupil diameter to mental workload and lighting conditions
Crabb A view on glaucoma—are we seeing it clearly?
WO2016052646A1 (ja) 不注意の測定装置、システム、及び方法
KR102155309B1 (ko) 인지 장애 예측 방법 및 이를 구현한 서버, 사용자 단말 및 어플리케이션
JP2015503414A (ja) 精神医学的評価用装置および方法
CN110495895B (zh) 一种基于眼动跟踪的疲劳检测方法与系统
Tippett et al. Compromised visually guided motor control in individuals with Alzheimer’s disease: Can reliable distinctions be observed?
CN112890815A (zh) 一种基于深度学习的孤独症辅助评估系统和方法
US10786191B2 (en) System and method for supporting of neurological state assessment and for supporting neurological rehabilitation, especially within cognitive and/or speech dysfunction
Gruber et al. Effects of age and eccentricity on visual target detection
Almourad et al. Analyzing the behavior of autistic and normal developing children using eye tracking data
TWI801813B (zh) 認知功能障礙診斷裝置及認知功能障礙診斷程式
Miles et al. EM-COGLOAD: An investigation into age and cognitive load detection using eye tracking and deep learning
Chi et al. Measurement of information processing load and visual load on a dynamic information processing task
WO2024019006A1 (ja) ストループ検査方法、ストループ検査プログラム、ストループ検査システム、ストループ検査画像生成方法、ストループ検査画像生成プログラム、及び検査方法
Bashem Performance validity assessment of bona fide and malingered traumatic brain injury using novel eye-tracking systems
Takahashi et al. Novel scotoma detection method using time required for fixation to the random targets
Enders et al. Identification of Target Objects from Gaze Behavior during a Virtual Navigation Task
RU2357652C1 (ru) Способ скрининговой диагностики глаукомы
Hokken et al. Eyes on CVI: Eye movements unveil distinct visual search patterns in Cerebral Visual Impairment compared to ADHD, dyslexia, and neurotypical children
Quang et al. Mobile traumatic brain injury assessment system
WO2024119173A2 (en) System for and method of eye tracking
WO2024013546A1 (en) A method of identifying a higher visual perceptual difficulty

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3081199

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019554215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018366644

Country of ref document: AU

Date of ref document: 20181113

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018878289

Country of ref document: EP

Effective date: 20200615