WO2019098138A1 - 車両用灯具およびその点灯回路、電流ドライバ回路 - Google Patents

車両用灯具およびその点灯回路、電流ドライバ回路 Download PDF

Info

Publication number
WO2019098138A1
WO2019098138A1 PCT/JP2018/041696 JP2018041696W WO2019098138A1 WO 2019098138 A1 WO2019098138 A1 WO 2019098138A1 JP 2018041696 W JP2018041696 W JP 2018041696W WO 2019098138 A1 WO2019098138 A1 WO 2019098138A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switching
current
circuit
current sources
Prior art date
Application number
PCT/JP2018/041696
Other languages
English (en)
French (fr)
Inventor
知幸 市川
亮佑 松花
賢 菊池
直樹 川端
紀人 高橋
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2019554198A priority Critical patent/JP7544481B2/ja
Priority to EP22172368.7A priority patent/EP4064793A1/en
Priority to EP18879988.6A priority patent/EP3713377A4/en
Priority to EP21186111.7A priority patent/EP3934385B1/en
Publication of WO2019098138A1 publication Critical patent/WO2019098138A1/ja
Priority to US16/874,124 priority patent/US11477871B2/en
Priority to US17/488,850 priority patent/US11653434B2/en
Priority to US17/488,759 priority patent/US11558943B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/347Dynamic headroom control [DHC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/17Operational modes, e.g. switching from manual to automatic mode or prohibiting specific operations

Definitions

  • the present invention relates to a lighting circuit.
  • Vehicle lamps are generally capable of switching between low beam and high beam.
  • the low beam illuminates the vicinity of the vehicle with a predetermined illuminance, and a light distribution regulation is defined so as not to give glare to oncoming vehicles or preceding vehicles, and is mainly used when traveling in a city area.
  • the high beam illuminates a wide range and a distance ahead with relatively high illuminance, and is mainly used when traveling at high speed on a road where there are few oncoming vehicles and preceding vehicles. Therefore, although the high beam is more excellent in visibility by the driver than the low beam, there is a problem that glare is given to the driver of the vehicle existing in front of the vehicle and the pedestrian.
  • ADB Adaptive Driving Beam
  • ADB technology reduces the glare to be given to a vehicle or pedestrian by detecting the presence or absence of a preceding vehicle in front of the vehicle, an oncoming vehicle or a pedestrian, and reducing or turning off the area corresponding to the vehicle or pedestrian. It is a thing.
  • FIG. 1 is a block diagram of a lamp system 1001 having an ADB function.
  • the lamp system 1001 includes a battery 1002, a switch 1004, a switching converter 1006, a plurality of light emitting units 1008_1 to 1008_N, a plurality of current sources 1010_1 to 1010_N, a converter controller 1012, and a light distribution controller 1014.
  • the plurality of light emitting units 1008_1 to 1008_N are semiconductor light sources such as LEDs (light emitting diodes) and LDs (laser diodes), and are associated with different regions on a virtual vertical screen in front of the vehicle.
  • the plurality of current sources 1010_1 to 1010_N are provided in series with the corresponding plurality of light emitting units 1008_1 to 1008_N.
  • a drive current I LEDi generated by the current source 1010 _i flows through the i-th (1 ⁇ i ⁇ N) light emitting unit 1008 _i.
  • the plurality of current sources 1010_1 to 1010_N can be independently turned on and off (or the amount of current).
  • the light distribution controller 1014 controls the on / off (or the amount of current) of the plurality of current sources 1010_1 to 1010_N so as to obtain a desired light distribution pattern.
  • the switching converter 1006 of constant voltage output generates a driving voltage V OUT sufficient to emit light with the luminance expected for the plurality of light emitting units 1008_1 to 1008_N. Focus on the ith channel.
  • a voltage drop (forward voltage) of the light emitting unit 1008 — i when a certain drive current I LEDi flows is assumed to be V Fi .
  • V SATi a certain voltage
  • the voltage across the current source 1010 — i has to be larger than a certain voltage (hereinafter referred to as “V SATi referred to as saturation voltage”). Then the following inequality must hold for the ith channel: V OUT > V Fi + V SATi (1) This relationship needs to hold for all channels.
  • V OUT V F (MERGIN) + V SAT (MERGIN) (2)
  • V F (TYP) is the maximum value (or typical value) of V F with a margin added.
  • V SAT (MERGIN) is a saturation voltage V SAT with a margin.
  • the present invention has been made in view of such problems, and one of the exemplary objects of an aspect thereof is to provide a lighting circuit capable of reducing power consumption.
  • the lighting circuit relates to a lighting circuit for lighting a plurality of semiconductor light sources.
  • the lighting circuit supplies a driving voltage across each of a plurality of current sources to be connected in series with the corresponding semiconductor light sources, and a plurality of series connection circuits formed by the plurality of semiconductor light sources and the plurality of current sources.
  • a switching converter and a converter controller of a ripple control system are provided. The converter controller turns on the switching transistor of the switching converter in response to the voltage across any of the plurality of current sources being reduced to the bottom limit voltage.
  • One embodiment of the present invention relates to a lighting circuit for lighting a plurality of semiconductor light sources.
  • the lighting circuit is a plurality of current sources each to be connected in series with the corresponding semiconductor light source, each based on a series transistor and a sense resistor provided in series with the corresponding semiconductor light source, and a voltage drop of the sense resistor.
  • a switching circuit for supplying a drive voltage across each of a plurality of current sources and a plurality of series connected circuits formed by a plurality of semiconductor light sources and a plurality of current sources, including an error amplifier for adjusting the voltage of control electrodes of series transistors.
  • a converter and a converter controller of a ripple control system are provided. The converter controller turns on the switching transistor of the switching converter in response to the output voltage of the error amplifier meeting a predetermined turn-on condition in any of the plurality of current sources.
  • the current driver circuit for driving a plurality of semiconductor light sources.
  • the current driver circuit is configured to be able to turn on and off independently according to the PWM signal, and to be connected in series with the corresponding semiconductor light source, and from the external processor and the first time interval
  • An interface circuit for receiving a plurality of control data for instructing on / off duty ratios of a plurality of current sources, and a dimming pulse generator for generating a plurality of PWM signals for the plurality of current sources,
  • the duty ratio of each of the PWM signals includes a dimming pulse generator which gradually changes from the value before updating of the corresponding control data to the value after updating at a second time interval shorter than the first time interval.
  • FIG. 1 is a block diagram of a lamp system provided with a vehicle lamp according to Embodiment 1.
  • FIG. FIG. 5 is an operation waveform diagram of the vehicle lamp of FIG. 2; 4 (a) is a waveform diagram of the cathode voltage V LED in the lamp system of FIG. 2, and FIG. 4 (b) is a waveform diagram of the cathode voltage V LED in the comparative technique.
  • It is a circuit diagram of a converter controller concerning Example 1.1. It is a circuit diagram of a converter controller concerning Example 1.2. It is a circuit diagram of a converter controller concerning Example 1.3. It is a circuit diagram of a converter controller concerning Example 1.4.
  • FIG. 7 is a circuit diagram of a modification of the on signal generation circuit.
  • 13 (a) to 13 (c) are circuit diagrams showing configuration examples of the current source.
  • FIGS. 14 (a) to 14 (c) are diagrams for explaining the reduction of the switching frequency in the light load state.
  • FIG. 7 is a block diagram of a vehicular lamp according to a second embodiment.
  • FIG. 16 is an operation waveform diagram of the vehicle lamp of FIG. 15;
  • FIG. 7 is a block diagram of a vehicular lamp according to a third embodiment.
  • FIG. 10 is a block diagram of a vehicular lamp according to a fourth embodiment.
  • FIG. 19 is an operation waveform diagram of the vehicle lamp of FIG. 18;
  • FIG. 13 is a circuit diagram of a lighting circuit according to a fifth embodiment.
  • FIG. 2 is a circuit diagram of a current driver IC and its peripheral circuit according to an embodiment.
  • FIG. 7 is an operation waveform diagram of a current driver IC. It is the top view and sectional drawing of a driver integrated light source.
  • FIG. 6 is a circuit diagram of a vehicle lamp according to a first modification.
  • FIG. 21 is a block diagram of a lamp system provided with a vehicle lamp according to a sixth embodiment.
  • FIG. 26 is an operation waveform diagram of the vehicle lamp of FIG. 25.
  • FIG. 34 is a specific circuit diagram of the converter controller of FIG. 33. It is a circuit diagram of the current source concerning modification 6.2. 36 (a) to 36 (c) are circuit diagrams of modified examples of the on signal generating circuit. FIG.
  • FIG. 21 is a circuit diagram of a current driver IC and its peripheral circuit according to a seventh embodiment.
  • FIG. 38 is an operation waveform diagram of the current driver IC of FIG. 37. It is the top view and sectional drawing of a driver integrated light source.
  • FIGS. 40 (a) to 40 (c) are diagrams for explaining the reduction of the switching frequency in the light load state.
  • FIG. 21 is a block diagram of a vehicular lamp according to an eighth embodiment.
  • FIG. 21 is a block diagram of a vehicular lamp according to a ninth embodiment.
  • FIG. 43 is an operation waveform diagram of the vehicle lamp of FIG. 42.
  • FIG. 21 is a circuit diagram of a lighting circuit according to a tenth embodiment. It is a circuit diagram of a vehicular lamp concerning a modification.
  • the state in which the member A is connected to the member B means that the members A and B are electrically connected in addition to the case where the members A and B are physically and directly connected. It also includes the case of indirect connection via other members that do not substantially affect the connection state of the connection or do not impair the function or effect provided by the connection.
  • a state where the member C is provided between the member A and the member B means that the member A and the member C, or the member B and the member C are directly connected, and It also includes the case of indirect connection via other members that do not substantially affect the connection state of the connection or do not impair the function or effect provided by the connection.
  • reference numerals attached to electric signals such as voltage signals and current signals or circuit elements such as resistors and capacitors indicate respective voltage values, current values, or resistance values and capacitance values as necessary. It shall represent.
  • One embodiment disclosed in the present specification relates to a lighting circuit configured to be able to light a plurality of semiconductor light sources.
  • the lighting circuit supplies a driving voltage across each of a plurality of current sources to be connected in series with the corresponding semiconductor light sources, and a plurality of series connection circuits formed by the plurality of semiconductor light sources and the plurality of current sources.
  • a switching converter and a converter controller of a ripple control system are provided. The converter controller turns on the switching transistor of the switching converter in response to the voltage across any of the plurality of current sources being reduced to the bottom limit voltage.
  • the power loss of the current source can be reduced.
  • the converter controller may turn off the switching transistor after the on time has elapsed after turning on the switching transistor.
  • the on time may be feedback controlled so that the switching frequency of the switching transistor approaches the target frequency.
  • the converter controller may turn off the switching transistor in response to the drive voltage reaching the upper limit voltage.
  • the upper limit voltage may be feedback-controlled so that the switching frequency of the switching transistor approaches the target frequency.
  • the plurality of current sources may be individually controllable on and off.
  • the bottom limit voltage may increase as the number of ons of the plurality of current sources decreases. This can prevent the switching frequency from being too low in light load conditions.
  • the bottom limit voltage is increased, the heat generation of the current source is increased, but since the number of current sources to be turned on is small, the total heat generation increase does not matter.
  • the plurality of current sources may be individually controllable on and off.
  • the target frequency may be changed according to the number of turning on of the plurality of current sources.
  • the plurality of current sources may be individually controllable on and off.
  • the lighting circuit may further include a dummy load connected to the output of the switching converter and enabled in accordance with the number of turning on of the plurality of current sources. By operating the dummy load in the light load state, it is possible to suppress a decrease in switching frequency.
  • the dummy load may lower the drive voltage after a predetermined time has elapsed after the switching transistor is turned off.
  • the switching frequency can be defined according to the predetermined time.
  • the lighting circuit may forcibly turn off the switching transistor when the drive voltage exceeds a predetermined threshold.
  • the plurality of semiconductor light sources and the plurality of current sources may be modularized.
  • the lighting circuit can be provided in a vehicular lamp.
  • FIG. 2 is a block diagram of a lamp system 1 including the vehicle lamp 100 according to the first embodiment.
  • the lamp system 1 includes a battery 2, a vehicle ECU (Electronic Control Unit) 4, and a vehicle lamp 100.
  • the vehicle lamp 100 is a light distribution variable headlamp having an ADB function, and forms a light distribution according to a control signal from the vehicle ECU 4.
  • the vehicular lamp 100 includes a plurality of (N ⁇ 2) semiconductor light sources 102_1 to 102_N, a lamp ECU 110, and a lighting circuit 200.
  • the semiconductor light source 102 an LED is preferably used, but other light emitting elements such as LD and organic EL may be used.
  • Each semiconductor light source 102 may include a plurality of light emitting elements connected in series and / or in parallel.
  • the number of channels N is not particularly limited and may be one.
  • the lamp ECU 110 includes a switch 112 and a microcomputer 114.
  • the microcomputer (processor) 114 is connected to the vehicle ECU 4 via a bus such as a controller area network (CAN) or a local interconnect network (LIN), and can receive an on / off instruction and other information.
  • the microcomputer 114 turns on the switch 112 in response to the lighting instruction from the vehicle ECU 4.
  • the power supply voltage (battery voltage V BAT ) from the battery 2 is supplied to the lighting circuit 200.
  • the microcomputer 114 controls the lighting circuit 200 in response to a control signal instructing a light distribution pattern from the vehicle ECU 4.
  • the microcomputer 114 may receive information indicating the condition ahead of the vehicle from the vehicle ECU 4 and may generate a light distribution pattern by itself based on this information.
  • the lighting circuit 200 supplies drive currents I LED1 to I LEDN to the plurality of semiconductor light sources 102_1 to 102_N so as to obtain a desired light distribution pattern.
  • the lighting circuit 200 includes a plurality of current sources 210_1 to 210_N, a switching converter 220, and a converter controller 230.
  • the plurality of current sources 210_1 to 210_N can be individually controlled to be turned on and off according to the PWM signals S PWM1 to S PWMN generated by the light distribution controller 116.
  • the PWM signal S PWMi is at the on level (for example, high)
  • the drive current I LEDi flows, and the semiconductor light source 102 — i is lit.
  • the PWM signal S PWMi is at the off level (for example, low)
  • the drive current I LEDi becomes zero, and the semiconductor light source 102 _i is turned off.
  • the effective brightness of the semiconductor light source 102 — i changes (PWM dimming).
  • Switching converter 220 supplies drive voltage V OUT across the series connection circuit of semiconductor light source 102 and current source 210.
  • the switching converter 220 is a buck converter, and includes a switching transistor M 1 , a rectifying diode D 1 , an inductor L 1 , and an output capacitor C 1 .
  • Converter controller 230 controls switching converter 220 by a ripple control method. More specifically, converter controller 230 sets the voltage V LED across any one of a plurality of current sources 210, in other words, the voltage V LED at the connection node of any one of current sources 210 and corresponding semiconductor light source 102, to a predetermined bottom limit voltage. In response to the decrease to V BOTTOM , switching transistor M 1 of switching converter 220 is turned on.
  • the converter controller 230 when a predetermined turn-off condition is satisfied, shifts the control pulses S 1 off level (high level), turning off the switching transistor M 1.
  • the turn-off condition may be that the output voltage V OUT of switching converter 220 has reached a predetermined upper limit voltage V UPPER .
  • FIG. 3 is an operation waveform diagram of the vehicle lamp 100 of FIG.
  • N 3 for ease of understanding.
  • element variations of the plurality of current sources 210_1 to 210_N can be ignored.
  • V F1 > V F2 > V F3 holds because of the element variation of the semiconductor light source 102.
  • PWM dimming is not performed to facilitate understanding.
  • load current I OUT which is the sum of drive currents I LED1 to I LED3 discharges output capacitor C 1 of switching converter 220, and output voltage V OUT changes with time. It will decline.
  • the output capacitor C 1 is charged or discharged by the difference between the coil current I L flowing through the inductor L 1 and the load current, so that the increase and decrease of the output voltage V OUT and the on and off of the switching transistor M 1 are timed It does not necessarily coincide on the axis.
  • V LED1 V OUT- V F1
  • V LED2 V OUT- V F2
  • V LED3 V OUT- V F3
  • V LED1 to V LED3 fluctuate while keeping the potential difference with the output voltage V OUT constant. Because the forward voltage V F1 of the first channel is the largest, the cathode voltage V LED1 of the first channel is the lowest.
  • the switching transistor M 1 is turned on.
  • the switching transistor M 1 When the switching transistor M 1 is turned on, the coil current I L flowing through the inductor L 1 is increased, the output voltage V OUT starts to rise. When the output voltage V OUT reaches the upper limit voltage V UPPER, the switching transistor M 1 is turned off. The lighting circuit 200 repeats this operation.
  • the above is the operation of the lighting circuit 200.
  • the voltage across the current source 210 can be maintained near the lowest level that guarantees generation of a predetermined drive current I LED, and power consumption can be reduced.
  • Another approach is to use an error amplifier to perform feedback control in which the lowest voltages of the cathode voltages V LED1 to V LEDN approach the predetermined target voltage V REF .
  • FIG. 4 (a) is a waveform diagram of the cathode voltage V LED in the embodiment
  • FIG. 4 (b) is a waveform diagram of the cathode voltage V LED in the comparative technique.
  • the cathode voltage V LED shown here is the lowest voltage V MIN of the plurality of cathode voltages.
  • the average of the minimum voltages V MIN of the cathode voltages V LED1 to V LEDN approaches the target voltage V REF by the response characteristics of the phase compensation filter provided in the feedback loop. That bottom level V MIN_BOTTOM the minimum voltage V MIN is lower than the target voltage V REF.
  • the difference between the bottom level V MIN — BOTTOM and the target voltage V REF at this time varies depending on the situation and is undefined. For stable operation of the circuit, it is necessary to define V REF high assuming a large difference ⁇ V as shown by a solid line in FIG. 4 (b).
  • the cathode voltage V LED becomes higher than the bottom limit voltage V BOTTOM , and wasteful power is consumed in the current source.
  • the power consumption is further reduced compared to the comparison technique. it can.
  • the present invention is understood as the block diagram or the circuit diagram of FIG. 2 or extends to various devices, circuits and methods derived from the above description, and is not limited to a specific configuration.
  • FIG. 2 the block diagram or the circuit diagram of FIG. 2 or extends to various devices, circuits and methods derived from the above description, and is not limited to a specific configuration.
  • FIG. 5 is a circuit diagram of a converter controller 230F according to the first embodiment.
  • the on signal generation circuit 240 F includes a plurality of comparators 252 _ 1 to 252 _N and a logic gate 254.
  • the comparator 252 — i compares the corresponding cathode voltage V LEDi with the bottom limit voltage V BOTTOM and generates a comparison signal that is asserted (eg, high) when V LEDi ⁇ V BOTTOM .
  • the logic gate 254 logically operates the outputs (comparison signals) S CMP1 to S CMPN of the plurality of comparators 252_1 to 252_N, and asserts the on signal S ON when at least one comparison signal is asserted.
  • logic gate 254 is an OR gate.
  • the OFF signal generating circuit 260F generates an off signal S OFF that defines the timing to turn off the switching transistor M 1.
  • the voltage divider circuit 261 divides the output voltage V OUT and scales it to an appropriate voltage level.
  • the comparator 262 compares the divided output voltage V OUT 'with a threshold V UPPER ' obtained by scaling the upper limit voltage V UPPER , and asserts the off signal S OFF when V OUT > V UPPER is detected (for example, High)
  • Logic circuit 234 is, for example, an SR flip-flop, and causes output Q to transition to an on level (for example, high) in response to the assertion of on signal S ON , and outputs Q in response to the assertion of off signal S OFF. Transition to the off level (for example, low). It should be noted that, in order to make the switching converter safer (ie, the off state of switching transistor M 1 ) when the assertion of the on signal S ON and the off signal S OFF occur simultaneously, the logic circuit 234 is reset prioritized. It is preferable to use a flip flop.
  • the driver 232 drives the switching transistor M 1 in accordance with the output Q of the logic circuit 234.
  • the switching transistor M 1 as shown in FIG. 2 is a P-channel MOSFET, and the control pulse S 1 is the output of the driver 232, a low voltage when the output Q is on level (V BAT -V G), the output Q is At the off level, it becomes a high voltage (V BAT ).
  • FIG. 6 is a circuit diagram of the converter controller 230G according to the example 1.2.
  • the on signal generation circuit 240 G includes a minimum value circuit 256 and a comparator 258.
  • the minimum value circuit 256 outputs a voltage V MIN according to the minimum one of the plurality of cathode voltages V LED1 to V LEDN .
  • the minimum value circuit 256 may use a known technique.
  • the comparator 258 compares the voltage V MIN with a threshold V BOTTOM 'according to the bottom limit voltage V BOTTOM and asserts (eg, high) the on signal S ON when V MIN ⁇ V BOTTOM '.
  • Example 1.1 when the number of channels is large, the circuit area of the comparator group is large, and the chip size is large. On the other hand, according to the embodiment 1.2, since only one comparator is required, the circuit area can be reduced.
  • Example 1.3 In the on-vehicle device, an LW band of 150 kHz to 280 kHz, an AM band of 510 kHz to 1710 kHz, and an SW band of 2.8 MHz to 23 MHz are avoided as electromagnetic noise. Therefore, the switching frequency of the switching transistor M 1 is normally to be stabilized between about 300kHz ⁇ 450 kHz between the LW band and the AM band is desirable.
  • FIG. 7 is a circuit diagram of a converter controller 230H according to Embodiment 1.3.
  • the switching frequency of the switching transistor M 1 becomes constant, the upper limit voltage V UPPER is feedback controlled.
  • the off signal generation circuit 260H includes a frequency detection circuit 264 and an error amplifier 266 in addition to the comparator 262.
  • Frequency detection circuit 264 monitors the output Q or control pulses S 1 of the logic circuit 234, generates a frequency detection signal V FREQ showing switching frequency.
  • the error amplifier 266 amplifies an error between the frequency detection signal V FREQ and a reference voltage V FREQ (REF) that defines a target value (target frequency) of the switching frequency, and generates an upper limit voltage V UPPER according to the error.
  • the noise countermeasure can be facilitated.
  • FIG. 8 is a circuit diagram of a converter controller 230I according to the example 1.4.
  • Converter controller 230I after turning on the switching transistors M 1, may be turned off the switching transistor M 1 after the on-time T ON elapses. That is, it may be set as the turn-off condition that the on time T ON has elapsed from the turn-off of the switching transistor M 1 .
  • the off signal generation circuit 260I includes a timer circuit 268.
  • the timer circuit 268 is responsive to the ON signal S ON, and starts measuring the predetermined on-time T ON, asserts the off signal S OFF after the elapse of the on-time T ON (e.g. high) is.
  • the timer circuit 268 may be configured by, for example, a monostable multivibrator (one-shot pulse generator), or may be configured by a digital counter or an analog timer.
  • the timer circuit 268, to detect the timing of the turn switching transistors M 1, instead of the ON signal S ON, may be input the output Q and the control pulses S 1 of the logic circuit 234.
  • FIG. 9 is a circuit diagram of a converter controller 230J according to the 1.5.
  • Converter controller 230J as in Example 1.4, after turning on the switching transistors M 1, turning off the switching transistor M 1 after the on-time T ON elapses.
  • the OR gate 241 corresponds to an on signal generation circuit, and generates an on signal S ON .
  • the timer circuit 268 is a monostable multivibrator or the like, generates a predetermined on time T ON from the assertion of the on signal S ON , and generates a pulse signal SP that goes high, and supplies the pulse signal SP to the driver 232.
  • FIG. 10 is a circuit diagram of a converter controller 230K according to the 1.6.
  • OFF signal generating circuit 260K as the switching frequency is constant, the feedback control of the on-time T ON.
  • Variable timer circuit 270 between the assertion of the ON signal S ON ON time T ON, a monostable multivibrator for generating a pulse signal S P which becomes high level, the on-time T ON in response to the control voltage V CTRL Variable configuration.
  • variable timer circuit 270 can include a capacitor, a current source charging the capacitor, and a comparator comparing the voltage of the capacitor to a threshold.
  • the variable timer circuit 270 is configured such that at least one of the current amount generated by the current source and the threshold value is variably set according to the control voltage V CTRL .
  • Frequency detection circuit 272 monitors the output Q or control pulses S 1 of the logic circuit 234, generates a frequency detection signal V FREQ showing switching frequency.
  • the error amplifier 274 amplifies an error between the frequency detection signal V FREQ and a reference voltage V FREQ (REF) that defines a target value (target frequency) of the switching frequency, and generates a control voltage V CTRL according to the error.
  • REF reference voltage
  • FIG. 11 is a specific circuit diagram of converter controller 230K of FIG. The operation of the frequency detection circuit 272 will be described.
  • Capacitor C 11 and resistor R 11 is a high-pass filter, it can be grasped as a differentiating circuit for differentiating the output of the OR gate 231 (or control pulses S 1), can be grasped with an edge detecting circuit for detecting an edge of the pulse signal S P ' .
  • Transistor Tr 11 when the output of the high-pass filter exceeds a threshold value, i.e. turns the positive edge of the pulse signal S P 'is generated to discharge the capacitor C 12.
  • Transistor Tr 11 is OFF period, the capacitor C 12 is charged through the resistor R 12.
  • the voltage V C12 of the capacitor C 12 is a ramp wave synchronized with the pulse signal S P ′, and the time length of the slope portion, and hence the peak value, changes in accordance with the period of the pulse signal S P ′.
  • the transistors Tr 12 and Tr 13 , the resistors R 13 and R 14 , and the capacitor C 13 are peak hold circuits, and hold the peak value of the voltage V C12 of the capacitor C 12 .
  • the output V FREQ of the peak hold circuit has a correlation with the period of the pulse signal S P ′, in other words, the frequency.
  • the comparator COMP1 compares the frequency detection signal V FREQ with the reference signal V FREQ (REF) indicating the target frequency.
  • Resistor R 15 and capacitor C 14 is a low-pass filter, the output of the comparator COMP1 is smoothed, to generate the control voltage V CTRL.
  • the control signal V CTRL is output via the buffer BUF1.
  • the variable timer circuit 270 will be described.
  • the on signal S ON is inverted by the inverter 273.
  • the inverted ON signal #S ON falls below the threshold value V TH1, in other words an ON signal S ON is high, the output of comparator COMP2 becomes high, flip-flop SRFF is set, the pulse signal S P is high .
  • Pulse signal S P is high period, the transistor M 21 is turned off.
  • current source 271 generates a variable current I VAR in response to the control voltage V CTRL, to charge the capacitor C 15.
  • the output of the comparator COMP 3 becomes high, the flip flop SRFF is reset, and the pulse signal S P transitions to low.
  • the transistor M 21 is turned on, the voltage V C15 of the capacitor C 15 is initialized.
  • FIG. 12 is a circuit diagram of a modification of on signal generating circuit 240.
  • the voltage comparison means 253 includes a source follower 255 including a PNP bipolar transistor Tr 21 , and a comparison circuit 257.
  • the output (V LED + V BE ) of the source follower 255 in the previous stage is divided by the resistors R 21 and R 22 and input to the base of the transistor Tr 22 .
  • the voltage V LED to be monitored is lowered, the base voltage of the transistor Tr 22 is lowered, and when it is lower than the on voltage of the bipolar transistor, the current of the transistor Tr 22 is interrupted and the output of the voltage comparing means 253 becomes high.
  • the outputs of the plurality of voltage comparison means 253 are input to the OR gate 254, but the present invention is not limited to this.
  • the OR gate 254 may be omitted, and the collectors of the transistors Tr 22 of the plurality of voltage comparison units 253 may be connected in common, and a common resistor may be provided between the common collector and the power supply line V CC .
  • FIGS. 13A to 13C are circuit diagrams showing configuration examples of the current source 210.
  • the current source 210 of FIG. 13A includes a series transistor M 2 , a sense resistor R S, and an error amplifier 212.
  • Series transistor M 2 and the sense resistor R S are provided in series on the path of the driving current I LEDi.
  • the error amplifier 212 adjusts the voltage V G of the control electrode (in this example, the gate) of the series transistor M 2 so that the voltage drop V CS of the sense resistor R S approaches the target voltage V ADIM .
  • series transistor M 2 is a MOS transistor of N-type (N-channel), one input of the error amplifier 212 (non-inverting input terminal), reference voltage V ADIM is, the other input (inverting The voltage V CS (voltage drop of the sense resistor R S ) of the connection node of the series transistor M 2 and the sense resistor R S is input to the input terminal).
  • the current source 210 further includes a switch (dimmer switch) 214 for PWM dimming.
  • the dimming switch 214 is controlled by a PWM signal S PWM generated by the light distribution controller 116.
  • S PWM generated by the light distribution controller 116.
  • the dimming switch 214 is off, the drive current I LED flows through the current source 210.
  • Dimmer switch 214 is turned on, series transistor M 2 is turned off, the drive current I LED is cut off.
  • the semiconductor light source 102 is subjected to PWM dimming by switching the dimming switch 214 at a high speed at a PWM frequency of 60 Hz or more (preferably, about 200 to 300 Hz) and adjusting its duty ratio.
  • the current source 210 in FIG. 13B uses a P-channel MOSFET as a series transistor.
  • the polarity of the input of the error amplifier 212 is opposite to that in FIG. 13 (a).
  • the current source 210 of FIG. 13C includes a current mirror circuit 216 and a reference current source 218.
  • the current mirror circuit 216 multiplies the reference current I REF generated by the reference current source 218 by a predetermined coefficient determined by the mirror ratio to generate the drive current I LED .
  • the bottom limit voltage V BOTTOM may be defined as follows.
  • V BOTTOM V SAT + ⁇ V V SAT is the saturation voltage of the current mirror circuit, and ⁇ V is a suitable margin.
  • the bottom limit voltage is fixed.
  • the switching frequency may decrease in a light load state where the number of light sources 102 to be lit decreases.
  • FIGS. 14 (a) to 14 (c) are diagrams for explaining the reduction of the switching frequency in the light load state.
  • the frequency is stabilized by feedback control of the on time T ON or the upper limit V UPPER of the output voltage V OUT .
  • a pulse width of the control pulses S 1 can not be shorter than the phrase minimum pulse width.
  • the pulse width of the control pulses S 1 is fixed to the minimum pulse width (FIG. 14 (c)).
  • the slope of the downward slope of the output voltage V OUT depends on the load current, that is, the number of semiconductor light sources 102 in the lit state. When the number of lights is small, the slope of the down slope becomes smaller and the switching frequency becomes lower. Therefore, even when the frequency stabilization control is performed, the switching frequency may enter the LW band.
  • the bottom limit voltage V BOTTOM is dynamically controlled according to the state of the load to suppress the decrease in switching frequency.
  • FIG. 15 is a block diagram of a vehicular lamp 100M according to the second embodiment.
  • the vehicular lamp 100M further includes a bottom limit voltage setting circuit 280 in addition to the vehicular lamp 100 of FIG.
  • the bottom limit voltage setting circuit 280 increases the bottom limit voltage V BOTTOM as the number of ONs of the plurality of current sources 210 is smaller.
  • the bottom limit voltage V BOTTOM may change in two steps, or may change in more steps.
  • the bottom limit voltage setting circuit 280 may determine the number of lights based on the PWM signals S PWM1 to S PWMN generated by the light distribution controller 116.
  • the bottom limit voltage setting circuit 280 may receive from the microcomputer 114 a signal indicating the number of lights or a command value of the bottom limit voltage VBOTTOM determined based on the number of lights.
  • the number of lightings may be determined based on a signal received by the interface circuit 320.
  • converter controller 230 is not particularly limited, and may be any of the configurations described above.
  • FIG. 16 is an operation waveform diagram of the vehicle lamp 100M of FIG. As the number of lighting decreases and the load current decreases, the falling slope of the output voltage V OUT becomes flat. By increasing the bottom limit voltage V BOTTOM as the slope slope decreases, it is possible to suppress the increase in the lower limit voltage of the output voltage V OUT and the increase in the off time T OFF .
  • the bottom limit voltage V BOTTOM is increased, the heat generation of the current source 210 is increased, but the number of the current sources 210 to be turned on is decreased, so that the total heat generation increase does not matter.
  • the bottom limit voltage V BOTTOM is changed so that the switching frequency is substantially constant, but the switching frequency fluctuates if the switching frequency does not fall within the noise target band. You may
  • FIG. 17 is a block diagram of a vehicular lamp 100N according to the third embodiment.
  • the vehicular lamp 100N includes a frequency setting circuit 290 in addition to the vehicular lamp 100 of FIG.
  • converter controller 230 has a frequency stabilization function, and therefore can be configured of converter controllers 230H and 230J of FIGS. 7 and 10.
  • the frequency setting circuit 290 changes the target frequency in accordance with the number (the number of lightings) of the plurality of current sources 210 that are turned on. More specifically, if the number of ONs becomes smaller than a threshold value, it is determined as a light load condition, and the target frequency is set to another frequency lower than the original target frequency and not included in the electromagnetic noise band. Do.
  • the target frequency in the normal state is set between about 300 kHz and 450 kHz between the LW band and the AM band
  • the target frequency in the light load state is a frequency band lower than the LW band and higher than the audible band It is good to set to a zone (for example, 100 kHz).
  • frequency setting circuit 290 sets reference voltage V FREQ (REF) in a state where the number of lighting is lower than a certain threshold. You can lower the reference voltage V FREQ (REF) in a state where the number of lighting is lower than a certain threshold. You can lower the reference voltage V FREQ (REF) in a state where the number of lighting is lower than a certain threshold. You can lower the reference voltage V FREQ (REF) in a state where the number of lighting is lower than a certain threshold. You can lower the
  • the frequency decreases in the light load state, it can be excluded from the frequency to be avoided as electromagnetic noise.
  • FIG. 18 is a block diagram of a vehicular lamp 100O according to a fourth embodiment.
  • the vehicular lamp 100 O includes a dummy load 292 and a dummy load control circuit 294 in addition to the vehicular lamp 100 of FIG.
  • Dummy load 292 is connected to the output of the switching converter 220, the enable state, and discharge the capacitor C 1 of the switching converter 220, reduces the output voltage V OUT.
  • the dummy load control circuit 294 controls enabling / disabling of the dummy load 292 based on the number of ons of the plurality of current sources.
  • Dummy load 292 includes a switch of a transistor provided between the output of switching converter 220 and the ground.
  • the dummy load control circuit 294 asserts (for example, high) the enable signal EN to turn on the switch of the dummy load 292 after a predetermined time ⁇ has elapsed from the turning off of the switching transistor M1.
  • FIG. 19 is an operation waveform diagram of the vehicle lamp 100O of FIG.
  • the enable signal EN is asserted cycle by cycle, and the output voltage V OUT instantaneously decreases.
  • the output voltage V OUT control pulse S 1 and decreases to a voltage level corresponding to the bottom limit voltage V BOTTOM becomes high. That is, the upper limit of the off time T OFF of the switching transistor M 1 is limited by the predetermined time ⁇ . Thereby, it is possible to suppress the decrease in switching frequency in the light load state.
  • the dummy load 292 may be a constant current source capable of turning on and off, or may be a combination of a switch and a resistor.
  • the Fifth Preferred Embodiment Please refer to FIG.
  • the on-resistance and the breakdown voltage of a transistor are in a trade-off relationship.
  • the output voltage V OUT of the switching converter overshoots, the voltage applied to the transistors constituting the current source 210 increases. Therefore, it is necessary to configure the current source 210 using a high breakdown voltage element, but since the high breakdown voltage element has a large on resistance R ON , the bottom limit voltage V BOTTOM has to be set high, and power consumption and heat generation are generated. There is a problem that
  • FIG. 20 is a circuit diagram of a lighting circuit 200P according to the fifth embodiment.
  • Lighting circuit 200P the driving voltage V OUT exceeds a predetermined threshold V TH, to force off the switching transistor M 1.
  • the lighting circuit 200P includes resistors R 31 and R 32 and a voltage comparator 238.
  • the voltage comparator 238 compares the drive voltage V OUT 'divided by the resistors R 31 and R 32 with the threshold value V TH ' to detect an overvoltage state of the drive voltage V OUT .
  • the converter controller 230P includes a pulse modulator 235, a logic gate 233, and a driver 232.
  • the pulse modulator 235 is a part of the converter controllers 230F to 230K in FIGS. 7 to 10 except for the driver 232, and generates a control pulse S 1 ′.
  • the level of the control pulse S 1 ' is forcedly set to the level at which the switching transistor M1 is turned off.
  • the switching transistor M1 is an N-channel MOSFET, S 1 is turned off when the signal is low.
  • the output S 2 of the voltage comparator 238 is low when V OUT '> V TH ', and the logic gate 233 is an AND gate.
  • power consumption can be reduced by configuring the current source 210 using a low on-resistance transistor.
  • the transistor of the current source for example, FIG. 13 (a) , possible to prevent the transistor M 2, over-voltage transistor
  • the output side of the current mirror circuit 216 shown in FIG. 13 (c) is applied in (b).
  • FIG. 21 is a circuit diagram of a current driver IC 300 and its peripheral circuits according to the embodiment.
  • the current driver IC 300 includes an interface circuit 320 and a dimming pulse generator 330 in addition to the plurality of current sources 310_1 to 310_N.
  • Each of the plurality of current sources 310_1 to 310_N is configured to be capable of being independently turned on / off according to the PWM signals S PWM1 to S PWMN .
  • the current sources 310_1 to 310_N are connected in series with the corresponding semiconductor light sources 102_1 to 102N through the cathode pins LED1 to LEDN.
  • the interface circuit 320 receives a plurality of control data D 1 to D N from an external microcomputer (processor) 114.
  • the type of interface is not particularly limited, for example, SPI (Serial Peripheral Interface) or I 2 C interface can be used.
  • a plurality of control data D 1 ⁇ D N are on the plurality of current sources 310_1 ⁇ 310_n, is intended to instruct the duty ratio of the off is updated at the first time interval T 1.
  • the first time interval T 1 is about 20 ms ⁇ 200 ms, for example, 100 ms.
  • the dimming pulse generator 330 generates a plurality of PWM signals S PWM1 to S PWMN for the plurality of current sources 310_1 to 310_N based on the plurality of control data D 1 to D N.
  • the plurality of PWM signals S PWM1 to S PWMN are generated in the microcomputer 114.
  • the function of generating the plurality of PWM signals S PWM1 to S PWMN is the current driver IC 300. Built in.
  • the duty ratio of the i-th PWM signal S PWMi is a first time interval T 1 is shorter than the second time interval T 2, is gradually changing towards the updated values from the value before updating of the corresponding control data D i (It is called gradual change mode).
  • Second time interval T 2 are, about 1 ms ⁇ 10 ms, for example, 5 ms.
  • the dimming pulse generator 330 can support the non-grading mode in addition to the grading mode.
  • the duty ratio of the i-th PWM signal S PWMi can be instantaneously changed from the value before updating of the corresponding control data D i to the value after updating.
  • the non-gradient change mode and the non-gradient change mode be dynamically changeable based on settings from the microcomputer 114.
  • each channel each dimmer pulse
  • a non-gradual change mode and gradual change mode is individually specifiable
  • setting data for specifying a mode may be associated with the control data D i.
  • a part or all of the on signal generation circuit 240 may be integrated into the current driver IC 300. Which part is to be integrated may be determined according to the circuit configuration of the on signal generation circuit 240, and may be determined so that the number of wires between the converter controller 230 and the current driver IC 300 is reduced. As shown in FIG. 21, when the entire on signal generation circuit 240 is integrated in the current driver IC 300, the wiring between the converter controller 230 and the current driver IC 300 is one through which the on signal S ON propagates. Alternatively, in the case of adopting the ON signal generation circuit 240G of FIG. 6, if the minimum value circuit 256 is integrated in the current driver IC 300, the wiring between the converter controller 230 and the current driver IC 300 is a single line through which the minimum voltage V MIN propagates. It becomes.
  • FIG. 22 is an operation waveform diagram of the current driver IC 300.
  • the microcomputer 114 has to update the control data D 1 ⁇ D N for indicating the duty ratio every second time interval T 2.
  • the microcomputer 114 with high processing power and hence expensive is required.
  • a problem of noise occurs.
  • the processing speed required of the microcomputer 114 can be lowered because the speed at which the microcomputer 114 should update the control data D 1 to D N is reduced.
  • the communication speed between the microcomputer 114 and the current driver IC 300 can be lowered, the problem of noise can be solved.
  • First time interval T 1 is preferably set to be changed. In situations change is small duty ratio, and by taking longer first time interval T 1, it is possible to reduce the data traffic, power consumption, noise may be suppressed.
  • the duty ratio is changed linearly in FIG. 22, it may be changed according to a curve such as a quadratic function or an exponential function.
  • a curve such as a quadratic function or an exponential function.
  • a plurality of semiconductor light sources 102_1 to 102_N may be integrated on one semiconductor chip (die) 402. Furthermore, the semiconductor chip 402 and the current driver IC 300 may be housed in one package and modularized.
  • FIG. 23 is a plan view and a cross-sectional view of the driver integrated light source 400.
  • a plurality of semiconductor light sources 102 are formed in a matrix.
  • back surface electrodes A and K corresponding to the anode electrode and the cathode electrode of each of the plurality of semiconductor light sources 102 are provided.
  • connection relationship of one semiconductor light source 102_1 is shown.
  • the semiconductor chip 402 and the current driver IC 300 are mechanically joined and electrically connected.
  • a surface electrode 410 LED1 to LEDN in FIG. 21
  • a surface electrode connected to the anode electrode A of each of the plurality of semiconductor light sources 102. 412 is provided on the surface of the current driver IC 300.
  • the front surface electrode 412 is connected to a bump (or pad) 414 provided on the package substrate on the back surface of the current driver IC 300.
  • An interposer (not shown) may be inserted between the semiconductor chip 402 and the current driver IC 300.
  • the type of package of the driver integrated light source 400 is not limited, and may be a ball grid array (BGA), a pin grid array (PGA), a land grid array (LGA), a quad flat package (QFP), or the like.
  • BGA ball grid array
  • PGA pin grid array
  • LGA land grid array
  • QFP quad flat package
  • the semiconductor light source 102 and the current driver IC 300 are separate modules, measures such as attaching a heat dissipation structure to each module may be taken.
  • measures such as attaching a heat dissipation structure to each module may be taken.
  • the driver integrated light source 400 as shown in FIG. 23 it is necessary to dissipate heat generated by the current source 210 to the heat generation of the light source 102. Therefore, a very large heat dissipation structure may be required.
  • the lighting circuit 200 according to the embodiment it is possible to suppress the amount of heat generation of the current source 210, so it is possible to make the heat dissipation structure to be attached to the driver integrated light source 400 smaller.
  • the current source 210 is configured as a sink type and connected to the cathode of the semiconductor light source 102, but it is not limited thereto.
  • FIG. 24 is a circuit diagram of a vehicular lamp 100 according to the first modification. In this modification, the cathodes of the semiconductor light sources 102 are connected in common, and the source-type current sources 210 are connected to the anode side of the semiconductor light sources 102.
  • the current source 210 may be configured such that the configurations of FIGS. 13 (a) to 13 (c) are reversed, and the transistor polarity (P and N) is replaced as necessary.
  • Converter controller 230 controls switching converter 220 based on the relationship between voltage V CS across current source 210 and bottom limit voltage V BOTTOM .
  • any of the transistors, including the series transistor M 2 may be constituted by a bipolar transistor.
  • the gate may be replaced with the base, the source with the emitter, and the drain with the collector.
  • Modification 3 Although in the embodiment the switching transistors M 1 and P-channel MOSFET, and may be used N-channel MOSFET. In this case, a bootstrap circuit may be added. Instead of the MOSFET, an IGBT (Insulated Gate Bipolar Transistor) or a bipolar transistor may be used.
  • IGBT Insulated Gate Bipolar Transistor
  • the lighting circuit configured to be able to light a plurality of semiconductor light sources.
  • the lighting circuit is a plurality of current sources each to be connected in series with the corresponding semiconductor light source, each based on a series transistor and a sense resistor provided in series with the corresponding semiconductor light source, and a voltage drop of the sense resistor.
  • a switching circuit for supplying a drive voltage across each of a plurality of current sources and a plurality of series connected circuits formed by a plurality of semiconductor light sources and a plurality of current sources, including an error amplifier for adjusting the voltage of control electrodes of series transistors.
  • a converter and a converter controller of a ripple control system are provided. The converter controller turns on the switching transistor of the switching converter in response to the output voltage of the error amplifier meeting a predetermined turn-on condition in any of the plurality of current sources.
  • the series transistor is N-type, and the converter controller may turn on the switching transistor when the output voltage of the error amplifier reaches a predetermined threshold in any of the plurality of current sources.
  • the series transistor is N-type, and the converter controller turns on the switching transistor in response to the maximum value of the output voltages of the plurality of error amplifiers included in the plurality of semiconductor light sources meeting the predetermined turn-on condition. Good.
  • the series transistor is P-type, and the converter controller may turn on the switching transistor when the output voltage of the error amplifier falls below a predetermined threshold in any of the plurality of current sources.
  • the converter controller may turn off the switching transistor in response to the drive voltage reaching the upper limit voltage.
  • the upper limit voltage may be adjusted by feedback so that the switching frequency of the switching transistor approaches a target value.
  • the converter controller may turn off the switching transistor after the on time has elapsed after turning on the switching transistor.
  • the on time may be adjusted by feedback such that the switching frequency of the switching transistor approaches a target value.
  • the plurality of semiconductor light sources and the plurality of current sources may be modularized.
  • the modularization of the semiconductor light source and the current source further increases the demand for reducing heat generation.
  • the effect of heat generation reduction by introducing hysteresis control based on the output voltage of the error amplifier is particularly effective when modularized.
  • the lighting circuit can be provided in a vehicular lamp.
  • the current driver circuit for driving a plurality of semiconductor light sources.
  • the current driver circuit is configured to be able to turn on and off independently according to the PWM signal, and to be connected in series with the corresponding semiconductor light source, and from the external processor and the first time interval
  • An interface circuit for receiving a plurality of control data for instructing on / off duty ratios of a plurality of current sources, and a dimming pulse generator for generating a plurality of PWM signals for the plurality of current sources,
  • the duty ratio of each of the PWM signals includes a dimming pulse generator which gradually changes from the value before updating of the corresponding control data to the value after updating at a second time interval shorter than the first time interval.
  • the duty ratio of each of the plurality of PWM signals may instantaneously change from the value before update of the corresponding control data to the value after update according to the setting. For example, when used for a variable light distribution lamp, there may occur a situation where it is desired to instantly turn off or dim the semiconductor light source that illuminates a certain place in order to prevent glare. This feature is useful in such situations.
  • the plurality of current sources are respectively a series transistor and a sense resistor provided in series with the corresponding semiconductor light source, an error amplifier for adjusting the voltage of the control electrode of the series transistor based on the voltage drop of the sense resistor, and a gate of the series transistor And a PWM switch provided between the sources.
  • FIG. 25 is a block diagram of a lamp system 1 including the vehicle lamp 100 according to the sixth embodiment.
  • the lamp system 1 includes a battery 2, a vehicle ECU (Electronic Control Unit) 4, and a vehicle lamp 100.
  • the vehicle lamp 100 is a light distribution variable headlamp having an ADB function, and forms a light distribution according to a control signal from the vehicle ECU 4.
  • the vehicular lamp 100 includes a plurality of (N ⁇ 2) semiconductor light sources 102_1 to 102_N, a lamp ECU 110, and a lighting circuit 200.
  • the semiconductor light source 102 an LED is preferably used, but other light emitting elements such as LD and organic EL may be used.
  • Each semiconductor light source 102 may include a plurality of light emitting elements connected in series and / or in parallel.
  • the number of channels N is not particularly limited and may be one.
  • the lamp ECU 110 includes a switch 112 and a microcomputer 114.
  • the microcomputer (processor) 114 is connected to the vehicle ECU 4 via a bus such as a controller area network (CAN) or a local interconnect network (LIN), and can receive an on / off instruction and other information.
  • the microcomputer 114 turns on the switch 112 in response to the lighting instruction from the vehicle ECU 4.
  • the power supply voltage (battery voltage V BAT ) from the battery 2 is supplied to the lighting circuit 200.
  • the microcomputer 114 controls the lighting circuit 200 in response to a control signal instructing a light distribution pattern from the vehicle ECU 4.
  • the microcomputer 114 may receive information indicating the condition ahead of the vehicle from the vehicle ECU 4 and may generate a light distribution pattern by itself based on this information.
  • the lighting circuit 200 supplies drive currents I LED1 to I LEDN to the plurality of semiconductor light sources 102_1 to 102_N so as to obtain a desired light distribution pattern.
  • the lighting circuit 200 includes a plurality of current sources 210_1 to 210_N, a switching converter 220, and a converter controller 230.
  • the current source 210 comprises a series transistor M 2 , a sense resistor R S and an error amplifier 212. Series transistor M 2 and the sense resistor R S are provided in series on the path of the driving current I LEDi.
  • the error amplifier 212 adjusts the voltage V G of the control electrode (in this example, the gate) of the series transistor M 2 so that the voltage drop V CS of the sense resistor R S approaches the target voltage V ADIM .
  • series transistor M 2 is a MOS transistor of N-type (N-channel), one input of the error amplifier 212 (non-inverting input terminal), reference voltage V ADIM is, the other input (inverting The voltage V CS (voltage drop of the sense resistor R S ) of the connection node of the series transistor M 2 and the sense resistor R S is input to the input terminal).
  • the current source 210 further includes a switch (dimmer switch) 214 for PWM dimming.
  • the dimming switch 214 is controlled by a PWM signal S PWM generated by the light distribution controller 116.
  • S PWM generated by the light distribution controller 116.
  • the dimming switch 214 is off, the drive current I LED flows through the current source 210.
  • Dimmer switch 214 is turned on, series transistor M 2 is turned off, the drive current I LED is cut off.
  • the semiconductor light source 102 is subjected to PWM dimming by switching the dimming switch 214 at a high speed at a PWM frequency of 60 Hz or more (preferably, about 200 to 300 Hz) and adjusting its duty ratio.
  • Switching converter 220 supplies drive voltage V OUT across the series connection circuit of semiconductor light source 102 and current source 210.
  • the switching converter 220 is a buck converter, and includes a switching transistor M 1 , a rectifying diode D 1 , an inductor L 1 , and an output capacitor C 1 .
  • Converter controller 230 controls switching converter 220 by a ripple control method. More specifically, converter controller 230 generates the turn-on timing of switching transistor M 1 based on the output voltage of error amplifier 212 (ie, the gate voltage of series transistor M 2 ) V G. Specifically, in response to the output voltage V G of the error amplifier 212 satisfies a predetermined turn-on condition, transition the control pulses S 1 to ON level (low), turning on the switching transistor M 1.
  • the converter controller 230 the output voltage V G1 of the error amplifier 212 exceeds a predetermined threshold V TH, to turn on the switching transistor M 1.
  • the vehicular lamp 100 is configured of multiple channels, and gate voltages V G1 to V GN of all channels are monitored.
  • Converter controller 230 turns on switching transistor M 1 when any of the plurality of current sources 210 satisfies the above-described turn-on condition. More specifically, during the off period of the switching transistor M 1, the gate voltage V Gj of a j-th channel exceeds a threshold value V TH, the converter controller 230 turns on the switching transistor M 1.
  • the converter controller 230 when a predetermined turn-off condition is satisfied, shifts the control pulses S 1 off level (high level), turning off the switching transistor M 1.
  • the turn-off condition may be that the output voltage V OUT of switching converter 220 has reached a predetermined upper limit voltage V UPPER .
  • FIG. 26 is an operation waveform diagram of the vehicle lamp 100 of FIG. Figure 27 is a diagram schematically showing a transition of the operating point of the MOSFET of IV characteristics and series transistor M 2.
  • N 3 for ease of understanding.
  • element variations of the plurality of current sources 210_1 to 210_N can be ignored.
  • V F1 > V F2 > V F3 holds because of the element variation of the semiconductor light source 102.
  • PWM dimming is not performed to facilitate understanding.
  • load current I OUT which is the sum of drive currents I LED1 to I LED3 discharges output capacitor C 1 of switching converter 220, and output voltage V OUT changes with time. It will decline.
  • the output capacitor C 1 is charged or discharged by the difference between the coil current I L flowing through the inductor L 1 and the load current I OUT , so increase or decrease of the output voltage V OUT and turning on / off of the switching transistor M 1 Do not necessarily coincide on the time axis.
  • V LED1 V OUT- V F1
  • V LED2 V OUT- V F2
  • V LED3 V OUT- V F3
  • V LED1 to V LED3 fluctuate while keeping the potential difference with the output voltage V OUT constant. Because the forward voltage V F1 of the first channel is the largest, the cathode voltage V LED1 of the first channel is the lowest.
  • the drain-source voltage V DS of the series transistor M 2 is a voltage obtained by subtracting the voltage drop V CS of the sense resistor R S from the cathode voltage V LED .
  • V DS1 V LED1- V CS1
  • V DS2 V LED2 -V CS2
  • V DS3 V LED3- V CS3
  • Series transistor M 2 is to operate in principally the saturation region may be designed element size.
  • the target current I LED (REF) flows independently of the drain-source voltage V DS . That in the saturation region, the gate voltage V G1 is taking feedback so to V 0 by the error amplifier 212.
  • the operating point moves along arrow (i) in FIG. 27 as the output voltage V OUT decreases.
  • the decrease in the drive current I LED appears as a decrease in the detection voltage V CS1 .
  • the decrease of the minute detection voltage V CS1 is shown enlarged.
  • the above is the operation of the lighting circuit 200.
  • the lighting circuit 200 it is possible to set the operating point of the series transistor M 2, in the vicinity of the boundary between the linear region and a saturation region. As a result, it is possible to reduce the drain-source voltage V DS of the series transistor M 2, it is possible to reduce wasteful power consumption in the series transistor M 2.
  • the present invention is understood as the block diagram or the circuit diagram of FIG. 25 or extends to various devices, circuits and methods derived from the above description, and is not limited to a specific configuration.
  • FIG. 25 the block diagram or the circuit diagram of FIG. 25 or extends to various devices, circuits and methods derived from the above description, and is not limited to a specific configuration.
  • FIG. 28 is a circuit diagram of a converter controller 230A according to Embodiment 6.1.
  • the converter controller 230A in response to the maximum value of the output voltage V G1 ⁇ V GN of the error amplifier 212 of the plurality of channels satisfies a predetermined turn-on condition (i.e. it exceeds the threshold voltage V TH) , to turn on the switching transistor M 1.
  • a predetermined turn-on condition i.e. it exceeds the threshold voltage V TH
  • the ON signal generating circuit 240A based on the plurality of gate voltages V G1 ⁇ V GN, generates an on signal S ON to indicate the timing of the turn-on of the switching transistor M 1.
  • the on signal generation circuit 240A includes a maximum value circuit 242 and a comparator 244.
  • the maximum value circuit 242 generates a voltage corresponding to the maximum value of the plurality of gate voltages V G1 to V GN .
  • Maximum value circuit 242 can be formed of, for example, a diode OR circuit.
  • the output voltage V G ′ of the diode OR circuit is a voltage V f lower than the largest one of the plurality of gate voltages V G1 to V GN .
  • Vf is the forward voltage of the diode.
  • the comparator 244 compares the output voltage of the maximum value circuit 242 with the threshold value V TH '.
  • V TH ′ may be set lower than the above-described threshold voltage V TH by Vf.
  • the ON signal S ON which is the output of the comparator 244 is asserted (eg, high) when V G ′ exceeds V TH ′, in other words, when the maximum gate voltage V G exceeds the threshold V TH .
  • the OFF signal generating circuit 260A generates an off signal S OFF that defines the timing to turn off the switching transistor M 1.
  • the voltage divider circuit 261 divides the output voltage V OUT and scales it to an appropriate voltage level.
  • the comparator 262 compares the divided output voltage V OUT 'with a threshold V UPPER ' obtained by scaling the upper limit voltage V UPPER , and asserts the off signal S OFF when V OUT > V UPPER is detected (for example, High)
  • Logic circuit 234 is, for example, an SR flip-flop, and causes output Q to transition to an on level (for example, high) in response to the assertion of on signal S ON , and outputs Q in response to the assertion of off signal S OFF. Transition to the off level (for example, low). It should be noted that, in order to make the switching converter safer (ie, the off state of switching transistor M 1 ) when the assertion of the on signal S ON and the off signal S OFF occur simultaneously, the logic circuit 234 is reset prioritized. It is preferable to use a flip flop.
  • the driver 232 drives the switching transistor M 1 in accordance with the output Q of the logic circuit 234.
  • the switching transistor M 1 as shown in FIG. 25 is a P-channel MOSFET, and the control pulse S 1 is the output of the driver 232, a low voltage when the output Q is on level (V BAT -V G), the output Q is At the off level, it becomes a high voltage (V BAT ).
  • the circuit area can be made smaller than that of the sixth embodiment.
  • FIG. 29 is a circuit diagram of a converter controller 230B according to Embodiment 6.2.
  • the on signal generation circuit 240 B includes a plurality of comparators 246 _ 1 to 246 _N and a logic gate 248.
  • the comparator 246 — i compares the corresponding gate voltage V Gi with the threshold voltage V TH .
  • the logic gate 248 logically operates the outputs of the plurality of comparators 246_1 to 246_N to generate an on signal S ON .
  • logic gate 248 can use an OR gate.
  • an LW band of 150 kHz to 280 kHz, an AM band of 510 kHz to 1710 kHz, and an SW band of 2.8 MHz to 23 MHz are avoided as electromagnetic noise. Therefore, the switching frequency of the switching transistor M 1 is normally to be stabilized between about 300kHz ⁇ 450 kHz between the LW band and the AM band is desirable.
  • FIG. 30 is a circuit diagram of a converter controller 230C according to Embodiment 6.3.
  • the switching frequency of the switching transistor M 1 becomes constant, the upper limit voltage V UPPER is feedback controlled.
  • the off signal generation circuit 260 C includes a frequency detection circuit 264 and an error amplifier 266 in addition to the comparator 262.
  • Frequency detection circuit 264 monitors the output Q or control pulses S 1 of the logic circuit 234, generates a frequency detection signal V FREQ showing switching frequency.
  • the error amplifier 266 amplifies an error between the frequency detection signal V FREQ and a reference voltage V FREQ (REF) that defines a target value of the switching frequency, and generates an upper limit voltage V UPPER according to the error.
  • REF reference voltage
  • the noise countermeasure can be facilitated.
  • FIG. 31 is a circuit diagram of a converter controller 230D according to Embodiment 6.4.
  • Converter controller 230D after turning on the switching transistors M 1, may be turned off the switching transistor M 1 after the on-time T ON elapses. That is, it may be set as the turn-off condition that the on time T ON has elapsed from the turn-off of the switching transistor M 1 .
  • the off signal generation circuit 260D includes a timer circuit 268.
  • the timer circuit 268 is responsive to the ON signal S ON, and starts measuring the predetermined on-time T ON, asserts the off signal S OFF after the elapse of the on-time T ON (e.g. high) is.
  • the timer circuit 268 may be configured by, for example, a monostable multivibrator (one-shot pulse generator), or may be configured by a digital counter or an analog timer.
  • the timer circuit 268, to detect the timing of the turn switching transistors M 1, instead of the ON signal S ON, may be input the output Q and the control pulses S 1 of the logic circuit 234.
  • Example 6.5 32 is a circuit diagram of a converter controller 230F according to Embodiment 6.5.
  • Converter controller 230F similarly as in Example 6.4, after turning on the switching transistors M 1, turning off the switching transistor M 1 after the on-time T ON elapses.
  • the OR gate 241 corresponds to an on signal generation circuit, and generates an on signal S ON .
  • the timer circuit 268 is a monostable multivibrator or the like, generates a predetermined on time T ON from the assertion of the on signal S ON , and generates a pulse signal SP that goes high, and supplies the pulse signal SP to the driver 232.
  • FIG. 33 is a circuit diagram of a converter controller 230E according to Embodiment 6.6.
  • OFF signal generating circuit 260E as the switching frequency is constant, the feedback control of the on-time T ON.
  • Variable timer circuit 270 between the assertion of the ON signal S ON ON time T ON, a monostable multivibrator for generating a pulse signal S P which becomes high level, the on-time T ON in response to the control voltage V CTRL Variable configuration.
  • variable timer circuit 270 can include a capacitor, a current source charging the capacitor, and a comparator comparing the voltage of the capacitor to a threshold.
  • the variable timer circuit 270 is configured such that at least one of the current amount generated by the current source and the threshold value is variably set according to the control voltage V CTRL .
  • Frequency detection circuit 272 monitors the output Q or control pulses S 1 of the logic circuit 234, generates a frequency detection signal V FREQ showing switching frequency.
  • the error amplifier 274 amplifies an error between the frequency detection signal V FREQ and a reference voltage V FREQ (REF) that defines a target value of the switching frequency, and generates a control voltage V CTRL according to the error.
  • REF reference voltage
  • the noise countermeasure can be facilitated.
  • FIG. 34 is a specific circuit diagram of converter controller 230E of FIG. The operation of the frequency detection circuit 272 will be described.
  • the capacitor C 11 and the resistor R 11 are high pass filters, and can be understood as a differentiation circuit that differentiates the pulse signal S P ′ (or control pulse S 1 ) output from the OR gate 231, and detects the edge of the pulse signal S P ′ It can also be understood as an edge detection circuit.
  • Transistor Tr 11 when the output of the high-pass filter exceeds a threshold value, i.e. turns the positive edge of the pulse signal S P 'is generated to discharge the capacitor C 12.
  • Transistor Tr 11 is OFF period, the capacitor C 12 is charged through the resistor R 12.
  • the voltage V C12 of the capacitor C 12 is a ramp wave synchronized with the pulse signal S P ′, and the time length of the slope portion, and hence the peak value, changes in accordance with the period of the pulse signal S P ′.
  • the transistors Tr 12 and Tr 13 , the resistors R 13 and R 14 , and the capacitor C 13 are peak hold circuits, and hold the peak value of the voltage V C12 of the capacitor C 12 .
  • the output V FREQ of the peak hold circuit has a correlation with the period of the pulse signal S P ′, in other words, the frequency.
  • the comparator COMP1 compares the frequency detection signal V FREQ with the reference signal V FREQ (REF) indicating the target frequency.
  • Resistor R 15 and capacitor C 14 is a low-pass filter, the output of the comparator COMP1 is smoothed, to generate the control voltage V CTRL.
  • the control signal V CTRL is output via the buffer BUF1.
  • the variable timer circuit 270 will be described.
  • the on signal S ON is inverted by the inverter 273.
  • the inverted ON signal #S ON falls below the threshold value V TH1, in other words an ON signal S ON is high, the output of comparator COMP2 becomes high, flip-flop SRFF is set, the pulse signal S P is high .
  • Pulse signal S P is high period, the transistor M 21 is turned off.
  • current source 271 generates a variable current I VAR in response to the control voltage V CTRL, to charge the capacitor C 15.
  • the output of the comparator COMP 3 becomes high, the flip flop SRFF is reset, and the pulse signal S P transitions to low.
  • the transistor M 21 is turned on, the voltage V C15 of the capacitor C 15 is initialized.
  • converter controller 230 a turn-off condition, may be utilized series transistor M 2 of the drain voltage of each channel (cathode voltage of the semiconductor light source 102).
  • the turn-off condition may be that one of the largest (or the smallest) of the cathode voltages of the semiconductor light sources 102 of a plurality of channels has reached the upper limit voltage.
  • FIG. 35 is a circuit diagram of a current source 210 according to modification 6.2.
  • Dimmer switch 214 may be provided between the gate and the source of the series transistor M 2.
  • any of the transistors, including the series transistor M 2 may be constituted by a bipolar transistor.
  • the gate may be replaced with the base, the source with the emitter, and the drain with the collector.
  • the switching transistor M 1 in the sixth embodiment is P-channel MOSFET, and may be used N-channel MOSFET. In this case, a bootstrap circuit may be added. Instead of the MOSFET, an IGBT (Insulated Gate Bipolar Transistor) or a bipolar transistor may be used.
  • IGBT Insulated Gate Bipolar Transistor
  • the output voltage of the error amplifier 212 (the gate voltage V G of the series transistor M 2 ) is directly monitored to determine whether the output voltage of the error amplifier 212 satisfies the turn-on condition.
  • the invention is not limited thereto.
  • a node inside the error amplifier 212, the generated voltage of which is correlated with the output voltage may be monitored, and the output voltage of the error amplifier 212 may be monitored indirectly.
  • the rapid change of the output voltage (gate voltage V G ) of the error amplifier 212 is detected using the comparator 244, but the present invention is not limited to this.
  • 36 (a) to 36 (c) are circuit diagrams of modified examples of the on signal generating circuit 240.
  • FIG. 36A a MOSFET or a bipolar transistor may be used as the voltage comparison means in place of the comparator 244 of FIG.
  • the output voltage V G 'of the maximum value circuit 242 is resistance-divided by the resistance voltage division circuit 250, and the divided voltage V G "is input to the gate (or base) of the transistor 252, depending on the transistor on / off
  • the on signal S ON may be generated.
  • FIG. 36 (b) is a modification of FIG. 29, in which the comparators 244 of the respective channels are omitted, and instead resistive voltage divider circuits 254_1 to 254_N having appropriate voltage division ratios are provided.
  • the gate voltages V G1 ′ to V GN ′ after voltage division are input to the logic gate 256.
  • the on signal S ON is asserted.
  • FIG. 36 (c) is a circuit diagram in which the logic gate of FIG. 36 (b) is a NOR gate.
  • the seventh embodiment relates to a current driver.
  • the plurality of current sources 210 can be integrated into one semiconductor chip.
  • this is referred to as a current driver IC (Integrated Circuit).
  • FIG. 37 is a circuit diagram of a current driver IC 300 and its peripheral circuits according to the seventh embodiment.
  • the current driver IC 300 includes an interface circuit 320 and a dimming pulse generator 330 in addition to the plurality of current sources 310_1 to 310_N.
  • each of the plurality of current sources 310_1 to 310_N is configured to be able to be independently turned on / off according to the PWM signals S PWM1 to S PWMN .
  • the current sources 310_1 to 310_N are connected in series with the corresponding semiconductor light sources 102_1 to 102N through the cathode pins LED1 to LEDN.
  • the interface circuit 320 receives a plurality of control data D 1 to D N from an external microcomputer (processor) 114.
  • the type of interface is not particularly limited, for example, SPI (Serial Peripheral Interface) or I 2 C interface can be used.
  • a plurality of control data D 1 ⁇ D N are on the plurality of current sources 310_1 ⁇ 310_n, is intended to instruct the duty ratio of the off is updated at the first time interval T 1.
  • the first time interval T 1 is about 20 ms ⁇ 200 ms, for example, 100 ms.
  • the dimming pulse generator 330 generates a plurality of PWM signals S PWM1 to S PWMN for the plurality of current sources 310_1 to 310_N based on the plurality of control data D 1 to D N.
  • the plurality of PWM signals S PWM1 to S PWMN are generated by the microcomputer 114.
  • the function of generating the plurality of PWM signals S PWM1 to S PWMN is a current It is built in the driver IC 300.
  • the duty ratio of the i-th PWM signal S PWMi is a first time interval T 1 is shorter than the second time interval T 2, is gradually changing towards the updated values from the value before updating of the corresponding control data D i (It is called gradual change mode).
  • Second time interval T 2 are, about 1 ms ⁇ 10 ms, for example, 5 ms.
  • the dimming pulse generator 330 can support the non-grading mode in addition to the grading mode.
  • the duty ratio of the i-th PWM signal S PWMi can be instantaneously changed from the value before updating of the corresponding control data D i to the value after updating.
  • the non-gradient change mode and the non-gradient change mode be dynamically changeable based on settings from the microcomputer 114.
  • each channel each dimmer pulse
  • a non-gradual change mode and gradual change mode is individually specifiable
  • setting data for specifying a mode may be associated with the control data D i.
  • FIG. 38 is an operation waveform diagram of the current driver IC 300 of FIG.
  • the microcomputer 114 has to update the control data D 1 ⁇ D N for indicating the duty ratio every second time interval T 2.
  • the microcomputer 114 with high processing power and hence expensive is required.
  • a problem of noise occurs.
  • the processing speed required of the microcomputer 114 can be lowered because the speed at which the microcomputer 114 should update the control data D 1 to D N is reduced.
  • the communication speed between the microcomputer 114 and the current driver IC 300 can be lowered, the problem of noise can be solved.
  • First time interval T 1 is preferably set to be changed. In situations change is small duty ratio, and by taking longer first time interval T 1, it is possible to reduce the data traffic, power consumption, noise may be suppressed.
  • the duty ratio is changed linearly in FIG. 38, it may be changed according to a curve such as a quadratic function or an exponential function.
  • a curve such as a quadratic function or an exponential function.
  • a plurality of semiconductor light sources 102_1 to 102_N may be integrated on one semiconductor chip (die) 402. Furthermore, the semiconductor chip 402 and the current driver IC 300 may be housed in one package and modularized.
  • FIG. 39 is a plan view and a cross-sectional view of the driver integrated light source 400.
  • a plurality of semiconductor light sources 102 are formed in a matrix.
  • back surface electrodes A and K corresponding to the anode electrode and the cathode electrode of each of the plurality of semiconductor light sources 102 are provided.
  • the connection relationship of one semiconductor light source 102_1 is shown enlarged.
  • the semiconductor chip 402 and the current driver IC 300 are mechanically joined and electrically connected.
  • surface electrodes 410 LED1 to LEDN in FIG. 37
  • surface electrodes connected to the anode electrodes A of the plurality of semiconductor light sources 102. 412 is provided on the surface of the current driver IC 300.
  • the front surface electrode 412 is connected to a bump (or pad) 414 provided on the package substrate on the back surface of the current driver IC 300.
  • An interposer (not shown) may be inserted between the semiconductor chip 402 and the current driver IC 300.
  • the type of package of the driver integrated light source 400 is not limited, and may be a ball grid array (BGA), a pin grid array (PGA), a land grid array (LGA), a quad flat package (QFP), or the like.
  • BGA ball grid array
  • PGA pin grid array
  • LGA land grid array
  • QFP quad flat package
  • the semiconductor light source 102 and the current driver IC 300 are separate modules, measures such as attaching a heat dissipation structure to each module may be taken.
  • measures such as attaching a heat dissipation structure to each module may be taken.
  • the driver integrated light source 400 as shown in FIG. 39, it is necessary to dissipate heat generated by the current driver 210 to the heat generation of the light source 102. Therefore, a very large heat dissipation structure may be required.
  • the lighting circuit 200 according to the embodiment it is possible to suppress the amount of heat generation of the current source 210, so it is possible to make the heat dissipation structure to be attached to the driver integrated light source 400 smaller.
  • the switching frequency may decrease in a light load state where the number of light sources 102 to be lit is reduced.
  • FIGS. 40 (a) to 40 (c) are diagrams for explaining the reduction of the switching frequency in the light load state.
  • the frequency is stabilized by feedback control of the on time T ON or the upper limit V UPPER of the output voltage V OUT .
  • a pulse width of the control pulses S 1 can not be shorter than the phrase minimum pulse width.
  • the pulse width of the control pulses S 1 is fixed to the minimum pulse width (FIG. 37 (c)).
  • the slope of the downward slope of the output voltage V OUT depends on the load current, that is, the number of semiconductor light sources 102 in the lit state. When the number of lights is small, the slope of the down slope becomes smaller and the switching frequency becomes lower. Therefore, even when the frequency stabilization control is performed, the switching frequency may enter the LW band.
  • FIG. 41 is a block diagram of a vehicular lamp 100X according to an eighth embodiment.
  • the vehicular lamp 100X includes a frequency setting circuit 290 in addition to the vehicular lamp 100 of FIG.
  • converter controller 230 has a frequency stabilization function, and therefore can be configured of converter controllers 230C and 230E of FIGS. 30 and 33.
  • the frequency setting circuit 290 changes the target frequency in accordance with the number (the number of lightings) of the plurality of current sources 210 that are turned on. More specifically, if the number of ONs becomes smaller than a threshold value, it is determined as a light load condition, and the target frequency is set to another frequency lower than the original target frequency and not included in the electromagnetic noise band. Do.
  • the target frequency in the normal state is set between about 300 kHz and 450 kHz between the LW band and the AM band
  • the target frequency in the light load state is a frequency band lower than the LW band and higher than the audible band It is good to set to a zone (for example, 100 kHz).
  • frequency setting circuit 290 sets reference voltage V FREQ (REF) in a state where the number of lighting is lower than a certain threshold. You can lower the reference voltage V FREQ (REF) in a state where the number of lighting is lower than a certain threshold. You can lower the reference voltage V FREQ (REF) in a state where the number of lighting is lower than a certain threshold. You can lower the reference voltage V FREQ (REF) in a state where the number of lighting is lower than a certain threshold. You can lower the
  • the frequency decreases in the light load state, it can be removed from the frequency to be avoided as electromagnetic noise.
  • FIG. 42 is a block diagram of a vehicular lamp 100Y according to a ninth embodiment.
  • the vehicle lamp 100Y includes a dummy load 292 and a dummy load control circuit 294 in addition to the vehicle lamp 100 of FIG.
  • Dummy load 292 is connected to the output of the switching converter 220, the enable state, and discharge the capacitor C 1 of the switching converter 220, reduces the output voltage V OUT.
  • the dummy load control circuit 294 controls enabling / disabling of the dummy load 292 based on the number of ons of the plurality of current sources.
  • Dummy load 292 includes a switch of a transistor provided between the output of switching converter 220 and the ground.
  • the dummy load control circuit 294 asserts (for example, high) the enable signal EN to turn on the switch of the dummy load 292 after a predetermined time ⁇ has elapsed from the turning off of the switching transistor M1.
  • FIG. 43 is an operation waveform diagram of the vehicle lamp 100Y of FIG.
  • the enable signal EN is asserted cycle by cycle, and the output voltage V OUT instantaneously decreases.
  • the output voltage V OUT control pulse S 1 and decreases to a voltage level corresponding to the bottom limit voltage V BOTTOM becomes high. That is, the upper limit of the off time T OFF of the switching transistor M 1 is limited by the predetermined time ⁇ . Thereby, it is possible to suppress the decrease in switching frequency in the light load state.
  • the dummy load 292 may be a constant current source capable of turning on and off, or may be a combination of a switch and a resistor.
  • FIG. 44 is a circuit diagram of a lighting circuit 200Z according to a tenth embodiment.
  • Lighting circuit 200Z is the drive voltage V OUT exceeds a predetermined threshold V TH, to force off the switching transistor M 1.
  • the lighting circuit 200Z includes resistors R 31 and R 32 and a voltage comparator 238.
  • the voltage comparator 238 compares the drive voltage V OUT 'divided by the resistors R 31 and R 32 with the threshold value V TH ' to detect an overvoltage state of the drive voltage V OUT .
  • the converter controller 230P includes a pulse modulator 235, a logic gate 233, and a driver 232.
  • the pulse modulator 235 is a part of the converter controllers 230A to 230E of FIGS. 28 to 34 except for the driver 232, and generates a control pulse S 1 ′.
  • the level of the control pulse S 1 ' is forcedly set to the level at which the switching transistor M1 is turned off.
  • the switching transistor M1 is an N-channel MOSFET, S 1 is turned off when the signal is low.
  • the output S 2 of the voltage comparator 238 is low when V OUT '> V TH ', and the logic gate 233 is an AND gate.
  • power consumption can be reduced by configuring the current source 210 using a low on-resistance transistor.
  • the transistor of the current source for example, FIG. 36 (a) , possible to prevent the transistor M 2, over-voltage transistor
  • the output side of the current mirror circuit 216 of FIG. 36 (c) is applied in (b).
  • FIG. 45 is a circuit diagram of a vehicular lamp 100 according to a modification.
  • the cathodes of the semiconductor light sources 102 are connected in common, and the source-type current sources 210 are connected to the anode side of the semiconductor light sources 102.
  • the current source 210 may be configured such that the configuration of FIG. 25 (or FIG. 35) is reversed and the transistor polarities (P and N) are replaced as necessary.
  • the present invention relates to a lighting circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

点灯回路(200)は、複数の半導体光源(102)を点灯する。複数の電流源(210_1~210_N)は、それぞれが対応する半導体光源(102)と直列に接続される。スイッチングコンバータ(220)は、複数の半導体光源(102)と複数の電流源(210)が形成する複数の直列接続回路それぞれの両端間に駆動電圧(VOUT)を供給する。リップル制御方式のコンバータコントローラ(230)は、複数の電流源(210)のいずれかの両端間電圧(VLED)が、所定のボトムリミット電圧(VBOTTOM)まで低下したことに応答して、スイッチングコンバータ(220)のスイッチングトランジスタ(M1)をターンオンする。

Description

車両用灯具およびその点灯回路、電流ドライバ回路
 本発明は、点灯回路に関する。
 車両用灯具は、一般にロービームとハイビームとを切りかえることが可能である。ロービームは、自車近傍を所定の照度で照明するものであって、対向車や先行車にグレアを与えないよう配光規定が定められており、主に市街地を走行する場合に用いられる。一方、ハイビームは、前方の広範囲および遠方を比較的高い照度で照明するものであり、主に対向車や先行車が少ない道路を高速走行する場合に用いられる。したがって、ハイビームはロービームと比較してより運転者による視認性に優れているが、車両前方に存在する車両の運転者や歩行者にグレアを与えてしまうという問題がある。
 近年、車両の周囲の状態にもとづいて、ハイビームの配光パターンを動的、適応的に制御するADB(Adaptive Driving Beam)が提案されている。ADB技術は、車両の前方の先行車、対向車や歩行者の有無を検出し、車両あるいは歩行者に対応する領域を減光あるいは消灯するなどして、車両あるいは歩行者に与えるグレアを低減するものである。
 図1は、ADB機能を備える灯具システム1001のブロック図である。灯具システム1001は、バッテリ1002、スイッチ1004、スイッチングコンバータ1006、複数の発光ユニット1008_1~1008_Nおよび複数の電流源1010_1~1010_N、コンバータコントローラ1012、配光コントローラ1014を備える。
 複数の発光ユニット1008_1~1008_Nは、LED(発光ダイオード)やLD(レーザダイオード)などの半導体光源であり、車両前方の仮想鉛直スクリーン上の異なる複数の領域に対応付けられる。複数の電流源1010_1~1010_Nは、対応する複数の発光ユニット1008_1~1008_Nと直列に設けられる。i番目(1≦i≦N)の発光ユニット1008_iには、電流源1010_iが生成する駆動電流ILEDiが流れる。
 複数の電流源1010_1~1010_Nは、独立にオン、オフ(あるいは電流量)可能に構成される。配光コントローラ1014は、所望の配光パターンが得られるように、複数の電流源1010_1~1010_Nのオン、オフ(あるいは電流量)を制御する。
 定電圧出力のスイッチングコンバータ1006は、複数の発光ユニット1008_1~1008_Nを期待した輝度で発光するに足る駆動電圧VOUTを生成する。i番目のチャネルに着目する。ある駆動電流ILEDiが流れるときの発光ユニット1008_iの電圧降下(順電圧)をVFiとする。また、電流源1010_iが、当該駆動電流ILEDiを生成するためには、その両端間の電圧がある電圧(以下、飽和電圧と称するVSATi)より大きくなければならない。そうすると、i番目のチャンネルに関して、以下の不等式が成り立っていなければならない。
 VOUT>VFi+VSATi   …(1)
 この関係は、全チャンネルにおいて成り立つ必要がある。
特開2009-012669号公報
 不等式(1)がいかなる状況下でも成り立つようにするためには、出力電圧VOUTをフィードバックの制御対象とし、式(2)に表されるように、マージンを考慮して出力電圧VOUTの目標値VOUT(REF)を高めに設定し、スイッチングコンバータ1006の出力電圧VOUTが目標値VOUT(REF)と一致するようにフィードバック制御をかければよい。
 VOUT(REF)=VF(MERGIN)+VSAT(MERGIN) …(2)
 VF(TYP)は、マージンを付加したVの最大値(もしくは典型値)である。VSAT(MERGIN)は、マージンを付加した飽和電圧VSATである。
 この制御を行うと、飽和電圧VSAT(MERGIN)と実際の飽和電圧VSATの差分が、電流源1010に印加されることになり、無駄な電力損失が発生する。加えて、実際の順電圧Vが、VF(MERGIN)より低い場合には、それらの差分が電流源1010の電圧降下に含まれることになり、無駄な電力損失が発生する。
 車両用灯具では、発光ユニットに非常に大きい電流を流す必要があり、また放熱対策がほかの機器に比べて取りにくいことから、電流源における発熱量を極力低減することが求められる。
 本発明は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、消費電力を低減可能な点灯回路の提供にある。
1. 本発明のある態様の点灯回路は、複数の半導体光源を点灯する点灯回路に関する。点灯回路は、それぞれが対応する半導体光源と直列に接続されるべき複数の電流源と、複数の半導体光源と複数の電流源が形成する複数の直列接続回路それぞれの両端間に駆動電圧を供給するスイッチングコンバータと、リップル制御方式のコンバータコントローラと、を備える。コンバータコントローラは、複数の電流源のいずれかの両端間電圧が、ボトムリミット電圧まで低下したことに応答して、スイッチングコンバータのスイッチングトランジスタをターンオンする。
2. 本発明のある態様は、複数の半導体光源を点灯する点灯回路に関する。点灯回路は、それぞれが対応する半導体光源と直列に接続されるべき複数の電流源であって、それぞれが対応する半導体光源と直列に設けられたシリーズトランジスタおよびセンス抵抗、センス抵抗の電圧降下にもとづいてシリーズトランジスタの制御電極の電圧を調節するエラーアンプを含む、複数の電流源と、複数の半導体光源と複数の電流源が形成する複数の直列接続回路それぞれの両端間に駆動電圧を供給するスイッチングコンバータと、リップル制御方式のコンバータコントローラと、を備える。コンバータコントローラは、複数の電流源のいずれかにおいて、エラーアンプの出力電圧が所定のターンオン条件を満たしたことに応答して、スイッチングコンバータのスイッチングトランジスタをターンオンする。
 本発明の別の態様は、複数の半導体光源を駆動する電流ドライバ回路に関する。電流ドライバ回路は、それぞれが、PWM信号に応じて独立してオン、オフ可能に構成され、対応する半導体光源と直列に接続されるべき複数の電流源と、外部のプロセッサから、第1時間間隔で、複数の電流源のオン、オフのデューティ比を指示する複数の制御データを受信するインタフェース回路と、複数の電流源に対する複数のPWM信号を生成する調光パルス発生器であって、複数のPWM信号それぞれのデューティ比は、第1時間間隔より短い第2時間間隔で、対応する制御データの更新前の値から更新後の値に向けて徐変する調光パルス発生器と、を備える。
 なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明のある態様によれば、消費電力を低減できる。
ADB機能を備える灯具システムのブロック図である。 実施の形態1に係る車両用灯具を備える灯具システムのブロック図である。 図2の車両用灯具の動作波形図である。 図4(a)は、図2の灯具システムにおけるカソード電圧VLEDの波形図であり、図4(b)は比較技術におけるカソード電圧VLEDの波形図である。 実施例1.1に係るコンバータコントローラの回路図である。 実施例1.2に係るコンバータコントローラの回路図である。 実施例1.3に係るコンバータコントローラの回路図である。 実施例1.4に係るコンバータコントローラの回路図である。 実施例1.5に係るコンバータコントローラの回路図である。 実施例1.6に係るコンバータコントローラの回路図である。 図10のコンバータコントローラの具体的な回路図である。 オン信号発生回路の変形例の回路図である。 図13(a)~(c)は、電流源の構成例を示す回路図である。 図14(a)~(c)は、軽負荷状態におけるスイッチング周波数の低下を説明する図である。 実施の形態2に係る車両用灯具のブロック図である。 図15の車両用灯具の動作波形図である。 実施の形態3に係る車両用灯具のブロック図である。 実施の形態4に係る車両用灯具のブロック図である。 図18の車両用灯具の動作波形図である。 実施の形態5に係る点灯回路の回路図である。 実施の形態に係る電流ドライバICおよびその周辺回路の回路図である。 電流ドライバICの動作波形図である。 ドライバ一体化光源の平面図および断面図である。 変形例1に係る車両用灯具の回路図である。 実施の形態6に係る車両用灯具を備える灯具システムのブロック図である。 図25の車両用灯具の動作波形図である。 MOSFETのIV特性およびシリーズトランジスタの動作点の遷移を模式的に示す図である。 実施例6.1に係るコンバータコントローラの回路図である。 実施例6.2に係るコンバータコントローラの回路図である。 実施例6.3に係るコンバータコントローラの回路図である。 実施例6.4に係るコンバータコントローラの回路図である。 実施例6.5に係るコンバータコントローラの回路図である。 実施例6.6に係るコンバータコントローラの回路図である。 図33のコンバータコントローラの具体的な回路図である。 変形例6.2に係る電流源の回路図である。 図36(a)~(c)は、オン信号発生回路の変形例の回路図である。 実施の形態7に係る電流ドライバICおよびその周辺回路の回路図である。 図37の電流ドライバICの動作波形図である。 ドライバ一体化光源の平面図および断面図である。 図40(a)~(c)は、軽負荷状態におけるスイッチング周波数の低下を説明する図である。 実施の形態8に係る車両用灯具のブロック図である。 実施の形態9に係る車両用灯具のブロック図である。 図42の車両用灯具の動作波形図である。 実施の形態10に係る点灯回路の回路図である。 変形例に係る車両用灯具の回路図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
 また本明細書において、電圧信号、電流信号などの電気信号、あるいは抵抗、キャパシタなどの回路素子に付された符号は、必要に応じてそれぞれの電圧値、電流値、あるいは抵抗値、容量値を表すものとする。
(実施の形態1~5の概要)
 本明細書に開示される一実施の形態は、複数の半導体光源を点灯可能に構成される点灯回路に関する。点灯回路は、それぞれが対応する半導体光源と直列に接続されるべき複数の電流源と、複数の半導体光源と複数の電流源が形成する複数の直列接続回路それぞれの両端間に駆動電圧を供給するスイッチングコンバータと、リップル制御方式のコンバータコントローラと、を備える。コンバータコントローラは、複数の電流源のいずれかの両端間電圧が、ボトムリミット電圧まで低下したことに応答して、スイッチングコンバータのスイッチングトランジスタをターンオンする。
 ボトムリミット電圧を、電流源が所定の駆動電流を発生することを保証する最低レベルに規定することで、電流源の電力損失を低減できる。
 コンバータコントローラは、スイッチングトランジスタをターンオンした後、オン時間の経過後にスイッチングトランジスタをターンオフしてもよい。
 オン時間は、スイッチングトランジスタのスイッチング周波数が目標周波数に近づくようにフィードバック制御されてもよい。
 コンバータコントローラは、駆動電圧がアッパーリミット電圧に達したことに応答して、スイッチングトランジスタをターンオフしてもよい。
 アッパーリミット電圧は、スイッチングトランジスタのスイッチング周波数が目標周波数に近づくようにフィードバック制御されてもよい。
 複数の電流源は個別にオン、オフが制御可能であってもよい。ボトムリミット電圧は、複数の電流源のオンの個数が少ないほど増大してもよい。これにより、軽負荷状態において、スイッチング周波数が低くなりすぎるのを防止できる。ボトムリミット電圧を増大させると、電流源の発熱は増えるが、オンとなる電流源の個数は少ないため、トータルでの発熱の増加は問題とならない。
 複数の電流源は個別にオン、オフが制御可能であってもよい。複数の電流源のオンの個数に応じて、目標周波数を変化させてもよい。
 複数の電流源は個別にオン、オフが制御可能であってもよい。点灯回路は、スイッチングコンバータの出力に接続され、複数の電流源のオンの個数に応じてイネーブルとなるダミーロードをさらに備えてもよい。軽負荷状態においてダミーロードを動作させることで、スイッチング周波数の低下を抑制できる。
 ダミーロードは、スイッチングトランジスタのターンオフ後、所定時間の経過後に、駆動電圧を低下させてもよい。この場合、所定時間に応じて、スイッチング周波数を規定できる。
 点灯回路は、駆動電圧が所定のしきい値を超えると、スイッチングトランジスタを強制オフしてもよい。
 複数の半導体光源と複数の電流源はモジュール化されていてもよい。
 一実施の形態において、点灯回路は、車両用灯具に設けることができる。
(実施の形態1~5)
<実施の形態1>
 図2は、実施の形態1に係る車両用灯具100を備える灯具システム1のブロック図である。灯具システム1は、バッテリ2、車両ECU(Electronic Control Unit)4および車両用灯具100を備える。車両用灯具100は、ADB機能を備える配光可変ヘッドランプであり、車両ECU4からの制御信号に応じた配光を形成する。
 車両用灯具100は、複数(N≧2)の半導体光源102_1~102_Nと、灯具ECU110と、点灯回路200を備える。半導体光源102には、LEDが好適に用いられるが、LDや有機ELなどその他の発光素子を用いてもよい。各半導体光源102は、直列および/または並列に接続された複数の発光素子を含んでもよい。なおチャンネル数Nは特に限定されず1であってもよい。
 灯具ECU110は、スイッチ112およびマイコン114を備える。マイコン(プロセッサ)114は、CAN(Controller Area Network)やLIN(Local Interconnect Network)などのバスを介して車両ECU4と接続され、点消灯指示や、その他の情報を受信可能となっている。マイコン114は、車両ECU4からの点灯指示に応答して、スイッチ112をオンする。これによりバッテリ2からの電源電圧(バッテリ電圧VBAT)が、点灯回路200に供給される。
 またマイコン114は、車両ECU4からの配光パターンを指示する制御信号を受け、点灯回路200を制御する。あるいはマイコン114は、車両ECU4から車両前方の状況を示す情報を受け、この情報にもとづいて配光パターンを自身で生成してもよい。
 点灯回路200は、所望の配光パターンが得られるように、複数の半導体光源102_1~102_Nに駆動電流ILED1~ILEDNを供給する。
 点灯回路200は、複数の電流源210_1~210_Nと、スイッチングコンバータ220と、コンバータコントローラ230と、を備える。電流源210_i(i=1,2,…N)は、対応する半導体光源102_iと直列に接続され、半導体光源102_iに流れる駆動電流ILEDiを、所定の電流量に安定化する定電流ドライバである。
 複数の電流源210_1~210_Nは、配光コントローラ116が生成するPWM信号SPWM1~SPWMNに応じて、個別にオン、オフ制御可能に構成される。PWM信号SPWMiがオンレベル(たとえばハイ)のとき、駆動電流ILEDiが流れ、半導体光源102_iが点灯する。PWM信号SPWMiがオフレベル(たとえばロー)のとき、駆動電流ILEDiがゼロとなり、半導体光源102_iが消灯する。PWM信号SPWMiのデューティ比を変化させることにより、半導体光源102_iの実効的な輝度が変化する(PWM調光)。
 スイッチングコンバータ220は、半導体光源102と電流源210の直列接続回路の両端間に駆動電圧VOUTを供給する。スイッチングコンバータ220は降圧コンバータ(Buckコンバータ)であり、スイッチングトランジスタM、整流ダイオードD、インダクタL、出力キャパシタCを含む。
 コンバータコントローラ230は、リップル制御方式によってスイッチングコンバータ220を制御する。より詳しくはコンバータコントローラ230は、複数の電流源210のいずれかの両端間電圧、言い換えればいずれかの電流源210とそれに対応する半導体光源102の接続ノードの電圧VLEDが、所定のボトムリミット電圧VBOTTOMまで低下したことに応答して、スイッチングコンバータ220のスイッチングトランジスタMをターンオンする。
 またコンバータコントローラ230は、所定のターンオフ条件が満たされると、制御パルスSをオフレベル(ハイレベル)に遷移させ、スイッチングトランジスタMをターンオフする。ターンオフ条件は、スイッチングコンバータ220の出力電圧VOUTが所定のアッパーリミット電圧VUPPERに達したことであってもよい。
 以上が車両用灯具100の構成である。続いてその動作を説明する。
 図3は、図2の車両用灯具100の動作波形図である。ここでは理解の容易化のため、N=3とする。また複数の電流源210_1~210_Nの素子バラツキは無視できるものとする。また、半導体光源102の素子バラツキによって、VF1>VF2>VF3が成り立っているとする。また理解の容易化のためにPWM調光は行っていない。
 スイッチングトランジスタMのオフ期間(図中、ロー)において、駆動電流ILED1~ILED3の合計である負荷電流IOUTによってスイッチングコンバータ220の出力キャパシタCが放電され、出力電圧VOUTが時間とともに低下していく。実際には出力キャパシタCは、インダクタLに流れるコイル電流Iと、負荷電流の差分によって充電または放電されるため、出力電圧VOUTの増減と、スイッチングトランジスタMのオン、オフは時間軸上で必ずしも一致しない。
 電流源210の両端間電圧、すなわち電流源210と半導体光源102の接続ノードの電圧(カソード電圧)VLED1~VLED3は、以下の式で表される。
 VLED1=VOUT-VF1
 VLED2=VOUT-VF2
 VLED3=VOUT-VF3
 したがって、VLED1~VLED3は、出力電圧VOUTとの電位差を一定に保ちながら変動する。第1チャンネルの順電圧VF1が最も大きいため、第1チャンネルのカソード電圧VLED1が最も低くなる。
 第1チャンネルにおいて、カソード電圧VLED1がボトムリミット電圧VBOTTOMまで低下すると、スイッチングトランジスタMがターンオンする。
 スイッチングトランジスタMがターンオンすると、インダクタLに流れるコイル電流Iが増大し、出力電圧VOUTが上昇に転ずる。そして出力電圧VOUTがアッパーリミット電圧VUPPERに達すると、スイッチングトランジスタMがターンオフする。点灯回路200はこの動作を繰り返す。
 以上が点灯回路200の動作である。この点灯回路200によれば、電流源210の両端間電圧を、所定の駆動電流ILEDを発生することを保証する最低レベルの近傍に維持することができ、消費電力を低減できる。
 別のアプローチ(比較技術)として、エラーアンプを用いて、カソード電圧VLED1~VLEDNの最低電圧を、所定の目標電圧VREFに近づけるフィードバック制御が考えられる。
 図4(a)は、実施の形態におけるカソード電圧VLEDの波形図であり、図4(b)は比較技術におけるカソード電圧VLEDの波形図である。ここに示されるカソード電圧VLEDは、複数のカソード電圧のうちの最低電圧VMINである。
 比較技術では、フィードバックループに設けられた位相補償フィルタの応答特性によって、カソード電圧VLED1~VLEDNの最低電圧VMINの平均が目標電圧VREFに近づくことになる。つまり最低電圧VMINのボトムレベルVMIN_BOTTOMは、目標電圧VREFより低くなる。このときのボトムレベルVMIN_BOTTOMと目標電圧VREFの差分は、状況に応じて変化し、不定である。回路の安定動作のためには、図4(b)に実線で示すように大きな差分ΔVを想定して、VREFを高く規定する必要がある。ところが一点鎖線で示すように差分ΔV’が小さい状況が発生すると、カソード電圧VLEDがボトムリミット電圧VBOTTOMよりも高くなり、電流源において無駄な電力が消費される。実施の形態によれば、図4(a)に示すように、カソード電圧VLEDのボトムレベルを、ボトムリミット電圧VBOTTOMに近づけることができるため、比較技術に比べても一層、消費電力を低減できる。
 本発明は、図2のブロック図や回路図として把握され、あるいは上述の説明から導かれるさまざまな装置、回路、方法に及ぶものであり、特定の構成に限定されるものではない。以下、本発明の範囲を狭めるためではなく、発明の本質や回路動作の理解を助け、またそれらを明確化するために、より具体的な構成例や変形例を説明する。
(実施例1.1)
 図5は、実施例1.1に係るコンバータコントローラ230Fの回路図である。オン信号発生回路240Fは、複数のコンパレータ252_1~252_Nと論理ゲート254を含む。コンパレータ252_iは、対応するカソード電圧VLEDiをボトムリミット電圧VBOTTOMと比較し、VLEDi<VBOTTOMとなると、アサート(たとえばハイ)される比較信号を生成する。論理ゲート254は、複数のコンパレータ252_1~252_Nの出力(比較信号)SCMP1~SCMPNを論理演算し、少なくともひとつの比較信号がアサートされると、オン信号SONをアサートする。この例では論理ゲート254はORゲートである。
 オフ信号発生回路260Fは、スイッチングトランジスタMをターンオフするタイミングを規定するオフ信号SOFFを生成する。分圧回路261は、出力電圧VOUTを分圧し、適切な電圧レベルにスケーリングする。コンパレータ262は、分圧後の出力電圧VOUT’を、アッパーリミット電圧VUPPERをスケーリングしたしきい値VUPPER’と比較し、VOUT>VUPPERを検出すると、オフ信号SOFFをアサート(たとえばハイ)する。
 ロジック回路234は、たとえばSRフリップフロップであり、オン信号SONのアサートに応答して、その出力Qをオンレベル(たとえばハイ)に遷移させ、オフ信号SOFFのアサートに応答してその出力Qをオフレベル(たとえばロー)に遷移させる。なお、オン信号SONとオフ信号SOFFのアサートが同時に発生したときに、スイッチングコンバータをより安全な状態(すなわちスイッチングトランジスタMのオフ状態)とするために、ロジック回路234は、リセット優先のフリップフロップとすることが好ましい。
 ドライバ232は、ロジック回路234の出力Qに応じてスイッチングトランジスタMを駆動する。図2に示すようにスイッチングトランジスタMがPチャンネルMOSFETである場合、ドライバ232の出力である制御パルスSは、出力Qがオンレベルのときロー電圧(VBAT-V)、出力Qがオフレベルのときハイ電圧(VBAT)となる。
(実施例1.2)
 図6は、実施例1.2に係るコンバータコントローラ230Gの回路図である。オン信号発生回路240Gは、最小値回路256と、コンパレータ258を含む。最小値回路256は、複数のカソード電圧VLED1~VLEDNのうち、最小のひとつに応じた電圧VMINを出力する。最小値回路256は公知技術を用いればよい。コンパレータ258は、電圧VMINをボトムリミット電圧VBOTTOMに応じたしきい値VBOTTOM’と比較し、VMIN<VBOTTOM’となると、オン信号SONをアサート(たとえばハイ)する。
 実施例1.1では、チャンネル数が多い場合に、コンパレータ群の回路面積が大きく、チップサイズが大きくなる。これに対して実施例1.2によれば、コンパレータが1個で済むため、回路面積を小さくできる。
(実施例1.3)
 車載機器においては、150kHz~280kHzのLW帯、510kHz~1710kHzのAM帯、2.8MHz~23MHzのSW帯が電磁ノイズとして忌避される。したがって、スイッチングトランジスタMのスイッチング周波数は通常、LW帯とAM帯の間の300kHz~450kHz程度の間に安定化されることが望ましい。
 図7は、実施例1.3に係るコンバータコントローラ230Hの回路図である。この実施例では、スイッチングトランジスタMのスイッチング周波数が一定となるように、アッパーリミット電圧VUPPERがフィードバック制御される。
 オフ信号発生回路260Hは、コンパレータ262に加えて、周波数検出回路264およびエラーアンプ266を備える。周波数検出回路264は、ロジック回路234の出力Qあるいは制御パルスSを監視し、スイッチング周波数を示す周波数検出信号VFREQを生成する。エラーアンプ266は、周波数検出信号VFREQと、スイッチング周波数の目標値(目標周波数)を規定する基準電圧VFREQ(REF)の誤差を増幅し、誤差に応じたアッパーリミット電圧VUPPERを生成する。
 実施例1.3によれば、スイッチング周波数を目標値に安定化することができるため、ノイズ対策が容易となる。
(実施例1.4)
 図8は、実施例1.4に係るコンバータコントローラ230Iの回路図である。コンバータコントローラ230Iは、スイッチングトランジスタMをターンオンした後、オン時間TON経過後にスイッチングトランジスタMをターンオフしてもよい。すなわちスイッチングトランジスタMのターンオフからオン時間TON経過したことを、ターンオフ条件としてもよい。
 オフ信号発生回路260Iは、タイマー回路268を含む。タイマー回路268は、オン信号SONに応答して、所定のオン時間TONの測定を開始し、オン時間TONの経過後にオフ信号SOFFをアサート(たとえばハイ)する。タイマー回路268は、たとえば単安定マルチバイブレータ(ワンショットパルス発生器)で構成してもよいし、デジタルカウンタやアナログタイマーで構成してもよい。タイマー回路268には、スイッチングトランジスタMのターンのタイミングを検出するために、オン信号SONに代えて、ロジック回路234の出力Qや制御パルスSを入力してもよい。
(実施例1.5)
 図9は、実施例1.5に係るコンバータコントローラ230Jの回路図である。コンバータコントローラ230Jは、実施例1.4と同様に、スイッチングトランジスタMをターンオンした後、オン時間TON経過後にスイッチングトランジスタMをターンオフする。ORゲート241はオン信号発生回路に相当し、オン信号SONを生成する。タイマー回路268は、単安定マルチバイブレータなどであり、オン信号SONのアサートから所定のオン時間TON、ハイレベルとなるパルス信号Sを生成し、ドライバ232に供給する。なお起動時などにおいて、VG1~VGNがORゲート241のしきい値を超えない状況を考慮して、ORゲート231を追加し、オン信号SONとタイマー回路268の出力Sの論理和S’がドライバ232に供給される。
(実施例1.6)
 図10は、実施例1.6に係るコンバータコントローラ230Kの回路図である。オフ信号発生回路260Kは、スイッチング周波数が一定となるように、オン時間TONをフィードバック制御する。可変タイマー回路270は、オン信号SONのアサートからオン時間TONの間、ハイレベルとなるパルス信号Sを生成する単安定マルチバイブレータであり、オン時間TONが制御電圧VCTRLに応じて可変に構成される。
 たとえば可変タイマー回路270は、キャパシタと、キャパシタを充電する電流源と、キャパシタの電圧をしきい値と比較するコンパレータを含むことができる。可変タイマー回路270は、電流源が生成する電流量もしくはしきい値の少なくとも一方が、制御電圧VCTRLに応じて可変に構成される。
 周波数検出回路272は、ロジック回路234の出力Qあるいは制御パルスSを監視し、スイッチング周波数を示す周波数検出信号VFREQを生成する。エラーアンプ274は、周波数検出信号VFREQと、スイッチング周波数の目標値(目標周波数)を規定する基準電圧VFREQ(REF)の誤差を増幅し、誤差に応じた制御電圧VCTRLを生成する。
 実施例1.6によれば、スイッチング周波数を目標値に安定化することができるため、ノイズ対策が容易となる。
 図11は、図10のコンバータコントローラ230Kの具体的な回路図である。周波数検出回路272の動作を説明する。キャパシタC11および抵抗R11はハイパスフィルタであり、ORゲート231の出力(もしくは制御パルスS)を微分する微分回路と把握でき、パルス信号S’のエッジを検出するエッジ検出回路とも把握できる。トランジスタTr11は、ハイパスフィルタの出力がしきい値を超えると、すなわちパルス信号S’のポジエッジが発生するとターンオンし、キャパシタC12を放電する。トランジスタTr11がオフの期間、キャパシタC12は抵抗R12を介して充電される。キャパシタC12の電圧VC12は、パルス信号S’と同期したランプ波となり、傾斜部分の時間長、ひいては波高値は、パルス信号S’の周期に応じて変化する。
 トランジスタTr12,Tr13、抵抗R13,R14、キャパシタC13はピークホールド回路であり、キャパシタC12の電圧VC12のピーク値をホールドする。ピークホールド回路の出力VFREQは、パルス信号S’の周期、言い換えれば周波数と相関を有する。
 コンパレータCOMP1は、周波数検出信号VFREQと、目標周波数を示す基準信号VFREQ(REF)を比較する。抵抗R15およびキャパシタC14はローパスフィルタであり、コンパレータCOMP1の出力を平滑化し、制御電圧VCTRLを生成する。制御信号VCTRLは、バッファBUF1を介して出力される。
 可変タイマー回路270について説明する。オン信号SONはインバータ273によって反転される。反転オン信号#SONがしきい値VTH1を下回ると、言い換えるとオン信号SONがハイとなると、コンパレータCOMP2の出力がハイとなり、フリップフロップSRFFがセットされ、パルス信号Sがハイとなる。
 パルス信号Sがハイの期間、トランジスタM21はオフである。トランジスタM21がオフの間、電流源271は、制御電圧VCTRLに応じた可変電流IVARを生成し、キャパシタC15を充電する。キャパシタC15の電圧VC15がしきい値VTH2に達すると、コンパレータCOMP3の出力がハイとなり、フリップフロップSRFFがリセットされ、パルス信号Sがローに遷移する。その結果、トランジスタM21がオンとなり、キャパシタC15の電圧VC15が初期化される。
 図12は、オン信号発生回路240の変形例の回路図である。図5のようにコンパレータ252を用いると、高精度な電圧比較が可能となる反面、回路面積が大きくなったり、コストが高くなる。そこで図12に示すように、トランジスタで簡易的に構成された電圧比較手段を用いることができる。電圧比較手段253は、PNP型バイポーラトランジスタTr21を含むソースフォロア255と、比較回路257を含む。前段のソースフォロア255の出力(VLED+VBE)は、抵抗R21,R22によって分圧され、トランジスタTr22のベースに入力される。監視対象の電圧VLEDが低下すると、トランジスタTr22のベース電圧が低下し、バイポーラトランジスタのオン電圧を下回ると、トランジスタTr22の電流が遮断され、電圧比較手段253の出力がハイとなる。
 図12では、複数の電圧比較手段253の出力を、ORゲート254に入力しているが、その限りではない。ORゲート254を省略して、複数の電圧比較手段253のトランジスタTr22のコレクタを共通に接続し、共通のコレクタと電源ラインVCCの間に共通の抵抗を設けてもよい。
 図13(a)~(c)は、電流源210の構成例を示す回路図である。図13(a)の電流源210は、シリーズトランジスタM、センス抵抗Rおよびエラーアンプ212を備える。シリーズトランジスタMおよびセンス抵抗Rは、駆動電流ILEDiの経路上に直列に設けられる。エラーアンプ212は、センス抵抗Rの電圧降下VCSが目標電圧VADIMに近づくように、シリーズトランジスタMの制御電極(この例ではゲート)の電圧Vを調節する。この実施例では、シリーズトランジスタMはN型(Nチャンネル)のMOSトランジスタであり、エラーアンプ212の一方の入力(非反転入力端子)には、基準電圧VADIMが、その他方の入力(反転入力端子)には、シリーズトランジスタMとセンス抵抗Rの接続ノードの電圧VCS(センス抵抗Rの電圧降下)が入力される。エラーアンプ212によって、VCSがVADIMに近づくようにフィードバックがかかり、駆動電流ILEDは、ILED(REF)=VADIM/Rを目標量として安定化される。
 電流源210はさらにPWM調光のためのスイッチ(調光スイッチ)214を含む。調光スイッチ214は、配光コントローラ116が生成するPWM信号SPWMによって制御される。調光スイッチ214がオフのとき、電流源210には駆動電流ILEDが流れる。調光スイッチ214がオンになると、シリーズトランジスタMがオフとなり、駆動電流ILEDが遮断される。調光スイッチ214を、60Hz以上のPWM周波数(好ましくは200~300Hz程度)で高速にスイッチングし、そのデューティ比を調節することにより、半導体光源102はPWM調光される。
 図13(b)の電流源210は、シリーズトランジスタとしてPチャンネルMOSFETを用いたものである。エラーアンプ212の入力の極性が、図13(a)とは反対である。
 図13(a)や(b)の電流源210の場合、ボトムリミット電圧VBOTTOMは、以下のように規定すればよい。ΔVは適切なマージンである。
 VBOTTOM=R×ILED+VSAT+ΔV
 図13(c)の電流源210は、カレントミラー回路216と、基準電流源218を含む。カレントミラー回路216は、基準電流源218が生成する基準電流IREFを、ミラー比で決まる所定係数倍して駆動電流ILEDを生成する。図13(c)の電流源210の場合、ボトムリミット電圧VBOTTOMは、以下のように規定すればよい。
 VBOTTOM=VSAT+ΔV
 VSATはカレントミラー回路の飽和電圧であり、ΔVは適切なマージンである。
<実施の形態2>
 実施の形態1ではボトムリミット電圧を固定した。この場合、点灯する光源102の個数が減少する軽負荷状態において、スイッチング周波数が低下する場合がある。
 図14(a)~(c)は、軽負荷状態におけるスイッチング周波数の低下を説明する図である。図14(a)、(b)に示すように、図7や図10の実施例では、オン時間TONあるいは出力電圧VOUTの上限VUPPERをフィードバック制御することにより周波数を安定化している。
 しかしながら、制御パルスSのパルス幅を短くしすぎると、スイッチングトランジスタMをターンオンできなくなるため、制御パルスSのパルス幅は、とある最小パルス幅より短くすることはできない。言い換えると軽負荷状態では、制御パルスSのパルス幅は、最小パルス幅に固定される(図14(c))。出力電圧VOUTの下りスロープの傾きは、負荷電流、すなわち点灯状態の半導体光源102の個数に応じている。点灯数が少ない状態では、下りスロープの傾きがどんどん小さくなっていき、スイッチング周波数は低くなっていく。したがって、周波数の安定化制御を行った場合でも、スイッチング周波数がLW帯に入ってしまう状況が生じうる。
 そこで実施の形態2では、ボトムリミット電圧VBOTTOMを負荷の状態に応じて動的に制御し、スイッチング周波数の低下を抑制する。
 図15は、実施の形態2に係る車両用灯具100Mのブロック図である。車両用灯具100Mは、図2の車両用灯具100に加えてボトムリミット電圧設定回路280をさらに備える。ボトムリミット電圧設定回路280は、複数の電流源210のオンの個数が少ないほど、ボトムリミット電圧VBOTTOMを増大させる。ボトムリミット電圧VBOTTOMは、2段階で変化してもよいし、さらに多いステップ数で変化してもよい。
 たとえばボトムリミット電圧設定回路280は、配光コントローラ116が生成するPWM信号SPWM1~SPWMNにもとづいて点灯数を判定してもよい。あるいはボトムリミット電圧設定回路280は、マイコン114から点灯数を示す信号あるいは、点灯数にもとづいて決定されたボトムリミット電圧VBOTTOMの指令値を受信してもよい。あるいは後述の図21の構成では、インタフェース回路320が受信する信号にもとづいて点灯数を判定してもよい。
 コンバータコントローラ230の構成は特に限定されず、上述のいずれの構成であってもよい。
 図16は、図15の車両用灯具100Mの動作波形図である。点灯数が減少し、負荷電流が減少すると、出力電圧VOUTの下りのスロープが平坦となる。スロープの傾きの減少にともない、ボトムリミット電圧VBOTTOMを上昇させることで、出力電圧VOUTの下限電圧が上昇していき、オフ時間TOFFが長くなるのが抑制される。
 これにより、軽負荷状態において、スイッチング周波数が低くなりすぎるのを防止できる。なおボトムリミット電圧VBOTTOMを増大させると、電流源210の発熱は増えるが、オンとなる電流源210の個数は減少しているため、トータルでの発熱の増加は問題とならない。図16では、スイッチング周波数が実質的に一定となるように、ボトムリミット電圧VBOTTOMが変化しているがその限りでなく、スイッチング周波数がノイズの対象となる帯域に入らなければ、スイッチング周波数は変動してもよい。
<実施の形態3>
 図17は、実施の形態3に係る車両用灯具100Nのブロック図である。車両用灯具100Nは、図2の車両用灯具100に加えて周波数設定回路290を備える。この実施の形態においてコンバータコントローラ230は、周波数安定化機能を備えており、したがって、図7や図10のコンバータコントローラ230Hや230Jで構成することができる。
 周波数設定回路290は、複数の電流源210のオンの個数(点灯数)に応じて、目標周波数を変化させる。より具体的には、オンの個数があるしきい値より小さくなると軽負荷状態と判定し、目標周波数を、元の目標周波数より低くかつ電磁ノイズとされる帯域に含まれない別の周波数に設定する。通常時の目標周波数を、LW帯とAM帯の間の300kHz~450kHz程度の間に設定している場合、軽負荷状態の目標周波数は、LW帯より低い周波数帯域であって、可聴帯域より高い帯域(たとえば100kHz)に設定するとよい。
 図7あるいは図10において、目標周波数は基準電圧VFREQ(REF)にもとづいて規定されるから、周波数設定回路290は、点灯数があるしきい値より低い状態では、基準電圧VFREQ(REF)を低下させればよい。
 実施の形態3によれば、軽負荷状態において周波数は低下するが、電磁ノイズとして忌避すべき周波数からは外すことができる。
<実施の形態4>
 図18は、実施の形態4に係る車両用灯具100Oのブロック図である。車両用灯具100Oは、図2の車両用灯具100に加えて、ダミーロード292、ダミーロード制御回路294を備える。
 ダミーロード292は、スイッチングコンバータ220の出力に接続され、イネーブル状態において、スイッチングコンバータ220のキャパシタCの電荷を放電し、出力電圧VOUTを低下させる。ダミーロード制御回路294は、複数の電流源のオンの個数にもとづいて、ダミーロード292のイネーブル、ディセーブルを制御する。
 ダミーロード292は、スイッチングコンバータ220の出力と接地の間に設けられるトランジスタのスイッチを含む。ダミーロード制御回路294は、スイッチングトランジスタM1のターンオフから所定時間τ経過後に、イネーブル信号ENをアサート(たとえばハイ)して、ダミーロード292のスイッチをターンオンする。
 図19は、図18の車両用灯具100Oの動作波形図である。軽負荷状態となると、サイクル毎にイネーブル信号ENがアサートされ、出力電圧VOUTが瞬時に低下する。そして出力電圧VOUTがボトムリミット電圧VBOTTOMに応じた電圧レベルまで低下すると制御パルスSがハイとなる。すなわちスイッチングトランジスタMのオフ時間TOFFの上限が、所定時間τによって制限される。これにより軽負荷状態におけるスイッチング周波数の低下を抑制できる。
 ダミーロード292は、オンオフ可能な定電流源であってもいし、スイッチと抵抗の組み合わせであってもよい。
<実施の形態5>
 図2を参照する。一般的に、トランジスタのオン抵抗と耐圧はトレードオフの関係にある。スイッチングコンバータの出力電圧VOUTがオーバーシュートした際に、電流源210を構成するトランジスタに印加される電圧が増加する。このため、高耐圧素子を用いて電流源210を構成する必要があるが、高耐圧素子はオン抵抗RONが大きいため、ボトムリミット電圧VBOTTOMを高く設定しなければならず、消費電力および発熱が大きくなるという問題がある。
 図20は、実施の形態5に係る点灯回路200Pの回路図である。点灯回路200Pは、駆動電圧VOUTが所定のしきい値VTHを超えると、スイッチングトランジスタMを強制オフする。点灯回路200Pは、抵抗R31,R32、電圧コンパレータ238を備える。電圧コンパレータ238は、抵抗R31,R32によって分圧された駆動電圧VOUT’をしきい値VTH’と比較し、駆動電圧VOUTの過電圧状態を検出する。
 コンバータコントローラ230Pは、パルス変調器235、論理ゲート233、ドライバ232を備える。パルス変調器235は、図7~図10のコンバータコントローラ230F~230Kのうち、ドライバ232を除く部分であり、制御パルスS’を生成する。論理ゲート233は、電圧コンパレータ238の出力SがVOUT’<VTH’を示すとき、制御パルスS’をそのまま通過させ、電圧コンパレータ238の出力SがVOUT’>VTH’を示すとき、制御パルスS’のレベルを、スイッチングトランジスタM1がターンオフするレベルに強制的にセットする。この例では、スイッチングトランジスタM1はNチャンネルMOSFETであり、Sがローのときにオフとなる。電圧コンパレータ238の出力Sは、VOUT’>VTH’のときにローであり、論理ゲート233はANDゲートである。
 本実施の形態では、電流源210を低オン抵抗のトランジスタを用いて構成することで消費電力を低減できる。それと引き換えにトランジスタの耐圧は低くなるが、スイッチングコンバータの出力電圧VOUTのオーバーシュートが発生した場合には、直ちにスイッチングトランジスタMを停止することで、電流源のトランジスタ(たとえば図13(a)、(b)のトランジスタM、図13(c)のカレントミラー回路216の出力側のトランジスタ)に過電圧が印加されるのを抑制できる。
<ドライバ一体化光源>
 続いて、ドライバ一体化光源について説明する。複数の電流源210は、ひとつの半導体チップに集積化することができる。以下、これを電流ドライバIC(Integrated Circuit)と称する。図21は、実施の形態に係る電流ドライバIC300およびその周辺回路の回路図である。電流ドライバIC300は、複数の電流源310_1~310_Nに加えて、インタフェース回路320、調光パルス発生器330を備える。
 複数の電流源310_1~310_Nは、それぞれが、PWM信号SPWM1~SPWMNに応じて独立してオン、オフ可能に構成される。電流源310_1~310_Nは、カソードピンLED1~LEDNを介して、対応する半導体光源102_1~102Nと直列に接続される。
 インタフェース回路320は、外部のマイコン(プロセッサ)114から、複数の制御データD~Dを受信する。インタフェースの種類は特に限定されないが、たとえばSPI(Serial Peripheral Interface)やICインタフェースを用いることができる。複数の制御データD~Dは、複数の電流源310_1~310_Nのオン、オフのデューティ比を指示するものであり、第1時間間隔Tで更新される。たとえば第1時間間隔Tは、20ms~200ms程度、たとえば100msである。
 調光パルス発生器330は、複数の制御データD~Dにもとづいて、複数の電流源310_1~310_Nに対する複数のPWM信号SPWM1~SPWMNを生成する。図2の実施の形態では、複数のPWM信号SPWM1~SPWMNがマイコン114において生成されていたが、実施の形態2では、複数のPWM信号SPWM1~SPWMNの生成機能が、電流ドライバIC300に内蔵されている。
 i番目のPWM信号SPWMiのデューティ比は、第1時間間隔Tより短い第2時間間隔Tで、対応する制御データDの更新前の値から更新後の値に向けて徐変する(徐変モードという)。第2時間間隔Tは、1ms~10ms程度、たとえば5msである。
 調光パルス発生器330は、徐変モードに加えて非徐変モードをサポートすることができる。非徐変モードにおいて、i番目のPWM信号SPWMiのデューティ比は、対応する制御データDの更新前の値から更新後の値に瞬時に変化可能である。
 非徐変モードと徐変モードは、マイコン114からの設定にもとづいて動的に変更可能とするとよい。好ましくは、チャンネルごと(調光パルスごと)に、非徐変モードと徐変モードを個別に指定可能であり、モードを指定する設定データは、制御データDに付随してもよい。
 オン信号発生回路240の一部あるいは全部を電流ドライバIC300に集積化してもよい。どの部分を集積化するかは、オン信号発生回路240の回路構成に応じて決めればよく、コンバータコントローラ230と電流ドライバIC300の間の配線の本数が減るように決めるとよい。図21に示すように、オン信号発生回路240の全体を電流ドライバIC300に集積化した場合、コンバータコントローラ230と電流ドライバIC300の間の配線は、オン信号SONが伝搬する1本となる。あるいは図6のオン信号発生回路240Gを採用する場合、最小値回路256を電流ドライバIC300に集積化すれば、コンバータコントローラ230と電流ドライバIC300の間の配線は、最小電圧VMINが伝搬する1本となる。
 続いて電流ドライバIC300の動作を説明する。図22は、電流ドライバIC300の動作波形図である。ここでは、PWM信号のデューティ比は、直線的に変化するものとする。たとえば、T=100ms、T=5msとすると、デューティ比を20ステップで変化させればよい。更新前の制御データの値と更新後の制御データの値の差分がX%であるとき、PWM信号のデューティ比は、Tごとに、ΔY=(ΔX/20)%ずつ変化する。
 以上が電流ドライバIC300の動作である。この電流ドライバIC300の利点は、比較技術との対比によって明確となる。もし、電流ドライバIC300にデューティ比の徐変機能を実装しない場合、マイコン114は、第2時間間隔Tごとにデューティ比を指示する制御データD~Dを更新しなければならない。半導体光源102のチャンネル数Nが数十から100を超える場合には、処理能力の高い、したがって高価なマイコン114が必要となる。またマイコン114と電流ドライバIC300の間で高速な通信が必要となるため、ノイズの問題が生ずる。
 これに対して、実施の形態に係る電流ドライバIC300によれば、マイコン114が制御データD~Dを更新すべき速度が低下するため、マイコン114に要求される処理能力を下げることができる。また、マイコン114と電流ドライバIC300の間の通信速度も下げることができるため、ノイズの問題も解決できる。
 第1時間間隔Tは、変更可能とすることが好ましい。デューティ比の変化が小さい状況では、第1時間間隔Tを長くとることで、データ通信量を減らすことができ、消費電力、ノイズを抑制できる。
 図22では、デューティ比を直線的に変化させたが、2次関数や指数関数などのカーブにしたがって変化してもよい。2次関数を用いることで、より違和感の少ない自然な調光が可能となる。
 図21に示すように、複数の半導体光源102_1~102_Nを、ひとつの半導体チップ(ダイ)402に集積化してもよい。さらに、半導体チップ402と、電流ドライバIC300とをひとつのパッケージに収容し、モジュール化してもよい。
 図23は、ドライバ一体化光源400の平面図および断面図である。半導体チップ402の表面には、マトリクス状に複数の半導体光源102が形成される。半導体チップ402の裏面には、複数の半導体光源102それぞれのアノード電極およびカソード電極に対応する裏面電極A,Kが設けられる。ここでは1個の半導体光源102_1の接続関係のみを示す。
 半導体チップ402と電流ドライバIC300は機械的に接合され、また電気的に接続される。電流ドライバIC300の表面には、複数の半導体光源102それぞれのカソード電極Kと接続される表面電極410(図21のLED1~LEDN)、複数の半導体光源102それぞれのアノード電極Aと接続される表面電極412が設けられる。表面電極412は、電流ドライバIC300の裏面のパッケージ基板に設けられたバンプ(あるいはパッド)414と接続される。半導体チップ402と電流ドライバIC300の間には、図示しないインターポーザーを挿入してもよい。
 ドライバ一体化光源400のパッケージの種類は限定されず、BGA(Ball Grid Array)やPGA(Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)などを採用しうる。
 半導体光源102と電流ドライバIC300が別のモジュールである場合、各モジュールに放熱構造を取り付けるなどの対策を施せばよい。一方、図23のようなドライバ一体化光源400では、光源102の発熱に、電流源210の発熱が加わったものを放熱する必要がある。したがって、非常に大きな放熱構造が必要となりうる。実施の形態に係る点灯回路200を採用することにより、電流源210の発熱量を抑制できるため、ドライバ一体化光源400に取り付けるべき放熱構造を小さくできる。
<変形例>
 実施の形態1~5に関連する変形例について説明する。
(変形例1)
 実施の形態では、電流源210をシンク型で構成し、半導体光源102のカソードに接続したがその限りでない。図24は、変形例1に係る車両用灯具100の回路図である。この変形例では、半導体光源102のカソードを共通に接続し、半導体光源102のアノード側に、ソース型の電流源210を接続している。電流源210は、図13(a)~(c)の構成を天地反転し、必要に応じてトランジスタの極性(PとN)を置換した構成とすればよい。コンバータコントローラ230は、電流源210の両端間電圧VCSと、ボトムリミット電圧VBOTTOMの関係にもとづいてスイッチングコンバータ220を制御する。
(変形例2)
 シリーズトランジスタMをはじめとする任意のトランジスタを、バイポーラトランジスタで構成してもよい。この場合、ゲートをベース、ソースをエミッタ、ドレインをコレクタと読み替えればよい。
(変形例3)
 実施の形態ではスイッチングトランジスタMをPチャンネルMOSFETとしたが、NチャンネルMOSFETを用いてもよい。この場合、ブートストラップ回路を追加してもよい。MOSFETに代えて、IGBT(Insulated Gate Bipolar Transistor)やバイポーラトランジスタを用いてもよい。
(実施の形態6~10の概要)
 本明細書に開示される一実施の形態は、複数の半導体光源を点灯可能に構成される点灯回路に関する。点灯回路は、それぞれが対応する半導体光源と直列に接続されるべき複数の電流源であって、それぞれが対応する半導体光源と直列に設けられたシリーズトランジスタおよびセンス抵抗、センス抵抗の電圧降下にもとづいてシリーズトランジスタの制御電極の電圧を調節するエラーアンプを含む、複数の電流源と、複数の半導体光源と複数の電流源が形成する複数の直列接続回路それぞれの両端間に駆動電圧を供給するスイッチングコンバータと、リップル制御方式のコンバータコントローラと、を備える。コンバータコントローラは、複数の電流源のいずれかにおいて、エラーアンプの出力電圧が所定のターンオン条件を満たしたことに応答して、スイッチングコンバータのスイッチングトランジスタをターンオンする。
 電流源が生成する駆動電流がその目標値から逸脱すると、エラーアンプの出力電圧が急激に変化する。スイッチングコンバータにヒステリシス制御を採用し、この急激な変化を検出して直ちにスイッチングトランジスタをターンオンすることで、電流源の両端間電圧を飽和電圧に近い状態に維持することができ、消費電力を低減できる。
 シリーズトランジスタはN型であり、コンバータコントローラは、複数の電流源のいずれかにおいて、エラーアンプの出力電圧が所定のしきい値に達すると、スイッチングトランジスタをターンオンしてもよい。
 シリーズトランジスタはN型であり、コンバータコントローラは、複数の半導体光源に含まれる複数のエラーアンプの出力電圧の最大値が所定のターンオン条件を満たしたことに応答して、スイッチングトランジスタをターンオンしてもよい。
 シリーズトランジスタはP型であり、コンバータコントローラは、複数の電流源のいずれかにおいて、エラーアンプの出力電圧が所定のしきい値を下回ると、スイッチングトランジスタをターンオンしてもよい。
 コンバータコントローラは、駆動電圧がアッパーリミット電圧に達したことに応答して、スイッチングトランジスタをターンオフしてもよい。アッパーリミット電圧は、スイッチングトランジスタのスイッチング周波数が目標値に近づくようにフィードバックによって調節されてもよい。
 コンバータコントローラは、スイッチングトランジスタをターンオンした後、オン時間経過後にスイッチングトランジスタをターンオフしてもよい。オン時間は、スイッチングトランジスタのスイッチング周波数が目標値に近づくようにフィードバックによって調節されてもよい。
 複数の半導体光源と複数の電流源はモジュール化されてもよい。半導体光源と電流源をモジュール化すると、その発熱低減の要求が一層高まる。エラーアンプの出力電圧にもとづくヒステリシス制御を導入することによる発熱低減の効果は、モジュール化した場合に特に有効である。
 一実施の形態において、点灯回路は、車両用灯具に設けることができる。
 本明細書に開示される別の一実施の形態は、複数の半導体光源を駆動する電流ドライバ回路に関する。電流ドライバ回路は、それぞれが、PWM信号に応じて独立してオン、オフ可能に構成され、対応する半導体光源と直列に接続されるべき複数の電流源と、外部のプロセッサから、第1時間間隔で、複数の電流源のオン、オフのデューティ比を指示する複数の制御データを受信するインタフェース回路と、複数の電流源に対する複数のPWM信号を生成する調光パルス発生器であって、複数のPWM信号それぞれのデューティ比は、第1時間間隔より短い第2時間間隔で、対応する制御データの更新前の値から更新後の値に向けて徐変する調光パルス発生器と、を備える。
 電流ドライバ回路に、自動的なデューティ比、すなわち輝度の徐変機能を実装することで、プロセッサから高い周波数でデューティ比の設定値を更新する必要がなくなる。これによりデータ通信量を削減できる。
 一実施の形態において、複数のPWM信号それぞれのデューティ比は、設定に応じて、対応する制御データの更新前の値から更新後の値に瞬時に変化してもよい。たとえば可変配光ランプに用いる場合、グレア防止のために、ある箇所を照射する半導体光源を瞬時に消灯あるいは減光したい状況が発生しうる。この機能はこのような状況において役に立つ。
 複数の電流源はそれぞれ、対応する半導体光源と直列に設けられたシリーズトランジスタおよびセンス抵抗と、センス抵抗の電圧降下にもとづいてシリーズトランジスタの制御電極の電圧を調節するエラーアンプと、シリーズトランジスタのゲートソース間に設けられたPWMスイッチと、を含んでもよい。
(実施の形態6~10)
(実施の形態6)
 図25は、実施の形態6に係る車両用灯具100を備える灯具システム1のブロック図である。灯具システム1は、バッテリ2、車両ECU(Electronic Control Unit)4および車両用灯具100を備える。車両用灯具100は、ADB機能を備える配光可変ヘッドランプであり、車両ECU4からの制御信号に応じた配光を形成する。
 車両用灯具100は、複数(N≧2)の半導体光源102_1~102_Nと、灯具ECU110と、点灯回路200を備える。半導体光源102には、LEDが好適に用いられるが、LDや有機ELなどその他の発光素子を用いてもよい。各半導体光源102は、直列および/または並列に接続された複数の発光素子を含んでもよい。なおチャンネル数Nは特に限定されず1であってもよい。
 灯具ECU110は、スイッチ112およびマイコン114を備える。マイコン(プロセッサ)114は、CAN(Controller Area Network)やLIN(Local Interconnect Network)などのバスを介して車両ECU4と接続され、点消灯指示や、その他の情報を受信可能となっている。マイコン114は、車両ECU4からの点灯指示に応答して、スイッチ112をオンする。これによりバッテリ2からの電源電圧(バッテリ電圧VBAT)が、点灯回路200に供給される。
 またマイコン114は、車両ECU4からの配光パターンを指示する制御信号を受け、点灯回路200を制御する。あるいはマイコン114は、車両ECU4から車両前方の状況を示す情報を受け、この情報にもとづいて配光パターンを自身で生成してもよい。
 点灯回路200は、所望の配光パターンが得られるように、複数の半導体光源102_1~102_Nに駆動電流ILED1~ILEDNを供給する。
 点灯回路200は、複数の電流源210_1~210_Nと、スイッチングコンバータ220と、コンバータコントローラ230と、を備える。電流源210_i(i=1,2,…N)は、対応する半導体光源102_iと直列に接続され、半導体光源102_iに流れる駆動電流ILEDiを、所定の電流量に安定化する定電流ドライバである。
 複数の電流源210_1~210_Nは同様に構成されるため、代表的に電流源210_1の構成のみが示される。電流源210は、シリーズトランジスタM、センス抵抗Rおよびエラーアンプ212を備える。シリーズトランジスタMおよびセンス抵抗Rは、駆動電流ILEDiの経路上に直列に設けられる。エラーアンプ212は、センス抵抗Rの電圧降下VCSが目標電圧VADIMに近づくように、シリーズトランジスタMの制御電極(この例ではゲート)の電圧Vを調節する。この実施例では、シリーズトランジスタMはN型(Nチャンネル)のMOSトランジスタであり、エラーアンプ212の一方の入力(非反転入力端子)には、基準電圧VADIMが、その他方の入力(反転入力端子)には、シリーズトランジスタMとセンス抵抗Rの接続ノードの電圧VCS(センス抵抗Rの電圧降下)が入力される。エラーアンプ212によって、VCSがVADIMに近づくようにフィードバックがかかり、駆動電流ILEDは、ILED(REF)=VADIM/Rを目標量として安定化される。
 電流源210はさらにPWM調光のためのスイッチ(調光スイッチ)214を含む。調光スイッチ214は、配光コントローラ116が生成するPWM信号SPWMによって制御される。調光スイッチ214がオフのとき、電流源210には駆動電流ILEDが流れる。調光スイッチ214がオンになると、シリーズトランジスタMがオフとなり、駆動電流ILEDが遮断される。調光スイッチ214を、60Hz以上のPWM周波数(好ましくは200~300Hz程度)で高速にスイッチングし、そのデューティ比を調節することにより、半導体光源102はPWM調光される。
 スイッチングコンバータ220は、半導体光源102と電流源210の直列接続回路の両端間に駆動電圧VOUTを供給する。スイッチングコンバータ220は降圧コンバータ(Buckコンバータ)であり、スイッチングトランジスタM、整流ダイオードD、インダクタL、出力キャパシタCを含む。
 コンバータコントローラ230は、リップル制御方式によってスイッチングコンバータ220を制御する。より詳しくはコンバータコントローラ230は、エラーアンプ212の出力電圧(すなわちシリーズトランジスタMのゲート電圧)Vにもとづいて、スイッチングトランジスタMのターンオンのタイミングを生成する。具体的には、エラーアンプ212の出力電圧Vが所定のターンオン条件を満たしたことに応答して、制御パルスSをオンレベル(ロー)に遷移させ、スイッチングトランジスタMをターンオンする。
 より具体的には、コンバータコントローラ230は、エラーアンプ212の出力電圧VG1が所定のしきい値VTHを超えると、スイッチングトランジスタMをターンオンする。本実施の形態において車両用灯具100は多チャンネルで構成され、全チャンネルのゲート電圧VG1~VGNが監視される。コンバータコントローラ230は、複数の電流源210のいずれかにおいて、上述のターンオン条件が満たされると、スイッチングトランジスタMをターンオンする。具体的には、スイッチングトランジスタMのオフ期間中に、あるj番目のチャンネルのゲート電圧VGjがしきい値VTHを超えると、コンバータコントローラ230はスイッチングトランジスタMをターンオンする。
 またコンバータコントローラ230は、所定のターンオフ条件が満たされると、制御パルスSをオフレベル(ハイレベル)に遷移させ、スイッチングトランジスタMをターンオフする。ターンオフ条件は、スイッチングコンバータ220の出力電圧VOUTが所定のアッパーリミット電圧VUPPERに達したことであってもよい。
 以上が車両用灯具100の構成である。続いてその動作を説明する。
 図26は、図25の車両用灯具100の動作波形図である。図27は、MOSFETのIV特性およびシリーズトランジスタMの動作点の遷移を模式的に示す図である。ここでは理解の容易化のため、N=3とする。また複数の電流源210_1~210_Nの素子バラツキは無視できるものとする。また、半導体光源102の素子バラツキによって、VF1>VF2>VF3が成り立っているとする。また理解の容易化のためにPWM調光は行っていない。
 図26を参照する。スイッチングトランジスタMのオフ期間(図中、ロー)において、駆動電流ILED1~ILED3の合計である負荷電流IOUTによってスイッチングコンバータ220の出力キャパシタCが放電され、出力電圧VOUTが時間とともに低下していく。実際には出力キャパシタCは、インダクタLに流れるコイル電流Iと、負荷電流IOUTの差分によって充電または放電されるため、出力電圧VOUTの増減と、スイッチングトランジスタMのオン、オフは時間軸上で必ずしも一致しない。
 電流源210の両端間電圧、言い換えると電流源210と半導体光源102の接続ノードの電圧(カソード電圧)VLED1~VLED3は、以下の式で表される。
 VLED1=VOUT-VF1
 VLED2=VOUT-VF2
 VLED3=VOUT-VF3
 したがって、VLED1~VLED3は、出力電圧VOUTとの電位差を一定に保ちながら変動する。第1チャンネルの順電圧VF1が最も大きいため、第1チャンネルのカソード電圧VLED1が最も低くなる。
 各チャンネルにおいて、シリーズトランジスタMのドレインソース間電圧VDSは、カソード電圧VLEDから、センス抵抗Rの電圧降下VCSを減じた電圧となる。
 VDS1=VLED1-VCS1
 VDS2=VLED2-VCS2
 VDS3=VLED3-VCS3
 全チャンネルにおける駆動電流ILEDの目標量ILED(REF)が等しく、またセンス抵抗Rの抵抗値が等しいとき、電圧降下VCS1~VCS3も等しくなる。このとき、第1チャンネルのドレインソース間電圧VDS1が最も小さくなる。
 シリーズトランジスタMは、主として飽和領域で動作するように、素子サイズを設計してもよい。飽和領域では、あるゲート電圧レベルVにおいて、ドレインソース間電圧VDSに依存せずに、目標電流ILED(REF)が流れる。つまり飽和領域では、エラーアンプ212によってゲート電圧VG1がVとなるようにフィードバックがかかっている。出力電圧VOUTの低下にともなって、図27の矢印(i)に沿って、動作点が移動する。
 第1チャンネルのドレインソース間電圧VDS1が、ピンチオフ電圧V(=VGS-VGS(th))を下回ると、ゲートソース間電圧VGSが一定であれば、ドレイン電流I(すなわち駆動電流ILED)が低下しようとする(図27の矢印(ii))。駆動電流ILEDの低下は、検出電圧VCS1の低下となって現れる。図26では、微小な検出電圧VCS1の低下を拡大して示している。エラーアンプ212によるフィードバックにより、低下した検出電圧VCS1が目標電圧VADIMに近づくようにゲート電圧VG1が、より高い電圧レベルVに調節される(図27の矢印(iii))。エラーアンプ212のゲインは非常に高いため、わずかな検出電圧VCS1の低下が、ある程度大きなゲート電圧VG1の上昇となって現れる。このときのゲート電圧VG1の上昇がしきい値VTHとの比較によって検出されると、スイッチングトランジスタMがターンオンする。
 スイッチングトランジスタMがターンオンすると、インダクタLに流れるコイル電流Iが増大し、出力電圧VOUTが上昇に転ずる。出力電圧VOUTが上昇すると、シリーズトランジスタMのドレインソース間電圧VDSが増大する。飽和領域でドレインソース間電圧VDSが増大すると、ゲート電圧VGSが一定であれば、ドレイン電流Iが増大する(図27の矢印(iv))。ドレイン電流Iの増加は、検出電圧VCS1の上昇となって現れる。エラーアンプ212によるフィードバックにより、上昇した検出電圧VCS1が目標電圧VADIMに近づくようにゲート電圧VG1が、低い電圧レベルVに調節される(図27の矢印(v))。スイッチングトランジスタMのオン期間において、出力電圧VOUTがさらに上昇すると、図27の矢印(vi)に沿って動作点が移動する。
 そして出力電圧VOUTがアッパーリミット電圧VUPPERに達すると、スイッチングトランジスタMがターンオフする。点灯回路200はこの動作を繰り返す。
 以上が点灯回路200の動作である。この点灯回路200によれば、シリーズトランジスタMの動作点を、線形領域と飽和領域の境界の近傍に設定することができる。これにより、シリーズトランジスタMのドレインソース間電圧VDSを小さくでき、シリーズトランジスタMにおける無駄な電力消費を低減できる。
 PWM調光を行った場合について説明する。PWM調光の消灯期間が発生し、調光スイッチ214がオンすると、ゲート電圧Vは低下する方向に変化する。したがって消灯状態であるチャンネルにおいて、ゲート電圧Vがしきい値電圧VTHと交差することは起こりえず、したがってスイッチングトランジスタMのターンオン動作には影響を与えない。つまり、特別な処理を要することなく、消灯中のチャンネルを、ターンオン条件の判定から除外することができる。
 本発明は、図25のブロック図や回路図として把握され、あるいは上述の説明から導かれるさまざまな装置、回路、方法に及ぶものであり、特定の構成に限定されるものではない。以下、本発明の範囲を狭めるためではなく、発明の本質や回路動作の理解を助け、またそれらを明確化するために、より具体的な構成例や変形例を説明する。
(実施例6.1)
 図28は、実施例6.1に係るコンバータコントローラ230Aの回路図である。このコンバータコントローラ230Aは、複数のチャンネルのエラーアンプ212の出力電圧VG1~VGNの最大値が所定のターンオン条件を満たしたこと(すなわちしきい値電圧VTHを超えたこと)に応答して、スイッチングトランジスタMをターンオンする。
 オン信号発生回路240Aは、複数のゲート電圧VG1~VGNにもとづいて、スイッチングトランジスタMのターンオンのタイミングを指示するオン信号SONを生成する。オン信号発生回路240Aは、最大値回路242およびコンパレータ244を含む。最大値回路242は、複数のゲート電圧VG1~VGNの最大値に応じた電圧を生成する。最大値回路242はたとえばダイオードOR回路で構成できる。ダイオードOR回路の出力電圧V’は、複数のゲート電圧VG1~VGNのうち最大のひとつよりVf低い電圧である。Vfはダイオードの順方向電圧である。
 コンパレータ244は、最大値回路242の出力電圧を、しきい値VTH’と比較する。VTH’は、上述したしきい値電圧VTHよりもVf低く定めればよい。コンパレータ244の出力であるオン信号SONは、V’がVTH’を超えると、言い換えると、最大のゲート電圧Vがしきい値VTHを超えると、アサート(たとえばハイ)される。
 オフ信号発生回路260Aは、スイッチングトランジスタMをターンオフするタイミングを規定するオフ信号SOFFを生成する。分圧回路261は、出力電圧VOUTを分圧し、適切な電圧レベルにスケーリングする。コンパレータ262は、分圧後の出力電圧VOUT’を、アッパーリミット電圧VUPPERをスケーリングしたしきい値VUPPER’と比較し、VOUT>VUPPERを検出すると、オフ信号SOFFをアサート(たとえばハイ)する。
 ロジック回路234は、たとえばSRフリップフロップであり、オン信号SONのアサートに応答して、その出力Qをオンレベル(たとえばハイ)に遷移させ、オフ信号SOFFのアサートに応答してその出力Qをオフレベル(たとえばロー)に遷移させる。なお、オン信号SONとオフ信号SOFFのアサートが同時に発生したときに、スイッチングコンバータをより安全な状態(すなわちスイッチングトランジスタMのオフ状態)とするために、ロジック回路234は、リセット優先のフリップフロップとすることが好ましい。
 ドライバ232は、ロジック回路234の出力Qに応じてスイッチングトランジスタMを駆動する。図25に示すようにスイッチングトランジスタMがPチャンネルMOSFETである場合、ドライバ232の出力である制御パルスSは、出力Qがオンレベルのときロー電圧(VBAT-V)、出力Qがオフレベルのときハイ電圧(VBAT)となる。
 実施例6.1によれば、コンパレータ244がひとつで足りるため、実施例6.2に比べて回路面積を小さくできる。
(実施例6.2)
 図29は、実施例6.2に係るコンバータコントローラ230Bの回路図である。オン信号発生回路240Bは、複数のコンパレータ246_1~246_Nおよび論理ゲート248を備える。コンパレータ246_iは、対応するゲート電圧VGiをしきい値電圧VTHと比較する。論理ゲート248は、複数のコンパレータ246_1~246_Nの出力を論理演算し、オン信号SONを生成する。正論理系の場合、論理ゲート248はORゲートを用いることができる。
(実施例6.3)
 車載機器においては、150kHz~280kHzのLW帯、510kHz~1710kHzのAM帯、2.8MHz~23MHzのSW帯が電磁ノイズとして忌避される。したがって、スイッチングトランジスタMのスイッチング周波数は通常、LW帯とAM帯の間の300kHz~450kHz程度の間に安定化されることが望ましい。
 図30は、実施例6.3に係るコンバータコントローラ230Cの回路図である。この実施例では、スイッチングトランジスタMのスイッチング周波数が一定となるように、アッパーリミット電圧VUPPERがフィードバック制御される。
 オフ信号発生回路260Cは、コンパレータ262に加えて、周波数検出回路264およびエラーアンプ266を備える。周波数検出回路264は、ロジック回路234の出力Qあるいは制御パルスSを監視し、スイッチング周波数を示す周波数検出信号VFREQを生成する。エラーアンプ266は、周波数検出信号VFREQと、スイッチング周波数の目標値を規定する基準電圧VFREQ(REF)の誤差を増幅し、誤差に応じたアッパーリミット電圧VUPPERを生成する。
 実施例6.3によれば、スイッチング周波数を目標値に安定化することができるため、ノイズ対策が容易となる。
(実施例6.4)
 図31は、実施例6.4に係るコンバータコントローラ230Dの回路図である。コンバータコントローラ230Dは、スイッチングトランジスタMをターンオンした後、オン時間TON経過後にスイッチングトランジスタMをターンオフしてもよい。すなわちスイッチングトランジスタMのターンオフからオン時間TON経過したことを、ターンオフ条件としてもよい。
 オフ信号発生回路260Dは、タイマー回路268を含む。タイマー回路268は、オン信号SONに応答して、所定のオン時間TONの測定を開始し、オン時間TONの経過後にオフ信号SOFFをアサート(たとえばハイ)する。タイマー回路268は、たとえば単安定マルチバイブレータ(ワンショットパルス発生器)で構成してもよいし、デジタルカウンタやアナログタイマーで構成してもよい。タイマー回路268には、スイッチングトランジスタMのターンのタイミングを検出するために、オン信号SONに代えて、ロジック回路234の出力Qや制御パルスSを入力してもよい。
(実施例6.5)
 図32は、実施例6.5に係るコンバータコントローラ230Fの回路図である。コンバータコントローラ230Fは、実施例6.4と同様に、スイッチングトランジスタMをターンオンした後、オン時間TON経過後にスイッチングトランジスタMをターンオフする。ORゲート241はオン信号発生回路に相当し、オン信号SONを生成する。タイマー回路268は、単安定マルチバイブレータなどであり、オン信号SONのアサートから所定のオン時間TON、ハイレベルとなるパルス信号Sを生成し、ドライバ232に供給する。なお起動時などにおいて、VG1~VGNがORゲート241のしきい値を超えない状況を考慮して、ORゲート231を追加し、オン信号SONとタイマー回路268の出力Sの論理和S’がドライバ232に供給される。
(実施例6.6)
 図33は、実施例6.6に係るコンバータコントローラ230Eの回路図である。オフ信号発生回路260Eは、スイッチング周波数が一定となるように、オン時間TONをフィードバック制御する。可変タイマー回路270は、オン信号SONのアサートからオン時間TONの間、ハイレベルとなるパルス信号Sを生成する単安定マルチバイブレータであり、オン時間TONが制御電圧VCTRLに応じて可変に構成される。
 たとえば可変タイマー回路270は、キャパシタと、キャパシタを充電する電流源と、キャパシタの電圧をしきい値と比較するコンパレータを含むことができる。可変タイマー回路270は、電流源が生成する電流量もしくはしきい値の少なくとも一方が、制御電圧VCTRLに応じて可変に構成される。
 周波数検出回路272は、ロジック回路234の出力Qあるいは制御パルスSを監視し、スイッチング周波数を示す周波数検出信号VFREQを生成する。エラーアンプ274は、周波数検出信号VFREQと、スイッチング周波数の目標値を規定する基準電圧VFREQ(REF)の誤差を増幅し、誤差に応じた制御電圧VCTRLを生成する。
 実施例6.6によれば、スイッチング周波数を目標値に安定化することができるため、ノイズ対策が容易となる。
 図34は、図33のコンバータコントローラ230Eの具体的な回路図である。周波数検出回路272の動作を説明する。キャパシタC11および抵抗R11はハイパスフィルタであり、ORゲート231の出力であるパルス信号S’(もしくは制御パルスS)を微分する微分回路と把握でき、パルス信号S’のエッジを検出するエッジ検出回路とも把握できる。トランジスタTr11は、ハイパスフィルタの出力がしきい値を超えると、すなわちパルス信号S’のポジエッジが発生するとターンオンし、キャパシタC12を放電する。トランジスタTr11がオフの期間、キャパシタC12は抵抗R12を介して充電される。キャパシタC12の電圧VC12は、パルス信号S’と同期したランプ波となり、傾斜部分の時間長、ひいては波高値は、パルス信号S’の周期に応じて変化する。
 トランジスタTr12,Tr13、抵抗R13,R14、キャパシタC13はピークホールド回路であり、キャパシタC12の電圧VC12のピーク値をホールドする。ピークホールド回路の出力VFREQは、パルス信号S’の周期、言い換えれば周波数と相関を有する。
 コンパレータCOMP1は、周波数検出信号VFREQと、目標周波数を示す基準信号VFREQ(REF)を比較する。抵抗R15およびキャパシタC14はローパスフィルタであり、コンパレータCOMP1の出力を平滑化し、制御電圧VCTRLを生成する。制御信号VCTRLは、バッファBUF1を介して出力される。
 可変タイマー回路270について説明する。オン信号SONはインバータ273によって反転される。反転オン信号#SONがしきい値VTH1を下回ると、言い換えるとオン信号SONがハイとなると、コンパレータCOMP2の出力がハイとなり、フリップフロップSRFFがセットされ、パルス信号Sがハイとなる。
 パルス信号Sがハイの期間、トランジスタM21はオフである。トランジスタM21がオフの間、電流源271は、制御電圧VCTRLに応じた可変電流IVARを生成し、キャパシタC15を充電する。キャパシタC15の電圧VC15がしきい値VTH2に達すると、コンパレータCOMP3の出力がハイとなり、フリップフロップSRFFがリセットされ、パルス信号Sがローに遷移する。その結果、トランジスタM21がオンとなり、キャパシタC15の電圧VC15が初期化される。
 続いて、実施の形態6に関連する変形例について説明する。
(変形例6.1)
 あるいはコンバータコントローラ230は、ターンオフ条件として、各チャンネルのシリーズトランジスタMのドレイン電圧(半導体光源102のカソード電圧)を利用してもよい。たとえば、複数チャンネルの半導体光源102のカソード電圧のうち、最大のひとつ(または最小のひとつ)が、アッパーリミット電圧に達したことを、ターンオフ条件としてもよい。
(変形例6.2)
 実施の形態6では、電流源210のシリーズトランジスタMとしてN型トランジスタを用いたが、P型トランジスタ(PチャンネルMOSFET)を用いてもよい。図35は、変形例6.2に係る電流源210の回路図である。この場合、出力電圧VOUTが低下したときに、駆動電流ILEDを維持するために、ゲート電圧Vが低下する方向にフィードバックがかかる。したがって、いずれかのチャンネルにおいて、ゲート電圧Vが所定のしきい値を下回ったことをターンオン条件としてもよい。調光スイッチ214は、シリーズトランジスタMのゲートソース間に設けてもよい。
(変形例6.3)
 シリーズトランジスタMをはじめとする任意のトランジスタを、バイポーラトランジスタで構成してもよい。この場合、ゲートをベース、ソースをエミッタ、ドレインをコレクタと読み替えればよい。
(変形例6.4)
 実施の形態6ではスイッチングトランジスタMをPチャンネルMOSFETとしたが、NチャンネルMOSFETを用いてもよい。この場合、ブートストラップ回路を追加してもよい。MOSFETに代えて、IGBT(Insulated Gate Bipolar Transistor)やバイポーラトランジスタを用いてもよい。
(変形例6.5)
 実施の形態6では、エラーアンプ212の出力電圧(シリーズトランジスタMのゲート電圧V)を直接的に監視して、エラーアンプ212の出力電圧がターンオン条件を満たすか否かを判定したが、本発明はそれに限定されない。たとえばエラーアンプ212の内部のノードであって、その発生電圧が出力電圧と相関を有するノードを監視し、間接的にエラーアンプ212の出力電圧を監視してもよい。
(変形例6.6)
 実施の形態6では、コンパレータ244を用いて、エラーアンプ212の出力電圧(ゲート電圧V)の急激な変動を検出したがその限りでない。図36(a)~(c)は、オン信号発生回路240の変形例の回路図である。図36(a)に示すように、図28のコンパレータ244に代えて、MOSFETやバイポーラトランジスタを電圧比較手段として用いてもよい。たとえば最大値回路242の出力電圧V’を抵抗分圧回路250によって抵抗分圧し、分圧後の電圧V”をトランジスタ252のゲート(もしくはベース)に入力し、トランジスタのオン、オフに応じてオン信号SONを生成してもよい。
 図36(b)は、図29の変形であり、各チャンネルのコンパレータ244を省略し、代わりに適切な分圧比を有する抵抗分圧回路254_1~254_Nが設けられる。分圧後のゲート電圧VG1’~VGN’は、論理ゲート256に入力される。この場合、いずれかのチャンネルの分圧後のゲート電圧V’が論理ゲート256のハイ・ローのしきい値を超えると、オン信号SONがアサートされる。図36(c)は、図36(b)の論理ゲートを、NORゲートとした回路図である。
(実施の形態7)
 実施の形態7は、電流ドライバに関する。複数の電流源210は、ひとつの半導体チップに集積化することができる。以下、これを電流ドライバIC(Integrated Circuit)と称する。図37は、実施の形態7に係る電流ドライバIC300およびその周辺回路の回路図である。電流ドライバIC300は、複数の電流源310_1~310_Nに加えて、インタフェース回路320、調光パルス発生器330を備える。
 実施の形態6で説明したように、複数の電流源310_1~310_Nは、それぞれが、PWM信号SPWM1~SPWMNに応じて独立してオン、オフ可能に構成される。電流源310_1~310_Nは、カソードピンLED1~LEDNを介して、対応する半導体光源102_1~102Nと直列に接続される。
 インタフェース回路320は、外部のマイコン(プロセッサ)114から、複数の制御データD~Dを受信する。インタフェースの種類は特に限定されないが、たとえばSPI(Serial Peripheral Interface)やICインタフェースを用いることができる。複数の制御データD~Dは、複数の電流源310_1~310_Nのオン、オフのデューティ比を指示するものであり、第1時間間隔Tで更新される。たとえば第1時間間隔Tは、20ms~200ms程度、たとえば100msである。
 調光パルス発生器330は、複数の制御データD~Dにもとづいて、複数の電流源310_1~310_Nに対する複数のPWM信号SPWM1~SPWMNを生成する。実施の形態6(図25)では、複数のPWM信号SPWM1~SPWMNがマイコン114において生成されていたが、実施の形態7では、複数のPWM信号SPWM1~SPWMNの生成機能が、電流ドライバIC300に内蔵されている。
 i番目のPWM信号SPWMiのデューティ比は、第1時間間隔Tより短い第2時間間隔Tで、対応する制御データDの更新前の値から更新後の値に向けて徐変する(徐変モードという)。第2時間間隔Tは、1ms~10ms程度、たとえば5msである。
 調光パルス発生器330は、徐変モードに加えて非徐変モードをサポートすることができる。非徐変モードにおいて、i番目のPWM信号SPWMiのデューティ比は、対応する制御データDの更新前の値から更新後の値に瞬時に変化可能である。
 非徐変モードと徐変モードは、マイコン114からの設定にもとづいて動的に変更可能とするとよい。好ましくは、チャンネルごと(調光パルスごと)に、非徐変モードと徐変モードを個別に指定可能であり、モードを指定する設定データは、制御データDに付随してもよい。
 スイッチングトランジスタMを、実施の形態6で説明した方式によって制御する場合、オン信号発生回路240の一部あるいは全部を電流ドライバIC300に集積化してもよい。どの部分を集積化するかは、オン信号発生回路240の回路構成に応じて決めればよく、コンバータコントローラ230と電流ドライバIC300の間の配線の本数が減るように決めるとよい。図37に示すように、オン信号発生回路240のうち、最大値回路242を電流ドライバIC300に集積化した場合、コンバータコントローラ230と電流ドライバIC300の間の配線は、複数のゲート電圧のうち最大の電圧V’を伝送する1本となる。あるいは、オン信号発生回路240全体を電流ドライバIC300に集積化すれば、コンバータコントローラ230と電流ドライバIC300の間の配線は、オン信号SONが伝搬する1本となる。
 続いて電流ドライバIC300の動作を説明する。図38は、図37の電流ドライバIC300の動作波形図である。ここでは、PWM信号のデューティ比は、直線的に変化するものとする。たとえば、T=100ms、T=5msとすると、デューティ比を20ステップで変化させればよい。更新前の制御データの値と更新後の制御データの値の差分がX%であるとき、PWM信号のデューティ比は、Tごとに、ΔY=(ΔX/20)%ずつ変化する。
 以上が電流ドライバIC300の動作である。この電流ドライバIC300の利点は、比較技術との対比によって明確となる。もし、電流ドライバIC300にデューティ比の徐変機能を実装しない場合、マイコン114は、第2時間間隔Tごとにデューティ比を指示する制御データD~Dを更新しなければならない。半導体光源102のチャンネル数Nが数十から100を超える場合には、処理能力の高い、したがって高価なマイコン114が必要となる。またマイコン114と電流ドライバIC300の間で高速な通信が必要となるため、ノイズの問題が生ずる。
 これに対して、実施の形態に係る電流ドライバIC300によれば、マイコン114が制御データD~Dを更新すべき速度が低下するため、マイコン114に要求される処理能力を下げることができる。また、マイコン114と電流ドライバIC300の間の通信速度も下げることができるため、ノイズの問題も解決できる。
 第1時間間隔Tは、変更可能とすることが好ましい。デューティ比の変化が小さい状況では、第1時間間隔Tを長くとることで、データ通信量を減らすことができ、消費電力、ノイズを抑制できる。
 図38では、デューティ比を直線的に変化させたが、2次関数や指数関数などのカーブにしたがって変化してもよい。2次関数を用いることで、より違和感の少ない自然な調光が可能となる。
 図37に示すように、複数の半導体光源102_1~102_Nを、ひとつの半導体チップ(ダイ)402に集積化してもよい。さらに、半導体チップ402と、電流ドライバIC300とをひとつのパッケージに収容し、モジュール化してもよい。
 図39は、ドライバ一体化光源400の平面図および断面図である。半導体チップ402の表面には、マトリクス状に複数の半導体光源102が形成される。半導体チップ402の裏面には、複数の半導体光源102それぞれのアノード電極およびカソード電極に対応する裏面電極A,Kが設けられる。ここでは1個の半導体光源102_1の接続関係を拡大して示す。
 半導体チップ402と電流ドライバIC300は機械的に接合され、また電気的に接続される。電流ドライバIC300の表面には、複数の半導体光源102それぞれのカソード電極Kと接続される表面電極410(図37のLED1~LEDN)、複数の半導体光源102それぞれのアノード電極Aと接続される表面電極412が設けられる。表面電極412は、電流ドライバIC300の裏面のパッケージ基板に設けられたバンプ(あるいはパッド)414と接続される。半導体チップ402と電流ドライバIC300の間には、図示しないインターポーザーを挿入してもよい。
 ドライバ一体化光源400のパッケージの種類は限定されず、BGA(Ball Grid Array)やPGA(Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)などを採用しうる。
 半導体光源102と電流ドライバIC300が別のモジュールである場合、各モジュールに放熱構造を取り付けるなどの対策を施せばよい。一方、図39のようなドライバ一体化光源400では、光源102の発熱に、電流ドライバ210の発熱が加わったものを放熱する必要がある。したがって、非常に大きな放熱構造が必要となりうる。実施の形態に係る点灯回路200を採用することにより、電流源210の発熱量を抑制できるため、ドライバ一体化光源400に取り付けるべき放熱構造を小さくできる。
(実施の形態8)
 実施の形態6に係る車両用灯具100において、点灯する光源102の個数が減少する軽負荷状態において、スイッチング周波数が低下する場合がある。
 図40(a)~(c)は、軽負荷状態におけるスイッチング周波数の低下を説明する図である。図37(a)、(b)に示すように、図30や図33の実施例では、オン時間TONあるいは出力電圧VOUTの上限VUPPERをフィードバック制御することにより周波数を安定化している。
 しかしながら、制御パルスSのパルス幅を短くしすぎると、スイッチングトランジスタMをターンオンできなくなるため、制御パルスSのパルス幅は、とある最小パルス幅より短くすることはできない。言い換えると軽負荷状態では、制御パルスSのパルス幅は、最小パルス幅に固定される(図37(c))。出力電圧VOUTの下りスロープの傾きは、負荷電流、すなわち点灯状態の半導体光源102の個数に応じている。点灯数が少ない状態では、下りスロープの傾きがどんどん小さくなっていき、スイッチング周波数は低くなっていく。したがって、周波数の安定化制御を行った場合でも、スイッチング周波数がLW帯に入ってしまう状況が生じうる。
 図41は、実施の形態8に係る車両用灯具100Xのブロック図である。車両用灯具100Xは、図25の車両用灯具100に加えて周波数設定回路290を備える。この実施の形態においてコンバータコントローラ230は、周波数安定化機能を備えており、したがって、図30や図33のコンバータコントローラ230Cや230Eで構成することができる。
 周波数設定回路290は、複数の電流源210のオンの個数(点灯数)に応じて、目標周波数を変化させる。より具体的には、オンの個数があるしきい値より小さくなると軽負荷状態と判定し、目標周波数を、元の目標周波数より低くかつ電磁ノイズとされる帯域に含まれない別の周波数に設定する。通常時の目標周波数を、LW帯とAM帯の間の300kHz~450kHz程度の間に設定している場合、軽負荷状態の目標周波数は、LW帯より低い周波数帯域であって、可聴帯域より高い帯域(たとえば100kHz)に設定するとよい。
 図30あるいは図33において、目標周波数は基準電圧VFREQ(REF)にもとづいて規定されるから、周波数設定回路290は、点灯数があるしきい値より低い状態では、基準電圧VFREQ(REF)を低下させればよい。
 実施の形態8によれば、軽負荷状態において周波数は低下するが、電磁ノイズとして忌避すべき周波数からは外すことができる。
(実施の形態9)
 図42は、実施の形態9に係る車両用灯具100Yのブロック図である。車両用灯具100Yは、図25の車両用灯具100に加えて、ダミーロード292、ダミーロード制御回路294を備える。
 ダミーロード292は、スイッチングコンバータ220の出力に接続され、イネーブル状態において、スイッチングコンバータ220のキャパシタCの電荷を放電し、出力電圧VOUTを低下させる。ダミーロード制御回路294は、複数の電流源のオンの個数にもとづいて、ダミーロード292のイネーブル、ディセーブルを制御する。
 ダミーロード292は、スイッチングコンバータ220の出力と接地の間に設けられるトランジスタのスイッチを含む。ダミーロード制御回路294は、スイッチングトランジスタM1のターンオフから所定時間τ経過後に、イネーブル信号ENをアサート(たとえばハイ)して、ダミーロード292のスイッチをターンオンする。
 図43は、図42の車両用灯具100Yの動作波形図である。軽負荷状態となると、サイクル毎にイネーブル信号ENがアサートされ、出力電圧VOUTが瞬時に低下する。そして出力電圧VOUTがボトムリミット電圧VBOTTOMに応じた電圧レベルまで低下すると制御パルスSがハイとなる。すなわちスイッチングトランジスタMのオフ時間TOFFの上限が、所定時間τによって制限される。これにより軽負荷状態におけるスイッチング周波数の低下を抑制できる。
 ダミーロード292は、オンオフ可能な定電流源であってもいし、スイッチと抵抗の組み合わせであってもよい。
<実施の形態10>
 図25を参照する。一般的に、トランジスタのオン抵抗と耐圧はトレードオフの関係にある。スイッチングコンバータの出力電圧VOUTがオーバーシュートした際に、電流源210を構成するトランジスタに印加される電圧が増加する。このため、高耐圧素子を用いて電流源210を構成する必要があるが、高耐圧素子はオン抵抗RONが大きいため、ボトムリミット電圧VBOTTOMを高く設定しなければならず、消費電力および発熱が大きくなるという問題がある。
 図44は、実施の形態10に係る点灯回路200Zの回路図である。点灯回路200Zは、駆動電圧VOUTが所定のしきい値VTHを超えると、スイッチングトランジスタMを強制オフする。点灯回路200Zは、抵抗R31,R32、電圧コンパレータ238を備える。電圧コンパレータ238は、抵抗R31,R32によって分圧された駆動電圧VOUT’をしきい値VTH’と比較し、駆動電圧VOUTの過電圧状態を検出する。
 コンバータコントローラ230Pは、パルス変調器235、論理ゲート233、ドライバ232を備える。パルス変調器235は、図28~図34のコンバータコントローラ230A~230Eのうち、ドライバ232を除く部分であり、制御パルスS’を生成する。論理ゲート233は、電圧コンパレータ238の出力SがVOUT’<VTH’を示すとき、制御パルスS’をそのまま通過させ、電圧コンパレータ238の出力SがVOUT’>VTH’を示すとき、制御パルスS’のレベルを、スイッチングトランジスタM1がターンオフするレベルに強制的にセットする。この例では、スイッチングトランジスタM1はNチャンネルMOSFETであり、Sがローのときにオフとなる。電圧コンパレータ238の出力Sは、VOUT’>VTH’のときにローであり、論理ゲート233はANDゲートである。
 本実施の形態では、電流源210を低オン抵抗のトランジスタを用いて構成することで消費電力を低減できる。それと引き換えにトランジスタの耐圧は低くなるが、スイッチングコンバータの出力電圧VOUTのオーバーシュートが発生した場合には、直ちにスイッチングトランジスタMを停止することで、電流源のトランジスタ(たとえば図36(a)、(b)のトランジスタM、図36(c)のカレントミラー回路216の出力側のトランジスタ)に過電圧が印加されるのを抑制できる。
 上の説明では、電流源210をシンク型で構成し、半導体光源102のカソードに接続したがその限りでない。図45は、変形例に係る車両用灯具100の回路図である。この変形例では、半導体光源102のカソードを共通に接続し、半導体光源102のアノード側に、ソース型の電流源210を接続している。電流源210は、図25(あるいは図35)の構成を天地反転し、必要に応じてトランジスタの極性(PとN)を置換した構成とすればよい。
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
 1 灯具システム
 2 バッテリ
 4 車両ECU
 100 車両用灯具
 102 半導体光源
 110 灯具ECU
 112 スイッチ
 114 マイコン
 116 配光コントローラ
 200 点灯回路
 210 電流源
 M シリーズトランジスタ
 R センス抵抗
 212 エラーアンプ
 214 調光スイッチ
 216 カレントミラー回路
 218 基準電流源
 220 スイッチングコンバータ
 M スイッチングトランジスタ
 230 コンバータコントローラ
 232 ドライバ
 234 ロジック回路
 240 オン信号発生回路
 252 コンパレータ
 254 論理ゲート
 256 最小値回路
 258 コンパレータ
 260 オフ信号発生回路
 262 コンパレータ
 264 周波数検出回路
 266 エラーアンプ
 268 タイマー回路
 270 可変タイマー回路
 272 周波数検出回路
 274 エラーアンプ
 300 電流ドライバIC
 310 電流源
 320 インタフェース回路
 330 調光パルス発生器
 400 ドライバ一体化光源
 402 半導体チップ
 本発明は、点灯回路に関する。

Claims (25)

  1.  複数の半導体光源を点灯する点灯回路であって、
     それぞれが対応する半導体光源と直列に接続されるべき複数の電流源と、
     前記複数の半導体光源と前記複数の電流源が形成する複数の直列接続回路それぞれの両端間に駆動電圧を供給するスイッチングコンバータと、
     リップル制御方式のコンバータコントローラと、
     を備え、
     前記コンバータコントローラは、前記複数の電流源それぞれの電気的状態を監視し、いずれかの電気的状態が所定の条件を満たすと、前記スイッチングコンバータのスイッチングトランジスタをターンオンすることを特徴とする点灯回路。
  2.  前記コンバータコントローラは、前記複数の電流源のいずれかの両端間電圧が、ボトムリミット電圧まで低下したことに応答して、前記スイッチングコンバータのスイッチングトランジスタをターンオンすることを特徴とする請求項1に記載の点灯回路。
  3.  前記コンバータコントローラは、前記スイッチングトランジスタをターンオンした後、オン時間の経過後に前記スイッチングトランジスタをターンオフすることを特徴とする請求項2に記載の点灯回路。
  4.  前記オン時間は、前記スイッチングトランジスタのスイッチング周波数が目標周波数に近づくようにフィードバック制御されることを特徴とする請求項3に記載の点灯回路。
  5.  前記コンバータコントローラは、前記駆動電圧がアッパーリミット電圧に達したことに応答して、前記スイッチングトランジスタをターンオフすることを特徴とする請求項2に記載の点灯回路。
  6.  前記アッパーリミット電圧は、前記スイッチングトランジスタのスイッチング周波数が目標周波数に近づくようにフィードバック制御されることを特徴とする請求項5に記載の点灯回路。
  7.  前記複数の電流源は個別にオン、オフが制御可能であり、
     前記ボトムリミット電圧は、前記複数の電流源のオンの個数が少ないほど増大することを特徴とする請求項2から6のいずれかに記載の点灯回路。
  8.  前記複数の電流源は個別にオン、オフが制御可能であり、
     前記目標周波数は、前記複数の電流源のオンの個数に応じていることを特徴とする請求項4または6に記載の点灯回路。
  9.  前記複数の電流源はそれぞれ、
     対応する半導体光源と直列に設けられたシリーズトランジスタおよびセンス抵抗と、
     前記センス抵抗の電圧降下にもとづいて前記シリーズトランジスタの制御電極の電圧を調節するエラーアンプと、
     を含み、
     前記コンバータコントローラは、前記複数の電流源のいずれかにおいて、前記エラーアンプの出力電圧が所定のターンオン条件を満たしたことに応答して、前記スイッチングコンバータのスイッチングトランジスタをターンオンすることを特徴とする請求項1に記載の点灯回路。
  10.  前記シリーズトランジスタはN型であり、
     前記コンバータコントローラは、前記複数の電流源のいずれかにおいて、前記エラーアンプの出力電圧が所定のしきい値に達すると、前記スイッチングトランジスタをターンオンすることを特徴とする請求項9に記載の点灯回路。
  11.  前記シリーズトランジスタはN型であり、
     前記コンバータコントローラは、前記複数の半導体光源に含まれる複数のエラーアンプの出力電圧の最大値が所定のターンオン条件を満たしたことに応答して、前記スイッチングトランジスタをターンオンすることを特徴とする請求項9または10に記載の点灯回路。
  12.  前記シリーズトランジスタはP型であり、
     前記コンバータコントローラは、前記複数の電流源のいずれかにおいて、前記エラーアンプの出力電圧が所定のしきい値を下回ると、前記スイッチングトランジスタをターンオンすることを特徴とする請求項9から11のいずれかに記載の点灯回路。
  13.  前記コンバータコントローラは、前記駆動電圧がアッパーリミット電圧に達したことに応答して、前記スイッチングトランジスタをターンオフすることを特徴とする請求項9から12のいずれかに記載の点灯回路。
  14.  前記アッパーリミット電圧は、前記スイッチングトランジスタのスイッチング周波数が目標周波数に近づくようにフィードバック制御されることを特徴とする請求項13に記載の点灯回路。
  15.  前記コンバータコントローラは、前記スイッチングトランジスタをターンオンした後、オン時間経過後に前記スイッチングトランジスタをターンオフすることを特徴とする請求項9から12のいずれかに記載の点灯回路。
  16.  前記オン時間は、前記スイッチングトランジスタのスイッチング周波数が目標周波数に近づくようにフィードバック制御されることを特徴とする請求項15に記載の点灯回路。
  17.  前記複数の電流源は個別にオン、オフが制御可能であり、
     前記目標周波数は、前記複数の電流源のオンの個数に応じていることを特徴とする請求項14または16に記載の点灯回路。
  18.  前記複数の電流源は個別にオン、オフが制御可能であり、
     前記スイッチングコンバータの出力に接続され、前記複数の電流源のオンの個数に応じてイネーブルとなるダミーロードをさらに備えることを特徴とする請求項1から17のいずれかに記載の点灯回路。
  19.  前記ダミーロードは、前記スイッチングトランジスタのターンオフ後、所定時間の経過後に、前記駆動電圧を低下させることを特徴とする請求項18に記載の点灯回路。
  20.  前記駆動電圧が所定のしきい値を超えると、前記スイッチングトランジスタを強制オフすることを特徴とする請求項1から19のいずれかに記載の点灯回路。
  21.  前記複数の半導体光源と前記複数の電流源はモジュール化されていることを特徴とする請求項1から20のいずれかに記載の点灯回路。
  22.  請求項1から21のいずれかに記載の点灯回路を備えることを特徴とする車両用灯具。
  23.  複数の半導体光源を駆動する電流ドライバ回路であって、
     それぞれが、PWM信号に応じて独立してオン、オフ可能に構成され、対応する半導体光源と直列に接続されるべき複数の電流源と、
     外部のプロセッサから、第1時間間隔で、前記複数の電流源のオン、オフのデューティ比を指示する複数の制御データを受信するインタフェース回路と、
     前記複数の電流源に対する複数のPWM信号を生成する調光パルス発生器であって、前記複数のPWM信号それぞれのデューティ比は、前記第1時間間隔より短い第2時間間隔で、対応する制御データの更新前の値から更新後の値に向けて徐変する調光パルス発生器と、
     を備えることを特徴とする電流ドライバ回路。
  24.  前記複数のPWM信号それぞれのデューティ比は、設定に応じて、対応する制御データの更新前の値から更新後の値に瞬時に変更可能であることを特徴とする請求項23に記載の電流ドライバ回路。
  25.  前記複数の電流源はそれぞれ、
     対応する半導体光源と直列に設けられたシリーズトランジスタおよびセンス抵抗と、
     前記センス抵抗の電圧降下にもとづいて前記シリーズトランジスタの制御電極の電圧を調節するエラーアンプと、
     前記シリーズトランジスタのゲートソース間に設けられたPWMスイッチと、
     を含むことを特徴とする請求項24に記載の電流ドライバ回路。
PCT/JP2018/041696 2017-11-14 2018-11-09 車両用灯具およびその点灯回路、電流ドライバ回路 WO2019098138A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019554198A JP7544481B2 (ja) 2017-11-14 2018-11-09 車両用灯具およびその点灯回路
EP22172368.7A EP4064793A1 (en) 2017-11-14 2018-11-09 Vehicle lamp, illumination circuit for same, current driver circuit
EP18879988.6A EP3713377A4 (en) 2017-11-14 2018-11-09 VEHICLE LIGHTS, LIGHTING CIRCUIT FOR IT, POWER DRIVER CIRCUIT
EP21186111.7A EP3934385B1 (en) 2017-11-14 2018-11-09 Vehicle lamp, illumination circuit for same, current driver circuit
US16/874,124 US11477871B2 (en) 2017-11-14 2020-05-14 Lighting circuit of automotive lamp
US17/488,850 US11653434B2 (en) 2017-11-14 2021-09-29 Lighting circuit of automotive lamp
US17/488,759 US11558943B2 (en) 2017-11-14 2021-09-29 Lighting circuit of automotive lamp

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017-219172 2017-11-14
JP2017219172 2017-11-14
JP2017219171 2017-11-14
JP2017-219171 2017-11-14
JP2018100801 2018-05-25
JP2018100800 2018-05-25
JP2018-100801 2018-05-25
JP2018-100800 2018-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/874,124 Continuation US11477871B2 (en) 2017-11-14 2020-05-14 Lighting circuit of automotive lamp

Publications (1)

Publication Number Publication Date
WO2019098138A1 true WO2019098138A1 (ja) 2019-05-23

Family

ID=66496382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041696 WO2019098138A1 (ja) 2017-11-14 2018-11-09 車両用灯具およびその点灯回路、電流ドライバ回路

Country Status (5)

Country Link
US (3) US11477871B2 (ja)
EP (3) EP3713377A4 (ja)
JP (1) JP7544481B2 (ja)
CN (2) CN109788614B (ja)
WO (1) WO2019098138A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166451A1 (ja) * 2019-02-13 2020-08-20 株式会社小糸製作所 車両用灯具およびその点灯回路、dc/dcコンバータの制御回路
JP7586932B2 (ja) 2020-12-18 2024-11-19 株式会社小糸製作所 車両用灯具および照明方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3713377A4 (en) 2017-11-14 2021-10-13 Koito Manufacturing Co., Ltd. VEHICLE LIGHTS, LIGHTING CIRCUIT FOR IT, POWER DRIVER CIRCUIT
CN113727496B (zh) * 2020-10-22 2023-06-23 杰华特微电子股份有限公司 多路led驱动方法及驱动电路
EP4021149A1 (en) * 2020-12-22 2022-06-29 Textron Systems Corporation Light appartus with parallel-arranged leds and per-led drivers
FR3122308B1 (fr) * 2021-04-27 2023-04-21 Speedinnov Dispositif de contrôle d’un dispositif d’éclairage, système d’éclairage et procédé de contrôle associés
CN113141691A (zh) * 2021-04-30 2021-07-20 上汽大众汽车有限公司 一种流水式位置灯的驱动控制装置
FR3130352A1 (fr) * 2021-12-10 2023-06-16 Valeo Vision Pilotage de groupes de pixels d’une source lumineuse pour réaliser une transition lumineuse
US20230231482A1 (en) * 2022-01-17 2023-07-20 Mediatek Singapore Pte. Ltd. Voltage regulator with dynamic voltage and frequency tracking
CN114572104A (zh) * 2022-03-08 2022-06-03 芜湖奇瑞科技有限公司 汽车尾灯的控制系统及方法
CN115226262A (zh) * 2022-05-16 2022-10-21 厦门普为光电科技有限公司 多功能智能照明装置控制系统及其控制方法
CN116887479B (zh) * 2023-08-01 2023-12-26 广州威博智能科技股份有限公司 一种三路无极整流的汽车双灯驱动电路

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304694A (ja) * 2007-06-07 2008-12-18 Rohm Co Ltd 内照式看板
JP2009012669A (ja) 2007-07-06 2009-01-22 Koito Mfg Co Ltd 車両用灯具の点灯制御装置
JP2011253773A (ja) * 2010-06-03 2011-12-15 Rohm Co Ltd Led駆動装置およびこれを備えた電子機器
JP2012160436A (ja) * 2011-01-13 2012-08-23 Rohm Co Ltd Ledショート検出回路、led駆動装置、led照明装置、車両
JP2012160287A (ja) * 2011-01-31 2012-08-23 Sharp Corp 発光ダイオード点灯回路
JP2012205360A (ja) * 2011-03-24 2012-10-22 Rohm Co Ltd 発光素子駆動用のスイッチング電源の制御回路、発光素子の駆動回路、およびそれらを用いた発光装置および電子機器
JP2014103002A (ja) * 2012-11-20 2014-06-05 Rohm Co Ltd 発光装置の制御回路、それを用いた発光装置および電子機器
JP2015060822A (ja) * 2013-09-20 2015-03-30 ローム株式会社 発光素子の駆動回路、その制御回路、制御方法、およびそれを用いた発光装置および電子機器
JP2016029665A (ja) * 2010-02-26 2016-03-03 ローム株式会社 半導体チップおよびそれを用いた発光装置、ディスプレイ装置
JP2016213017A (ja) * 2015-05-01 2016-12-15 ローム株式会社 光源の駆動回路およびその制御回路、光源の駆動方法、照明装置、電子機器
JP2017010810A (ja) * 2015-06-23 2017-01-12 ローム株式会社 照明装置、そのコントロール回路、制御方法、ならびにそれを用いたディスプレイ装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398411B2 (ja) * 2005-07-12 2010-01-13 株式会社小糸製作所 車両用灯具の点灯制御装置
WO2008144961A1 (en) * 2007-05-31 2008-12-04 Texas Instruments Incorporated Regulation for led strings
US20090187925A1 (en) * 2008-01-17 2009-07-23 Delta Electronic Inc. Driver that efficiently regulates current in a plurality of LED strings
US7999487B2 (en) 2008-06-10 2011-08-16 Allegro Microsystems, Inc. Electronic circuit for driving a diode load with a predetermined average current
US8421364B2 (en) * 2008-07-15 2013-04-16 Intersil Americas Inc. Transient suppression for boost regulator
JP4918929B2 (ja) * 2009-01-30 2012-04-18 日本テキサス・インスツルメンツ株式会社 発光ダイオード制御装置
US20100327835A1 (en) * 2009-06-26 2010-12-30 Intersil Americas Inc. Integrator for providing overshoot protection and light switching mode during non-zero load condition for an led driver circuitry
CN101990337B (zh) * 2009-08-03 2014-03-26 联咏科技股份有限公司 可动态维持定电流驱动的光源驱动装置及其相关方法
TWI463911B (zh) * 2010-09-09 2014-12-01 Richtek Technology Corp 發光元件陣列驅動電路與用於其中之電流分配電路以及發光元件陣列電流分配方法
US8674620B2 (en) * 2010-11-30 2014-03-18 Infineon Technologies Ag Multi channel LED driver
KR101712676B1 (ko) * 2011-02-18 2017-03-07 매그나칩 반도체 유한회사 Pwm 제어 회로 및 이를 이용한 led 구동회로
FR3018659B1 (fr) * 2014-03-14 2020-03-27 Koito Manufacturing Co., Ltd. Lampe pour vehicule et dispositif de commande de lampe pour vehicule
CN204945863U (zh) * 2015-09-11 2016-01-06 袁琰 一种分挡的程控恒流源电路
JP2017107777A (ja) 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 点灯装置及びそれを備えた照明器具
US10263515B2 (en) * 2016-04-14 2019-04-16 Licon Technology Corporation Quasi-analog digital pulse-width modulation control
KR102552439B1 (ko) * 2016-05-09 2023-07-07 삼성디스플레이 주식회사 백라이트 유닛, 그것의 구동 방법 및 그것을 포함하는 표시 장치
EP3713377A4 (en) 2017-11-14 2021-10-13 Koito Manufacturing Co., Ltd. VEHICLE LIGHTS, LIGHTING CIRCUIT FOR IT, POWER DRIVER CIRCUIT

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304694A (ja) * 2007-06-07 2008-12-18 Rohm Co Ltd 内照式看板
JP2009012669A (ja) 2007-07-06 2009-01-22 Koito Mfg Co Ltd 車両用灯具の点灯制御装置
JP2016029665A (ja) * 2010-02-26 2016-03-03 ローム株式会社 半導体チップおよびそれを用いた発光装置、ディスプレイ装置
JP2011253773A (ja) * 2010-06-03 2011-12-15 Rohm Co Ltd Led駆動装置およびこれを備えた電子機器
JP2012160436A (ja) * 2011-01-13 2012-08-23 Rohm Co Ltd Ledショート検出回路、led駆動装置、led照明装置、車両
JP2012160287A (ja) * 2011-01-31 2012-08-23 Sharp Corp 発光ダイオード点灯回路
JP2012205360A (ja) * 2011-03-24 2012-10-22 Rohm Co Ltd 発光素子駆動用のスイッチング電源の制御回路、発光素子の駆動回路、およびそれらを用いた発光装置および電子機器
JP2014103002A (ja) * 2012-11-20 2014-06-05 Rohm Co Ltd 発光装置の制御回路、それを用いた発光装置および電子機器
JP2015060822A (ja) * 2013-09-20 2015-03-30 ローム株式会社 発光素子の駆動回路、その制御回路、制御方法、およびそれを用いた発光装置および電子機器
JP2016213017A (ja) * 2015-05-01 2016-12-15 ローム株式会社 光源の駆動回路およびその制御回路、光源の駆動方法、照明装置、電子機器
JP2017010810A (ja) * 2015-06-23 2017-01-12 ローム株式会社 照明装置、そのコントロール回路、制御方法、ならびにそれを用いたディスプレイ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166451A1 (ja) * 2019-02-13 2020-08-20 株式会社小糸製作所 車両用灯具およびその点灯回路、dc/dcコンバータの制御回路
US11617247B2 (en) 2019-02-13 2023-03-28 Koito Manufacturing Co., Ltd. Lighting circuit for automotive lamp
JP7586932B2 (ja) 2020-12-18 2024-11-19 株式会社小糸製作所 車両用灯具および照明方法

Also Published As

Publication number Publication date
CN109788614B (zh) 2022-01-04
US20200275542A1 (en) 2020-08-27
EP4064793A1 (en) 2022-09-28
JPWO2019098138A1 (ja) 2020-11-19
EP3713377A4 (en) 2021-10-13
US20220022300A1 (en) 2022-01-20
CN111586935B (zh) 2023-01-31
EP3934385A1 (en) 2022-01-05
EP3713377A1 (en) 2020-09-23
CN109788614A (zh) 2019-05-21
EP3934385B1 (en) 2024-02-14
US11653434B2 (en) 2023-05-16
US11558943B2 (en) 2023-01-17
US11477871B2 (en) 2022-10-18
CN111586935A (zh) 2020-08-25
US20220022299A1 (en) 2022-01-20
JP7544481B2 (ja) 2024-09-03

Similar Documents

Publication Publication Date Title
WO2019098138A1 (ja) 車両用灯具およびその点灯回路、電流ドライバ回路
JP7237938B2 (ja) 車両用灯具およびその点灯回路
US11617247B2 (en) Lighting circuit for automotive lamp
TW201633849A (zh) 用於發光二極體驅動器之類比及數位調光控制
CN109076676B (zh) Led电流控制器
KR20120064636A (ko) 발광 소자의 구동 회로 및 그것을 이용한 발광 장치, 전자 기기
Moon et al. Concurrent current and voltage regulated buck–boost converter for automotive LED matrix headlights
JP6247455B2 (ja) 発光素子の駆動回路およびそれを用いた発光装置および電子機器
KR102013971B1 (ko) 전압 및 온도에 응답하여 발광 다이오드를 디밍하도록 구성된 드라이브 장치를 포함하는 조명 장치
CN113841336B (zh) 负电压轨
US10743385B2 (en) Adjustable voltage constant current light emitting diode (LED) driver for automotive headlights
CN210351740U (zh) 车辆用灯具及其点亮电路、电流驱动器电路
CN209882171U (zh) 车辆用灯具以及其点亮电路
KR20130104143A (ko) Led 전원 장치.
KR100975353B1 (ko) 발광 다이오드 회로 및 이를 포함하는 발광 다이오드 조명 장치
KR102074667B1 (ko) 차량용 엘이디 구동 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879988

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019554198

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018879988

Country of ref document: EP

Effective date: 20200615