WO2019097965A1 - モータ制御装置及びこれを備えた電動圧縮機、移動体用の空気調和機、モータ制御方法及びモータ制御プログラム - Google Patents

モータ制御装置及びこれを備えた電動圧縮機、移動体用の空気調和機、モータ制御方法及びモータ制御プログラム Download PDF

Info

Publication number
WO2019097965A1
WO2019097965A1 PCT/JP2018/039425 JP2018039425W WO2019097965A1 WO 2019097965 A1 WO2019097965 A1 WO 2019097965A1 JP 2018039425 W JP2018039425 W JP 2018039425W WO 2019097965 A1 WO2019097965 A1 WO 2019097965A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
motor
rotational speed
motor control
torque
Prior art date
Application number
PCT/JP2018/039425
Other languages
English (en)
French (fr)
Inventor
服部 誠
貴之 鷹繁
渡邊 恭平
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to US16/763,154 priority Critical patent/US11418136B2/en
Priority to CN201880069379.8A priority patent/CN111357191B/zh
Priority to DE112018005917.0T priority patent/DE112018005917T5/de
Publication of WO2019097965A1 publication Critical patent/WO2019097965A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/02Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for optimising the efficiency at low load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00421Driving arrangements for parts of a vehicle air-conditioning
    • B60H1/00428Driving arrangements for parts of a vehicle air-conditioning electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/03Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for very low speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/20Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors for controlling one motor used for different sequential operations

Definitions

  • the present invention relates to a motor control device, an electric compressor provided with the same, an air conditioner for a movable body, a motor control method, and a motor control program.
  • Patent Document 1 describes two types of motor control methods, a control method giving priority to position estimation accuracy of a magnet rotor and a control method giving priority to quietness, and a motor control device in which the switching conditions are defined. .
  • the motor of the electric compressor does not intend, contrary to the command, due to the high torque load condition passing for a long time and the required rotational speed changing rapidly etc. May stop.
  • One example is the step out, but the step out generates, for example, a spike current, and an abnormal current may flow in the control circuit of the motor compressor, which may affect the electronic components on the circuit.
  • the compressor described in Patent Document 1 has the following problems. That is, in the control method and the switching method defined above, when the factor causing the above-mentioned step-out occurs, the stop can not be prevented in advance. As a result, depending on the operating conditions, there is a concern that stopping the motor may interfere with the normal operation of the electronic components on the control circuit of the electric compressor, or damage the electronic components themselves.
  • this invention aims at providing the motor control apparatus which can solve the above-mentioned subject, an electric compressor, the air conditioner for mobiles, and the control method of an electric compressor.
  • adopts the following means, in order to solve the said subject. That is, according to the required number of revolutions of the motor, the first control capable of high torque and precision control or the second control capable of more efficient control than the first control can be performed according to the required rotation speed.
  • the control unit controls the rotational speed, and the switching determination unit switches the first control to the second control when the actual rotational speed of the motor exceeds a predetermined rotational speed threshold.
  • the switching determination unit further determines that the rotation speed measured value is equal to or less than the rotation speed threshold, and a predetermined time has elapsed from the time when the rotation speed measured value matches the required rotation speed.
  • the present invention is characterized in that the first control is switched to the second control.
  • the first control is control that enables high-torque and high-precision operation, but makes high-efficiency and wide-range operation poor.
  • a high torque and high precision operator is poor, but high efficiency and wide range operation can be performed as the second control.
  • the timing of switching from the first control to the second control can be relatively advanced. That is, the motor rotational speed measurement value is defined in advance even in a situation where an event that causes the above-mentioned step-out (such as the continuation of a high torque load condition or a sudden change in the required rotational speed) may occur.
  • the step-out may occur at the time of switching from the first to the second. Since switching is performed in the presence state, the risk of step out at switching can be reduced.
  • the second control is excellent in efficiency even under conditions where the refrigerant has to be compressed at a relatively high pressure such as when the outside air temperature is high. Since control can be prioritized, overheating of the IGBT can be suppressed.
  • the first control capable of following the required rotational speed or the torque load applied to the motor per first predetermined time unit or the required rotational speed or the torque load may be used.
  • Control unit that controls the number of revolutions of the motor according to the required number of revolutions by performing a second control that can be followed every second predetermined time unit that is longer than the first predetermined time unit in the first control
  • a switching determination unit that switches from the first control to the second control when the actual rotation speed of the motor exceeds a predetermined rotation speed threshold, the switching determination unit further including: The first control is performed when the rotation speed measured value is equal to or less than the rotation speed threshold and when a predetermined time has elapsed from the time when the rotation speed measured value matches the required rotation speed. From the second Or as a motor control for switching control to.
  • the first control is the control that enables highly accurate control by following the fluctuation of the required rotational speed or the torque load applied to the motor in microsecond units, and it may be millisecond units.
  • the followable control is the second control
  • the timing of switching from the first control to the second control can be relatively advanced. That is, even in a situation where an event causing the above-mentioned step-out may occur, the fluctuation of the required rotational speed can be obtained without waiting for the actual motor rotational speed to exceed the predetermined rotational speed threshold.
  • a control that is not hypersensitive it is possible to prevent a motor stop such as a step-out in advance.
  • the switching determination unit further switches from the first control to the second control when the fluctuation of the requested rotational speed becomes equal to or more than a fluctuation threshold defined in advance. It is also good.
  • the motor control device may further include a torque correlation parameter acquisition unit that acquires a parameter that correlates with a torque that the motor should output, and the switching determination unit estimates the parameter based on the acquired parameter.
  • the first control may be switched to the second control.
  • the predetermined time may be one second.
  • the motor control method requires the motor to perform high torque, the first control capable of performing precise control, or the second motor control capable of controlling the motor more efficiently than the first control. Controlling the number of revolutions of the motor according to the number, and switching from the first control to the second control when the actual number of revolutions of the motor exceeds a predetermined revolution threshold. And in the step of switching to the second control, the actual rotational speed is less than or equal to the rotational speed threshold, and the actual rotational speed matches the required rotational speed. When the specified time has elapsed, the control is switched from the first control to the second control.
  • a motor-driven compressor according to the present invention is characterized by including the above-described motor control device.
  • An air conditioner for a mobile unit according to the present invention includes the above-described electric compressor.
  • a motor control program according to the present invention is characterized by causing a computer to execute the above motor control method.
  • an electric compressor provided with the same, an air conditioner for a moving body, a motor control method, and a motor control program, the motor control device and the motor control device It is possible to improve the reliability of the provided electric compressor and air conditioner for a mobile unit.
  • FIG. 1 is a schematic block diagram of a motor-driven compressor having a motor control device according to a first embodiment of the present invention. It is a flow chart which shows an example of motor control concerning a first embodiment of the present invention. It is a flow chart which shows an example of motor control concerning a second embodiment of the present invention. It is a schematic block diagram of an electric compressor which has a motor control device concerning a third embodiment of the present invention. It is a flow chart which shows an example of motor control concerning a third embodiment of the present invention.
  • FIG. 1 is a schematic block diagram of a vehicle 100 as a moving body equipped with an air conditioner 1 equipped with an electric compressor 11 having a motor control device 51 according to a first embodiment of the present invention.
  • FIG. 1 shows an ECU (Electric Control Unit) 2 mounted on a vehicle 100 and a vehicle-mounted air conditioner 1. As illustrated, the vehicle 100 includes an ECU 2 and an air conditioner 1.
  • the air conditioner 1 also includes an electric compressor 11.
  • the ECU 2 controls the electrical equipment of the vehicle 100.
  • the air conditioner 1 is a car air conditioner unit.
  • the electric compressor 11 is an electric compressor used for a vehicle-mounted air conditioner.
  • the electric compressor 11 is an inverter-integrated electric compressor in which an inverter device 41 is integrated.
  • the ECU 2 and the air conditioner 1 are connected by a signal line, a communication line, a power line or the like, and the air conditioner 1 receives a control signal of the ECU 2 by CAN (Controller Area Network) communication and performs a user's desired operation. For example, when the user performs an operation to start the operation of the air conditioner, the ECU 2 outputs a control signal corresponding to the operation to the air conditioner 1, and the air conditioner 1 starts the operation based on the control signal.
  • the ECU 1 When the user sets the in-vehicle temperature, the ECU 1 generates a control signal according to the set temperature, and controls the operating state of the air conditioner 2.
  • FIG. 2 is a schematic block diagram of the electric compressor 11 having the motor control device 51 according to the first embodiment of the present invention.
  • the electric compressor 11 is an inverter-integrated electric compressor, and includes an inverter device 41, a motor 12, and a compression unit 10.
  • the inverter device 41 converts direct current power supplied from a power source (not shown) such as a battery into three-phase alternating current, and supplies it to the motor 12.
  • the motor 12 which has received the power rotates and transmits a rotational force to the compression unit 10 mechanically connected to the motor 12.
  • the compressor 10 which has received the rotational force supplies the refrigerant to a refrigerant circuit (not shown) provided in the air conditioner 1.
  • the inverter device 41 has a motor control device 51.
  • the motor control device 51 includes a control unit 61 and a switching determination unit 71.
  • the control unit 61 includes a first control means 611 for performing the control 1 and a second control means 612 for performing the control 2.
  • the first control means 611 is a means for performing control (referred to as control 1) capable of high-torque and high-precision operation but poor operation at high efficiency and wide range. Therefore, the control is suitable for driving the motor 12 at low speed and high torque, and is particularly effective when a large starting torque is required. Therefore, the motor control device 51 according to the present embodiment implements control 1 when the motor 12 is started.
  • the ECU 1 when the user performs an operation to start the operation of the air conditioner, the ECU 1 outputs a control signal corresponding to the operation to the air conditioner 1. In response to this signal, the air conditioner 1 performs the first control. Driving of the motor 12 is started by inverter control controlled by the control unit 61 using the means 611. Moreover, since the calculation of the voltage and the like in the control 1 in the present embodiment is performed in microseconds, it is possible to sharply follow the required rotation speed. Therefore, high precision motor operation is enabled.
  • the second control means 612 carries out control (referred to as control 2) which is poor at high torque and high precision, but capable of high efficiency and wide range operation. It is a means.
  • control 2 since the calculation of control 2 in this embodiment is performed in millisecond units, there is an advantage that it does not follow the required rotation speed too sensitively, and has the advantage of being resistant to rapid fluctuations. It is possible. Therefore, in the motor control device 51 according to the present embodiment, after the motor 12 is started, the control 1 is performed first, and then the control is switched to the control 2.
  • the switching determination unit 71 includes a rotational speed actual value calculation unit 711.
  • the switching determination unit 71 in the present embodiment makes a determination to switch from control 1 to control 2 and transmits a switching signal to the control unit 61 if the conditions are met.
  • the actual rotational speed may exceed the predetermined threshold, and the switching determination unit 71 in the present embodiment determines the actual rotational speed obtained from the actual rotational speed calculator 711 and the predetermined threshold. Make a comparison.
  • this predetermined threshold is 2000 rpm. In this case, the control is forcibly switched regardless of the other conditions.
  • the switching determination unit 71 instructs the control unit 61 to switch to the control 2, and the control unit 61 accordingly.
  • the control 2 drives the electric compressor.
  • the motor control device 51 according to the present embodiment performs control by utilizing the advantages of the two controls and switching between them, thereby achieving a desired driving effect while efficiently driving the motor.
  • the electric compressor is operating.
  • the switching determination unit 71 has a condition for performing switching even when the actual rotational speed is less than or equal to the above-described predetermined threshold value. Specifically, it is specified in advance from the time when the required number of revolutions, which is the number of revolutions corresponding to the frequency of the power supplied to the motor 12, and the actually measured number of revolutions obtained from the above-mentioned actual number of revolutions calculation means Switching is also performed when the elapsed time has passed.
  • the predetermined time is, for example, one second.
  • FIG. 4 is a flow chart showing an example of control switching in the motor control device 51 of the electric compressor according to an embodiment of the present invention.
  • the determination unit compares the actual rotation speed value obtained from the actual rotation speed calculation means 711 with the predetermined threshold (step S13), and the actual rotation speed exceeds the predetermined threshold (step S13; yes) forces control 2 to be performed (step S14).
  • step S13; No the determination unit next determines whether the actual rotational speed matches the required rotational speed (step S15). If they do not match (step S15; yes), control 1 is performed (step S16).
  • step S15 If they match (step S15; yes), the determination unit next compares the time during which the actual measured value of the rotational speed and the required rotational speed remain matched with the predetermined time (step S17). As a result of the comparison, when the time for which the information remains identical does not exceed the predetermined time (step S17; No), control 1 is continuously performed (step S18). If it exceeds (step S17; yes), control 2 is performed (step S19).
  • the rotational speed is determined by the rotational speed if the actual rotational speed and the required rotational speed match for a predetermined time.
  • the second control is executed without exceeding the specified threshold.
  • high torque and high precision operation can be performed but high efficiency and wide range operation are not good at hand 1, high torque and high precision operator is poor but high efficiency and wide area It is possible to relatively earlier advance the timing of switching to the control 2 in which the driving is possible.
  • the actual rotational speed of the motor 12 is defined in advance. It is possible to shift to control 2 capable of wider range operation because it is not sensitive to the fluctuation of the required rotation speed without waiting for the number threshold to be exceeded.
  • the step-out may occur at the time of switching from control 1 to control 2, but the required rotation speed and the actual measurement rotation speed already coincide with each other for a predetermined time Since switching is performed in the presence state, the risk of step out at switching can be reduced.
  • control 1 after start-up for a short period of time, excellent control can be made in terms of efficiency even under conditions where the refrigerant has to be compressed at a relatively high pressure such as when the outside air temperature is high. Since it can carry out by giving priority to 2, overheat of IGBT can be suppressed. Therefore, higher reliability can be obtained for the motor control device 51 according to the present embodiment, the electric compressor 11 including the same, and the air conditioner 1 for a moving object.
  • the processing performed by the switching determination unit 72 is different from that of the first embodiment. Specifically, the fluctuation of the required rotational speed is tracked, and the fluctuation range per time is compared with a predetermined threshold (step S21), as a preliminary step of using the rotational speed actual value calculation means 711 which the switching determination unit 72 has.
  • step S21 when the fluctuation range of the required rotation speed is larger than the predetermined threshold value, the control is switched to control 2 without using the actual rotation speed calculation means 711 (step S21; yes).
  • step S21; No if it is smaller than the predetermined threshold value (step S21; No), the process proceeds to comparison of the actual measurement value of the rotational speed with the predetermined threshold value using the rotational speed actual value calculation means 711 (step S23).
  • step S23 which is the step after this procedure is the same as the flow from step 13 to step 19 in the first embodiment.
  • the process is returned to step 23 corresponding to step 13 in the first embodiment, but it is also possible to return to step 21. Good.
  • the control 1 when the control 1 is switched to the control 2, the control 2 can be switched to the control 2 when the required rotation speed fluctuates regardless of the actual rotation speed. That is, the change of the required rotational speed causing the step out is directly set as the switching condition.
  • the control 1 is a control that enables high torque and high precision operation but makes high efficiency and wide range operation poor
  • the control 2 is a high torque and high precision operator Is a poor control but capable of high efficiency and wide range operation, if the required rotation speed fluctuates sharply during the execution of control 1, it will try to follow the required rotation speed finely as a result. There is a high possibility of the occurrence of a key.
  • the switching determination unit 73 further includes a torque correlation parameter acquisition unit.
  • the torque correlation parameter acquisition unit acquires a parameter that is correlated with the torque generated by the motor 12. In the present embodiment, for example, the value of the current of the motor 12 is acquired, and the value of the torque of the motor 12 is estimated.
  • the process performed by the switching determination unit 73 is different from that in the first embodiment. Specifically, as a preliminary step of using the rotation speed actual value calculation means 711 which the switching determination unit 73 has, the control is switched to control 2 when the estimated torque value calculated by the torque correlation parameter acquisition unit 83 described above exceeds a predetermined threshold.
  • the processing performed by the switching determination unit 71 is different from the first embodiment and the second embodiment. Specifically, the estimated torque value calculated by the torque correlation parameter acquisition unit is compared with a predetermined threshold as a pre-stage of using the rotation speed actual value calculation means 711 which the switching determination unit 71 has (step S31). As a result, when the estimated torque value is larger than the predetermined threshold value, the control is switched to control 2 without using the actual rotation speed calculation means 711 (step S31; yes).
  • step S31 if it is smaller than the predetermined threshold value (step S31; No), the process proceeds to comparison of the actual measurement value of the rotational speed with the predetermined threshold value using the rotational speed actual value calculation means 711 (step S33).
  • the procedure after this procedure is the same as that of the first embodiment.
  • the flow from step 33 to step 39 which is the step after this procedure is the same as the flow from step 13 to step 19 in the first embodiment.
  • the process is returned to step 33 corresponding to step 13 in the first embodiment, but it is also possible to return to step 31. Good.
  • the control 1 is a control that enables high torque and high precision operation but makes high efficiency and wide range operation poor
  • the control 2 is a high torque and high precision operator In the case of control that is poor and capable of high efficiency and wide range operation, it is possible to switch to control 2 capable of wider range control early.
  • the control 1 is a control that can generally output a high torque as compared to the control 2.
  • sensorless vector control is an example of the first control (control 1)
  • V is an example of the second control (control 2).
  • F control is mentioned.
  • the electric compressors 11 and 13 constitute a part of the car air conditioner of the vehicle 100
  • the motor control devices 51 and 53 and the electric compressors 11 and 13 of the present embodiment are refrigeration units. It is also possible to apply to an air conditioner of a refrigerated car.
  • the control apparatus 50 of this embodiment and the apparatus of the application destination of the electric compressor 10 may be an air conditioner mounted in various moving bodies, such as a ship, an aircraft, a railway, etc. besides a vehicle.
  • an electric compressor provided with the same, an air conditioner for a moving body, a motor control method, and a motor control program, the motor control device and the motor control device It is possible to improve the reliability of the provided electric compressor and air conditioner for a mobile unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

モータ制御装置は、モータに対し、高トルク、精密制御が可能な第1制御又はモータに対し、第1制御よりも高効率な制御が可能な第2制御の実施によって要求回転数に応じてモータの回転数を制御する制御部と、モータの回転数実測値が予め規定された回転数閾値を上回った場合に、第1制御から第2制御に切り替える切替判定部と、を備える。切替判定部は、更に、回転数実測値が回転数閾値以下の場合であって、かつ、回転数実測値が要求回転数に一致した時点から予め規定された時間が経過した場合には、第1制御から第2制御に切り替える。

Description

モータ制御装置及びこれを備えた電動圧縮機、移動体用の空気調和機、モータ制御方法及びモータ制御プログラム
 本発明は、モータ制御装置及びこれを備えた電動圧縮機、移動体用の空気調和機、モータ制御方法及びモータ制御プログラムに関する。
 本願は、2017年11月20日に、日本に出願された特願2017-222638号に基づき優先権を主張し、その内容をここに援用する。
 車両に搭載されたカーエアコンの構成要素の一つに電動圧縮機がある。一般に、電動圧縮機のモータは、可変速装置として機能するインバータにより電圧及び周波数が調整された交流の電力により駆動される。従って、電動圧縮機を適切に制御するには、起動時又は起動後の運転要求の変化や、負荷の変動等に応じて適切なインバータ制御を行うことが必要となる。
 特許文献1には、磁石回転子の位置推定精度を優先する制御方式と静寂性を優先する制御方式の二種類のモータ制御方法と、その切り替え条件を定義したモータの制御装置について、記載がある。
特開2003-102193号公報
 ところで、カーエアコンの使用状況によっては、高トルク負荷状態が長時間に渡ることや、要求回転数が急激に変動することなどを要因として、電動圧縮機のモータが意図せず、指令に反して、停止する場合がある。その一例が脱調であるが、脱調により、例えばスパイク電流が発生し、電動圧縮機の制御回路に異常電流が流れ、回路上の電子部品に影響を及ぼす可能性がある。
 しかしながら、上記特許文献1に記載された圧縮機では以下の問題が生じていた。即ち、上記で定義される制御方式及びその切替方式では、上述の脱調を誘発する要因が発生した場合、停止を未然に防止することができない。このことで、運転状況によってはモータの停止が電動圧縮機の制御回路上の電子部品の正常な動作を妨害し、もしくは電子部品自体を損壊することが懸念された。
 そこでこの発明は、上述の課題を解決することのできるモータ制御装置、電動圧縮機、移動体用の空気調和機及び電動圧縮機の制御方法を提供することを目的としている。
 本発明に係る態様は、上記課題を解決するため、以下の手段を採用している。即ち、モータに対し、高トルク、精密制御が可能な第1制御又は該モータに対し、第1制御よりも高効率な制御が可能な第2制御の実施によって要求回転数に応じて前記モータの回転数を制御する制御部と、前記モータの回転数実測値が予め規定された回転数閾値を上回った場合に、前記第1制御から前記第2制御に切り替える切替判定部と、を備え、前記切替判定部は、更に、前記回転数実測値が前記回転数閾値以下の場合であって、かつ、当該回転数実測値が前記要求回転数に一致した時点から予め規定された時間が経過した場合には、前記第1制御から前記第2制御に切り替えることを特徴とする。
 この構成によれば、一例として電動圧縮機のモータの起動時における二種類のモータ制御の切替時での脱調を予防することができる。例えば、高トルクかつ高精度な運転が可能であるが高効率・広範囲の運転を不得手とする制御を第1制御とする。一方、高トルクかつ高精度な運手は不得手であるが高効率・広範囲な運転が可能である制御を第2制御とする。この場合、第1制御から第2制御への切替のタイミングを相対的に早めることができる。つまり、上述のような脱調の要因(高トルク負荷状態の継続や要求回転数の急激な変動など)となる事象が起こりうる状況であっても、モータの回転数実測値が予め規定された回転数閾値を上回るのを待たずにより広範囲運転が可能な第2制御へと移行することができる。また、第1制御中に脱調が起こらずとも、第1から第2への切替時に脱調が起こる場合があったが、これについても要求回転数と実測回転数がすでに所定時間一致している状態にて切替を実行することとなるため、切替時の脱調のリスクを低減することができる。また、起動後の第1制御をより短期間とすることで、外気温が高い時などの比較的高い圧力で冷媒を圧縮しなければならない状況下であっても効率の点で優れた第2制御を優先して行うことができるため、IGBTの過熱を抑制することができる。
 また、上記のモータ制御装置は、モータに対し、要求回転数又はモータにかかるトルク負荷に対して第一の所定時間単位ごとに追従可能な第1制御又は前記要求回転数又は前記トルク負荷に対して第1制御における第一の所定時間単位よりも長時間である第二の所定時間単位ごとに追従可能な第2制御の実施によって要求回転数に応じて前記モータの回転数を制御する制御部と、前記モータの回転数実測値が予め規定された回転数閾値を上回った場合に、前記第1制御から前記第2制御に切り替える切替判定部と、を備え、前記切替判定部は、更に、前記回転数実測値が前記回転数閾値以下の場合であって、かつ、当該回転数実測値が前記要求回転数に一致した時点から予め規定された時間が経過した場合には、前記第1制御から前記第2制御に切り替えるモータ制御としてもよい。
 この構成によれば、例えば、要求回転数の変動又はモータにかかるトルク負荷に対してマイクロ秒単位で追従することで高精度な制御が可能な制御が第1制御であり、ミリ秒単位であれば追従可能な制御が第2制御である場合、第1制御から第2制御への切替のタイミングを相対的に早めることができる。つまり、上述のような脱調の要因となる事象が起こりうる状況であっても、モータの回転数実測値が予め規定された回転数閾値を上回るのを待たずにより要求回転数の変動に対して過敏ではない制御へと切り替えることで、脱調などのモータ停止を未然に予防することができる。
 また、上記のモータ制御装置は、前記切替判定部は、更に、前記要求回転数の変動が、予め規定された変動閾値以上となった場合に、前記第1制御から前記第2制御に切り替えてもよい。
 この構成によれば、脱調の原因となる要求回転数の変動を直接的に切替の条件とすることとなるため、より確実に脱調を防止することができる。
 また、上記のモータ制御装置は、前記モータが出力すべきトルクと相関するパラメータを取得するトルク相関パラメータ取得部を更に備え、前記切替判定部は、取得された前記パラメータに基づいて推定される前記トルクがトルク閾値を上回る場合には、前記第1制御から前記第2制御に切り替えてもよい。
 この構成によれば、脱調の原因となるトルク負荷の高まりを直接的に切替の条件とすることとなるため、より確実に脱調を防止することができる。
 また、上記のモータ制御装置は、前記予め規定された時間とは、1秒であってもよい。
 この構成によれば、要求回転数又はモータにかかる定常的な高トルク負荷がモータ制御に影響を及ぼすより十分に早く切り替えることができるため、より確実に脱調を防止することができる。
 本発明に係るモータ制御方法は、モータに対し、高トルク、精密制御が可能な第1制御又は該モータに対し、第1制御よりも高効率な制御が可能な第2制御の実施によって要求回転数に応じて前記モータの回転数を制御するステップと、前記モータの回転数実測値が予め規定された回転数閾値を上回った場合に、前記第1制御から前記第2制御に切り替えるステップと、を有し、前記第2制御に切り替えるステップでは、更に、前記回転数実測値が前記回転数閾値以下の場合であって、かつ、当該回転数実測値が前記要求回転数に一致した時点から予め規定された時間が経過した場合には、前記第1制御から前記第2制御に切り替えることを特徴とする。
 本発明に係る電動圧縮機は、上記のモータ制御装置を備えていることを特徴とする。
 本発明に係る移動体用の空気調和機は、上記の電動圧縮機を備えていることを特徴とする。
 本発明に係るモータ制御プログラムは、コンピュータに対し、上記のモータ制御方法を実行させることを特徴とする。
 上述したモータ制御装置、これを備えた電動圧縮機、移動体用の空気調和機、モータ制御方法、及びモータ制御プログラムによれば、モータの脱調を防止することで、モータ制御装置及びこれを備えた電動圧縮機、移動体用の空気調和機の信頼性を向上できる。
本発明の第一の実施形態に係るモータ制御装置を有する電動圧縮機を備えた空気調和機を搭載した移動体たる車両の概略ブロック図である。 本発明の第一の実施形態に係るモータ制御装置を有する電動圧縮機の概略ブロック図である。 本発明の第一の実施形態に係るモータ制御の一例を示すフローチャートである。 本発明の第二の実施形態に係るモータ制御の一例を示すフローチャートである。 本発明の第三の実施形態に係るモータ制御装置を有する電動圧縮機の概略ブロック図である。 本発明の第三の実施形態に係るモータ制御の一例を示すフローチャートである。
[第一実施形態]
 以下、本発明の第一の実施形態による電動圧縮機のモータ制御方法について、図1~図6を参照して説明する。
 図1は、本発明の第一の実施形態に係るモータ制御装置51を有する電動圧縮機11を備えた空気調和機1を搭載した移動体たる車両100の概略ブロック図である。
 図1に車両100に搭載されたECU(Electric Control Unit)2と車載用の空気調和機1とを示す。図示するように車両100は、ECU2と空気調和機1とを備えている。また、空気調和機1は、電動圧縮機11を備えている。ECU2は、車両100の電装機器の制御を行う。空気調和機1は、カーエアコンユニットである。電動圧縮機11は、車載用空気調和機に用いられる電動圧縮機である。電動圧縮機11は、インバータ装置41が一体に組み込まれたインバータ一体型電動圧縮機である。ECU2と空気調和機1は、信号線、通信線、電力線等で接続され、空気調和機1は、CAN(Controller Area Network)通信によりECU2の制御信号を受信し、ユーザ所望の動作を行う。例えば、ユーザが、エアコンの運転を開始する操作を行うと、ECU2がその操作に応じた制御信号を空気調和機1へ出力し、空気調和機1はその制御信号に基づいて運転を開始する。また、ユーザが、車内温度を設定すると、ECU1は、その設定温度に応じた制御信号を生成し、空気調和機2の運転状態を制御する。
 図2は、本発明の第一の実施形態に係るモータ制御装置51を有する電動圧縮機11の概略ブロック図である。電動圧縮機11は、インバータ一体型電動圧縮機であり、インバータ装置41と、モータ12、圧縮部10を有している。
 インバータ装置41はバッテリ等の電源(図示せず)から供給された直流電力を三相交流に変換し、モータ12へ供給する。電力を得たモータ12は回転し、モータ12と機械的に接続された圧縮部10に回転力を伝達する。回転力を受けた圧縮部10は、空気調和機1が備える冷媒回路(図示せず)へ冷媒を供給する。
 インバータ装置41は、モータ制御装置51を有している。モータ制御装置51は、制御部61と、切替判定部71を有している。
 制御部61は、制御1を実施する第1の制御手段611と制御2を実施する第2の制御手段612を有している。第1の制御手段611は、本実施形態では、高トルクかつ高精度な運転が可能であるが高効率・広範囲の運転を不得手とする制御(制御1とする)を実施する手段である。このため、低速・高トルクでのモータ12駆動に適した制御であり、特に大きな始動トルクが必要な場合に効果的である。そのため、本実施形態に係るモータ制御装置51は、モータ12起動時に制御1を実施する。つまり、ユーザが、エアコンの運転を開始する操作を行うと、ECU1がその操作に応じた制御信号を空気調和機1へ出力するが、この信号を受けて空気調和機1は、第1の制御手段611を用いて制御部61が制御するインバータ制御によりモータ12の駆動が開始されることとなる。
 また、本実施形態での制御1における電圧等についての演算はマイクロ秒単位で実施されるため、要求回転数に対して鋭敏に追従可能である。そのため、高精度なモータ運転を可能としている。
 一方、第2の制御手段612は、本実施形態においては、高トルクかつ高精度な運手は不得手であるが高効率・広範囲な運転が可能である制御(制御2とする)を実施する手段である。また、本実施形態における制御2の演算はミリ秒単位で実施されるため、要求回転数に対して鋭敏に追従し過ぎず、急激な変動に対して強いという利点があるため、高範囲運転を可能としている。そのため、本実施形態に係るモータ制御装置51では、モータ12起動後はまず制御1を実施し、続いて制御2へと切り替える。
 次に、切替判定部71について詳述する。切替判定部71は回転数実測値演算手段711を有している。
 本実施形態における切替判定部71は、制御1から制御2へと切り替えるための判定を行い、条件に適合する場合は切替の信号を制御部61に伝達する。該条件の一つとして、回転数実測値が所定閾値を上回った場合があり、本実施形態における切替判定部71は回転数実測値演算手段711から得られた回転数実測値と所定閾値との比較を行う。一例として、この所定閾値は2000rpmである。この場合は、他の条件に係らず、強制的に制御の切替を行う。つまり、ユーザがエアコンの運転を開始した後、モータ12が所定閾値以上の回転数に到達すると、切替判定部71が制御2への切替を制御部61に指令し、制御部61はこれに従い、制御2により電動圧縮機は駆動される。
 上述のように、本実施形態に係るモータ制御装置51は、2つの制御のそれぞれの利点を生かした制御とその切替を行うことで、所望の運転効果を得つつも効率的なモータ駆動により、電動圧縮機を作動させている。
 ここで、本実施形態に係る切替判定部71は、回転数実測値が上述の所定閾値以下の場合であっても、切替を行う条件を有している。具体的には、モータ12に供給する電力の周波数に対応する回転数である要求回転数と上述の回転数実測値演算手段711から得られた回転数実測値とが、一致した時点から予め規定された時間が経過した場合にも、切替を行う。
 上記予め規定された時間とは、例えば1秒である。
 次に本実施形態に係る電動圧縮機のモータ制御装置51における制御切替の流れについて説明する。
 図4は、本発明の一実施形態における電動圧縮機のモータ制御装置51における制御切替の一例を示すフローチャートである。
 まず、判定部が回転数実測値演算手段711から得られた回転数実測値と所定閾値との大小を比較し(ステップS13)、回転数実測値が所定閾値を上回っている場合(ステップS13;yes)は、強制的に制御2を実施する(ステップS14)。一方、上回っていない場合(ステップS13;No)は、判定部は次に、回転数実測値が要求回転数と一致しているかを判定する(ステップS15)。一致していない(ステップS15;yes)場合は制御1を実施する(ステップS16)。一致している場合(ステップS15;yes)は、判定部は次に回転数実測値と要求回転数とが一致したままである時間と、所定時間とを比較する(ステップS17)。この比較の結果として、該一致したままである時間が所定時間を上回っていない場合は(ステップS17;No)、引き続き制御1を実施する(ステップS18)。上回る場合は(ステップS17;yes)、制御2を実施する(ステップS19)。
 上記構成のモータ制御装置51では、第1の制御から第2の制御へと切り替える場合、回転数実測値と要求回転数とが一致したまま所定の時間一致している場合は、回転数によって定められた閾値を超えなくとも、第2の制御を実行する。これにより、例えば電動圧縮機のモータ12の起動時における二種類のモータ制御方法の切替時での脱調を予防することができる。本実施形態では、高トルクかつ高精度な運転が可能であるが高効率・広範囲の運転を不得手とする制御1から、高トルクかつ高精度な運手は不得手であるが高効率・広範囲な運転が可能である制御2への切替のタイミングを相対的に早めることができる。つまり、上述のような脱調の要因(トルク負荷の定常的な高まりや、要求回転数の急激な変動など)がある状況であっても、モータ12の回転数実測値が予め規定された回転数閾値を上回るのを待たずに、要求回転数の変動に対して過敏ではないためにより広範囲運転が可能な制御2へと移行することができる。また、制御1実施中に脱調が起こらずとも、制御1から制御2への切替時に脱調が起こる場合があったが、これについても要求回転数と実測回転数がすでに所定時間一致している状態にて切替を実行することとなるため、切替時の脱調のリスクを低減することができる。これにより、スパイク電流の発生などによる制御回路への悪影響は抑制することができる。また、起動後の制御1の実施をより短期間とすることで、外気温が高い時などの比較的高い圧力で冷媒を圧縮しなければならない状況下であっても効率の点で優れた制御2を優先して行うことができるため、IGBTの過熱を抑制することができる。
 従って、本実施形態に係るモータ制御装置51及びこれを備えた電動圧縮機11、移動体用の空気調和機1はより高い信頼性を得ることができる。
[第二実施形態]
 次に第二実施形態について説明する。第二実施形態では第一実施形態と同一の構成要素で異なる処理を行う。以下に、図4を参照して本実施形態に係る電動圧縮機のモータ制御装置52における制御切替の流れについて説明する。
 本実施形態では、切替判定部72の行う処理が第一実施形態と異なっている。具体的には、切替判定部72が有する回転数実測値演算手段711を用いる前段階として、要求回転数の変動を追跡し時間当たりの変動幅を所定閾値と比較する(ステップS21)。この結果として要求回転数の変動幅が所定閾値よりも大きい場合は、回転数実測値演算手段711を用いることなく、制御2に切り替える(ステップS21;yes)。一方、所定閾値よりも小さい場合は(ステップS21;No)、回転数実測値演算手段711を用いて、回転数の実測値と所定閾値との比較へと進む(ステップS23)。この手順以降のステップであるステップ23からステップ29に至るまでの流れは、第一の実施形態におけるステップ13からステップ19に至るまでの流れと同一である。本実施形態では一例として、ステップ24、26、28に至った後は、第一の実施形態におけるステップ13に相当するステップ23へと戻されることとしているが、ステップ21へと戻されることとしてもよい。
 上記構成のモータ制御装置52では、制御1から制御2へと切り替える場合、回転数実測値のいかんにかかわらず、要求回転数が激しく変動する場合、制御2に切り替えることができる。つまり、脱調の原因となる要求回転数の変動を直接的に切替の条件とすることとなる。
 例えば、第一実施例と同様に制御1が高トルクかつ高精度な運転が可能であるが高効率・広範囲の運転を不得手とする制御であり、制御2が高トルクかつ高精度な運手は不得手であるが高効率・広範囲な運転が可能である制御である場合、制御1実施中において要求回転数が激しく変動すると、当該要求回転数に対しきめ細やかに追従しようとする結果、脱調が発生する可能性が高まる。そこで、要求回転数が激しく変動したことを検知して、この検知結果に対応して制御2に切り替えることで、脱調の発生を抑制することができる。これにより、モータ12の脱調を未然に防ぐことができる。これにより、スパイク電流の発生などによる制御回路への悪影響を抑制することができる。
 従って、本実施形態に係るモータ制御装置52及びこれを備えた電動圧縮機12、移動体用の空気調和機2はより高い信頼性を得ることができる。
[第三実施形態]
 次に、本発明の第三実施形態について図6を参照して説明する。第二実施形態では第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
 第三実施形態は、第一実施形態と比較し、切替判定部73の構成が異なっている。本実施形態においては、切替判定部73は、トルク相関パラメータ取得部をさらに備えている。
 トルク相関パラメータ取得部は、モータ12が発生させているトルクと相関関係にあるパラメータを取得する。本実施形態では、例えばモータ12電流の値を取得して、モータ12のトルクの値を推定する。
 本実施形態でも、第二実施形態と同じく、切替判定部73の行う処理が第一実施形態と異なっている。具体的には、切替判定部73が有する回転数実測値演算手段711を用いる前段階として、上述のトルク相関パラメータ取得部83が算出した推定トルク値が所定閾値を上回った場合制御2に切り替える。
 以下に、図4を参照して本実施形態に係る電動圧縮機のモータ制御装置53における制御切替の流れについて説明する。
 本実施形態では、切替判定部71の行う処理が第一実施形態及び第二実施形態と異なっている。具体的には、切替判定部71が有する回転数実測値演算手段711を用いる前段階として、トルク相関パラメータ取得部が算出した推定トルク値と所定閾値とを比較する(ステップS31)。この結果として推定トルク値が所定閾値よりも大きい場合は、回転数実測値演算手段711を用いることなく、制御2に切り替える(ステップS31;yes)。一方、所定閾値よりも小さい場合は(ステップS31;No)、回転数実測値演算手段711を用いて、回転数の実測値と所定閾値との比較へと進む(ステップS33)。この手順以降の手順は、第一実施形態と同一である。この手順以降のステップであるステップ33からステップ39に至るまでの流れは、第一の実施形態におけるステップ13からステップ19に至るまでの流れと同一である。本実施形態では一例として、ステップ34、36、38に至ったのちは、第一の実施形態におけるステップ13に相当するステップ33へと戻されることとしているが、ステップ31へと戻されることとしてもよい。
 上記構成のモータ制御装置53では、制御1から制御2へと切り替える場合、回転数実測値のいかんにかかわらず、モータ12が高トルクを出力していると推定される場合は、制御2に切り替えることができる。つまり、脱調の原因となるトルク負荷の高まりを直接的に切替の条件とすることとなる。
 例えば、第一実施例と同様に制御1が高トルクかつ高精度な運転が可能であるが高効率・広範囲の運転を不得手とする制御であり、制御2が高トルクかつ高精度な運手は不得手であるが高効率・広範囲な運転が可能である制御である場合は、より広範囲制御が可能な制御2に早期に切り替えることができる。制御1は、制御2に比べて一般には高トルクを出力することが可能な制御である。しかしながら、外気温が異常に高温である状態でのカーエアコンの始動時は高トルクを出力すべき状態が定常的となる場合がある。この場合は、制御1を長期間継続すると脱調が起こることが懸念される。そのため、早期に制御2に切り替えることで、トルク出力は低下するものの、スパイク電流の発生などによる制御回路への悪影響は抑制することができる。
 従って、本実施形態に係るモータ制御装置53及びこれを備えた電動圧縮機13、移動体用の空気調和機3はより高い信頼性を得ることができる。
 上記いずれの実施形態でも、具体的な制御方式はいかなるものであってもよいが、第一制御(制御1)の一例としてはセンサレスベクトル制御が、第二制御(制御2)の一例としてはV/f制御が挙げられる。
 電動圧縮機11及び13が、車両100のカーエアコンの一部を構成する場合を例に説明を行ったが、本実施形態のモータ制御装置51及び53、電動圧縮機11及び13は、冷凍・冷蔵車の空気調和機に適用することも可能である。また、本実施形態の制御装置50、電動圧縮機10の適用先の装置は、車両以外にも、船、航空機、鉄道など、各種の移動体に搭載する空気調和機であっても良い。
 上述したモータ制御装置、これを備えた電動圧縮機、移動体用の空気調和機、モータ制御方法、及びモータ制御プログラムによれば、モータの脱調を防止することで、モータ制御装置及びこれを備えた電動圧縮機、移動体用の空気調和機の信頼性を向上できる。
2 ECU
1、3 空気調和機
100 車両
11 電動圧縮機
41、43 インバータ装置
10 圧縮部
12 モータ
51、53 モータ制御装置
61 制御部
71、73 切替判定部
611 第一の制御手段
612 第二の制御手段
711 回転数実測値演算手段
83 トルク相関パラメータ取得部

Claims (9)

  1.  モータに対し、高トルク、精密制御が可能な第1制御又は該モータに対し、第1制御よりも高効率な制御が可能な第2制御の実施によって要求回転数に応じて前記モータの回転数を制御する制御部と、
     前記モータの回転数実測値が予め規定された回転数閾値を上回った場合に、前記第1制御から前記第2制御に切り替える切替判定部と、を備え、
     前記切替判定部は、更に、前記回転数実測値が前記回転数閾値以下の場合であって、かつ、当該回転数実測値が前記要求回転数に一致した時点から予め規定された時間が経過した場合には、前記第1制御から前記第2制御に切り替えるモータ制御装置。
  2.  モータに対し、要求回転数又はモータにかかるトルク負荷に対して第一の所定時間単位ごとに追従可能な第1制御又は前記要求回転数又は前記トルク負荷に対して第1制御における第一の所定時間単位よりも長時間である第二の所定時間単位ごとに追従可能な第2制御の実施によって要求回転数に応じて前記モータの回転数を制御する制御部と、
     前記モータの回転数実測値が予め規定された回転数閾値を上回った場合に、前記第1制御から前記第2制御に切り替える切替判定部と、を備え、
     前記切替判定部は、更に、前記回転数実測値が前記回転数閾値以下の場合であって、かつ、当該回転数実測値が前記要求回転数に一致した時点から予め規定された時間が経過した場合には、前記第1制御から前記第2制御に切り替えるモータ制御装置。
  3.  前記切替判定部は、更に、前記要求回転数の変動が、予め規定された変動閾値以上となった場合に、前記第1制御から前記第2制御に切り替える請求項1または2に記載のモータ制御装置。
  4.  前記モータが出力すべきトルクと相関するパラメータを取得するトルク相関パラメータ取得部を更に備え、
     前記切替判定部は、取得された前記パラメータに基づいて推定される前記トルクがトルク閾値を上回る場合には、前記第1制御から前記第2制御に切り替える請求項1又は請求項2に記載のモータ制御装置。
  5.  前記予め規定された時間とは、1秒である請求項1から請求項4に記載の何れか一項に記載のモータ制御装置。
  6.  モータに対し、高トルク、精密制御が可能な第1制御又は該モータに対し、第1制御よりも高効率な制御が可能な第2制御の実施によって要求回転数に応じて前記モータの回転数を制御するステップと、
     前記モータの回転数実測値が予め規定された回転数閾値を上回った場合に、前記第1制御から前記第2制御に切り替えるステップと、を有し、
     前記第2制御に切り替えるステップでは、更に、前記回転数実測値が前記回転数閾値以下の場合であって、かつ、当該回転数実測値が前記要求回転数に一致した時点から予め規定された時間が経過した場合には、前記第1制御から前記第2制御に切り替えるモータ制御方法。
  7.  請求項1から請求項4の何れか一項に記載のモータ制御装置を備える電動圧縮機。
  8.  請求項1から請求項4の何れか一項に記載のモータ制御装置を備える電動圧縮機を有する移動体用の空気調和機。
  9.  コンピュータに対し、請求項6に記載のモータ制御方法を実行させるプログラム。
PCT/JP2018/039425 2017-11-20 2018-10-24 モータ制御装置及びこれを備えた電動圧縮機、移動体用の空気調和機、モータ制御方法及びモータ制御プログラム WO2019097965A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/763,154 US11418136B2 (en) 2017-11-20 2018-10-24 Electric compressor, motor control method, and non-transitory computer-readable medium
CN201880069379.8A CN111357191B (zh) 2017-11-20 2018-10-24 马达控制装置及其控制方法、电动压缩机、移动体用空调
DE112018005917.0T DE112018005917T5 (de) 2017-11-20 2018-10-24 Motorsteuervorrichtung, elektrischer kompressor mit gleicher ausstattung, klimaanlage für fahrzeug, motorsteuerverfahren und motorsteuerprogramm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-222638 2017-11-20
JP2017222638A JP7044523B2 (ja) 2017-11-20 2017-11-20 モータ制御装置及びこれを備えた電動圧縮機、移動体用の空気調和機、モータ制御方法及びモータ制御プログラム

Publications (1)

Publication Number Publication Date
WO2019097965A1 true WO2019097965A1 (ja) 2019-05-23

Family

ID=66539487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039425 WO2019097965A1 (ja) 2017-11-20 2018-10-24 モータ制御装置及びこれを備えた電動圧縮機、移動体用の空気調和機、モータ制御方法及びモータ制御プログラム

Country Status (5)

Country Link
US (1) US11418136B2 (ja)
JP (1) JP7044523B2 (ja)
CN (1) CN111357191B (ja)
DE (1) DE112018005917T5 (ja)
WO (1) WO2019097965A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247152B2 (ja) * 2019-09-30 2023-03-28 ダイキン工業株式会社 モータ駆動方法及びモータ駆動装置
CN114747121A (zh) * 2019-11-08 2022-07-12 米沃奇电动工具公司 用于燃气发动机替换装置的马达控制

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050686A (ja) * 1998-07-29 2000-02-18 Toyota Motor Corp 交流電動機の駆動制御装置
JP2003102193A (ja) * 2001-09-21 2003-04-04 Matsushita Electric Ind Co Ltd ブラシレスモータ運転装置
JP2005168196A (ja) * 2003-12-03 2005-06-23 Toshiba Corp インバータ制御装置,コンプレッサの駆動制御装置,冷蔵庫及びインバータ制御方法,記憶媒体

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225588A (ja) * 1993-01-21 1994-08-12 Toyota Motor Corp 巻線切替式永久磁石モータの制御装置
JP3565236B2 (ja) * 1996-02-29 2004-09-15 株式会社安川電機 電動機制御装置とその切換え方法
JP2002202064A (ja) 2001-01-09 2002-07-19 Toyota Industries Corp 電動式圧縮機の制御方法
JP2002233183A (ja) * 2001-01-31 2002-08-16 Matsushita Electric Ind Co Ltd ブラシレスモータの駆動装置および駆動方法
JP3726051B2 (ja) * 2001-11-28 2005-12-14 株式会社日立製作所 ハイブリッド車両の制御装置
JP2005073104A (ja) 2003-08-27 2005-03-17 Yaskawa Electric Corp 電動機制御装置
CN1331141C (zh) * 2004-01-20 2007-08-08 建兴电子科技股份有限公司 光盘机中控制滑车归位的方法
JP4480696B2 (ja) 2005-08-26 2010-06-16 三洋電機株式会社 モータ制御装置
JP2007282319A (ja) 2006-04-03 2007-10-25 Denso Corp 同期モータ制御装置
JP2010130844A (ja) * 2008-11-28 2010-06-10 Mitsubishi Heavy Ind Ltd 圧縮機モータの駆動装置及びインバータの制御方法
JP5495085B2 (ja) * 2011-02-28 2014-05-21 アイシン・エィ・ダブリュ株式会社 電動車両用駆動装置
JP2013034364A (ja) * 2011-06-29 2013-02-14 Panasonic Corp インバータ制御装置およびこれを用いた電動圧縮機、並びに電気機器
JP5561792B2 (ja) * 2011-09-21 2014-07-30 日立オートモティブシステムズ株式会社 ブラシレスモータの駆動装置
JP5836859B2 (ja) * 2012-03-19 2015-12-24 日立アプライアンス株式会社 モータ制御装置、及びこれを用いたモータ駆動装置、圧縮機、冷凍装置、空気調和機、並びにモータ制御方法
JP2013238682A (ja) 2012-05-14 2013-11-28 Konica Minolta Inc 画像形成装置
WO2015155998A1 (en) 2014-04-10 2015-10-15 Daiichi Sankyo Company, Limited Anti-her3 antibody-drug conjugate
JP6167982B2 (ja) * 2014-04-23 2017-07-26 株式会社豊田自動織機 モータ駆動装置および電動圧縮機
US10696141B2 (en) 2015-08-04 2020-06-30 Mitsubishi Electric Corporation Synchronous motor control device and method of controlling synchronous motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050686A (ja) * 1998-07-29 2000-02-18 Toyota Motor Corp 交流電動機の駆動制御装置
JP2003102193A (ja) * 2001-09-21 2003-04-04 Matsushita Electric Ind Co Ltd ブラシレスモータ運転装置
JP2005168196A (ja) * 2003-12-03 2005-06-23 Toshiba Corp インバータ制御装置,コンプレッサの駆動制御装置,冷蔵庫及びインバータ制御方法,記憶媒体

Also Published As

Publication number Publication date
CN111357191A (zh) 2020-06-30
US20200313582A1 (en) 2020-10-01
DE112018005917T5 (de) 2020-08-06
JP2019097244A (ja) 2019-06-20
JP7044523B2 (ja) 2022-03-30
US11418136B2 (en) 2022-08-16
CN111357191B (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
JP3506457B2 (ja) 空気調和機におけるコンプレッサの起動制御方法
KR101749819B1 (ko) 차재용 전동 압축기의 제어 장치
US10458420B2 (en) Method for controlling motor-driven compressor configured to be installed in vehicle
US9595899B2 (en) Motor control device
EP2221478B1 (en) Controller of electric compressor, start control method of electric compressor
WO2019097965A1 (ja) モータ制御装置及びこれを備えた電動圧縮機、移動体用の空気調和機、モータ制御方法及びモータ制御プログラム
US20160245269A1 (en) Motor-drive compressor
CN111615785B (zh) 电动压缩机
JP5344946B2 (ja) 電動コンプレッサ制御装置
US10273958B2 (en) Compressor driven by a motor based on a temperature of a drive circuit
CN111034021B (zh) 电流值判定装置、控制装置、电动压缩机、电流值判定方法及控制方法
US20120100012A1 (en) Method for controlling electric compressor
JP4928758B2 (ja) 電動圧縮機の制御装置
CN111033041B (zh) 电动压缩机的控制装置、电动压缩机、移动体用空调装置及电动压缩机的控制方法
JP7215403B2 (ja) インバータ制御装置及び車載用流体機械
CN113258844B (zh) 变换器控制装置及车载用流体机械
JP6245129B2 (ja) 電動圧縮機
JP2006200507A (ja) 同期型電動圧縮機の制御装置
KR101370336B1 (ko) 모터 제어시스템 및 그 제어방법
JP2004282866A (ja) インバータ装置および電動コンプレッサ制御システム
JP2015010537A (ja) 電動コンプレッサ及び制御方法
JP2000018168A (ja) 容積型圧縮機の制御方法及びその装置
JP2004189140A (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878863

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18878863

Country of ref document: EP

Kind code of ref document: A1