WO2019097691A1 - オーステナイト系ステンレス鋼板およびその製造方法 - Google Patents
オーステナイト系ステンレス鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2019097691A1 WO2019097691A1 PCT/JP2017/041544 JP2017041544W WO2019097691A1 WO 2019097691 A1 WO2019097691 A1 WO 2019097691A1 JP 2017041544 W JP2017041544 W JP 2017041544W WO 2019097691 A1 WO2019097691 A1 WO 2019097691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- stainless steel
- austenitic stainless
- mass
- steel sheet
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present invention relates to an austenitic stainless steel sheet and a method of manufacturing the same. More particularly, the present invention relates to an austenitic stainless steel sheet having a good surface quality and a good nonmagnetic property, and a method of manufacturing the same.
- Austenitic stainless steel for example, SUS 304
- SUS 304 which contains a large amount of Ni (nickel) in a Cr steel containing a large amount of Cr (chromium) (for example, SUS 304)
- chromium for example, SUS 304
- austenitic stainless steels are manufactured by adjusting properties by adding various component elements and having desired properties depending on applications.
- austenitic stainless steel is nonmagnetic in austenite structure, it may be used as a material for producing a product that requires low magnetic permeability (see, for example, Patent Document 1).
- an austenitic stainless steel In an austenitic stainless steel, a structure such as work-induced martensite is easily generated by being subjected to various processes in a product manufacturing process. In this case, the permeability of the austenitic stainless steel is increased due to the processing-induced martensite or the like generated. Therefore, in the austenitic stainless steel, in the application where low magnetic permeability is required, for example, adjustment of characteristics such as adding an austenite-forming element to stabilize the austenite phase is performed.
- austenitic stainless steels that stabilize the austenitic phase may have cracks (surface defects) on the surface after hot rolling.
- a business that manufactures and ships austenitic stainless steel requires the following measures. That is, it is necessary to take measures such as (i) including a step of removing surface defects in the manufacturing process of austenitic stainless steel, or (ii) selecting a good part of the surface property and shipping it to a customer. Therefore, the productivity of the austenitic stainless steel may be reduced and the production cost may be increased.
- the present invention has been made in view of the above-mentioned conventional problems, and its object is to reduce the magnetic permeability of the product after processing, and austenitic stainless steel having a good surface quality after the rolling process, and It is in providing the manufacturing method.
- the austenitic stainless steel which achieves both the following (A) and (B) by adjusting the A ⁇ value defined by the content of the austenite-forming element to an appropriate range as a result of intensive studies by the present inventors It has been found that a steel plate can be realized. That is, (A) ⁇ ferrite can be present in the surface layer at the time of hot rolling, S can be dissolved in the ⁇ ferrite to prevent surface cracking, and (B) ⁇ in the subsequent annealing step It has been found that the permeability can be lowered by eliminating the ferrite, and the present invention has been completed.
- the austenitic stainless steel plate concerning one mode of the present invention is Cr: 15.00% or more and 20.00% or less, Ni: 5.00% or more 10.00% by mass%. It is a composition which includes the following and in which A ⁇ defined by the following equation (1) is 0 or more and 3.0 or less.
- the manufacturing method of the austenitic stainless steel plate which concerns on 1 aspect of this invention is Cr: 15.00-20.00%, Ni: 5.00% by mass%.
- Pretreatment which heats the slab which is adjusted so that A ⁇ defined by the following (1) becomes 0 or more and 3.0 or less including 10.00% or less to a temperature range of 1000 ° C. to 1300 ° C.
- a rolling step of hot rolling the slab heated in the pre-treatment step is a rolling step of hot rolling the slab heated in the pre-treatment step.
- an austenitic stainless steel that can lower the magnetic permeability of a product after processing and that has a good surface quality after a rolling process, and a method of manufacturing the same.
- austenitic stainless steel is not limited to a specific shape of a steel strip, a steel plate or the like, and is used to describe the properties of the material itself.
- steel plate can be considered to be a part of “steel strip”
- austenitic stainless steel plate is used in a meaning including "austenitic stainless steel strip”.
- an exterior member of a portable electronic device is exemplified as a product requiring a low magnetic permeability, and an austenitic stainless steel according to one aspect of the present invention used for manufacturing the exterior member and a method for manufacturing the same are described. Do.
- the exterior member of a portable electronic device as a product is required to have higher performance (lower permeability) as the performance of the electronic device is improved.
- the permeability ⁇ of the product is required to be 1.05 or less.
- SUS304 may be used for such applications.
- SUS304 has a high degree of work hardening, it can not be cold forged to a shape close to the final member shape.
- the mold load is large and the final shape is complicated, it has been necessary to repeat the softening by annealing after cold forging.
- cold forging forms a work-induced martensitic phase, it has not been possible to meet the nonmagnetic requirements.
- the austenitic stainless steel by adjusting the composition to increase the austenite-forming element, it is possible to suppress the increase in the magnetic permeability of the product after being forged. This is because the austenitic stainless steel can be inhibited from the formation of a ferrite phase, a martensite phase and the like due to austenite process transformation.
- the present inventors have realized an austenitic stainless steel satisfying both of (A) the ability to produce low permeability products and (B) good surface quality after hot rolling. In order to do
- S sulfur
- ⁇ ferrite primary ferrite
- the present inventors solve the above-mentioned problems by leaving ⁇ ferrite in the surface layer of the slab when heating the slab before hot rolling, and transforming the ⁇ ferrite into austenite by subsequent annealing. I thought about it. And as a result of examining variously the composition of the austenitic stainless steel which shows such a behavior, the following knowledge was acquired and it came to this invention.
- a ⁇ 30 (C + N) +0.5 Mn + Ni-1.3 Cr + 11.8 (1)
- C, N, Mn, Ni, and Cr are mass%, respectively.
- Cr 15.00% or more and 20.00% or less by mass%, Ni: 5 .00% or more and 10.00% or less. More preferably, in the present austenitic stainless steel, the content of Cr and Ni is, in mass%, Cr: 18.00% to 20.00%, Ni: 9.00% to 10.00%. You may
- the ⁇ ferrite is a primary ferrite phase formed when the molten stainless steel solidifies.
- the solidification mode when the molten stainless steel solidifies is determined according to the composition of the stainless steel.
- an austenite phase ( ⁇ phase) is formed first and then a ⁇ ferrite is formed as the temperature of the molten steel decreases.
- the present austenitic stainless steel by solidification in the AF mode, ⁇ ferrite is present in the ⁇ phase in the state of the slab after solidification.
- the ⁇ ferrite In the present austenitic stainless steel, when the slab is heated before hot rolling, the ⁇ ferrite remains on the surface layer of the steel plate, and after the hot rolling and annealing, the ⁇ ferrite disappears. Thereby, it can be set as the austenitic stainless steel which satisfy
- the cooling rate at the time of solidification in the AF mode can be, for example, 4 ° C./sec or more.
- the formation amount of ⁇ ferrite decreases or does not occur because the stability of the austenite phase is high. Therefore, when the slab is heated before hot rolling, ⁇ ferrite can not be left on the surface layer of the steel plate.
- the value of A ⁇ is lower than the range of the present invention, the amount of formation of ⁇ ferrite increases, and ⁇ ferrite can not be eliminated. Therefore, the permeability increases.
- austenitic stainless steel is forged and commercialized, for example, at a product factory that manufactures products.
- the following conditions (C) to (E) can be mentioned as a part of the request of the product factory (the customer of the shipping destination).
- the present inventors have further studied, and not only adjusting A ⁇ within a predetermined range, but also (i) controlling the composition and average particle diameter of inclusions, and (ii) containing other component elements. It has also been found that an austenitic stainless steel satisfying the above conditions (C) to (E) can be obtained by adjusting the amount within an appropriate range. Specific conditions will be described later.
- the austenitic stainless steel plate of the present embodiment is a steel plate made of austenitic stainless steel having the above-described properties.
- the austenitic stainless steel plate of the present embodiment has a composition in which the value of A ⁇ defined by the following equation (1) is 0 or more and 3.0 or less, preferably 0 or more and 2.0 or less It is a composition.
- a ⁇ 30 (C + N) +0.5 Mn + Ni-1.3 Cr + 11.8 (1).
- the value of A ⁇ can be said to be an index indicating the stability of the austenite phase in the austenitic stainless steel sheet. That is, as the content of austenite-forming elements increases and as the content of ferrite-forming elements decreases, the value of A ⁇ increases. The higher the value of A ⁇ , the more stable the austenitic phase and the lower the permeability of the product. From that point, it is preferable that A ⁇ be high. On the other hand, considering the surface defects during hot rolling, it is preferable that the value of A ⁇ be lower so that ⁇ ferrite is formed.
- the austenitic stainless steel plate of the present embodiment may more preferably have a composition such that the value of A ⁇ is 0.1 or more and 1.8 or less.
- composition of an austenitic stainless steel in which the value of A ⁇ falls within the above range is required to finely adjust the content of each component element to a high degree.
- the scale of the content of Cr, Ni, and Mn is large, if the content of these elements fluctuates a little, the value of A ⁇ is greatly affected.
- inclusion Generally, when the content of Al in the steel is high, inclusions of the main component MgO—Al 2 O 3 , which are called spinel systems, are formed. Spinel type inclusions are relatively hard. It is effective to control the composition and average particle size of inclusions in the steel in order to satisfy the conditions such as suppressing the occurrence of internal cracks in the forging process and that the product has good abrasiveness. We found that.
- the trace of polishing remains at the location of the inclusions, which may lower the abradability.
- the composition of the inclusion is not a spinel type, that is, when the concentration of the constituent element of the inclusion is investigated by SEM-EDX, the present inventors find that the concentration of Al in the inclusion is 12% by mass In the following cases, it has been found that it is difficult for the inclusions to reduce the abradability.
- the average particle diameter of inclusions contained in the steel plate is preferably 5 ⁇ m or less, and the average Al concentration in the composition of the inclusions is preferably 12 mass% or less.
- Internal cracking that occurs during forging occurs in internal tensile strain fields associated with plastic flow. It is believed that exfoliation occurs between the inclusions and the matrix, or within the inclusions, resulting in internal cracking.
- the average particle size of the inclusions is larger than 5 ⁇ m, such inclusions tend to be a starting point for the occurrence of internal cracks during forging, and at the time of polishing, the polishing property is lowered because traces of polishing are left on the surface of the product.
- inclusions contained in the steel sheet can be made Si inclusions (for example, MnO-SiO 2 -Al 2 O 3 inclusions) .
- Si inclusions are relatively soft. Therefore, the abradability of the product can be improved.
- group inclusions advance with plastic deformation at the time of forge, and do not become generation origin of a surface crack.
- Controlling inclusions in steel to the above composition and average particle size can be performed, for example, as follows. That is, in the smelting of steel, a basic slag is formed under vacuum or non-oxidizing atmosphere. Thereafter, the steel is forcibly deoxidized by adding a Si alloy having an Al content of 0.01% by weight or less. Thus, the formation of spinel-based inclusions can be avoided and the average particle size of inclusions can be reduced.
- the austenitic stainless steel sheet does not require intermediate annealing in the forging process. That is, it is preferable that the austenitic stainless steel sheet is soft to such an extent that forgeability can be improved on the premise that the austenitic stainless steel sheet has desired strength.
- the content of the component elements as follows. That is, while reducing the content of C, N, and Si which are solid solution strengthening elements, the content of Cu which is a softening element is adjusted to 1.0 mass% or more and 3.5 mass% or less. More preferably, the content of Cu is adjusted to 2.5% by mass or more and 3.5% by mass or less.
- the product when producing the product, the product can be produced by forging without performing intermediate annealing. Therefore, forgeability is further improved. As a result, the productivity can be improved and the production cost can be suppressed.
- the austenitic stainless steel sheet of the present embodiment is, by mass%, C: 0.05% or less, Cr: 15.00% or more and 20.00% or less, Ni: 5.00% or more and 10.00% or less, N:
- the composition preferably contains 0.06% or less, Mn: 2.5% or less, and the balance is Fe and unavoidable impurities. More preferably, the content of Cr and Ni is, in mass%, in the range of Cr: 18.00% to 20.00%, Ni: 9.00% to 10.00%.
- C 0.05 mass% or less
- C is an austenite-forming element necessary for adjusting the value of A ⁇ , and also contributes to the improvement of strength. However, if an excessive amount of C is contained, the corrosion resistance may be reduced and the forgeability may be reduced. Therefore, the upper limit of the C content was set to 0.05% by mass.
- the strength improvement effect by C is seen by C content of 0.01 mass% or more. Therefore, the lower limit of the C content may be 0.01% by mass.
- Cr 15.00 mass% or more and 20.00 mass% or less, Ni: 5.00 mass% or more and 10.00 mass% or less]
- Cr is a basic component of stainless steel and is an element that improves the corrosion resistance. Since Cr is a ferrite forming element, the value of A ⁇ decreases when the Cr content is high. When the Cr content is too high, ⁇ ferrite becomes excessive, and the permeability of the product after annealing increases.
- Ni is a basic component of austenitic stainless steel, and is an austenite-forming element necessary for adjusting the value of A ⁇ . When an excessive amount of Ni is added, the austenite phase is excessively stabilized, so that ⁇ ferrite is not formed. Also, since Ni is relatively expensive, adding it in excess increases the cost.
- the Cr and Ni are defined in appropriate ranges so that the value of A ⁇ falls within the range of the present invention.
- the lower limit of the Cr content is 15.00% by mass so that the corrosion resistance necessary for the intended application of the austenitic stainless steel of the present invention can be secured.
- the lower limit of the Ni content is set to 5.00% by mass so as to include the amount necessary to stabilize the austenite phase.
- the lower limit of the Cr content may be 18.00% by mass, and the lower limit of the Ni content may be 9.00% by mass.
- N 0.06 mass% or less
- N is an austenite-forming element and is necessary to adjust the value of A ⁇ .
- the addition of an excessive amount of N lowers the corrosion resistance. Therefore, the upper limit of the N content was set to 0.06 mass%.
- the lower limit of the N content may be set to 0.01 mass%.
- Mn is an austenite-forming element and is necessary to adjust the A ⁇ value.
- the lower limit of the Mn content may be set to 0.01 mass% or more.
- the addition of an excessive amount of Mn lowers the corrosion resistance. Therefore, the upper limit of the Mn content was set to 2.5% by mass.
- the austenitic stainless steel plate of the present embodiment further includes, in mass%, S: 0.030% or less, Si: 0.8% or less, Al: 0.003% or less, in addition to the above component elements related to A ⁇ .
- the composition contains 0.0080% or less of oxygen, with the balance being Fe and unavoidable impurities.
- the occurrence of surface wrinkles during hot rolling can be suppressed by making S solid solution in ⁇ ferrite, but it is preferable to reduce the S content as much as possible. .
- the S content By reducing the S content to 0.030% by mass or less (preferably 0.010% by mass or less), the generation of S or sulfide-based defects is suppressed.
- Si 0.8 mass% or less
- the lower limit of the Si content may be set to 0.01% by mass so that relatively soft Si-based inclusions become the main component of nonmetallic inclusions.
- Si is a solid solution strengthening element, and excessive addition reduces forgeability. Therefore, the upper limit of Si content was set to 0.8 mass%.
- Al has a high oxygen affinity compared to Si and Mn, and when the content exceeds 0.003%, spinel inclusions having an average particle diameter of 5 ⁇ m or more (eg, MnO-SiO 2 -Al 2 O) which causes internal cracking (3 system inclusions) can be generated. Therefore, the upper limit of the Al content is 0.003 mass%.
- Oxygen combines with Al, Si, Mn, etc. to form inclusions. Deoxidation of the molten steel by Si (and Mn) reduces the content of oxygen. By reducing the oxygen content to 0.0080 mass% or less, the average particle size of inclusions is reduced.
- Cu is an element effective for improving the corrosion resistance, and also an element that suppresses the work hardening of the austenite phase and improves the forgeability.
- the lower limit of the Cu content was set to 1.0 mass%.
- the upper limit of the Cu content was set to 3.5 mass%.
- the lower limit of the Cu content may be 2.5% by mass.
- P 0.040 mass% or less Since P is a component that degrades corrosion resistance, it is preferable to reduce it to a small amount as much as possible, and the upper limit of the P content is 0.040 mass%.
- composition of the austenitic stainless steel sheet of the present embodiment may further include, if necessary, in mass%, Ti: 0.5% or less, Nb: 0.5% or less, Zr: 0.5% or less, V: One selected from the group consisting of 0.5% or less, Mo: 3.0% or less, B: 0.03% or less, REM (rare earth metal): 0.02% or less, Ca: 0.03% or less The above conditions may be satisfied.
- Ti, Nb, Zr, V 0.5 mass% or less each
- Ti, Nb, Zr, and V are alloy components which are added as necessary, and fix solid solution strengthening elements such as C and N, and suppress the hardening of the stainless steel plate. Then, the secondary processability, deep drawability, stretch flangeability and the like of the stainless steel sheet are improved, and the effect of reducing the compressive deformation resistance is exhibited. The addition effect of these elements is saturated at 0.5% by mass, and even if added more than that, the effect corresponding to the increase can not be expected.
- the upper limit of the content of the additive element may be set to 0.01% by mass.
- Mo 3.0 mass% or less
- Mo is an alloy component added as needed, and exhibits an effect of improving the corrosion resistance.
- the addition of an excessive amount of Mo can cause the hardness and compressive deformation resistance of the stainless steel sheet to be increased.
- the upper limit of the Mo content may be defined as 3.0 mass%.
- B is an alloy component added as needed, improves the hot workability of the stainless steel sheet, and is effective for preventing cracking during hot rolling. However, when the stainless steel sheet contains an excessive amount of B, the hot workability is rather reduced. When B is added, the upper limit of the B content may be defined as 0.03% by mass.
- REM 0.02 mass% or less
- REM is an alloy component added as needed, and like B, it is effective in improving hot workability. However, if it is added excessively, in addition to saturation of the addition effect, hardening of the stainless steel sheet is caused and the formability is reduced.
- the upper limit of REM content is specified as 0.02 mass%.
- the upper limit of the REM content may be set to 0.005% by mass.
- Ca 0.03 mass% or less
- Ca is an alloy component added as needed, and is effective for improving hot workability. However, even if an excess amount of Ca exceeding 0.03 mass% is added, the addition effect is saturated and the cleanliness is lowered.
- the upper limit of Ca may be set to 0.005% by mass.
- the austenitic stainless steel sheet of the present embodiment can leave ⁇ ferrite on the surface of the steel sheet during hot rolling, and can lose ⁇ ferrite by annealing after rolling. Therefore, while being able to suppress generation
- the permeability of the product can be 1.05 or less.
- the austenitic stainless steel plate of the present embodiment can suppress the occurrence of internal cracking due to forging by controlling the composition and the average particle size of the inclusions. Therefore, the product can be manufactured by forging. Moreover, the cutting process at the time of manufacturing a product can be made unnecessary. As a result, product productivity and mass productivity can be improved.
- the inclusions can be made relatively Si-based inclusions, and the average particle diameter of the inclusions can be 5 ⁇ m or less. Therefore, the abradability of the product can be improved.
- the austenitic stainless steel plate of this embodiment can improve a forgeability by adjusting content of a component element. Therefore, intermediate annealing can be omitted and a product can be manufactured by hot forging. In addition, cold forging can also be employed. As a result, the production cost of the product can be reduced, and the productivity can be further improved.
- the austenitic stainless steel of the present embodiment can be used, for example, for manufacturing an exterior member of a portable electronic device. It can also be used in other products where low permeability is required. For example, it may be used as a material for manufacturing components such as various electronic components and measurement devices using nuclear magnetic resonance.
- Pretreatment process In the pretreatment step, first, steel is melted using a vacuum melting furnace so that the value of A ⁇ falls within the range of the present invention. The steel is cast to produce a slab. As a cooling rate at the time of solidification, although 4 ° C / sec or more can be illustrated, it is not limited to this. A block for rolling is cut out from the slab. Then, the block is heated to a temperature range of 1000 ° C. to 1300 ° C. in the air atmosphere. The time for heating and holding the block is not limited, but may be, for example, between several tens of minutes and 3 hours. The slab may be heated as it is without cutting out the block from the slab.
- the above-mentioned slab is in a state where ⁇ ferrite is present in the ⁇ phase due to the steel being solidified and formed in the AF mode.
- the region where the single phase of the ⁇ phase is stable and the ⁇ ferrite + ⁇ phase are stable
- the slab is heated at a temperature slightly lower than the temperature bounding the area. At this temperature, since the ⁇ phase single phase is stable, the ⁇ ferrite gradually disappears. However, in general, it takes a very long time for ⁇ ferrite to disappear (for example, 24 hours or more). Since the time for heating the slab before hot rolling is relatively short as described above, the ⁇ ferrite in the slab remains without disappearing.
- the block (slab) after the pretreatment step is hot-rolled to a desired plate thickness.
- ⁇ -ferrite remains on the surface by heating before hot rolling. Therefore, the generation of surface wrinkles can be suppressed.
- the steel sheet after hot rolling may be further cold rolled after removing the scale.
- the steel plate rolled in the above-mentioned rolling step is annealed by soaking in a temperature range of 1100 ° C. to 1200 ° C. for several minutes. Thereby, the ⁇ ferrite contained in the steel plate disappears.
- the soaking may be a temperature lower than the heating temperature in the pretreatment step, and may be a time shorter than the heating time in the pretreatment step.
- the residual stress generated by the rolling process promotes phase transformation of ⁇ ferrite to austenite.
- the steel sheet after annealing is pickled. Thereby, it is possible to manufacture an austenitic stainless steel sheet which has good surface quality and can manufacture a product with low permeability.
- Steels A-1 to A-3 and steels B-1 to B-4 having the compositions shown in Table 1 were melted respectively in a vacuum melting furnace and then cast to produce slabs.
- the cooling rate during solidification was 4 ° C./sec or more. From each of the manufactured slabs, a block having a thickness of 40 mm, a width of 100 mm, and a length of 150 mm was cut out.
- the cut block was heated to 1200 ° C. and wasothermal heated for 2 hours.
- the block after heating was hot-rolled to obtain a hot-rolled steel plate having a thickness of 4.0 mm.
- the hot rolled steel sheet was pickled after annealing at 1140 ° C. for 1 minute soaking.
- the permeability was measured for each sample using a permeability meter. A permeability of 1.05 or less was determined to be ⁇ , and a permeability exceeding 1.05 was determined to be x. The samples whose permeability was determined to be ⁇ did not have a large difference in permeability between before and after forging.
- inclusion composition Further, in the same manner as described above, the average value of the inclusion composition of 20 inclusions was analyzed using SEM-EDX. Those with an average Al concentration of 12% by mass or less were evaluated as ⁇ , and those with an average Al concentration exceeding 12% by mass were evaluated as x.
- Abrasive Abrasivity is judged to be poor when haze is observed when observed with the naked eye. It is confirmed that the haze after polishing is observed when there is a trace of polishing at the location of the inclusion as shown in FIG. 3 when the optical microscope observation is performed. Therefore, the judgment of the abradability was made with a light microscope.
- the sample surface was mirror-polished, and the surface was observed in the range of 10 mm ⁇ 10 mm with an optical microscope.
- the abrasiveness was evaluated as ⁇ when no trace of a lagged shape was observed at the location of the inclusions, and the abrasiveness was evaluated as x when observed.
- the value of A ⁇ is higher than the range of the present invention, surface wrinkles were generated after hot rolling. Further, in the B-2 steel of the comparative example, the value of A ⁇ was lower than the range of the present invention, so the magnetic permeability showed a value larger than 1.05. Since the B-3 steel of the comparative example has a low Si content and a high oxygen content, all of the inclusion diameter, the abradability, and the forgeability are unsuitable.
- the B-4 steel of the comparative example had a high Al content, and the inclusions were spinel-type inclusions, and the abradability and forgeability were inadequate.
- the B-3 steel and the B-4 steel are comparative examples because the forgeability is x. This is because the present invention is premised on performing forging when processing austenitic stainless steel into a product.
- the austenitic stainless steel of the present invention can be used, for example, as a material for producing an exterior member of a portable electronic device.
- the austenitic stainless steel of the present invention may be used as a material for manufacturing various electronic components that require low magnetic permeability, components such as a measuring device using nuclear magnetic resonance, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
加工後の製品の透磁率を低くすることができ、かつ圧延工程後の表面品質が良好なオーステナイト系ステンレス鋼およびその製造方法を提供する。オーステナイト系ステンレス鋼は、Cr:15.00~20.00質量%、Ni:5.00~10.00質量%を含み、かつ下記(1)式で定義されるAγの値が0以上3.0以下となる組成である。 Aγ=30(C+N)+0.5Mn+Ni-1.3Cr+11.8 ・・・(1)
Description
本発明は、オーステナイト系ステンレス鋼板およびその製造方法に関するものである。詳しくは、表面品質が良好であるとともに、非磁性の特性が良好なオーステナイト系ステンレス鋼板およびその製造方法に関する。
Cr(クロム)を多く含有するCr鋼に多量のNi(ニッケル)を含有させたオーステナイト系ステンレス鋼(例えば、SUS304)は、耐食性、加工性等の各種の特性に優れており、きわめて広範な用途に用いられている。一般に、オーステナイト系ステンレス鋼は、各種の成分元素を添加することにより特性が調整されて、用途に応じて所望の特性を有するように製造される。
オーステナイト系ステンレス鋼は、オーステナイト組織が非磁性であるため、低い透磁率が要求される製品を製造するための素材として用いられることがある(例えば、特許文献1を参照)。
オーステナイト系ステンレス鋼は、製品の製造工程において、各種の加工を施されることによって加工誘起マルテンサイト等の組織が生成し易い。この場合、生成した加工誘起マルテンサイト等によってオーステナイト系ステンレス鋼の透磁率が増大してしまう。そのため、オーステナイト系ステンレス鋼は、低い透磁率が要求される用途では、例えばオーステイト生成元素を添加してオーステナイト相を安定化する、といった特性の調整が行われる。
しかしながら、オーステナイト相を安定化したオーステナイト系ステンレス鋼は、熱間圧延後に表面に割れ(表面疵)が生じることがある。この場合、オーステナイト系ステンレス鋼を製造して出荷する事業者は、以下のような対応を要する。すなわち、(i)オーステナイト系ステンレス鋼の製造工程に表面疵を除去する工程を含ませる、または(ii)表面性状の良好な部分を選別して客先に出荷する、等の対応を要する。そのため、オーステナイト系ステンレス鋼の生産性が低下して、生産コストが増大し得る。
つまり、加工前の低い透磁率を維持して加工後の製品を製造することができるようにオーステナイト系ステンレス鋼の組成等を調整すると、圧延工程後のオーステナイト系ステンレス鋼の表面品質が低下し得るという問題がある。
本発明は、上記従来の問題点に鑑みなされたものであり、その目的は、加工後の製品の透磁率を低くすることができ、かつ圧延工程後の表面品質が良好なオーステナイト系ステンレス鋼およびその製造方法を提供することにある。
本発明者らが鋭意検討を行った結果、オーステナイト生成元素の含有量によって規定されるAγ値を適正な範囲に調整することによって、以下の(A)および(B)をともに達成するオーステナイト系ステンレス鋼板を実現できることを見出した。すなわち、(A)熱間圧延時に表層にδフェライトを存在させることができ、該δフェライトにSを固溶させて表面割れを防止することができるとともに、(B)その後の焼鈍工程にてδフェライトを消失させて透磁率を低くすることができることを見出して、本発明を完成するに至った。
上記の課題を解決するために、本発明の一態様に係るオーステナイト系ステンレス鋼板は、質量%で、Cr:15.00%以上20.00%以下、Ni:5.00%以上10.00%以下を含み、かつ下記(1)式で定義されるAγが0以上3.0以下となる組成である。
Aγ=30(C+N)+0.5Mn+Ni-1.3Cr+11.8 ・・・(1)
また、上記の課題を解決するために、本発明の一態様に係るオーステナイト系ステンレス鋼板の製造方法は、質量%で、Cr:15.00%以上20.00%以下、Ni:5.00%以上10.00%以下を含み、かつ下記(1)式で定義されるAγが0以上3.0以下となるように成分調整されたスラブを1000℃~1300℃の温度域に加熱する前処理工程と、前記前処理工程にて加熱されたスラブを熱間圧延する圧延工程と、を含む。
Aγ=30(C+N)+0.5Mn+Ni-1.3Cr+11.8 ・・・(1)
本発明の一態様によれば、加工後の製品の透磁率を低くすることができ、かつ圧延工程後の表面品質が良好なオーステナイト系ステンレス鋼およびその製造方法を提供することができる。
以下、本発明の実施の形態について説明する。なお、以下の記載は発明の趣旨をよりよく理解させるためのものであり、特に指定のない限り、本発明を限定するものでは無い。また、本出願において、「A~B」とは、A以上B以下であることを示している。
なお、本明細書において、「オーステナイト系ステンレス鋼」との用語は、鋼帯、鋼板等の具体的な形状は限定されず、素材自体の性質について説明するために用いられる。また、「鋼板」は「鋼帯」の一部分であると考えることができるので、「オーステナイト系ステンレス鋼板」は、「オーステナイト系ステンレス鋼帯」を含む意味で用いる。
本実施形態では、低い透磁率が要求される製品として携帯型電子機器の外装部材を例示し、該外装部材の製造に用いられる本発明の一態様におけるオーステナイト系ステンレス鋼、およびその製造方法について説明する。
以下の説明においては、本発明の実施の形態におけるオーステナイト系ステンレス鋼およびその製造方法の説明に先立って、本発明の知見について概略的に説明する。
<発明の知見の概略的な説明>
近年、携帯型電子機器の小型化および軽量化が進んでいるとともに、携帯型電子機器の外観の意匠性も重視されている。また、製品の製造工程において、生産性を高めることも求められている。そこで、切削ではなく鍛造によって素材を加工して製品を製造可能であることが要求されている。
近年、携帯型電子機器の小型化および軽量化が進んでいるとともに、携帯型電子機器の外観の意匠性も重視されている。また、製品の製造工程において、生産性を高めることも求められている。そこで、切削ではなく鍛造によって素材を加工して製品を製造可能であることが要求されている。
さらには、製品としての例えば携帯型電子機器の外装部材は、電子機器の性能の向上に伴って、より一層高い性能(さらに低い透磁率)が要求されている。例えば、製品の透磁率μが1.05以下であることが求められる。
このような用途には、従来、SUS304が使用されることがある。しかし、SUS304は加工硬化の生じる度合いが大きいため、最終部材形状に近い形に冷間鍛造を行うことができない。また、金型負荷が大きく、最終形状が複雑な場合、冷間鍛造後、焼鈍による軟質化を繰り返す必要があった。また、冷間鍛造によって加工誘起マルテンサイト相が生成するため、非磁性の要求に答えることができなかった。非磁性の要求に答える場合、最終製品を焼鈍して溶体化することが求められる。この場合、焼鈍後の部材強度が軟質になるため、最終製品は強度に対する要求を満足することができない。
オーステナイト系ステンレス鋼は、オーステナイト生成元素が多くなるように組成を調整することによって、鍛造加工された後の製品の透磁率が高くなることを抑制することができる。これは、オーステナイト系ステンレス鋼に、オーステナイトが加工変態することによってフェライト相およびマルテンサイト相等が生成することを抑制し得るためである。
しかしながら、この場合、前述したように、熱間圧延時にオーステナイト系ステンレス鋼の表面に表面疵が発生することがあるという問題があった。
本発明者らは、(A)透磁率の低い製品を製造可能であること、および(B)熱間圧延後の表面品質が良好であること、といった条件の両方を満たすオーステナイト系ステンレス鋼を実現すべく、鋭意検討を行った。
熱間圧延時に発生する表面疵は、オーステナイト系ステンレス鋼の結晶粒界にS(硫黄)が偏析することが要因の一つである。ここで、オーステナイト系ステンレス鋼に初晶フェライト(以下、δフェライトと称する)が存在すると、Sがδフェライトに固溶することによって、結晶粒界へのSの偏析が抑制され得る。
本発明者らは、熱間圧延前にスラブを加熱する際に、スラブの表層にδフェライトを残存させ、その後の焼鈍によって該δフェライトをオーステナイトに相変態させることによって、上記の課題を解決することを着想した。そして、そのような挙動を示すオーステナイト系ステンレス鋼の組成を種々検討した結果、下記の知見を得て本願発明に至った。
すなわち、各種のオーステナイト生成元素(C、N、Mn、Ni)およびフェライト生成元素(Cr)の含有量によって規定される下記(1)式に記載のAγ値が0以上3.0以下の範囲となるように成分組成を調整することにより、上記(A)および(B)の両者の条件を満たすオーステナイト系ステンレス鋼とすることができることを見出した。
Aγ=30(C+N)+0.5Mn+Ni-1.3Cr+11.8 ・・・(1)
ここで、C、N、Mn、Ni、Crはそれぞれ質量%である。
ここで、C、N、Mn、Ni、Crはそれぞれ質量%である。
CrおよびNiの含有量については、(i)耐食性を確保する、および(ii)オーステナイト相を安定化する観点から、質量%で、Cr:15.00%以上20.00%以下、Ni:5.00%以上10.00%以下の範囲内とした。より好ましくは、本オーステナイト系ステンレス鋼は、CrおよびNiの含有量が、質量%で、Cr:18.00%以上20.00%以下、Ni:9.00%以上10.00%以下であってよい。
δフェライトとは、溶融したステンレス鋼が凝固する際に生成する初晶フェライト相のことである。一般に、溶融したステンレス鋼が凝固する際の凝固モードは、該ステンレス鋼の組成に応じて決定される。
AFモードの凝固モードでは、溶融した鋼の温度の低下に伴って、先ずオーステナイト相(γ相)が生成し、次いでδフェライトが生成する。
本オーステナイト系ステンレス鋼は、AFモードにて凝固することにより、凝固後のスラブの状態において、γ相の中にδフェライトが存在する。本オーステナイト系ステンレス鋼は、熱間圧延前にスラブを加熱した際に、鋼板の表層にδフェライトが残存し、その後、熱間圧延した後に焼鈍することによってδフェライトが消失する。これにより、上記(A)および(B)の両者の条件を満たすオーステナイト系ステンレス鋼とすることができる。なお、AFモードにて凝固する際の冷却速度は、例えば4℃/sec以上とすることができる。
Aγの値が本発明の範囲よりも高いと、オーステナイト相の安定度が高いことから、δフェライトの生成量が少なくなる、または生成しない。そのため、熱間圧延前にスラブを加熱した際に、鋼板の表層にδフェライトを残存させることができない。
また、Aγの値が本発明の範囲よりも低いと、δフェライトの生成量が多くなり、δフェライトを消失させることができない。そのため、透磁率が増大する。
また、オーステナイト系ステンレス鋼は、例えば製品を製造する製品工場にて、鍛造加工されて製品化される。この製品工場(出荷先の顧客)の要望の中の一部として、下記の条件(C)~(E)が挙げられる。
(C)鍛造工程における内部割れの発生を抑制すること;
(D)製品を例えば鏡面研磨することが可能であること、すなわち研磨性が良好であること;
(E)鍛造工程における中間焼鈍が不要であること。つまり、鍛造性を良くするために中間熱処理を行って軟質化することが不要である程度に、オーステナイト系ステンレス鋼が軟質であること。
(D)製品を例えば鏡面研磨することが可能であること、すなわち研磨性が良好であること;
(E)鍛造工程における中間焼鈍が不要であること。つまり、鍛造性を良くするために中間熱処理を行って軟質化することが不要である程度に、オーステナイト系ステンレス鋼が軟質であること。
本発明者らは、さらに検討を重ね、Aγを所定の範囲内に調整するだけでなく、(i)介在物の組成および平均粒径を制御すること、および(ii)他の成分元素の含有量を適切な範囲内に調整することによって、上記条件(C)~(E)を満足するオーステナイト系ステンレス鋼とすることができることも見出した。具体的な条件については後述する。
<オーステナイト系ステンレス鋼板>
以下、本発明の一実施形態に係るオーステナイト系ステンレス鋼板の合金成分、含有量等について説明する。本実施形態のオーステナイト系ステンレス鋼板は、上述したような性質のオーステナイト系ステンレス鋼からなる鋼板である。
以下、本発明の一実施形態に係るオーステナイト系ステンレス鋼板の合金成分、含有量等について説明する。本実施形態のオーステナイト系ステンレス鋼板は、上述したような性質のオーステナイト系ステンレス鋼からなる鋼板である。
(Aγ)
本実施形態のオーステナイト系ステンレス鋼板は、上述したように、下記(1)式で定義されるAγの値が0以上3.0以下となる組成であり、好ましくは0以上2.0以下となる組成である。
Aγ=30(C+N)+0.5Mn+Ni-1.3Cr+11.8 ・・・(1)。
本実施形態のオーステナイト系ステンレス鋼板は、上述したように、下記(1)式で定義されるAγの値が0以上3.0以下となる組成であり、好ましくは0以上2.0以下となる組成である。
Aγ=30(C+N)+0.5Mn+Ni-1.3Cr+11.8 ・・・(1)。
Aγの値は、オーステナイト系ステンレス鋼板におけるオーステナイト相の安定性を示す指標であるといえる。すなわち、オーステナイト生成元素の含有量が多くなるほど、およびフェライト生成元素の含有量が少なくなるほど、Aγの値は高くなる。Aγの値が高いほどオーステナイト相が安定となり、製品の透磁率を低くすることができる。その点からはAγは高いほうが好ましい。一方で、熱間圧延時の表面疵を考慮すると、δフェライトが生成するように、Aγの値は低い方がよい。
前述のように、本発明者らの種々検討の結果、Aγの値が上記範囲内であることが適正であることを見出した。Aγの値が上記範囲内となるように組成を調整することによって、鋼板の表面にδフェライトを残存させることができ、熱間圧延時の表面疵の発生を抑制することができる。また、圧延後の鋼板を焼鈍することによって、残存したδフェライトをオーステナイトに相変態させ、透磁率の低い製品を製造することができる。
本実施形態のオーステナイト系ステンレス鋼板は、より好ましくはAγの値が0.1以上1.8以下となる組成であってよい。
Aγの値が上記の範囲内となるようなオーステナイト系ステンレス鋼の組成は、各成分元素の含有量を高度に微調整することが求められる。特に、Cr、Ni、およびMnは含有量のスケールが大きいことから、それらの元素の含有量が少し変動すれば、Aγの値は大きく影響を受ける。オーステナイト系ステンレス鋼の組成の変動に対して敏感なAγの値を、上述のような狭い範囲に調整することによって、上記(A)および(B)の両方の条件を満たすことが達成できる。
(介在物)
一般に、鋼中のAlの含有量が高い場合、スピネル系と呼ばれる、主成分がMgO-Al2O3の介在物が生成する。スピネル系の介在物は比較的硬質である。鍛造工程における内部割れの発生を抑制すること、および製品の研磨性が良好であること、といった条件を満たすためには、鋼中の介在物の組成および平均粒径を制御することが有効であることを本発明者らは見出した。
一般に、鋼中のAlの含有量が高い場合、スピネル系と呼ばれる、主成分がMgO-Al2O3の介在物が生成する。スピネル系の介在物は比較的硬質である。鍛造工程における内部割れの発生を抑制すること、および製品の研磨性が良好であること、といった条件を満たすためには、鋼中の介在物の組成および平均粒径を制御することが有効であることを本発明者らは見出した。
平均粒径が5μm以上の介在物が存在すると、介在物の箇所で研磨の痕跡が残るため、研磨性を低下させ得る。本発明者らは、種々検討の結果、介在物の組成がスピネル系でない場合、すなわちSEM-EDXで介在物の構成元素の濃度を調査したときに、介在物中のAl濃度が12%質量%以下の場合に、介在物による研磨性の低下が生じ難いという知見を得た。
したがって、本実施形態のオーステナイト系ステンレス鋼板は、該鋼板中に含まれる介在物の平均粒径が5μm以下であり、介在物の組成における平均Al濃度が12質量%以下であることが好ましい。
鍛造時に発生する内部割れは、塑性流動にともなう内部の引張歪場で生じる。介在物とマトリックスとの間、または介在物内部での剥離が生じ、内部割れが発生すると考えられる。介在物の平均粒径が5μmより大きい場合、そのような介在物は鍛造時の内部割れの発生起点となり易いとともに、研磨の際に製品の表面に研磨の痕跡を残すため研磨性を低下させる。
介在物の組成における平均Al濃度が12質量%以下とすることによって、鋼板中に含まれる介在物をSi系介在物(例えばMnO-SiO2-Al2O3系介在物)とすることができる。Si系介在物は比較的軟質である。そのため、製品の研磨性を良好なものとすることができる。また、Si系介在物は、鍛造時に塑性変形に伴って進展し、表面割れの発生起点にならない。
鋼中の介在物を、上記組成および平均粒径に制御することは、例えば以下のように行うことができる。すなわち、鋼の製錬において、真空下もしくは非酸化性雰囲気下で塩基性スラグを形成する。その後、Al含有量が0.01重量%以下のSi合金を添加することによって、鋼を強制脱酸する。これにより、スピネル系介在物の生成を回避するとともに、介在物の平均粒径を低減することができる。
(鍛造性の向上)
オーステナイト系ステンレス鋼板は、鍛造工程における中間焼鈍が不要であることが好ましい。つまり、オーステナイト系ステンレス鋼板は、所望の強度を有することを前提として、鍛造性を向上させることができる程度に軟質であることが好ましい。
オーステナイト系ステンレス鋼板は、鍛造工程における中間焼鈍が不要であることが好ましい。つまり、オーステナイト系ステンレス鋼板は、所望の強度を有することを前提として、鍛造性を向上させることができる程度に軟質であることが好ましい。
本実施形態のオーステナイト系ステンレス鋼板は、成分元素の含有量を以下のように調整することが好ましい。すなわち、固溶強化元素であるC、N、Siの含有量を低くするとともに、軟質化元素であるCuの含有量を1.0質量%以上3.5質量%以下に調整する。より好ましくは、Cuの含有量を2.5質量%以上3.5質量%以下に調整する。
この場合、製品を製造する際に、中間焼鈍を行うことなく、鍛造によって製品を製造することができる。そのため、より一層鍛造性が向上する。その結果、生産性が向上し、生産コストを抑制することができる。
(Aγに関連する成分元素)
本実施形態のオーステナイト系ステンレス鋼板は、質量%で、C:0.05%以下、Cr:15.00%以上20.00%以下、Ni:5.00%以上10.00%以下、N:0.06%以下、Mn:2.5%以下、を含み、残部がFeおよび不可避不純物からなる組成であることが好ましい。より好ましくは、CrおよびNiの含有量は、質量%で、Cr:18.00%以上20.00%以下、Ni:9.00%以上10.00%以下の範囲内である。
本実施形態のオーステナイト系ステンレス鋼板は、質量%で、C:0.05%以下、Cr:15.00%以上20.00%以下、Ni:5.00%以上10.00%以下、N:0.06%以下、Mn:2.5%以下、を含み、残部がFeおよび不可避不純物からなる組成であることが好ましい。より好ましくは、CrおよびNiの含有量は、質量%で、Cr:18.00%以上20.00%以下、Ni:9.00%以上10.00%以下の範囲内である。
〔C:0.05質量%以下〕
Cは、Aγの値の調整に必要なオーステナイト生成元素であり、強度向上にも寄与する。しかし、過剰量のCが含まれると耐食性が低下するとともに、鍛造性を低下させ得る。そのため、C含有量の上限を0.05質量%に設定した。
Cは、Aγの値の調整に必要なオーステナイト生成元素であり、強度向上にも寄与する。しかし、過剰量のCが含まれると耐食性が低下するとともに、鍛造性を低下させ得る。そのため、C含有量の上限を0.05質量%に設定した。
また、過剰な脱炭は製錬コストを上昇させる。Cによる強度向上効果は、0.01質量%以上のC含有量でみられる。そのため、C含有量の下限は0.01質量%であってもよい。
〔Cr:15.00質量%以上20.00質量%以下、Ni:5.00質量%以上10.00質量%以下〕
Crは、ステンレス鋼の基本成分であり、耐食性を向上させる元素である。Crはフェライト生成元素であるため、Cr含有量が高いとAγの値は低下する。Cr含有量が高すぎるとδフェライトが過剰となり、焼鈍後の製品の透磁率が上昇する。
Crは、ステンレス鋼の基本成分であり、耐食性を向上させる元素である。Crはフェライト生成元素であるため、Cr含有量が高いとAγの値は低下する。Cr含有量が高すぎるとδフェライトが過剰となり、焼鈍後の製品の透磁率が上昇する。
また、Niは、オーステナイト系ステンレス鋼の基本成分であり、Aγの値の調整に必要なオーステナイト生成元素である。過剰量のNiを添加すると、オーステナイト相が安定化しすぎることにより、δフェライトが生成しなくなる。また、Niは比較的高価であるため、過剰に添加するとコストが上昇する。
CrおよびNiは、Aγの値が本発明の範囲内となるように、適正な範囲に規定されている。本発明のオーステナイト系ステンレス鋼が対象とする用途に必要な耐食性を確保できるように、Cr含有量の下限は15.00質量%とした。また、Ni含有量については、オーステナイト相を安定化するのに必要な量を含むように、下限は5.00質量%とした。また、より好ましくは、Cr含有量の下限は18.00質量%であってよく、Ni含有量の下限は9.00質量%であってよい。
〔N:0.06質量%以下〕
Nは、Cと同様にオーステナイト生成元素であり、Aγの値の調整に必要である。しかし、過剰量のNを添加すると耐食性を低下させる。そのため、N含有量の上限を0.06質量%に設定した。また、加工硬化および時効硬化に寄与する元素であるので、N含有量の下限を0.01質量%に設定してもよい。
Nは、Cと同様にオーステナイト生成元素であり、Aγの値の調整に必要である。しかし、過剰量のNを添加すると耐食性を低下させる。そのため、N含有量の上限を0.06質量%に設定した。また、加工硬化および時効硬化に寄与する元素であるので、N含有量の下限を0.01質量%に設定してもよい。
〔Mn:2.5質量%以下〕
Mnは、オーステナイト生成元素であり、Aγ値の調整に必要である。オーステナイトの安定化のためにMn含有量の下限を0.01質量%以上に設定してもよい。しかし、過剰量のMnを添加すると耐食性を低下させる。そのため、Mn含有量の上限を2.5質量%に設定した。
Mnは、オーステナイト生成元素であり、Aγ値の調整に必要である。オーステナイトの安定化のためにMn含有量の下限を0.01質量%以上に設定してもよい。しかし、過剰量のMnを添加すると耐食性を低下させる。そのため、Mn含有量の上限を2.5質量%に設定した。
(介在物に関連する成分元素)
本実施形態のオーステナイト系ステンレス鋼板は、Aγに関連する上記成分元素にさらに加えて、質量%で、S:0.030%以下、Si:0.8%以下、Al:0.003%以下、酸素:0.0080%以下を含み、残部がFeおよび不可避不純物からなる組成であることが好ましい。
本実施形態のオーステナイト系ステンレス鋼板は、Aγに関連する上記成分元素にさらに加えて、質量%で、S:0.030%以下、Si:0.8%以下、Al:0.003%以下、酸素:0.0080%以下を含み、残部がFeおよび不可避不純物からなる組成であることが好ましい。
〔S:0.030質量%以下〕
Sは、オーステナイト相の結晶粒界に偏析して熱間加工性を著しく低下させる。本実施形態のオーステナイト系ステンレス鋼では、Sをδフェライトに固溶させることによって、熱間圧延時の表面疵の発生を抑制することができるが、S含有量は可能な限り低減することが好ましい。S含有量を0.030質量%以下(好ましくは、0.010質量%以下)に低減することにより、Sまたは硫化物起因の欠陥が生成することを抑制する。
Sは、オーステナイト相の結晶粒界に偏析して熱間加工性を著しく低下させる。本実施形態のオーステナイト系ステンレス鋼では、Sをδフェライトに固溶させることによって、熱間圧延時の表面疵の発生を抑制することができるが、S含有量は可能な限り低減することが好ましい。S含有量を0.030質量%以下(好ましくは、0.010質量%以下)に低減することにより、Sまたは硫化物起因の欠陥が生成することを抑制する。
〔Si:0.8質量%以下〕
Siは、製鋼段階で脱酸剤として添加される元素である。比較的軟質なSi系の介在物が非金属介在物の主体となるように、Si含有量の下限を0.01質量%に設定してもよい。また、Siは固溶強化元素であり、過剰添加は鍛造性を低下させる。そのため、Si含有量の上限を0.8質量%に設定した。
Siは、製鋼段階で脱酸剤として添加される元素である。比較的軟質なSi系の介在物が非金属介在物の主体となるように、Si含有量の下限を0.01質量%に設定してもよい。また、Siは固溶強化元素であり、過剰添加は鍛造性を低下させる。そのため、Si含有量の上限を0.8質量%に設定した。
〔Al:0.003質量%以下〕
Alは酸素親和力がSi、Mnに比べて高く、含有量が0.003%を超えると内部割れの起因となる平均粒径が5μm以上のスピネル系介在物(例えばMnO-SiO2-Al2O3系介在物)が生成し得る。そのため、Al含有量の上限を0.003質量%とした。
Alは酸素親和力がSi、Mnに比べて高く、含有量が0.003%を超えると内部割れの起因となる平均粒径が5μm以上のスピネル系介在物(例えばMnO-SiO2-Al2O3系介在物)が生成し得る。そのため、Al含有量の上限を0.003質量%とした。
〔酸素:0.0080質量%以下〕
酸素は、Al、Si、Mn等と結合して介在物を生成する。Si(およびMn)によって溶鋼が脱酸されることにより、酸素の含有量が低下する。酸素含有量を0.0080質量%以下に低減することにより、介在物の平均粒径を低減させる。
酸素は、Al、Si、Mn等と結合して介在物を生成する。Si(およびMn)によって溶鋼が脱酸されることにより、酸素の含有量が低下する。酸素含有量を0.0080質量%以下に低減することにより、介在物の平均粒径を低減させる。
(その他の成分元素)
〔Cu:1.0質量%以上3.5質量%以下〕
Cuは、耐食性の改善に有効な成分であるとともに、オーステナイト相の加工硬化を抑制し、鍛造性を向上させる元素である。その効果を発揮させるために、Cu含有量の下限を1.0質量%に設定した。ただし、多量に添加されると熱間加工性の低下を招くので、Cu含有量の上限を3.5質量%に設定した。また、より好ましくは、Cu含有量の下限は2.5質量%であってよい。
〔Cu:1.0質量%以上3.5質量%以下〕
Cuは、耐食性の改善に有効な成分であるとともに、オーステナイト相の加工硬化を抑制し、鍛造性を向上させる元素である。その効果を発揮させるために、Cu含有量の下限を1.0質量%に設定した。ただし、多量に添加されると熱間加工性の低下を招くので、Cu含有量の上限を3.5質量%に設定した。また、より好ましくは、Cu含有量の下限は2.5質量%であってよい。
〔P:0.040質量%以下〕
Pは、耐食性を劣化させる成分であるため、極力少量に低減することが好ましく、P含有量の上限を0.040質量%とする。
Pは、耐食性を劣化させる成分であるため、極力少量に低減することが好ましく、P含有量の上限を0.040質量%とする。
(その他の特性に関する調整)
また、本実施形態のオーステナイト系ステンレス鋼板の組成は、必要に応じて更に、質量%で、Ti:0.5%以下、Nb:0.5%以下、Zr:0.5%以下、V:0.5%以下、Mo:3.0%以下、B:0.03%以下、REM(希土類金属):0.02%以下、Ca:0.03%以下、からなる群から選ばれる1つ以上の条件を満たしていてもよい。
また、本実施形態のオーステナイト系ステンレス鋼板の組成は、必要に応じて更に、質量%で、Ti:0.5%以下、Nb:0.5%以下、Zr:0.5%以下、V:0.5%以下、Mo:3.0%以下、B:0.03%以下、REM(希土類金属):0.02%以下、Ca:0.03%以下、からなる群から選ばれる1つ以上の条件を満たしていてもよい。
〔Ti、Nb、Zr、V:それぞれ0.5質量%以下〕
Ti、Nb、Zr、Vは、必要に応じて添加される合金成分であり、C、N等の固溶強化元素を固定し、ステンレス鋼板の硬質化を抑える。そして、ステンレス鋼板の二次加工性、深絞り性、伸びフランジ性等を向上させ、圧縮変形抵抗を低減する作用を呈する。これら元素の添加効果は、0.5質量%で飽和し、それ以上添加しても増量に見合った効果が期待できない。非金属介在物を軟質のMnO-SiO2-Al2O3系介在物に制御する場合、それぞれ添加元素の含有量の上限を0.01質量%に設定してよい。
Ti、Nb、Zr、Vは、必要に応じて添加される合金成分であり、C、N等の固溶強化元素を固定し、ステンレス鋼板の硬質化を抑える。そして、ステンレス鋼板の二次加工性、深絞り性、伸びフランジ性等を向上させ、圧縮変形抵抗を低減する作用を呈する。これら元素の添加効果は、0.5質量%で飽和し、それ以上添加しても増量に見合った効果が期待できない。非金属介在物を軟質のMnO-SiO2-Al2O3系介在物に制御する場合、それぞれ添加元素の含有量の上限を0.01質量%に設定してよい。
〔Mo:3.0質量%以下〕
Moは、必要に応じて添加される合金成分であり、耐食性を改善する作用を呈する。しかし、過剰量のMo添加は、ステンレス鋼板の硬さおよび圧縮変形抵抗を上昇させる原因となり得る。Moを添加する場合には、Mo含有量の上限を3.0質量%に規定してよい。
Moは、必要に応じて添加される合金成分であり、耐食性を改善する作用を呈する。しかし、過剰量のMo添加は、ステンレス鋼板の硬さおよび圧縮変形抵抗を上昇させる原因となり得る。Moを添加する場合には、Mo含有量の上限を3.0質量%に規定してよい。
〔B:0.03質量%以下〕
Bは、必要に応じて添加される合金成分であり、ステンレス鋼板の熱間加工性を向上させ、熱延時の割れ防止に有効である。しかし、ステンレス鋼板は、過剰量のBを含有すると、却って熱間加工性が低下することになる。Bを添加する場合には、B含有量の上限を0.03質量%に規定してよい。
Bは、必要に応じて添加される合金成分であり、ステンレス鋼板の熱間加工性を向上させ、熱延時の割れ防止に有効である。しかし、ステンレス鋼板は、過剰量のBを含有すると、却って熱間加工性が低下することになる。Bを添加する場合には、B含有量の上限を0.03質量%に規定してよい。
〔REM:0.02質量%以下〕
REMは、必要に応じて添加される合金成分であり、Bと同様に熱間加工性の改善に有効である。しかし、過剰に添加すると添加効果が飽和することに加え、ステンレス鋼板の硬質化を招き成形加工性が低下する。REMを添加する場合には、REM含有量の上限を0.02質量%に規定する。非金属介在物を軟質のMnO-SiO2-Al2O3系介在物に制御する場合、REM含有量の上限を0.005質量%に設定してよい。
REMは、必要に応じて添加される合金成分であり、Bと同様に熱間加工性の改善に有効である。しかし、過剰に添加すると添加効果が飽和することに加え、ステンレス鋼板の硬質化を招き成形加工性が低下する。REMを添加する場合には、REM含有量の上限を0.02質量%に規定する。非金属介在物を軟質のMnO-SiO2-Al2O3系介在物に制御する場合、REM含有量の上限を0.005質量%に設定してよい。
〔Ca:0.03質量%以下〕
Caは、必要に応じて添加される合金成分であり、熱間加工性の改善に有効である。しかし、0.03質量%を超える過剰量のCaを添加しても、添加効果が飽和し、清浄度が低下する。非金属介在物を軟質のMnO-SiO2-Al2O3系介在物に制御する場合、Caの上限を0.005質量%に設定してよい。
Caは、必要に応じて添加される合金成分であり、熱間加工性の改善に有効である。しかし、0.03質量%を超える過剰量のCaを添加しても、添加効果が飽和し、清浄度が低下する。非金属介在物を軟質のMnO-SiO2-Al2O3系介在物に制御する場合、Caの上限を0.005質量%に設定してよい。
(利点)
本実施形態のオーステナイト系ステンレス鋼板は、熱間圧延時に鋼板の表面にδフェライトを残存させることができ、圧延後に焼鈍することによってδフェライトを消失させることができる。そのため、熱間圧延後の表面疵の発生を抑制することができ表面品質が良好であるとともに、透磁率の低い製品を製造可能である。例えば、製品の透磁率を1.05以下にすることができる。
本実施形態のオーステナイト系ステンレス鋼板は、熱間圧延時に鋼板の表面にδフェライトを残存させることができ、圧延後に焼鈍することによってδフェライトを消失させることができる。そのため、熱間圧延後の表面疵の発生を抑制することができ表面品質が良好であるとともに、透磁率の低い製品を製造可能である。例えば、製品の透磁率を1.05以下にすることができる。
また、本実施形態のオーステナイト系ステンレス鋼板は、介在物の組成および平均粒径を制御することにより、鍛造による内部割れの発生を抑制することができる。そのため、鍛造によって製品を製造することができる。また、製品を製造する際の切削工程を不要とすることができる。その結果、製品の生産性および量産性を向上させることができる。
そして、本実施形態のオーステナイト系ステンレス鋼板は、介在物が比較的軟質なSi系介在物とすることができ、介在物の平均粒径を5μm以下とすることができる。そのため、製品の研磨性を向上させることができる。
また、本実施形態のオーステナイト系ステンレス鋼板は、成分元素の含有量を調整することにより、鍛造性を向上させることができる。そのため、中間焼鈍を省略して熱間鍛造により製品を製造することができる。また、冷間鍛造を採用することもできる。その結果、製品の生産コストを低減することができ、生産性をより一層向上させることができる。
本実施形態のオーステナイト系ステンレス鋼は、例えば携帯型電子機器の外装部材の製造に用いることができる。また、低い透磁率が要求される他の製品に用いることができる。例えば、各種の電子部品、核磁気共鳴を用いる測定装置等の構成部材を製造するための素材に用いてよい。
<製造方法>
本実施形態のオーステナイト系ステンレス鋼板の製造方法の一例について、以下に説明する。
本実施形態のオーステナイト系ステンレス鋼板の製造方法の一例について、以下に説明する。
(前処理工程)
前処理工程では、先ず、Aγの値が本発明の範囲内となるように、真空溶解炉を用いて鋼を溶製する。この鋼を鋳造してスラブを製造する。凝固時の冷却速度としては、4℃/sec以上を例示することができるが、これに限定されない。該スラブから圧延用のブロックを切り出す。そして、該ブロックを大気雰囲気中で1000℃~1300℃の温度域に加熱する。該ブロックを加熱して保持する時間は、限定されないが、例えば、数十分間~3時間であってよい。なお、スラブからブロックを切り出さずに、スラブをそのまま加熱してもよい。
前処理工程では、先ず、Aγの値が本発明の範囲内となるように、真空溶解炉を用いて鋼を溶製する。この鋼を鋳造してスラブを製造する。凝固時の冷却速度としては、4℃/sec以上を例示することができるが、これに限定されない。該スラブから圧延用のブロックを切り出す。そして、該ブロックを大気雰囲気中で1000℃~1300℃の温度域に加熱する。該ブロックを加熱して保持する時間は、限定されないが、例えば、数十分間~3時間であってよい。なお、スラブからブロックを切り出さずに、スラブをそのまま加熱してもよい。
より詳しくは、上記スラブは、鋼がAFモードで凝固して形成されることによって、γ相の中にδフェライトが存在する状態となっている。Cr含有量、Ni含有量、およびAγの値が本発明の範囲内の成分組成であるFe-Cr-Ni系状態図において、γ相の単相が安定な領域と、δフェライト+γ相が安定な領域との境界となる温度よりも少し低い温度にて、上記スラブは加熱される。この温度ではγ相の単相が安定であるので、δフェライトは徐々に消失する。ただし、一般に、δフェライトが消失するには非常に時間がかかる(例えば24h以上)。熱延前にスラブを加熱する時間は、上述のように比較的短時間であるため、上記スラブ中のδフェライトは消失せずに残存する。
(圧延工程)
上記前処理工程後のブロック(スラブ)を、所望の板厚に熱間圧延する。ここで、本実施形態のオーステナイト系ステンレス鋼は、熱間圧延前の加熱によって、表面にδフェライトが残存している。そのため、表面疵の発生を抑制することができる。
上記前処理工程後のブロック(スラブ)を、所望の板厚に熱間圧延する。ここで、本実施形態のオーステナイト系ステンレス鋼は、熱間圧延前の加熱によって、表面にδフェライトが残存している。そのため、表面疵の発生を抑制することができる。
なお、熱間圧延後の鋼板は、スケールを除去した後、さらに冷間圧延されてよい。
(焼鈍処理工程)
焼鈍処理工程では、上記圧延工程にて圧延された鋼板を、1100℃~1200℃の温度域にて、数分間均熱処理することによって、焼鈍する。これにより、鋼板が含むδフェライトが消失する。上記均熱処理は、上記前処理工程における加熱温度よりも低い温度であってよく、上記前処理工程における加熱時間よりも短い時間であってよい。本製造方法では、上記圧延工程によって生じた残留応力が、δフェライトのオーステナイトへの相変態を促進する。
焼鈍処理工程では、上記圧延工程にて圧延された鋼板を、1100℃~1200℃の温度域にて、数分間均熱処理することによって、焼鈍する。これにより、鋼板が含むδフェライトが消失する。上記均熱処理は、上記前処理工程における加熱温度よりも低い温度であってよく、上記前処理工程における加熱時間よりも短い時間であってよい。本製造方法では、上記圧延工程によって生じた残留応力が、δフェライトのオーステナイトへの相変態を促進する。
次いで、焼鈍後の鋼板を酸洗する。これにより、表面品質が良好であるとともに、透磁率の低い製品を製造可能であるオーステナイト系ステンレス鋼板を製造することができる。
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、上記説明において開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
以下、本発明に係るオーステナイト系ステンレス鋼の実施例について説明するが、本発明はこれらの実施例により限定されない。
表1に示す組成の鋼A-1~A-3、および鋼B-1~B-4をそれぞれ、真空溶解炉にて溶解した後、鋳造してスラブを製造した。凝固時の冷却速度は4℃/sec以上とした。製造したスラブのそれぞれから、厚み40mm、幅100mm、長さ150mmのブロックを切り出した。
切り出したブロックを1200℃まで昇温し、2時間均熱加熱した。加熱後のブロックを熱間圧延することにより、板厚4.0mmの熱延鋼板を得た。その熱延鋼板に、1140℃で均熱1分の焼鈍を行った後に酸洗した。
得られた試料について、以下の調査を行った。
(表面観察)
圧延後の熱延鋼板の表面に表面疵が観られなかったものを○、観られたものを×と判定した。
圧延後の熱延鋼板の表面に表面疵が観られなかったものを○、観られたものを×と判定した。
(透磁率)
各試料について、透磁率計を用いて透磁率を測定した。透磁率が1.05以下のものを○、1.05を超えるものを×と判定した。透磁率が○と判定された試料は、鍛造前と鍛造後との間で透磁率に大きな差異が無かった。
各試料について、透磁率計を用いて透磁率を測定した。透磁率が1.05以下のものを○、1.05を超えるものを×と判定した。透磁率が○と判定された試料は、鍛造前と鍛造後との間で透磁率に大きな差異が無かった。
(介在物径)
各試料について、長手方向に平行な断面を鏡面研磨した後、走査型電子顕微鏡(SEM)を用いて該断面を観察した。倍率500の視野における介在物20個の平均径を測定した。その平均径が5μm以下のものを○、5μmを超えるものを×と判定した。
各試料について、長手方向に平行な断面を鏡面研磨した後、走査型電子顕微鏡(SEM)を用いて該断面を観察した。倍率500の視野における介在物20個の平均径を測定した。その平均径が5μm以下のものを○、5μmを超えるものを×と判定した。
(介在物組成)
また、上記の観察断面について同様に、SEM-EDXを用いて介在物20個の介在物組成の平均値を分析した。平均Al濃度が12質量%以下のものを○、12質量%を超えるものを×と判定した。
また、上記の観察断面について同様に、SEM-EDXを用いて介在物20個の介在物組成の平均値を分析した。平均Al濃度が12質量%以下のものを○、12質量%を超えるものを×と判定した。
(鍛造性)
各試料について、図1に示すような試験片を採取し、該試験片に図2示すような冷間鍛造を行った。なお、鍛造途中に中間焼鈍工程を行っていない。鍛造は、200tonの油圧プレスで行った。それぞれの冷間鍛造後に、鍛造品のA断面を顕微鏡観察し、内部割れが生じていないか調査した。そして、得られた製品に内部割れが観察されなかったものは○、観察されたものは×と判定した。
各試料について、図1に示すような試験片を採取し、該試験片に図2示すような冷間鍛造を行った。なお、鍛造途中に中間焼鈍工程を行っていない。鍛造は、200tonの油圧プレスで行った。それぞれの冷間鍛造後に、鍛造品のA断面を顕微鏡観察し、内部割れが生じていないか調査した。そして、得られた製品に内部割れが観察されなかったものは○、観察されたものは×と判定した。
(研磨性)
研磨性が不良と判断されるのは、肉眼で観察した場合に曇りが見られる場合である。研磨後の曇りとは、光学顕微鏡観察を行った場合に図3のような介在物の箇所での研磨の痕跡がある場合に観られることが確認されている。したがって、研磨性良否の判断は光顕微顕微鏡で行った。
研磨性が不良と判断されるのは、肉眼で観察した場合に曇りが見られる場合である。研磨後の曇りとは、光学顕微鏡観察を行った場合に図3のような介在物の箇所での研磨の痕跡がある場合に観られることが確認されている。したがって、研磨性良否の判断は光顕微顕微鏡で行った。
各試料について、試料表面を鏡面研磨後、光学顕微鏡で10mm×10mmの範囲で表面を観察した。図3で観られるような、介在物の箇所に引きずられた形の研磨の跡が観察されなかった場合に研磨性を○、観察された場合には研磨性を×と評価した。
以上の結果を表2に示す。
表2に示すように、本発明例のA-1~A-3鋼は、組成およびAγの値が本発明の範囲を満たすため、すべての特性が良好であることがわかる。本実施例から、本発明により、熱間圧延後の表面疵の発生を抑制することができ表面品質が良好であるとともに、透磁率の低い製品を製造可能であるオーステナイト系ステンレス鋼板が得られることがわかる。また、本発明例のA-1~A-3鋼は、鍛造性が良好であるとともに、介在物の組成および径が所定の範囲内であるため、研磨性が良好であり内部割れの発生が抑制されている。
これに対し、比較例のB-1鋼は、Aγの値が本発明の範囲よりも高いため、熱間圧延後に表面疵が発生した。また、比較例のB-2鋼は、Aγの値が本発明の範囲よりも低いため、透磁率が1.05よりも大きい値を示した。比較例のB-3鋼は、Si含有量が低く、酸素含有量が高いため、介在物径、研磨性、および鍛造性がいずれも不適となった。
そして、比較例のB-4鋼は、Al含有量が高く、介在物がスピネル系の介在物となっているとともに、研磨性および鍛造性が不適であった。
なお、B‐3鋼およびB‐4鋼については、鍛造性が×であることから比較例としている。これは、本願発明は、オーステナイト系ステンレス鋼を加工して製品とする際に、鍛造加工を行うことを前提としているためである。
本発明のオーステナイト系ステンレス鋼は、例えば携帯型電子機器の外装部材を製造する素材として利用することができる。また、本発明のオーステナイト系ステンレス鋼は、例えば、低い透磁率が要求される各種の電子部品、核磁気共鳴を用いる測定装置等の構成部材を製造するための素材に用いてよい。
Claims (8)
- 質量%で、
Cr:15.00%以上20.00%以下
Ni:5.00%以上10.00%以下
を含み、かつ下記(1)式で定義されるAγの値が0以上3.0以下となる組成であることを特徴とするオーステナイト系ステンレス鋼板。
Aγ=30(C+N)+0.5Mn+Ni-1.3Cr+11.8 ・・・(1) - 前記鋼板中に含まれる介在物の平均粒径が5μm以下であり、
前記介在物の組成における平均Al濃度が12質量%以下であることを特徴とする請求項1に記載のオーステナイト系ステンレス鋼板。 - 前記鋼板は、質量%で
C:0.05%以下
N:0.06%以下
Mn:2.5%以下
を含み、残部がFeおよび不可避不純物からなる組成であることを特徴とする請求項1または2に記載のオーステナイト系ステンレス鋼板。 - 前記鋼板は、質量%で
C:0.05%以下
N:0.06%以下
Mn:2.5%以下
P:0.040%以下
S:0.030%以下
Si:0.8%以下
Al:0.003%以下
酸素:0.0080%以下
を含み、残部がFeおよび不可避不純物からなる組成であることを特徴とする請求項1または2に記載のオーステナイト系ステンレス鋼板。 - 前記鋼板の組成が、1.0質量%以上3.5質量%以下のCuをさらに含むことを特徴とする請求項1~4のいずれか1項に記載のオーステナイト系ステンレス鋼板。
- 前記鋼板の組成が、質量%で、Ti:0.5%以下、Nb:0.5%以下、Zr:0.5%以下、V:0.5%以下、Mo:3.0%以下、B:0.03%以下、REM:0.02%以下、Ca:0.03%以下、からなる群から選ばれる1つ以上の条件をさらに満たしていることを特徴とする請求項1~5のいずれか1項に記載のオーステナイト系ステンレス鋼板。
- 質量%で、
Cr:15.00%以上20.00%以下
Ni:5.00%以上10.00%以下
を含み、かつ下記(1)式で定義されるAγが0以上3.0以下となるように成分調整されたスラブを1000℃~1300℃の温度域に加熱する前処理工程と、
前記前処理工程にて加熱されたスラブを熱間圧延する圧延工程と、を含むことを特徴とするオーステナイト系ステンレス鋼板の製造方法。
Aγ=30(C+N)+0.5Mn+Ni-1.3Cr+11.8 ・・・(1) - 前記圧延工程にて圧延された鋼板を焼鈍後、酸洗する焼鈍処理工程をさらに含むことを特徴とする請求項7に記載のオーステナイト系ステンレス鋼板の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/041544 WO2019097691A1 (ja) | 2017-11-17 | 2017-11-17 | オーステナイト系ステンレス鋼板およびその製造方法 |
JP2017564754A JP6359783B1 (ja) | 2017-11-17 | 2017-11-17 | オーステナイト系ステンレス鋼板およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/041544 WO2019097691A1 (ja) | 2017-11-17 | 2017-11-17 | オーステナイト系ステンレス鋼板およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019097691A1 true WO2019097691A1 (ja) | 2019-05-23 |
Family
ID=62904888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/041544 WO2019097691A1 (ja) | 2017-11-17 | 2017-11-17 | オーステナイト系ステンレス鋼板およびその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6359783B1 (ja) |
WO (1) | WO2019097691A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113972064A (zh) * | 2021-08-27 | 2022-01-25 | 合肥聚能电物理高技术开发有限公司 | 一种超导磁体骨架磁导率的控制工艺 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110923575B (zh) * | 2019-12-13 | 2021-05-28 | 山东腾达紧固科技股份有限公司 | 一种冷变形低磁导率高强度的奥氏体不锈钢 |
KR102448742B1 (ko) | 2020-07-17 | 2022-09-30 | 주식회사 포스코 | 비자성 오스테나이트계 스테인리스강 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6220855A (ja) * | 1985-07-19 | 1987-01-29 | Daido Steel Co Ltd | 非磁性高強度ステンレス鋼およびその製造方法 |
JPH0867948A (ja) * | 1994-08-29 | 1996-03-12 | Nkk Corp | 耐スクラッチ性に優れたフロッピーディスクシャッター 用薄鋼板 |
JPH10237598A (ja) * | 1997-02-24 | 1998-09-08 | Nisshin Steel Co Ltd | 加工割れ感受性の低いオーステナイト系ステンレス鋼及びその製造方法 |
JP2013163834A (ja) * | 2012-02-09 | 2013-08-22 | Nisshin Steel Co Ltd | オーステナイト系ステンレス鋼製携帯型電子機器外装部材およびその製造方法 |
-
2017
- 2017-11-17 JP JP2017564754A patent/JP6359783B1/ja active Active
- 2017-11-17 WO PCT/JP2017/041544 patent/WO2019097691A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6220855A (ja) * | 1985-07-19 | 1987-01-29 | Daido Steel Co Ltd | 非磁性高強度ステンレス鋼およびその製造方法 |
JPH0867948A (ja) * | 1994-08-29 | 1996-03-12 | Nkk Corp | 耐スクラッチ性に優れたフロッピーディスクシャッター 用薄鋼板 |
JPH10237598A (ja) * | 1997-02-24 | 1998-09-08 | Nisshin Steel Co Ltd | 加工割れ感受性の低いオーステナイト系ステンレス鋼及びその製造方法 |
JP2013163834A (ja) * | 2012-02-09 | 2013-08-22 | Nisshin Steel Co Ltd | オーステナイト系ステンレス鋼製携帯型電子機器外装部材およびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113972064A (zh) * | 2021-08-27 | 2022-01-25 | 合肥聚能电物理高技术开发有限公司 | 一种超导磁体骨架磁导率的控制工艺 |
CN113972064B (zh) * | 2021-08-27 | 2023-05-12 | 合肥聚能电物理高技术开发有限公司 | 一种超导磁体骨架磁导率的控制工艺 |
Also Published As
Publication number | Publication date |
---|---|
JP6359783B1 (ja) | 2018-07-18 |
JPWO2019097691A1 (ja) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101840964B1 (ko) | 스테인리스 냉연 강판용 소재 및 그 제조 방법 | |
JP6319522B2 (ja) | 電磁鋼板およびその製造方法 | |
WO2014129379A1 (ja) | 曲げ性に優れた高強度冷延鋼板 | |
EP2554699A1 (en) | Steel sheet with high tensile strength and superior ductility and method for producing same | |
JP2011001607A (ja) | 耐水素誘起割れ性および脆性亀裂伝播停止特性に優れた厚鋼板 | |
JP2010121162A (ja) | Ni節約型オーステナイト系ステンレス熱延鋼板の製造方法並びにスラブおよび熱延鋼板 | |
EP3556892A1 (en) | Low alloy steel sheet having excellent strength and ductility | |
KR101850231B1 (ko) | 페라이트계 스테인리스강 및 그 제조 방법 | |
WO2019097691A1 (ja) | オーステナイト系ステンレス鋼板およびその製造方法 | |
CN112912530B (zh) | 屈服强度优异的奥氏体高锰钢材及其制备方法 | |
JP6093063B1 (ja) | 加工性に優れた高強度ステンレス鋼材とその製造方法 | |
JP6089657B2 (ja) | 低温での水素脆化感受性に優れた高圧水素用オーステナイト系ステンレス鋼及びその製造方法 | |
WO2014157146A1 (ja) | オーステナイト系ステンレス鋼板およびそれを用いた高強度鋼材の製造方法 | |
JP2003301245A (ja) | 析出硬化型軟磁性フェライト系ステンレス鋼 | |
JP5537248B2 (ja) | 機械構造用鋼、および、その製造方法、並びに、機械構造用鋼を用いた加工部品製造方法 | |
JP4606113B2 (ja) | 比例限界応力の高いオーステナイト系ステンレス鋼材および製造法 | |
JP6453683B2 (ja) | 軟磁性用線材、棒鋼及び軟磁性鋼部品 | |
JPH0681037A (ja) | 二相ステンレス鋼熱延鋼帯の製造方法 | |
JP2013049918A (ja) | 電磁ステンレス鋼及びその製造方法 | |
TW201502285A (zh) | 無方向性電磁鋼板 | |
JP4502889B2 (ja) | 冷間鍛造性、切削加工性および交流磁気特性に優れた軟磁性鋼材、交流磁気特性に優れた軟磁性鋼部品ならびにその製造方法 | |
JP2022069229A (ja) | オーステナイト系ステンレス鋼およびその製造方法 | |
TW201923106A (zh) | 沃斯田鐵系不鏽鋼鋼板及其製造方法 | |
JP6796483B2 (ja) | 軟磁性鋼板 | |
JP2013224482A (ja) | 複合磁性材素材の製造方法及び複合磁性材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017564754 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17932327 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17932327 Country of ref document: EP Kind code of ref document: A1 |