WO2019096288A1 - 一种分体式机械手及利用该分体式机械手搬运车辆的方法 - Google Patents

一种分体式机械手及利用该分体式机械手搬运车辆的方法 Download PDF

Info

Publication number
WO2019096288A1
WO2019096288A1 PCT/CN2018/116110 CN2018116110W WO2019096288A1 WO 2019096288 A1 WO2019096288 A1 WO 2019096288A1 CN 2018116110 W CN2018116110 W CN 2018116110W WO 2019096288 A1 WO2019096288 A1 WO 2019096288A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
frame body
arm
split type
motor
Prior art date
Application number
PCT/CN2018/116110
Other languages
English (en)
French (fr)
Inventor
戴岳芳
施晓玲
许宏峰
赵琛
周威
陈钢
Original Assignee
杭州西子智能停车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州西子智能停车股份有限公司 filed Critical 杭州西子智能停车股份有限公司
Publication of WO2019096288A1 publication Critical patent/WO2019096288A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • E04H6/182Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions using car-gripping transfer means

Definitions

  • the present application relates to the field of three-dimensional garage technology, and in particular to a split type robot and a method of transporting the vehicle using the split type robot.
  • the overall height is usually above 100mm, and there is a risk of a large scraping of the chassis.
  • the present application provides a split type robot, which adopts two split type robots to respectively grip the front and rear wheels of the vehicle to carry out vehicle transportation, thereby improving versatility; optimizing the size, connection relationship and layout of each component of the split type robot, and reducing The overall size of the split robot; powered by a supercapacitor or battery, expands the range of motion of the split robot.
  • a split type robot comprising a rectangular frame body and a clamp arm system, a walking system and a control system mounted on the frame body, the walking system comprising two sets of driving wheels and driven wheels respectively mounted at four corners of the frame body, each set The driving wheels are respectively matched with a traveling motor, and the middle portion of the frame body in the traveling direction is a power zone, and each traveling motor and the driving wheel are installed in the power zone;
  • the clamping arm system comprises two pairs of clamping arms, and each clamping arm is separately provided with a clamping arm motor, the two pairs of clamping arms are respectively arranged on opposite sides of the frame body in the traveling direction, and the same pair of clamping arms and corresponding clamping arm motors are located Both sides of the power zone;
  • the frame body is also provided with a super capacitor or a battery connected by a circuit and a traveling motor, a clamp arm motor and a control system, and the super capacitor or the battery is installed on both sides of the power zone.
  • the clamp arm system is usually driven by a motor, the motor power demand is large, and the motor volume is also large.
  • the clamp arm motor is separately matched for each clamp arm, and the power demand of the clamp arm motor is relatively high. Small, the volume is also reduced accordingly, and the height of the clamp arm motor is also reduced to ensure that the overall height of the split robot is reduced.
  • the frame body is not strictly rectangular, and may be slightly expanded or contracted in order to accommodate the components.
  • the super-capacitor or the battery is used to supply power to the split-type robot, thereby eliminating the limitation of the cable length, and the split-type manipulator is more maneuverable.
  • the power part of the split type robot is located in a central area of the frame body, and a driven wheel is arranged at four corners of the frame body to improve the smoothness of operation.
  • two split-type robots adjust the spacing to accommodate different wheelbase vehicles, and then enter the vehicle at the same time.
  • the clamp arm motor drives the corresponding clamp arms to respectively capture the front and rear wheels of the vehicle. Drive the drive wheel to complete the handling of the vehicle.
  • the running direction of the main shaft of the traveling motor is perpendicular to the traveling direction of the frame body, the main axes of the two traveling motors are on the same axis, and the main shaft output ends of the traveling motors are directed toward a set of driving wheels on the corresponding side.
  • the number of driving wheels in each set of driving wheels is two, and is connected to the main shaft output end of the corresponding traveling motor through a transmission mechanism.
  • the transmission mechanism can take various forms, such as gear transmission.
  • the super capacitor or the battery is two groups, respectively located on two sides of the power zone, and the same group of super capacitors or batteries are installed in two regions, and the two regions are between the wire grooves arranged along the traveling direction of the frame body.
  • the frame body is provided with spaced-apart pallets, and the supercapacitors or batteries of the respective regions are fixedly mounted on the corresponding pallets.
  • the number of supercapacitors or batteries and the power are designed according to actual needs.
  • two sets of supercapacitors or batteries are connected in series with each other on the circuit, and the frame body is further provided with a voltage regulator connected to the super capacitor or the battery output terminal, and a power controller for managing the super capacitor or the battery and the voltage regulator.
  • the supercapacitor or battery supplies power to the clamp arm motor and the travel motor via the voltage regulator.
  • the voltage regulator is configured to stabilize the voltage fluctuation of the super capacitor or the battery during discharge to meet the power supply of the clamp arm motor and the traveling motor.
  • the power controller also includes a power display device that displays the super capacitor or the remaining battery power.
  • each of the clamp arm motors is mounted on the edge of the frame body on the side of the driven clamp arm, and the main shaft of each clamp arm motor is arranged along the traveling direction of the frame body and is linked with the corresponding clamp arm by the worm gear mechanism.
  • the two arm arms of the same pair are arranged coaxially with the arm motor, which are parallel to the longitudinal direction of the frame body.
  • each of the clamping arms is mounted on the frame body by a vertical rotating shaft, the same pair of clamping arms having a folded state abutting against the same side of the frame body, and an operating state perpendicular to the side edges and the two clamping arms are arranged side by side.
  • the clamping arm rotates around the vertical rotating shaft to realize the switching between the folding state and the working state.
  • the two arms are arranged side by side, and in the folded state, the two arms abut against the edge of the long side of the frame body.
  • the length of the split type robot does not exceed 2200 mm, the width does not exceed 820 mm, and the height does not exceed 90 mm, and the split type robot realizes free shuttle of the vehicle.
  • the clamping arm comprises a swinging seat connected to the vertical rotating shaft and an arm hinged on the swinging seat by a horizontal rotating shaft, and the arm is provided with an auxiliary load-bearing roller at an end away from the vertical rotating shaft,
  • the opposite side of the arm of the clamp arm in the working state is a working edge in contact with the wheel, and each arm is provided with a rotating roller that is in contact with the wheel at the working edge.
  • one end of the arm is supported by the frame body, and the other end is supported by the auxiliary load-bearing roller to ensure the smooth bearing.
  • the rotating roller and the wheel cooperate to reduce the friction between the arm and the wheel.
  • the outer circumference of the swing seat is provided with gear teeth
  • the worm gear mechanism includes a worm that is coaxially coupled with the main shaft of the arm motor, and a worm wheel that is also made up of the swing seat.
  • the clamping arm motor drives the worm to rotate, and the worm drives the worm wheel to rotate, and the swinging seat drives the arm to rotate, so that the arm switches between the working state and the folding state.
  • auxiliary load bearing rollers In order to reduce the size of the boom and at the same time ensure the effect of the load bearing, preferably, there are two auxiliary load bearing rollers, and the rotating shafts of the two are misaligned.
  • the arm is provided with a lightening hole.
  • the weight reducing hole is configured to reduce the weight of the clamping arm, and the weight of the arm itself needs to be ensured while the weight reducing hole is opened.
  • the present application also provides a vehicle handling method based on a split robot, the split robot including a main robot and a slave robot, including the following steps:
  • the front and rear track are detected to obtain the track data
  • the distance measuring device for sensing the distance from the main robot is provided from the robot, the track data is obtained wirelessly from the robot, and the distance from the main robot is automatically adjusted according to the measurement result of the distance measuring device until the track data is met. ;
  • the main robot and the slave robot travel synchronously to the bottom of the vehicle, and the corresponding vehicles are gripped by the respective arm system to carry the vehicle;
  • the main robot and the robot move from the robot to the designated position.
  • the present application also provides a vehicle handling system for a three-dimensional garage, including a horizontal transport device for transporting vehicles, and two split-type robots that cooperate with each other to carry the front and rear wheels of the vehicle, one of which is mainly The robot is the other, from the robot.
  • the main robot and the slave robot respectively carry the front and rear wheels of the vehicle to complete the transportation of the vehicle.
  • the horizontal transport device is provided with a horizontal transport device controller and a wireless main station connected to the horizontal transport device controller, and the control system of each robot includes:
  • a wireless slave station connected to the robot controller and in communication with the wireless master station;
  • a traveling motor driver connected to the manipulator controller and connected to each of the traveling motors in one-to-one correspondence;
  • a clamp arm motor driver connected to the robot controller and connected to each of the clamp arm motors in one-to-one correspondence.
  • the main robot and the slave robot respectively have respective wireless slave stations, and the wireless master station and the two wireless slave stations perform one-to-two wireless communication.
  • the robot controller controls the corresponding travel motor and the clamp arm motor to complete the movement and the vehicle gripping, and the action between the main robot and the slave robot is coordinated by the horizontal transport controller.
  • the ranging device is coupled to a robotic controller from the robot and provides a reference signal from the robot to adjust the position relative to the main robot.
  • the distance between the robot and the main robot is adjusted until the distance signal fed back by the distance measuring device satisfies the track requirement of the vehicle, and the main robot and the slave robot synchronously enter under the vehicle chassis to carry out the vehicle. Handling.
  • the horizontal transport device is provided with a guide rail, and a bottom of the frame body of each robot is provided with a guide roller that cooperates with the guide rail.
  • the rotating shaft of the guiding roller is arranged in a vertical direction, and the guiding rail has a guiding groove for accommodating the guiding roller, and the mechanical hand defines a path through the cooperation of the guiding rail and the guiding roller during operation.
  • the split robot provided by the present application has the following advantages:
  • Two split-type robots work together to transport a car, and the distance between the two split-type robots can be adjusted to suit different wheelbase models;
  • FIG. 1 is a schematic view of a split robot of the present application applied to a three-dimensional garage
  • FIG. 2 is a schematic view showing the working state of the split type robot of the present application.
  • Figure 3 is a schematic view of the split type robot in the folded state of the present application.
  • FIG. 4 is a schematic view showing the working state of the split type mechanical hand grip arm system of the present application.
  • Figure 5 is a schematic view showing the folded state of the split type mechanical hand grip arm system of the present application.
  • Figure 6 is a schematic view of the split type mechanical hand grip arm of the present application.
  • Figure 7 is a side view of the split type mechanical hand grip arm of the present application.
  • Figure 8 is a schematic view of the split type robot of the present application, omitting the clamp arm system
  • Figure 9 is a cross-sectional view taken along line A-A of Figure 8.
  • Figure 10 is a schematic view showing the cooperation of the split type robot and the guide rail of the present application.
  • Figure 11a is a schematic view showing the installation of the power controller of the split type mechanical hand of the present application.
  • Figure 11b is a cross-sectional view taken along line B-B of Figure 11a;
  • FIG. 12 is a schematic view showing the installation of a voltage regulator in a split type mechanical machine of the present application
  • Figure 13 is a schematic diagram of the communication principle in the vehicle handling system of the present application.
  • a three-dimensional garage handling system includes a vertical transport device for transporting vehicles in a vertical direction, a horizontal transport device 2 for transporting vehicles in a horizontal direction, and a split robot 3 for transferring vehicles.
  • the split type robot 3 is two sets, one of which is the main manipulator, and the other is the slave manipulator.
  • the main manipulator and the slave manipulator respectively carry the front and rear wheels of the vehicle to complete the transportation of the vehicle.
  • the split robot 3 transfers the vehicle from the garage entrance to the vertical transport device 1. After the vertical transport device 1 transports the vehicle to the corresponding floor height, the split robot 3 transfers the vehicle to the horizontal transport device 2, horizontally. The transport device 2 transports the vehicle to the corresponding parking space entrance, and the split robot 3 transfers the vehicle to the corresponding parking space. When the vehicle is picked up, the flow can be reversed.
  • the split robot 3 includes a rectangular frame body 8, and a clamp arm system, a traveling system, and a control system mounted on the frame body 8.
  • the clamp arm system includes four clamp arms 5, each of which is separately provided with a clamp arm motor 4.
  • the four clamp arms 5 are divided into two pairs, and each pair of clamp arms 5 grips one wheel of one vehicle.
  • the two pairs of clamp arms 5 are located in the middle portion of the rectangular longitudinal direction, the main axes of the respective clamp arm motors 4 are arranged along the rectangular length direction, and the clamp arm motor 4 is adjacent to the long side of the frame body 8.
  • the pair of clamp arms 5 are disposed on the same long side of the frame body 8, and each of the clamp arms 5 is mounted on the frame body 8 by a vertical rotation shaft 55. As shown in FIG. 3, the same pair of clamp arms 5 have a folded state against the same long side of the frame body 8, and as shown in FIG. 2, the same pair of clamp arms 5 also have perpendicular to the same long side and two clamp arms. 5 working status arranged side by side.
  • the clamp arm 5 includes a swinging seat 54 coupled to the vertical rotating shaft 55 and an arm 53 hinged to the swinging seat 54 via a horizontal rotating shaft 56.
  • the arm 53 is provided with a lightening hole.
  • the clamp arm motor 4 is interlocked with the corresponding clamp arm 5 through a worm gear mechanism, and the outer circumference of the swing seat 54 is provided with gear teeth.
  • the worm gear mechanism includes a worm 9 that is coaxially connected with the main shaft of the clamp arm motor 4, and the swing seat 54.
  • the worm wheel is also used, and the worm 9 and the main shaft of the clamp arm motor 4 are connected by a coupling.
  • the clamp arm motor 4 drives the worm 9 to rotate, and the swing seat 54 rotates about the vertical rotary shaft 55 with the rotation of the worm 9, and the hinged arm 53 on the swing seat 54 rotates to the working state as shown in FIG. 2, or as shown in FIG. The state of the collapse.
  • each arm 53 of the pair of clamp arms 5 in the working state is a working edge in contact with the wheel, and each arm 53 is provided with a rotating roller 52 that is in contact with the wheel at the working edge.
  • the upper surface of the arm 53 has an arc shape corresponding to the outer circumference of the wheel, and the rotating roller 52 is rotatably mounted at the lowest point of the arc.
  • the arm 53 is provided with an auxiliary load-bearing roller 51 at one end away from the vertical rotating shaft 55, and two auxiliary bearing rollers 51.
  • the rotating shafts of the two auxiliary load-bearing rollers 51 are misaligned.
  • the length of the split type robot does not exceed 2200 mm, the width does not exceed 820 mm, and the height does not exceed 90 mm, so that the free shuttle of the vehicle is realized.
  • the traveling system includes two sets of driving wheels 10 and driven wheels 6 respectively mounted at four corners of the frame body 8, each of which is matched with a traveling motor 11 respectively.
  • the middle portion of the frame body 8 in the traveling direction is a power zone, and each of the traveling motor 11 and the driving wheel 10 are installed in the power zone.
  • the main shaft arrangement direction of the traveling motor 11 is perpendicular to the traveling direction of the frame body 8, the main axes of the two traveling motors 11 are on the same axis, and the main shaft output ends of the respective traveling motors 11 are directed toward a set of driving wheels 10 on the respective sides.
  • the number of the driving wheels 10 of each set of driving wheels 10 is two, and is connected to the main shaft output end of the corresponding traveling motor 11 through a transmission mechanism.
  • the transmission mechanism includes a driving gear sleeved on the main shaft of the traveling motor 11, and a driven gear that meshes with the driving gear and correspondingly sleeves on the axles of each driving wheel 10.
  • the traveling motor 11 drives the driving gear to rotate, and the driven gear carries the driving gear. Turn.
  • the frame body 8 is further provided with a super capacitor or a battery which is connected to the traveling motor 11, the arm motor 4 and the control system through a circuit.
  • the supercapacitor or the battery 7 is divided into two groups, which are respectively located on both sides of the power zone, and the same group of super capacitors or batteries are installed in two regions, and the two regions are arranged along the traveling direction of the frame body 8. Trunking.
  • the frame body 8 is provided with spaced-apart pallets 13, and the supercapacitors or batteries 7 of the respective regions are fixedly mounted on the corresponding pallets 13.
  • the pallet 13 has oppositely disposed side walls 13a on both sides thereof, and the pallet 13 is fixed to the frame body 8 by bolts penetrating the side walls 13a.
  • the supercapacitor or battery 7 of each zone is located in the area enclosed by the pallet 13 and the side wall 13a.
  • the supercapacitors or batteries 7 are connected in series with each other on the circuit, and the frame body 8 is further provided with a voltage regulator 12 connected to the output of the supercapacitor or the battery 7, and a power controller 17 for managing the supercapacitor or the battery 7 and the voltage regulator 12.
  • the supercapacitor or battery 7 supplies power to the travel system via the voltage regulator 12.
  • the voltage regulator 12 and the power controller 17 are disposed in the area indicated by the arrow C in FIG. 8, and the area indicated by the arrow C has four symmetrically distributed blocks in the central area of the frame body 8, and the voltage regulator 12 can be disposed in any one of the areas. And/or power controller 17.
  • the power supply controller 17 is mounted in a manner as shown in Figs. 11a and 11b, and a bracket is mounted on the frame body 8, the bracket including a horizontal portion 16b and a vertical portion 16a, and the vertical portion 16a is fixed to the frame body 8 by bolts.
  • a fixed power source controller 17 is placed on the horizontal portion 16b.
  • the regulator 12 is mounted as shown in FIG. 12, and the frame body 8 is provided with spaced-apart support frames 18, each of which comprises a bottom plate and two side plates which are vertically disposed on the bottom plate and are oppositely arranged, two pieces The side plates are respectively fixed to the frame body 8 by bolts, and the voltage regulator 12 is placed and fixed on the bottom plate.
  • a guide roller 15 is arranged at the bottom of the frame body 8 of the split type robot 3, and the rotating shaft of the guide roller 15 is vertically arranged, and the vertical transport device 1 and the horizontal transport device 2 are provided with the guide roller 15.
  • Guide rail 14
  • the communication principle of the horizontal transport device 2, the main robot and the slave robot is shown in Fig. 13.
  • the horizontal transport device is provided with a horizontal transport device controller and a wireless main station connected to the horizontal transport device controller, a horizontal transport device 2 and a stereo garage. Communication between the control systems.
  • the control system of each robot includes: a robot controller, a wireless slave station connected to the robot controller and communicating with the wireless master station, a traveling motor driver connected to the robot controller and connected to each of the traveling motors, and the robot A clamp arm motor driver that is connected to the controller and that is connected one-to-one with each of the clamp arm motors.
  • Industrial wireless Ethernet communication is used between the wireless master station and the wireless slave station, and an Ethernet wired connection is used between the wireless slave station and the robot controller.
  • the robot controller controls the corresponding travel motor and the clamp arm motor to complete the movement and the vehicle gripping, and the action between the main robot and the slave robot is coordinated by the horizontal transport controller.
  • the difference between the robot and the main robot is that the robot controller of the robot is also connected with a distance measuring device that measures the distance from the robot to the main robot to provide a reference signal for adjusting the position of the main robot from the robot.
  • a vehicle handling method based on the split type robot provided in Embodiment 1 includes the following steps:
  • the vehicle profile detection light curtain is used to capture the vehicle profile data, and the track data is obtained by the conversion of the stereo garage control system.
  • the track data is fed back to the horizontal transport device, and the horizontal transport device feeds back to the manipulator control robot.
  • the distance from the main robot is automatically adjusted according to the measurement result of the distance measuring device until the track data is met;
  • the main robot and the slave robot travel synchronously to the bottom of the vehicle, and the corresponding vehicles are gripped by the respective arm system to carry the vehicle;
  • the main robot and the robot move from the robot to the designated position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种分体式机械手,包括矩形的框架体(8)以及安装在框架体(8)上的夹臂系统、行走系统和控制系统,行走系统包括两组主动轮(10)和安装在框架体(8)四角的从动轮(6),每组主动轮(10)分别匹配有行走电机(11),夹臂系统包括两对夹臂(5),且每根夹臂(5)单独配置夹臂电机(4);框架体(8)上设有通过电路与行走电机(11)、夹臂电机(4)以及控制系统相连供电的超级电容或电池(7),超级电容或电池(7)安装在动力区的两侧。还提供利用该分体式机械手搬运车辆的方法。该机械手尺寸小、灵活性强、通用性强。

Description

一种分体式机械手及利用该分体式机械手搬运车辆的方法
相关申请的交叉引用
本申请要求于2017年11月20日提交中国专利局的申请号为201711160124.6、名称为“一种分体式机械手及利用该分体式机械手搬运车辆的方法”的中国专利申请的优先权,以及于2017年11月27日提交中国专利局的申请号为201711206967.5、名称为“一种分体式机械手及利用该分体式机械手搬运车辆的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及立体车库技术领域,具体涉及一种分体式机械手及利用该分体式机械手搬运车辆的方法。
背景技术
现有技术中,在使用机械手存取车的立体车库中,通常采用一体式机械手,一体式机械手主要存在如下缺陷:
(1)前后轮夹臂间距调节范围有限,难以满足市面上某些超长轴距或超短轴距的特殊车型;
(2)采用电缆配合卷筒对机械手进行供电,导致机械手的行程范围受限于电缆长度;
(3)为了满足大部分车型的需要,结构整体长度较长,且难以按照实际需要调节长度;
(4)整体高度通常在100mm以上,存在较大刮蹭底盘的风险。
发明内容
本申请提供了一种分体式机械手,通过两台分体式机械手分别夹取车辆的前后轮进行车辆的搬运,提高通用性;对分体式机械手的各部件进行尺寸、连接关系以及布局优化,减小分体式机械手的整体尺寸;采用超级电容或电池供电,扩大了分体式机械手的活动范围。
一种分体式机械手,包括矩形的框架体以及安装在框架体上的夹臂系统、行走系统和控制系统,所述行走系统包括两组主动轮以及分别安装在框架体四角的从动轮,每组主动轮分别匹配有行走电机,所述框架体在行进方向上的中部为动力区,各行走电机以及主动轮均安装在该动力区;
所述夹臂系统包括两对夹臂,且每根夹臂单独配置有夹臂电机,两对夹臂分别布置在框架体行进方向上相对两侧,同对夹臂以及相应的夹臂电机位于所述动力区的两侧;
框架体上还设有通过电路与行走电机、夹臂电机以及控制系统相连供电的超级电容或电池,超级电容或电池安装在动力区的两侧。
现有技术中,夹臂系统通常采用一台电机进行驱动,电机功率需求较大,电机体积也较大,本申请中,针对每根夹臂单独匹配夹臂电机,夹臂电机的功率需求较小,体积也相应减小,夹臂电机的高度也减小,以保证分体式机械手的整体高度减小。
所述框架体并非严格为矩形,为了容纳部件可以局部略作扩展或收缩。
本申请中,采用超级电容或电池对分体式机械手进行供电,消除了电缆长度的限制,分体式机械手的机动性更强。
所述分体式机械手的动力部分位于框架体的中心区域,并在框架体的四角设置从动轮,提高运行的平稳性。
存取车过程中,两台分体式机械手调整间距以适应不同轴距的车辆,然后同时进入车辆下方,夹臂电机驱动相应的夹臂各自对应夹取车辆的前轮和后轮,行走电机驱动主动轮行进,完成车辆的搬运。
作为优选,所述行走电机的主轴延伸方向与框架体行进方向垂直,两行走电机的主轴处在同一轴线上,各行走电机的主轴输出端朝向相应侧的一组主动轮。
作为优选,每组主动轮中的主动轮数量为两个,且通过传动机构与相应行走电机的主轴输出端相连。所述传动机构可以采用各种形式,例如齿轮传动。
作为优选,所述超级电容或电池为两组,分别处在动力区的两侧,同组超级电容或电池分两个区域安装,两个区域之间为沿框架体行进方向布置的线槽。
作为优选,框架体上设有间隔布置的托板,各区域的超级电容或电池固定安装在相应的托板上。超级电容或电池的数量以及功率根据实际需要进行设计。
作为优选,两组超级电容或电池在电路上相互串联,框架体上还设有连接在超级电容或电池输出端的稳压器,以及管理所述超级电容或电池和稳压器的电源控制器,超级电容或电池经由稳压器向夹臂电机和行走电机供电。
稳压器配置成稳定超级电容或电池在放电过程中的电压波动,以满足夹臂电机以及行走电机供电。电源控制器还包括电量显示装置,显示超级电容或电池剩余电量。
作为优选,各夹臂电机的安装位置处在所驱动夹臂所在侧的框架体边缘,各夹臂电机的主轴沿框架体行进方向布置且通过蜗轮蜗杆机构与相应的夹臂联动。
同属一对的两个夹臂对应的夹臂电机同轴线布置,均平行于框架体的长度方向。
作为优选,各夹臂通过竖直转轴安装在框架体上,同对夹臂具有贴靠在框架体同侧边的收折状态,以及垂直于该侧边且两夹臂并排布置的工作状态。
夹臂绕竖直转轴旋转,以实现在收折状态和工作状态的切换,工作状态下,两臂杆并排布置,收折状态下,两臂杆贴靠框架体长边的边缘。
夹臂收折状态下,所述分体式机械手的长度不超过2200mm,宽度不超过820mm,高 度不超过90mm,分体式机械手实现车辆的自由穿梭。
作为优选,所述夹臂包括与所述竖直转轴相连接的摆动座以及通过水平转轴铰接在摆动座上的臂杆,所述臂杆在远离竖直转轴的一端设有辅助承重滚轮,同对夹臂的臂杆在工作状态下的相对侧为与车轮接触的工作缘,各臂杆在工作缘处设有与车轮接触配合的转动辊。
工作状态下,臂杆的一端由框架体承重,另一端由辅助承重滚轮承重,保证承载的平稳,通过转动辊与车轮相配合,减少臂杆与车轮之间的摩擦力。
作为优选,摆动座的外周设有轮齿,所述蜗轮蜗杆机构包括与夹臂电机的主轴同轴线对接的蜗杆,以及由所述摆动座兼做的蜗轮。
夹臂电机驱动蜗杆旋转,蜗杆带动蜗轮也即摆动座旋转,摆动座带动臂杆旋转,使臂杆在工作状态与收折状态间切换。
为了减小臂杆的尺寸,同时,保证承重的效果,优选地,所述辅助承重滚轮有两个,且两者的转轴错位布置。
作为优选,所述臂杆上设有减重孔。所述减重孔配置成减轻夹臂的自重,在开设减重孔的同时,需要保证臂杆自身的强度。
本申请还提供了一种基于分体式机械手的车辆搬运方法,所述分体式机械手包括一台主机械手和一台从机械手,包括如下步骤:
车辆进入车库入口时检测前后轮距,获得轮距数据;
从机械手上设有感测与主机械手间距的测距装置,从机械手以无线方式获取所述轮距数据,并依据测距装置的测量结果自动调整与主机械手的间距直至符合所述轮距数据;
主机械手和从机械手同步行进至车辆底部,通过各自的夹臂系统夹取相应的车辆以承载车辆;
主机械手和从机械手同步行进搬运车辆至指定位置。
本申请还提供了一种应用于立体车库的车辆搬运系统,包括搬运车辆的水平运输装置,以及相互配合承载车辆前轮和后轮的两台前面所述的分体式机械手,其中一台为主机械手,另一台为从机械手。
使用时,主机械手和从机械手分别承载车辆的前轮和后轮,共同完成车辆的运输。
作为优选,所述水平运输装置上设有水平运输装置控制器以及与该水平运输装置控制器相连的无线主站,各机械手的控制系统包括:
机械手控制器;
与所述机械手控制器相连且与所述无线主站相互通信的无线从站;
与所述机械手控制器相连且与各行走电机一一对应连接的行走电机驱动器;
与所述机械手控制器相连且与各夹臂电机一一对应连接的夹臂电机驱动器。
主机械手和从机械手分别设有各自对应的无线从站,无线主站和两个无线从站之间进行1对2的无线通讯。
机械手控制器控制相应的行走电机和夹臂电机动作,完成移动和车辆夹取,主机械手和从机械手之间的动作由水平运输装置控制器协调。
所述测距装置接入从机械手的机械手控制器并提供从机械手调整相对主机械手位置的参考信号。
存取车辆前,依据车辆的轮距,调整从机械手与主机械手之间的间距,直至测距装置反馈的距离信号满足车辆的轮距要求,主机械手和从机械手同步进入车辆底盘下方,进行车辆的搬运。
作为优选,所述水平运输装置上设有导轨,各机械手的框架体底部设有与所述导轨相配合的导向滚轮。
所述导向滚轮的转轴沿竖直方向布置,所述导轨具有容置导向滚轮的导向槽,机械手在运行过程中,通过导轨与导向滚轮的配合限定路径。
与现有技术相比,本申请提供的分体式机械手具有以下优点:
(1)采用两台分体式机械手共同协作搬运一辆汽车,两台分体式机械手间距可调,以适应不同轴距的车型;
(2)采用超级电容或电池对分体式机械手进行供电,分体式机械手的运动行程不再受限于电缆长度,运行更灵活;
(3)分体式机械手的长度不超过2200mm,宽度不超过820mm,高度不超过90mm,不存在刮蹭底盘的风险,使用更安全。
附图说明
图1为本申请分体式机械手应用于立体车库中的示意图;
图2为本申请分体式机械手工作状态下的示意图;
图3为本申请分体式机械手收折状态下的示意图;
图4为本申请分体式机械手中夹臂系统工作状态的示意图;
图5为本申请分体式机械手中夹臂系统收折状态的示意图;
图6为本申请分体式机械手中夹臂的示意图;
图7为本申请分体式机械手中夹臂的侧视图;
图8为本申请分体式机械手的示意图,省略夹臂系统;
图9为图8中的A-A向剖视图;
图10为本申请分体式机械手与导轨配合的示意图;
图11a为本申请分体式机械手中电源控制器安装的示意图;
图11b为图11a中的B-B向剖视图;
图12为本申请分体式机械手中稳压器安装的示意图;
图13为本申请车辆搬运系统中通讯原理示意图。
图中:1、垂直运输装置;2、水平运输装置;3、分体式机械手;4、夹臂电机;5、夹臂;51、辅助承重滚轮;52、转动辊;53、臂杆;54、摆动座;55、竖直转轴;56、水平转轴;6、从动轮;7、超级电容或电池;8、框架体;9、蜗杆;10、主动轮;11、行走电机;12、稳压器;13、托板;13a、侧壁;14、导轨;15、导向滚轮;16a、竖直部;16b、水平部;17、电源控制器;18、支撑架。
具体实施方式
下面结合附图,对本申请分体式机械手及利用该分体式机械手搬运车辆的方法做详细描述。
实施例1
如图1所示,一种立体车库搬运系统包括:在竖直方向运输车辆的垂直运输装置1、在水平方向运输车辆的水平运输装置2、以及转移车辆的分体式机械手3。
分体式机械手3为两台,其中一台为主机械手,另一台为从机械手,主机械手与从机械手分别承载车辆的前轮和后轮,共同完成车辆的运输。
存车时,分体式机械手3将车辆由车库入口处转移至垂直运输装置1,垂直运输装置1将车辆运送至对应的层高后,由分体式机械手3将车辆转移至水平运输装置2,水平运输装置2将车辆运输至对应的车位入口,由分体式机械手3将车辆转移至对应的车位上,取车时,流程反向操作即可。
主机械手和从机械手的结构基本相同,如图2和图3所示,分体式机械手3包括矩形的框架体8、以及安装在框架体8上的夹臂系统、行走系统和控制系统。
如图2和图3所示,夹臂系统包括四根夹臂5,每根夹臂5单独配置有夹臂电机4。
四根夹臂5分为两对,每对夹臂5夹取一个车辆的一个车轮。两对夹臂5位于矩形长度方向的中部区域,各夹臂电机4的主轴沿矩形长度方向布置,且夹臂电机4贴近框架体8长边。
同对夹臂5布置在框架体8的同一长边侧,各夹臂5通过竖直转轴55安装在框架体8上。如图3所示,同对夹臂5具有贴靠在框架体8同一长边侧的收折状态,如图2所示,同对夹臂5还具有垂直于同一长边侧且两夹臂5并排布置的工作状态。
如图4和图5所示,夹臂5包括与竖直转轴55相连接的摆动座54以及通过水平转轴56铰接在摆动座54上的臂杆53,臂杆53上设有减重孔。夹臂电机4通过蜗轮蜗杆机构与 相应的夹臂5联动,摆动座54的外周设有轮齿,蜗轮蜗杆机构包括与夹臂电机4的主轴同轴线对接的蜗杆9,以及由摆动座54兼做的蜗轮,蜗杆9与夹臂电机4的主轴通过联轴器连接。
夹臂电机4驱动蜗杆9旋转,摆动座54随蜗杆9的旋转绕竖直转轴55转动,摆动座54上铰接的臂杆53旋转至如图2所示的工作状态,或如图3所示的收折状态。
如图6所示,同对夹臂5的臂杆53在工作状态下的相对侧为与车轮接触的工作缘,各臂杆53在工作缘处设有与车轮接触配合的转动辊52。如图7所示,臂杆53的上表面为与车轮外周相应的弧形,转动辊52转动安装在弧形的最低处。
如图6所示,臂杆53在远离竖直转轴55的一端设有辅助承重滚轮51,辅助承重滚轮51为两个,为了布局紧凑,两个辅助承重滚轮51的转轴错位布置。
本实施例中,夹臂收折状态下,分体式机械手的长度不超过2200mm,宽度不超过820mm,高度不超过90mm,实现车辆的自由穿梭。
如图2和图3所示,行走系统包括:两组主动轮10以及分别安装在框架体8四角的从动轮6,每组主动轮10分别匹配有一个行走电机11。框架体8在行进方向上的中部为动力区,各行走电机11以及主动轮10均安装在动力区。
行走电机11的主轴布置方向与框架体8行进方向垂直,两个行走电机11的主轴处于同一轴线上,各行走电机11的主轴输出端朝向相应侧的一组主动轮10。
每组主动轮10的主动轮10数量为两个,且通过传动机构与相应行走电机11的主轴输出端相连。传动机构包括套设在行走电机11主轴上的主动齿轮,以及与主动齿轮啮合并对应套设在各主动轮10轮轴上的从动齿轮,行走电机11带动主动齿轮转动,从动齿轮随主动齿轮转动。
如图2、图3和图8所示,框架体8上还设有通过电路与行走电机11、夹臂电机4以及控制系统相连供电的超级电容或电池。
如图8所示,超级电容或电池7分为两组,分别处在动力区两侧,同组超级电容或电池7分两个区域安装,两个区域之间为沿框架体8行进方向布置的线槽。
如图8和图9所示,框架体8上设有间隔布置的托板13,各区域的超级电容或电池7固定安装在相应的托板13上。托板13两侧具有相对布置的侧壁13a,通过贯穿侧壁13a的螺栓,将托板13固定在框架体8上。各区域的超级电容或电池7位于托板13和侧壁13a围成的区域内。
各超级电容或电池7在电路上相互串联,框架体8上还设有连接在超级电容或电池7输出端的稳压器12,以及管理超级电容或电池7和稳压器12的电源控制器17,超级电容或电池7经由稳压器12向行走系统供电。稳压器12和电源控制器17设置在图8中箭头C 所指示的区域,箭头C所指示的区域在框架体8中心区域共有对称分布的四块,任意一个区域均可以设置稳压器12和/或电源控制器17。
电源控制器17的安装方式如图11a和图11b所示,在框架体8上安装托架,托架包括水平部16b和竖直部16a,竖直部16a通过螺栓固定在框架体8上,水平部16b上放置固定电源控制器17。
稳压器12的安装方式如图12所示,在框架体8上设置间隔布置的支撑架18,每个支撑架18包括底板以及立置在底板上且相对布置的两块侧板,两块侧板分别通过螺栓固定在框架体8上,稳压器12放置固定在底板上。
如图10所示,在分体式机械手3的框架体8底部设有导向滚轮15,导向滚轮15的转轴竖直布置,垂直运输装置1以及水平运输装置2上设有与导向滚轮15相配合的导轨14。
水平运输装置2、主机械手以及从机械手的通讯原理如图13所示,水平运输装置上设有水平运输装置控制器以及与水平运输装置控制器相连的无线主站,水平运输装置2与立体车库的控制系统之间通讯。
各机械手的控制系统包括:机械手控制器、与机械手控制器相连且与无线主站相互通信的无线从站、与机械手控制器相连且与各行走电机一一对应连接的行走电机驱动器、以及与机械手控制器相连且与各夹臂电机一一对应连接的夹臂电机驱动器。
无线主站和无线从站之间采用工业无线以太网通讯,无线从站与机械手控制器之间采用以太网有线连接。
机械手控制器控制相应的行走电机和夹臂电机动作,完成移动和车辆夹取,主机械手和从机械手之间的动作由水平运输装置控制器协调。
从机械手与主机械手的不同之处仅在于,从机械手的机械手控制器还连接有测距装置,测距装置测量从机械手与主机械手的距离,以提供从机械手调整相对主机械手位置的参考信号。
实施例2
一种基于实施例1提供的分体式机械手的车辆搬运方法,包括如下步骤:
车辆进入车库入口时,利用车轮廓检测光幕抓取车轮廓数据,通过立体车库控制系统的换算得到轮距数据,轮距数据反馈给水平运输装置,由水平运输装置反馈给从机械手的机械手控制器;
从机械手获取轮距数据后,依据测距装置的测量结果自动调整与主机械手的间距直至符合轮距数据;
主机械手和从机械手同步行进至车辆底部,通过各自的夹臂系统夹取相应的车辆以承载车辆;
主机械手和从机械手同步行进搬运车辆至指定位置。
根据上述说明书的揭示和教导,本申请所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本申请并不局限于上面揭示和描述的具体实施方式,对本申请的一些修改和变更也应当落入本申请的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本申请构成任何限制。

Claims (10)

  1. 一种分体式机械手,包括矩形的框架体以及安装在框架体上的夹臂系统、行走系统和控制系统,其特征在于,所述行走系统包括两组主动轮以及分别安装在框架体四角的从动轮,每组主动轮分别匹配有行走电机,所述框架体在行进方向上的中部为动力区,各行走电机以及主动轮均安装在该动力区;
    所述夹臂系统包括两对夹臂,且每根夹臂单独配置有夹臂电机,两对夹臂分别布置在框架体行进方向上相对两侧,同对夹臂以及相应的夹臂电机位于所述动力区的两侧;
    框架体上还设有通过电路与行走电机、夹臂电机以及控制系统相连供电的超级电容或电池,超级电容或电池安装在动力区的两侧。
  2. 如权利要求1所述的分体式机械手,其特征在于,所述行走电机的主轴延伸方向与框架体行进方向垂直,两行走电机的主轴处在同一轴线上,各行走电机的主轴输出端朝向相应侧的一组主动轮。
  3. 如权利要求1所述的分体式机械手,其特征在于,每组主动轮中的主动轮数量为两个,且通过传动机构与相应行走电机的主轴输出端相连。
  4. 如权利要求1所述的分体式机械手,其特征在于,所述超级电容或电池为两组,分别处在动力区的两侧,同组超级电容或电池分两个区域安装,两个区域之间为沿框架体行进方向布置的线槽。
  5. 如权利要求4所述的分体式机械手,其特征在于,框架体上设有间隔布置的托板,各区域的超级电容或电池固定安装在相应的托板上。
  6. 如权利要求4所述的分体式机械手,其特征在于,两组超级电容或电池在电路上相互串联,框架体上还设有连接在超级电容或电池输出端的稳压器,以及管理所述超级电容或电池和稳压器的电源控制器,超级电容或电池经由稳压器向夹臂电机和行走电机供电。
  7. 如权利要求1所述的分体式机械手,其特征在于,各夹臂电机的安装位置处在所驱动夹臂所在侧的框架体边缘,各夹臂电机的主轴沿框架体行进方向布置且通过蜗轮蜗杆机构与相应的夹臂联动。
  8. 如权利要求1所述的分体式机械手,其特征在于,各夹臂通过竖直转轴安装在框架体上,同对夹臂具有贴靠在框架体同侧边的收折状态,以及垂直于该侧边且两夹臂并排布置的工作状态。
  9. 如权利要求8所述的分体式机械手,其特征在于,所述夹臂包括与所述竖直转 轴相连接的摆动座以及通过水平转轴铰接在摆动座上的臂杆,所述臂杆在远离竖直转轴的一端设有辅助承重滚轮,同对夹臂的臂杆在工作状态下的相对侧为与车轮接触的工作缘,各臂杆在工作缘处设有与车轮接触配合的转动辊。
  10. 一种基于如权利要求1~9任一项所述的分体式机械手的车辆搬运方法,所述分体式机械手包括一台主机械手和一台从机械手,其特征在于,包括如下步骤:
    车辆进入车库入口时检测前后轮距,获得轮距数据;
    从机械手上设有感测与主机械手间距的测距装置,从机械手以无线方式获取所述轮距数据,并依据测距装置的测量结果自动调整与主机械手的间距直至符合所述轮距数据;
    主机械手和从机械手同步行进至车辆底部,通过各自的夹臂系统夹取相应的车辆以承载车辆;
    主机械手和从机械手同步行进搬运车辆至指定位置。
PCT/CN2018/116110 2017-11-20 2018-11-19 一种分体式机械手及利用该分体式机械手搬运车辆的方法 WO2019096288A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711160124.6 2017-11-20
CN201711160124 2017-11-20
CN201711206967.5A CN107762210A (zh) 2017-11-20 2017-11-27 一种分体式机械手及利用该分体式机械手搬运车辆的方法
CN201711206967.5 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019096288A1 true WO2019096288A1 (zh) 2019-05-23

Family

ID=61276280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116110 WO2019096288A1 (zh) 2017-11-20 2018-11-19 一种分体式机械手及利用该分体式机械手搬运车辆的方法

Country Status (2)

Country Link
CN (1) CN107762210A (zh)
WO (1) WO2019096288A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512929A (zh) * 2019-08-27 2019-11-29 北京航空航天大学 一种可实现协作搬运的小汽车搬运器
CN110616924A (zh) * 2019-08-22 2019-12-27 北京首嘉钢结构有限公司 一种立体停车库及其汽车搬运器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107762210A (zh) * 2017-11-20 2018-03-06 杭州西子智能停车股份有限公司 一种分体式机械手及利用该分体式机械手搬运车辆的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1706561A1 (en) * 2003-12-19 2006-10-04 China International Marine Containers (Group) Co., Ltd. Trolley and parking system using the same
CN101761259A (zh) * 2010-01-07 2010-06-30 金华法 一种全向汽车搬运装置
CN106320774A (zh) * 2016-10-20 2017-01-11 温州燧人智能科技有限公司 一种x型夹臂式智能停车库移车机器人
CN106760778A (zh) * 2016-12-27 2017-05-31 沈阳通用机器人技术股份有限公司 汽车自动搬运agv
CN107762210A (zh) * 2017-11-20 2018-03-06 杭州西子智能停车股份有限公司 一种分体式机械手及利用该分体式机械手搬运车辆的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864954A (zh) * 2012-09-21 2013-01-09 北京宏地车港科技有限公司 汽车纵向平移搬运车
CN104120906B (zh) * 2014-07-22 2016-06-15 四川理工学院 立体车库智能搬运小车
CN107288393A (zh) * 2016-04-13 2017-10-24 深圳市鸿程科技有限公司 搬车系统及全车型通用的搬车机器人
CN105804460A (zh) * 2016-05-06 2016-07-27 南京湛泸科技有限公司 立体车库搬运夹持机构及其应用的夹持式搬运机器人
CN106760776A (zh) * 2016-12-27 2017-05-31 沈阳通用机器人技术股份有限公司 车辆轮胎夹持装置及自动搬运器
CN207568277U (zh) * 2017-11-20 2018-07-03 杭州西子智能停车股份有限公司 一种分体式机械手

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1706561A1 (en) * 2003-12-19 2006-10-04 China International Marine Containers (Group) Co., Ltd. Trolley and parking system using the same
CN101761259A (zh) * 2010-01-07 2010-06-30 金华法 一种全向汽车搬运装置
CN106320774A (zh) * 2016-10-20 2017-01-11 温州燧人智能科技有限公司 一种x型夹臂式智能停车库移车机器人
CN106760778A (zh) * 2016-12-27 2017-05-31 沈阳通用机器人技术股份有限公司 汽车自动搬运agv
CN107762210A (zh) * 2017-11-20 2018-03-06 杭州西子智能停车股份有限公司 一种分体式机械手及利用该分体式机械手搬运车辆的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110616924A (zh) * 2019-08-22 2019-12-27 北京首嘉钢结构有限公司 一种立体停车库及其汽车搬运器
CN110512929A (zh) * 2019-08-27 2019-11-29 北京航空航天大学 一种可实现协作搬运的小汽车搬运器

Also Published As

Publication number Publication date
CN107762210A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2019096288A1 (zh) 一种分体式机械手及利用该分体式机械手搬运车辆的方法
JP6378527B2 (ja) タイヤ挟持装置とそれを備えた自動車搬送装置
CN107035188B (zh) 超薄型agv车辆搬运器
JP6178667B2 (ja) タイヤ挟持装置とそれを備えた自動車搬送装置
CN111906531B (zh) 电力机车轮驱单元装配线
CN211032326U (zh) 一种agv搬运小车
JP2019078099A (ja) 車両のリフト搬送台車、縦列無人走行台車、車両縦列駐車システムおよび車両縦列駐車方法
CN107187511A (zh) 变轴距可越障工业机器人全向底盘
JP2011203797A (ja) 車両
CN207436601U (zh) 一种立体车库搬运器及使用该搬运器的立体车库
CN104120906B (zh) 立体车库智能搬运小车
JPH08324772A (ja) ワーク搬送装置
CN203638523U (zh) 旋转侧移式输送滚道装置
CN220605413U (zh) 一种电缆输送牵引装置
CN217833496U (zh) 一种用于发动机装配的装配装置
KR20140126127A (ko) 배터리 충전이 가능한 퍼스널 모노레일 운용 장치
CN106585767A (zh) 一种用wifi控制可以向任意方向自由移动的agv小车
CN207875733U (zh) 台车用驱动行走装置
CN207568277U (zh) 一种分体式机械手
CN213505624U (zh) 一种新型起重机运行小车
CN208200271U (zh) 可自行行走搬运工件的台车
CN211396838U (zh) 一种车辆搬运器
CN211597914U (zh) 一种降噪的车辆搬运器
CN206126138U (zh) 侧围输送车气动马达驱动机构及侧围输送车
CN211597913U (zh) 一种通过性好的车辆搬运器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879968

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18879968

Country of ref document: EP

Kind code of ref document: A1