WO2019096142A1 - 充电装置及充电系统 - Google Patents

充电装置及充电系统 Download PDF

Info

Publication number
WO2019096142A1
WO2019096142A1 PCT/CN2018/115324 CN2018115324W WO2019096142A1 WO 2019096142 A1 WO2019096142 A1 WO 2019096142A1 CN 2018115324 W CN2018115324 W CN 2018115324W WO 2019096142 A1 WO2019096142 A1 WO 2019096142A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
switch
charging
electronic device
Prior art date
Application number
PCT/CN2018/115324
Other languages
English (en)
French (fr)
Inventor
王希林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18878245.2A priority Critical patent/EP3700045B1/en
Publication of WO2019096142A1 publication Critical patent/WO2019096142A1/zh
Priority to US15/930,883 priority patent/US11249143B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the present invention relates to the field of charging technologies, and in particular, to a charging device.
  • the battery capacity of mobile electronic devices has become larger and larger, and charging safety has become a problem that mobile electronic devices cannot ignore.
  • the charging interface of the device may cause short-circuit heating due to water ingress or dusting. (Because the charging interface is contaminated, its power supply pin has a low-resistance path to the ground, causing current to pass and heat.) Or, the charging contact is likely to contaminate the user's sweat (especially some wearable devices such as smart watches), which causes electrolytic corrosion to occur easily during charging, causing the port to rust quickly, eventually resulting in poor contact and failure to charge.
  • a charger conversion circuit is used to first convert an alternating voltage into a low voltage that does not trigger charging of an electronic device, and then detect by a current detector.
  • the leakage current of the electronic device if the leakage current is greater than a preset current value, it indicates that the charger interface of the electronic device has dirt (such as water, dust, sweat, etc.), triggering the charger feedback system to trigger the charging protection circuit to prohibit the electronic device.
  • the device is charged. If no dirt is detected by the current detection, the AC power source is converted into a voltage capable of charging the electronic device by the charger conversion circuit to charge the electronic device.
  • the present application provides a charging device for charging an electronic device, including: a charging circuit, a leakage detecting circuit, a control circuit, an in-position detecting circuit, and a voltage output terminal, wherein:
  • the charging circuit includes: a first voltage conversion circuit, a first switch; wherein the input end of the first voltage conversion circuit is connected to the alternating current power source, and the output end of the first voltage conversion circuit is connected to the voltage output end through the first switch; the first switch The control terminal is connected to the control circuit;
  • the leakage detecting circuit comprises: a second voltage converting circuit and a series resistor; wherein an input end of the second voltage converting circuit is connected to an output end of the first voltage converting circuit, and an output end of the second voltage converting circuit passes through the series resistor and the voltage output end Connected; the leakage detecting circuit is configured to detect whether there is leakage between the voltage output end and the ground, and output a leakage detecting result through the voltage output end;
  • the first voltage conversion circuit is configured to convert the input AC voltage into a first DC voltage
  • the second voltage conversion circuit is configured to convert the first DC voltage to a second DC voltage that is lower than the first DC voltage and does not trigger charging of the electronic device;
  • the in-position detecting circuit is configured to detect whether the electronic device is in position, obtain an in-position signal for indicating whether the electronic device is in position, and output an in-position signal to the control circuit;
  • the control circuit is configured to determine that there is no leakage according to the leakage detection result, and when the electronic device is in position by the bit signal, the first switch is closed by the control end of the first switch, so that the first DC voltage output by the first voltage conversion circuit can be an electronic Device charging
  • the control circuit is further configured to open the first switch to prevent the first DC voltage from charging the electronic device when determining the leakage or determining that the electronic device is not in position.
  • the leakage detecting circuit is not judged by the current detector, but is judged by the voltage output terminal 25, so that only one resistor is needed to complete the leakage detection, and no high-cost Hall device is required. Some components, such as analog-to-digital converters, that need to convert current into voltage are simpler to implement and cost less.
  • the in-position detecting circuit is added, and the first switch is closed to the electronic device only when the in-position circuit detects the in-position and no leakage (dirty) is detected, which can also prevent the error. Judge.
  • the leakage detecting circuit detects that the charging device is not connected to the electronic device, and the leakage circuit is not generated.
  • the charging circuit will be the electronic device. Charging; but since the detection process is performed when the electronic device is not in place, it is not for the actual use of the scene (such as plugging the USB cable into the mobile phone), so the detection result obtained by the leakage detection circuit may be Wrong result. If the result is wrong, when the charging circuit charges the electronic device, it may cause problems such as short circuit, heat generation, corrosion, etc., causing damage to the charging device or the electronic device. In this embodiment, it is necessary to determine whether or not leakage occurs based on the presence of the bit. Thus, the leakage detection is performed on the real in-situ scene, so that no false positive is generated.
  • the first switch is in an off state by default when the charging device is connected to the AC power source, thereby preventing charging of the electronic device that may have dirt when the AC power source is connected, and enhancing Charging is safe.
  • the in-position detection circuit includes: a contact switch for being pressed when the charging device is connected to the electronic device, and generating a first indication for in-position Bit signal.
  • the contact switch is suitable for a charging device for charging a device such as a smart watch with a base. When the electronic device is charged, it is placed in the base, and the button of the contact switch is pressed to output a first in-position signal.
  • the in-position detection circuit is specifically configured to detect whether the electronic device is in position according to an identifier (ID) pin or a configuration channel (CC) pin on a charging interface of the electronic device.
  • ID identifier
  • CC configuration channel
  • the implementation is suitable for a charging device for charging a smart phone.
  • the charging device is connected to the smart phone via a USB cable, the ID or CC pin on the mobile phone can be used for detection.
  • control circuit includes: a voltage dividing circuit, a comparator, and a NAND gate circuit;
  • the voltage dividing circuit is configured to divide the second DC voltage to obtain a voltage dividing signal outputted from the output end of the voltage dividing circuit;
  • the output of the voltage dividing circuit is connected to the inverting input of the comparator
  • the non-inverting input of the comparator is connected to the voltage output terminal
  • the output of the comparator is connected to an input of the NAND circuit
  • the other input of the NAND circuit is connected to one end of the in-position detection circuit for outputting the in-position signal
  • the output of the NAND circuit is used to connect to the control terminal of the first switch.
  • the above control circuit is simple to implement, low in cost, and easy to implement.
  • the leakage detecting circuit further includes: a second switch;
  • the second switch is connected in series in a series line formed by the output end of the second voltage conversion circuit, the series resistor, and the voltage output terminal;
  • the control end of the second switch is connected to the control circuit
  • the control circuit is further configured to control the second switch to be in a closed state when the leakage detecting circuit performs the leakage detection by the control end of the second switch.
  • the output voltage of the first voltage conversion circuit can be prevented from being reversely input to the second voltage conversion circuit, thereby better protecting the second voltage conversion circuit.
  • the control circuit is further configured to open the second switch through the control end of the second switch when the first switch is closed, so that the voltage outputted by the charging circuit can be prevented from being reversely input to the leakage detecting circuit to prevent the second voltage converting circuit from being damaged. .
  • the second switch is in a closed state by default when the charging device is connected to the AC power source, so that the detection can be performed when the AC power source is connected.
  • the end of the control circuit connected to the control end of the first switch is connected to the control end of the second switch through an inverter, such that the state of the second switch is opposite to that of the first switch.
  • the charging circuit and the leakage detecting circuit are not operated at the same time to prevent mutual influence, thereby further increasing the charging safety.
  • the voltage output by the second voltage conversion circuit is 1.8V, which is a common voltage, which is easy to implement and low in cost.
  • the second voltage conversion circuit is a low voltage drop regulator.
  • the implementation is simple and the cost is low.
  • the first switch and the second switch are both PMOS, and the PMOS is a commonly used switching device, and does not require additional cooperation with other logic circuits (such as an inverter or a comparator).
  • the device is simple to implement and low in cost.
  • control circuit includes an MCU, and control by the MCU can implement more complex functions.
  • the in-position detection circuit can be implemented by detecting a voltage across the resistor connected in the output of the first voltage conversion circuit to the voltage output terminal, specifically A resistor can be added to the charging circuit, and then the voltage across the resistor is sensed, and the voltage is amplified by an amplifier and output to an analog-to-digital converter (ADC) inside the MCU, and the ADC will receive The analog signal is converted into a digital signal, and based on the digital signal, it is judged whether it is in place.
  • ADC analog-to-digital converter
  • the MCU when detecting whether it is in position, the MCU needs to control the first switch to close to determine whether the charging circuit forms a loop with the electronic device, and if so, the voltage across the series resistor is greater than a predetermined value. This situation can be expressed in place. More complex control can be achieved through the MCU, enhancing the functionality of the charger.
  • the present application discloses a charging system, comprising: an electronic device, and the charging device disclosed in the first aspect and the various implementations of the first aspect, wherein the charging device is configured to charge the electronic device.
  • a charging system comprising: an electronic device, and the charging device disclosed in the first aspect and the various implementations of the first aspect, wherein the charging device is configured to charge the electronic device.
  • the charging system further includes a USB cable for connecting the charging device and the electronic device.
  • a USB cable for connecting the charging device and the electronic device.
  • FIG. 1 is a schematic structural view of a charging device in the prior art
  • FIG. 2 is a schematic structural view of a charging system
  • FIG. 3 is a schematic structural diagram of a charging device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a charging device according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic diagram of another in-position detection according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a charging device according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural diagram of a charging device according to Embodiment 7 of the present invention.
  • a charging device which may be a power adapter (also referred to as a "charger") for electronic devices 82 (such as smart phones, wearable devices, etc.). Equipment) charging.
  • Power adapters are usually sold with electronic devices, one end is used to connect AC (such as 220V mains), the other end is outputting a DC voltage (such as 5V), and the output voltage is passed through cable 83 (such as a USB-based interface) The cable) charges the electronic device 82.
  • the charging device in this embodiment includes: a charging circuit 21, a leakage detecting circuit 22, a control circuit 23, an in-position detecting circuit 24, and a voltage output terminal 25, wherein:
  • the charging circuit 21 includes a first voltage conversion circuit 211 and a first switch 212.
  • the input end of the first voltage conversion circuit is connected to the alternating current power source, and the output end of the first voltage conversion circuit is connected to the voltage output terminal 25 through the first switch.
  • the control end of the first switch is connected to the control circuit; wherein the voltage output terminal 25 is physically a pin of the output interface of the charging device, or the charging device is directly connected to the pin and does not pass through other electronic components.
  • the leakage detecting circuit 22 includes a second voltage converting circuit 221 and a series resistor 222.
  • the input end of the second voltage converting circuit 221 is connected to the output end of the first voltage converting circuit 211, and the output end of the second voltage converting circuit 221 is passed.
  • the series resistor 222 is connected to the voltage output terminal 25; the leakage detecting circuit 22 is configured to detect whether there is leakage between the voltage output terminal 25 and the ground, and output a leakage detection result through the voltage output terminal 25, specifically, when the charging device is not connected to the electronic device When the voltage output terminal 25 and the ground are connected to an infinite resistance, when the charging device is connected to the electronic device, the voltage input terminal 25 and the ground can be regarded as an equivalent resistance having a certain resistance value; Through the change of the resistance value, the voltage of the voltage output terminal 25 will also change. If there is no leakage, the voltage output terminal 25 will output a high level. If the leakage occurs, a low level will be output, and the control circuit 23 can be based on the voltage. The output of the output terminal determines whether there is leakage between the voltage output terminal 25 and the ground;
  • the first voltage conversion circuit 211 is configured to convert the input AC voltage (outputted by the AC power source 10) into a first DC voltage.
  • the specific implementation of the first voltage conversion circuit is a prior art, and is not described herein again;
  • the second voltage conversion circuit 221 is configured to convert the first DC voltage to a second DC voltage that is lower than the first DC voltage and does not trigger charging of the electronic device;
  • the in-position detecting circuit 24 is configured to detect whether the electronic device 30 is in position (that is, to detect whether the electronic device 30 has been connected to the charging device), obtain an in-position signal for indicating whether the electronic device is in place, and output the in-position signal. Signal to the control circuit 23;
  • the control circuit 23 is further configured to determine, according to the leakage detection result, that the electronic device 30 is not leaking, and when determining that the electronic device 30 is in position by the bit signal, close the first switch through the control end b1 of the first switch 212, so that the first voltage conversion circuit outputs
  • the first DC voltage can charge the electronic device; in an implementation manner, the first switch is in an off state by default when the charging device is connected to the AC power source, so that the charging device can be prevented from charging the electronic device that is leaking, further Enhanced charging security;
  • the control circuit 23 is further configured to: when determining that the electronic device 30 is leaking or determining that the electronic device is not in position by the bit signal, disconnecting the first switch 212 through the control terminal b1 of the first switch 212 to prevent the first DC voltage from charging the electronic device.
  • the leakage detecting circuit 22 of the present embodiment further includes: a second switch 223;
  • the second switch 223 is connected in series in a series line formed by the output end of the second voltage conversion circuit (see the right side of the second voltage conversion circuit), the series resistor 222, and the voltage output terminal 25; for example, 3 is connected in series between the second voltage conversion circuit and the series resistor 222, and may also be connected in series between the series resistor 222 and the voltage output terminal 25;
  • the control terminal b1 of the second switch 223 is connected to the control circuit 23;
  • the control circuit 23 is further configured to control the second switch 223 to be in a closed state when the leakage detecting circuit detects a leakage current through the control terminal b1 of the second switch.
  • the control circuit 23 controls the first switch to be closed
  • the second switch is turned off by the control end of the second switch.
  • the second switch is in a closed state by default when the charging device is connected to the AC power source, so that the leakage detecting circuit can detect whether the power is leaked when the AC power source is connected.
  • a second switch is added to the leakage circuit.
  • the second switch When the charging circuit charges the electronic device through the output terminal 25, the second switch is in an off state. At this time, the voltage of the output terminal 25 is not input to the first
  • the two voltage conversion circuit can further enhance the safety of the second voltage conversion circuit (if the output of the second voltage conversion circuit is input with a voltage higher than the voltage output by itself, the second voltage conversion circuit may be damaged).
  • the circuit including the second switch can be as shown in FIG. 6, and the subsequent embodiment will specifically describe the operation principle of the circuit in FIG.
  • the in-position detection circuit 24 includes a contact switch S2 for being pressed when the charging device is connected to the electronic device and generating a first in-position signal for indicating in-position.
  • the contact switch refers to a switch that triggers whether to open or close by a button. If the button is pressed, the switch is closed, and current can flow from the switch. Otherwise, if the button is not pressed, the switch is off. On, the current cannot flow through the switch, forming an open circuit.
  • the in-position detection circuit 24 may also include other accessory electronic components that cooperate with the contact switch S2. These auxiliary electronic components, when combined with the switch, can form a circuit with a switch to detect whether the electronic device is in place.
  • FIG. 4 is a schematic diagram of a specific in-position detection circuit, including: a contact switch S2, a first resistor R1, a second resistor R2, and a first capacitor C1;
  • One end of the contact switch S2 is connected to the output end of the first voltage conversion circuit U3, and the other end of the contact switch S2 is connected to one end of the first resistor R1 and one end (first end) of the second resistor R2;
  • the other end (second end) of R1 is grounded in series with the first capacitor C1, and the signal outputted by the second end of R1 is an in-position signal; the other end of R2 is grounded.
  • the bit signal when the button of S2 is not pressed, the bit signal is low (R2 can be regarded as a pull-down resistor, and the signal is pulled down to 0), when the button of S2 is pressed, due to the connection
  • the output of U3 is reached because the in-position signal is high (such as 5V), that is, the first in-position signal is high.
  • the in-position detection circuit is more suitable for charging a smart watch.
  • a smart watch is usually used to place the smart watch.
  • the contact switch can be set on the base toward the smart device.
  • the button of the contact switch is pressed and the switch is closed, so that the in-position signal output is high (5V), indicating that it is already in place.
  • the in-position detection circuit 24 is specifically configured to detect whether an electronic device is in place according to an identifier (ID) pin or a configuration channel (CC) pin on a charging interface of the electronic device.
  • ID is usually for the OTG interface, that is, if the charging device is connected to the electronic device through the OTG interface, it can be detected based on the ID pin of the electronic device;
  • CC pin is usually for the Type C interface, that is, if charging When the device is connected to an electronic device through a Type C interface, it can be detected based on the CC pin of the electronic device.
  • the in-position detection circuit is configured to form a loop according to an identifier (ID) pin or a configuration channel (CC) pin on the charging interface of the electronic device, and use the loop to detect whether it is in place.
  • ID identifier
  • CC configuration channel
  • the in-position detecting circuit 24 in this embodiment includes:
  • R1 and R2 are connected to an ID or CC pin of the electronic device;
  • R2 The other end of R2 is grounded
  • the other end (second end) of R1 is grounded in series with C1, and the second end of R1 is also used to output an in-position signal.
  • the CC pin is connected to the power supply inside the electronic device through an upper resistor in the electronic device. Therefore, when the charging device is electrically connected to the electronic device (indicating in position), the in-position signal is outputted to a high level. If there is no connection (indicating that it is not in place), the in-position signal is pulled low to low (0) by R2.
  • the charging circuit 21 specifically includes an AC-DC (U3) conversion circuit for converting the 220V voltage into a 5V voltage (of course, in other embodiments, it is not limited to, for example, 9V.
  • the other charging circuit 21 further includes a switch S1 connected to the voltage output terminal 25 via the switch S1.
  • the switch S1 in this embodiment can be specifically implemented by using a P-channel metal-oxide-semiconductor field-effect transistor (PMOSFET). Of course, other switches can also be used. Switching devices, such as transistors, relays, and the like.
  • the charging circuit 21 is mainly used for charging the electronic device.
  • the circuit design can refer to various prior art.
  • the charging circuit 21 has more switches S1, so that the charging circuit 21 can be controlled under some circumstances (such as When the leakage occurs, the electronic device is not charged, so that the charging safety can be improved.
  • the leakage detecting circuit 22 includes a low dropout regulator (LDO) regulator and a sixth resistor R6, wherein the LDO is the second voltage converting circuit in the first embodiment and the second, and is used for the AD-DC converting circuit U3.
  • LDO low dropout regulator
  • R6 sixth resistor
  • the conversion of the output 5V circuit to 1.8V does not trigger the voltage for charging the electronic device.
  • an LDO regulator can use Texas Instruments' LM1086 chip.
  • the control circuit 23 in this embodiment includes a third resistor R3, a fourth resistor R4, a comparator U2, and a NAND gate circuit U1;
  • One end (first end) of the third resistor R3 is connected to the output end of the second voltage conversion circuit LDO (ie, the first end of R3 is connected to the 1.8V voltage outputted by the LOD);
  • the other end (second end) of the third resistor R3 is connected in series with the fourth resistor R3 and grounded;
  • the other end of the third resistor R3 is also connected to the inverting input of the comparator U2;
  • comparator U2 The non-inverting input of comparator U2 is connected to voltage output terminal 25;
  • the output of the comparator U2 is connected to an input of the NAND circuit U1;
  • the other input end of the NAND circuit U1 is connected to one end of the bit detection signal output by the in-position detecting circuit 24 (the end connected to R1 and C1 in FIG. 3);
  • the output of the NAND circuit is connected to the control terminal of the first switch S1.
  • the values of R3, R4, and R6 need to satisfy the following relationship: "When no leakage occurs, the voltage at the non-inverting terminal of U2 is greater than the voltage at the inverting terminal of U2. When leakage occurs, the voltage at the non-inverting terminal of U2 is smaller than that of U2. Phase voltage.”
  • the equivalent resistance R5 between the VBUS pin of the electronic device and ground is 100k ohms in normal non-leakage, and less than 20k ohms in leakage
  • the resistance of R3 may be 10k ohms.
  • the resistance of R4 can be 30k ohms
  • the resistance of R6 can be 10k ohms.
  • the voltage at the voltage output (U2's non-inverting input) is about 1.8*20k/(20k+10k), which is about 1.2V.
  • U3 in the charging circuit 21 converts 220V into a 5V voltage
  • the LDO in the leakage detecting circuit 22 converts the 5V voltage into 1.8V. Since it is not connected to the electronic device, the voltage output terminal 25 is suspended, which can be regarded as connecting a resistor whose resistance is close to infinity. At this time, the voltage of the voltage output terminal 25 ( That is, the leakage detection result is about 1.8V, and is output to the non-inverting input terminal of U2;
  • the in-position signal outputted by the bit detection circuit 24 is low (pulled down to 0 by R2);
  • the output high level means that no leakage is determined
  • the two inputs of U1 (NAND gate) in the control circuit 23 are low level (the bit signal is low) and high level (the output of U2 is high), therefore, the output of U1 is 1, and S1 is turned off. That is, the charging circuit is disconnected.
  • U1 is a NAND gate circuit
  • S1 is turned on, that is, the charging circuit is turned on, and the electronic device can be charged.
  • the voltage input terminal 25 has a voltage of about 0.9V, and the voltage is input to the non-inverting input terminal of the comparator U2; since the voltage of the non-inverting input terminal (0.9V) is smaller than the voltage of the inverting input terminal (1.35V), the output is low. Level and input to the first end of U1;
  • U1 is a NAND gate, as long as one end is low, the output of U1 is high. Therefore, S1 will not be closed, that is, the charging circuit is still in an open state, and the voltage obtained after U3 conversion cannot be The leakage of the electronic device is charged, thereby improving the charging security.
  • the present embodiment describes the working principle of the charging device of the second embodiment in which the leakage detecting circuit further includes a second switch S2 (also implemented based on PMOS). Since the majority of the circuits in this embodiment are the same as those in the fifth embodiment, the following description is only for the working principle of the second switch. For other parts, reference may be made to the description of the fifth embodiment, which is not described in detail in this embodiment. It should be noted that the serial numbers in the following paragraphs are only used to distinguish the parts of the description, and do not indicate a strict execution order.
  • the U1 output is at a high level, and after passing through the inverter U4 of the control circuit, it is turned into a low level, and input.
  • the PMOS transistor is turned on (corresponding to S2 closing), thereby causing the leakage detecting circuit 22 to operate.
  • the U1 output is low, and after the inverter U4, the U4 output is high.
  • the control circuit becomes an MCU (micro controller unit), and various controls are implemented by the MCU.
  • the MCU usually refers to a processor with instruction processing capability, such as a single chip microcomputer, or a CPU, and the MCU also integrates an analog to digital converter (ADC) function.
  • ADC analog to digital converter
  • the charging circuit 21 includes an AC-DC conversion circuit (U3), a first resistor R1, and a first switch S1.
  • U3 and S1 refer to the above embodiments.
  • the value of the first resistor R1 may be 10 milli-100 milliohms.
  • S1 still uses a PMOS transistor as in the above embodiment.
  • the structure of the leakage detecting circuit 22 can be referred to the introduction of the above embodiments, and will not be described here.
  • the leakage detection result is output to the MCU 23.
  • the in-position detecting circuit 24 includes a first resistor R1, and an output of the amplifier A1, A1 is used to output an in-position detection result to an input terminal of the MCU.
  • the principle of the in-position detecting circuit 24 is to detect the voltage across R1, and then amplify it by the amplifier A1 and output it to an input terminal of the MCU.
  • the method of the in-position detecting circuit in this embodiment can also be applied to the circuit formed by using discrete components in the foregoing embodiments.
  • the function of the MCU can also be implemented by discrete components, and the specific implementation method is Techniques well known to those skilled in the art are not described herein.
  • the control circuit includes an MCU 23, and the MCU receives the input end of the in-position detection result as an ADC input end, and the MCU internally performs analog-to-digital conversion on the input analog voltage of the input terminal, converts it into a digital signal, and determines whether a certain threshold value is exceeded. If it is, it is considered to be in place; otherwise, it is considered to be absent.
  • the MCU controls the closing and opening of S1 and S2 by judging whether it is in position and combining the leakage detection results. For the method of when S1 and S2 are closed and disconnected, refer to the foregoing embodiments, and details are not described herein.
  • the present embodiment discloses a charging system 80 including: a charging device 81 and an electronic device 82; a charging device 81 and an electronic device 82 pass through a cable 83 (which usually also has data)
  • the transmission function usually referred to as the data line, is connected at this time.
  • the charging device may be based on the charging device in any one of the above embodiments 1 to 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电装置,包括:充电电路、漏电检测电路、控制电路、在位检测电路以及电压输出端,充电电路包括第一电压转换电路、第一开关;漏电检测电路包括第二电压转换电路、串联电阻;漏电检测电路用于检测电压输出端与地之间是否漏电,通过电压输出端输出漏电检测结果;第一电压转换电路用于将交流电压转为第一直流电压;第二电压转换电路用于将第一直流电压转为不会触发电子设备充电的第二直流电压;在位检测电路用于检测电子设备是否在位,得到在位信号;控制电路用于根据漏电检测结果判断未漏电以及判断在位时,闭合第一开关,使得充电电路的输出能够为电子设备充电,在判断漏电或者判断不在位时,断开第一开关以阻止充电。

Description

充电装置及充电系统
本申请要求于2017年11月14日提交中国国家知识产权局、申请号为201711124480.2、发明名称为“充电装置及充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及充电技术领域,尤其涉及一种充电装置。
背景技术
随着各种移动电子设备(如智能手机、穿戴式设备)的发展,移动电子设备的电池容量变得越来越大,充电安全成为移动电子设备不可忽视的问题。用户在使用移动电子设备过程当中,设备的充电接口可能会因为进水或者沾染灰尘导致短路发热(由于充电接口被污染,它的电源管脚对地存在一个低阻通路,引起电流通过而发热);或者,充电触点容易沾染用户的汗液(特别是一些如智能手表之类的可穿戴设备),导致充电时很容易发生电解腐蚀,使端口很快锈蚀,最终导致接触不良而无法充电。
参见图1,为现有技术解决上述问题的一种方法,该方案中,充电器转换电路用于先将交流电压转成一个不会触发电子设备充电的低电压,然后通过电流检测器来检测电子设备的漏电流,如果漏电流大于一个预设电流值,则说明电子设备的充电器接口有脏物(如水、灰尘、汗液等),则触发充电器反馈系统触发充电保护电路来禁止给电子设备充电。如果通过电流检测未检测到有脏物,则通过充电器转换电路将交流电源转换成能够给电子设备充电的电压给电子设备充电。
现有技术中的电流检测器需要使用到霍尔器件、模数转换器等一些需要将电流转成电压的元器件,实现比较复杂,而且成本较高。
发明内容
第一方面,本申请提供了一种充电装置,用于给电子设备充电,包括:充电电路、漏电检测电路、控制电路、在位检测电路以及电压输出端,其中:
充电电路包括:第一电压转换电路、第一开关;其中,第一电压转换电路的输入端与交流电源相连,第一电压转换电路的输出端通过第一开关连接到电压输出端;第一开关的控制端与控制电路相连;
漏电检测电路包括:第二电压转换电路、串联电阻;其中,第二电压转换电路的输入端与第一电压转换电路的输出端相连,第二电压转换电路的输出端通过串联电阻与电压输出端相连;漏电检测电路用于检测电压输出端与地之间是否漏电,并通过电压输出端输出漏电检测结果;
第一电压转换电路用于将输入的交流电压转换为第一直流电压;
第二电压转换电路用于将第一直流电压转换为低于第一直流电压且不会触发电子设备充电的第二直流电压;
在位检测电路用于检测电子设备是否在位,得到用于指示电子设备是否在位的在位信号,并输出在位信号给控制电路;
控制电路用于根据漏电检测结果判断未漏电以及通过在位信号判断电子设备在位时,通过第一开关的控制端闭合第一开关,使得第一电压转换电路输出的第一直流电压能够为电子设备充电;
控制电路还用于在判断漏电或者判断电子设备不在位时,断开第一开关以阻止第一直流电压为电子设备充电。
本申请实施例中,漏电检测电路并不通过电流检测器来判断,而是通过电压输出端25来进行判断,这样,仅仅需要一个电阻就能完成漏电检测,不需要高成本的霍尔器件、模数转换器等一些需要将电流转成电压的元器件,从而实现起来更简单,成本也更低。同时,本实施例中加入了在位检测电路,只有当在位电路检测到在位且未检测到漏电(有脏物)的情况下,才闭合第一开关给电子设备,这样还可以防止误判。这是因为如果没有进行在位检测,只依靠漏电检测电路来进行检测的话,漏电检测电路在充电装置未与电子设备连接的时候检测的结果是未发生漏电,此时,充电电路会对电子设备充电;但由于检测过程是在电子设备未在位的情况下进行的,并不是针对实际在位的使用的场景(如将USB电缆插入到手机),因此,漏电检测电路得到的检测结果可能是个错误的结果。如果结果错误,充电电路对电子设备充电时,就会引起短路、发热、腐蚀等问题,对充电装置或者电子设备造成损害。而本实施例是需要基于在位的情况下才判断是否发生漏电,这样,漏电检测是针对真实的在位场景进行的检测,从而不会产生误判。
在第一方面的另一种实现方式中,第一开关在充电装置接入交流电源时默认处于断开状态,这样可以防止接入交流电源时对可能有脏物的电子设备进行充电,增强了充电安全。
在第一方面的另一种实现方式中,在位检测电路包括:触点开关,触点开关用于当充电装置与电子设备连接时被按下,并产生用于指示在位的第一在位信号。触点开关适合用于用底座给智能手表之类的被设备充电的充电装置,当电子设备充电时会放入底座,触点开关的按键被按下,输出第一在位信号。
在第一方面的另一种实现方式中,在位检测电路具体用于根据电子设备的充电接口上的标识符(ID)引脚或者配置通道(CC)引脚来检测电子设备是否在位。该实现方式适合用于给智能手机充电的充电装置,当充电装置通过USB电缆连接智能手机时,可利用手机上的ID或CC引脚来进行检测。
在第一方面的另一种实现方式中,控制电路包括:分压电路、比较器以及与非门电路;
分压电路用于将第二直流电压进行分压后得到一个由分压电路的输出端输出的分压信号;
分压电路的输出端与比较器的反相输入端相连;
比较器的同相输入端与电压输出端相连;
比较器的输出端与与非门电路的一个输入端相连;
与非门电路的另一个输入端与在位检测电路输出在位信号的一端相连;
与非门电路的输出端用于与第一开关的控制端相连。
上述控制电路实现简单,成本低,易于实现。
在第一方面的另一种实现方式中,漏电检测电路还包括:第二开关;
第二开关串联在由第二电压转换电路的输出端、串联电阻以及电压输出端构成的串联线路中;
第二开关的控制端与控制电路相连;
控制电路还用于通过第二开关的控制端控制第二开关在漏电检测电路进行漏电检测时处于闭合状态。
通过第二开关,可以防止第一电压转换电路的输出电压反向输入给第二电压转换电路,从而更好地保护了第二电压转换电路。
在第一方面的另一种实现方式中,
控制电路还用于当第一开关闭合时,通过第二开关的控制端断开第二开关,这样,可以防止充电电路输出的电压反向输入给漏电检测电路,防止第二电压转换电路损坏。。
在第一方面的另一种实现方式中,第二开关在充电装置接入交流电源时默认处于闭合状态,这样,可以在接入交流电源时就进行检测。
在第一方面的另一种实现方式中,控制电路与第一开关的控制端连接的一端通过一个反相器后与第二开关的控制端相连,这样第二开关的状态与第一开关相反,保证充电电路以及漏电检测电路不会同时工作,防止相互影响,进一步增加了充电安全性。
在第一方面的另一种实现方式中,第二电压转换电路输出的电压为1.8V,该电压为一常见的电压,易于实现,成本低。
在第一方面的另一种实现方式中,第二电压转换电路为低压降稳压器,使用该方法实现时,实现简单,成本低。
在第一方面的另一种实现方式中,第一开关、第二开关都为PMOS,PMOS为常用的开关器件,与其他逻辑电路(如反相器、比较器)配合时不需要额外的其他器件,实现简单,成本低。
在第一方面的另一种实现方式中,控制电路包括MCU,通过MCU来控制可以实现更复杂的功能。
在第一方面的另一种实现方式中,当控制电路包括MCU时,在位检测电路可以通过检测串联在第一电压转换电路输出端至电压输出端线路中的电阻两端的电压来实现,具体的,充电电路中可以增加一个电阻,然后检测电阻两端的电压,并将电压通过一个放大器放大后输出给MCU内部的模数转换器(ADC,analog-to-digital converter),该ADC将收到的模拟信号转成数字信号,并根据该数字信号,判断是否在位。针对这种方式,相应地,在检测是否在位时,MCU需要控制第一开关闭合,来判断充电电路是否跟电子设备构成一个回路,如果是,串联的电阻两端的电压会大于一个预定的值,这种情况就可表示在位。通过MCU可以实现更复杂的控制,增强充电器的功能。
第二方面,本申请公开了一种充电系统,其特征在于,包括:电子设备,以及第一方面及第一方面各种实现方式公开的充电装置,其中,充电装置用于给电子设备充电。使用本充电系统时,由于采用了第一方面及第一方面各种实现方式,因此,可以取得跟第一方面及第一方面各种实现方式相同的技术效果。
在第二方面的一种实现方式中,充电系统还包括,用于连接充电装置与电子设备的 是USB电缆,使用USB电缆连接时,实现简单,成本低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中一种充电装置的结构示意图;
图2为一种充电系统结构示意图;
图3为本发明实施例一提供的充电装置结构示意图;
图4为本发明实施例三提供的充电装置结构示意图;
图5为本发明实施例提供的另一种在位检测示意图;
图6为本发明实施例六提供的充电装置结构示意图;
图7为本发明实施例七提供的充电装置结构示意图。
具体实施方式
下面结合各附图,对本发明的各个实施例进行描述。
实施例一
参见图2,本申请公开了一种充电装置,该充电装置81可以是电源适配器(或者也称“充电器”),用于给电子设备82(如智能手机、穿戴式设备等各种移动电子设备)充电。电源适配器通常会随着电子设备一起出售,其一端用于连接交流电(如220V市电),另一端输出一个直流电压(如5V),并将输出的电压通过电缆83(如一根基于USB接口的电缆)给电子设备82充电。
参见图3,本实施例中的充电装置包括:充电电路21、漏电检测电路22、控制电路23、在位检测电路24以及电压输出端25,其中:
充电电路21包括:第一电压转换电路211、第一开关212;其中,第一电压转换电路的输入端与交流电源相连,第一电压转换电路的输出端通过第一开关连接到电压输出端25;第一开关的控制端与控制电路相连;其中,电压输出端25在物理上可以是充电装置输出接口的一个引脚,或者还包括充电装置内部跟这个引脚直接相连且不经过其他电子元器件的信号走线的部分或全部(如PCB上与引脚连接的一小段铜走线),本申请中并不对此进行严格区分。
漏电检测电路22包括:第二电压转换电路221、串联电阻222;其中,第二电压转换电路221的输入端与第一电压转换电路211的输出端相连,第二电压转换电路221的输出端通过串联电阻222与电压输出端25相连;漏电检测电路22用于检测电压输出端25与地之间是否漏电,并通过电压输出端25输出漏电检测结果,具体的,当充电装置未与电子设备连接时,电压输出端25与地之间可认为是接一个无穷大的电阻,当充电装置与电子设备连接时,电压输入端25与地之间可认为是接一个具有一定阻值的等效电阻;通过阻值的变化,电压输出端25的电压也会跟着变化,如果不漏电,电压输出 端25会输出一个高电平,如果漏电,则会输出一个低电平,控制电路23即可根据电压输出端的输出来判断电压输出端25与地之间是否漏电;
第一电压转换电路211用于将输入的交流电压(由交流电源10输出)转换为第一直流电压;第一电压转换电路的具体实现为现有技术,本申请不再赘述;
第二电压转换电路221用于将第一直流电压转换为低于第一直流电压且不会触发电子设备充电的第二直流电压;
在位检测电路24用于检测电子设备30是否在位(也即用于检测电子设备30是否已经与充电装置相连了),得到用于指示电子设备是否在位的在位信号,并输出在位信号给控制电路23;
控制电路23还用于根据漏电检测结果判断电子设备30未漏电以及通过在位信号判断电子设备30在位时,通过第一开关212的控制端b1闭合第一开关,使得第一电压转换电路输出的第一直流电压能够为电子设备充电;在一种实现方式中,第一开关在充电装置接入交流电源时默认处于断开状态,这样,可以防止充电装置给发生漏电的电子设备充电,进一步增强了充电安全;
控制电路23还用于在判断电子设备30漏电或者通过在位信号判断电子设备不在位时,通过第一开关212的控制端b1断开第一开关212以阻止第一直流电压为电子设备充电。
实施例二
基于实施例一,本申请实施例二公开了一种充电装置,参见图3,与实施例一相比,本实施例中漏电检测电路22还包括:第二开关223;
第二开关223串联在由第二电压转换电路的输出端(从图中看,即第二电压转换电路的右侧)、串联电阻222以及电压输出端25构成的串联线路中;例如,可以如图3所示串联在第二电压转换电路与串联电阻222之间,也可以串联在串联电阻222与电压输出端25之间;
第二开关223的控制端b1与控制电路23相连;
控制电路23还用于通过第二开关的控制端b1控制第二开关223在漏电检测电路检测是否漏电时处于闭合状态。
本实施例中,当控制电路23控制第一开关闭合时,通过第二开关的控制端断开所述第二开关。
其中,第二开关在所述充电装置接入交流电源时默认处于闭合状态,这样漏电检测电路可以在一接入交流电源时就检测是否漏电。
本实施例中在漏电电路中新增了第二开关,当充电电路通过输出端25给电子设备充电时,第二开关处于断开状态,此时,输出端25的电压并不会输入给第二电压转换电路,从而可以进一步增强第二电压转换电路的安全(如果第二电压转换电路输出端输入一个相比自己输出的电压高的电压,那么有可能会造成第二电压转换电路损坏)。
参见图6,在一个具体的示例中,包括第二开关的电路可以如图6所示,后续实施例将对图6中的电路工作原理进行具体介绍。
实施例三
基于上述各实施例,参见图4,本实施例对实施例一、二中的在位检测电路进行详细说明。
在位检测电路24包括:触点开关S2,触点开关用于当充电装置与电子设备连接时被按下,并产生用于指示在位的第一在位信号。具体的,触点开关是指通过一个按键来触发是否断开与闭合的开关,如果按键被按下,则开关闭合,电流可以从开关流过,反之,如果按键未被按下,则开关断开,电流无法从开关流过,形成断路。
在位检测电路24还可以包括其他配合触点开关S2的附属电子元器件,这些附属电子元器件跟开关配合后能够形成一个具有开关的回路来检测电子设备是否在位。
参见图4,为一个具体在位检测电路的示意图,包括:触点开关S2、第一电阻R1、第二电阻R2以及第一电容C1;
触点开关S2的一端与第一电压转换电路U3的输出端相连,触点开关S2的另一端与第一电阻R1的一端以及第二电阻R2的一端(第一端)相连;
R1的另一端(第二端)与第一电容C1串联后接地,R1的第二端输出的信号为在位信号;R2的另一端接地。
在上述具体电路中,在S2的按键未被按下时,在位信号为低电平(R2可视为一个下拉电阻,将信号下拉到0),当S2的按键被按下时,由于连接到了U3的输出,因为,在位信号为高电平(如5V),即第一在位信号为高电平。
本实施例中的在位检测电路比较适用于为智能手表充电的场景当中,当前为智能手表充电时,通常使用一个底座来放置智能手表,此时,触点开关就可以设置在底座上朝向智能手表的一面,当智能手表放置在底座时,触点开关的按键被按下,开关闭合,从而让在位信号输出为高电平(5V),表示已经在位。
参见图5,在另一个实施例中,在位检测电路24具体用于根据电子设备的充电接口上的标识符(ID)引脚或者配置通道(CC)引脚来检测电子设备是否在位。其中,ID引脚通常是针对OTG接口的,即如果充电装置通过OTG接口与电子设备相连时,可基于电子设备的ID引脚来检测;CC引脚通常是针对Type C接口的,即如果充电装置通过Type C接口与电子设备相连时,可基于电子设备的CC引脚来检测。
本实施例中,在位检测电路用于根据电子设备的充电接口上的标识符(ID)引脚或者配置通道(CC)引脚来组成一个回路,并利用这个回路来检测是否在位。
具体的,本实施例中的在位检测电路24包括:
第一电阻R1、第二电阻R2以及第一电容C1;
R1的一端(第一端)与R2的一端与电子设备的ID或者CC引脚相连;
R2的另一端接地;
R1的另一端(第二端)与C1串联后接地,R1的第二端还用于输出在位信号。
本实施例中,CC引脚在电子设备内通过一个上位电阻与电子设备内部的电源相连,因此,当充电装置与电子设备电连接时(表示在位),在位信号输出为高电平,如果没有连接(表示不在位),在位信号会被R2拉低到低电平(0)。
实施例四
基于上述各实施例,参见图4,本实施例对实施例一、二中的充电电路21、漏电检测电路22以及控制电路23进行详细说明。
参见图4,本实施例中,充电电路21具体包括AC-DC(U3)转换电路,用于将220V电压转成5V电压(当然,在其他实施例中,也不限定转成例如9V之类的其他能够为电子设备充电的电压),充电电路21还包括一个开关S1,通过开关S1与电压输出端25相连。本实施例中的开关S1具体可使用P沟道金属氧化物导体场效晶体管(PMOSFET,p-channel metal-oxide-semiconductor field-effect transistor,简称“PMOS”)来完成,当然,也可以采用其他的开关器件,例如,三极管、继电器等。充电电路21主要用于完成对电子设备的充电,其电路设计可以参考各类现有技术,本实施例中,充电电路21多了开关S1,这样,可以控制充电电路21在一些情况下(如发生漏电)时不对电子设备充电,从而可以提升充电安全。
漏电检测电路22包括低压降(LDO)稳压器(low dropout regulator)、第六电阻R6,其中,LDO为实施例一、二中的第二电压转换电路,用于将AD-DC转换电路U3输出的5V电路转换为1.8V等并不会触发为电子设备充电的电压。例如,LDO调节器可以使用德州仪器(TI)的LM1086芯片。
本实施例中控制电路23包括第三电阻R3、第四电阻R4、比较器U2以及与非门电路U1;
第三电阻R3的一端(第一端)与第二电压转换电路LDO的输出端相连(即R3的第一端输入连接LOD输出的1.8V电压);
第三电阻R3的另一端(第二端)与第四电阻R3串联后接地;
第三电阻R3的另一端还与比较器U2的反相输入端相连;
比较器U2的同相输入端与电压输出端25相连;
比较器U2的输出端与与非门电路U1的一个输入端相连;
与非门电路U1的另一个输入端与在位检测电路24输出在位信号的一端(图3中即R1与C1相连的一端)相连;
与非门电路的输出端与第一开关S1的控制端相连。
本实施例中,R3、R4以及R6的取值需要满足如下关系:“在未发生漏电时,U2同相端的电压要大于U2反相端的电压,在发生漏电时,U2同相端的电压要小于U2反相端的电压”。基于上述原则,在一个示例中,假设电子设备的VBUS引脚与地之间的等效电阻R5在正常不漏电时为100k欧,在漏电时为小于20k欧,则R3的电阻可以是10k欧,R4的电阻可以是30k欧,R6的阻值可以是10k欧。基于上述具体的阻值,以下对发生漏电与未漏电时U2的输出进行具体介绍:
当未发生漏电时,电压输出端(U2的同相输入端)电压约为1.8*100k/(100k+10k),约等于1.64V;U2的反相输入端约为1.8*3/(1+3)=1.35V;U2的同相输入端电压大于反相输入端的电压;
当发生漏电时,电压输出端(U2的同相输入端)电压最大约为1.8*20k/(20k+10k),约等于1.2V;U2的反相输入端约为1.8*3/(1+3)=1.35V;U2的同相输入端电压小于反相输入端的电压。
实施例五
基于以上各实施例,参见图4,本实施例对基于图4的充电装置的工作原理进行具体描述,需要说明的是,以下各段中的序号仅用于区分各个描述的部分,并不表示严格的执行顺序。
1)当充电装置接入交流电源(220V)且没有与电子设备连接时,电路中各元器件工作原理如下;
充电电路21中的U3将220V转成5V电压;
漏电检测电路22中的LDO将5V电压转成1.8V,由于未与电子设备连接,电压输出端25悬空,可视为连接一个阻值接近无穷大的电阻,此时,电压输出端25的电压(即漏电检测结果)约为1.8V,并输出到U2的同相输入端;
由于未与设备连接,触点开关S2的按键未被按下,在位检测电路24输出的在位信号为低电平(被R2下拉到0);
控制电路23中的R4两端的电压约为1.8V*3/(1k+3k)=1.35V(假设R3=1k欧,R4=3k欧),并输入到U2的反相输入端;
由于控制电路23中的U2中的同相输入端电压(1.8V)大于反相输入端电压(1.35V),因此,输出高电平,即表示判断出没有漏电;
控制电路23中的U1(与非门)的两个输入分别是低电平(在位信号为低)以及高电平(U2的输出为高),因此,U1的输出为1,S1断开,也即充电电路断开。
2)当充电装置连接上交流电源,同时,也与电子设备连接时,假设电子设备不漏电,此时,电子设备内部VBUS与地之间的等效电阻假设为100k,由于该等效电阻远大于R6(10k),因此,电压输出端25的电压约为1.64V,输入到比较器U2的同相输入端仍比反相输入端的电压(1.35V)大,U2输出仍为高电平(逻辑“1”),并输入到U1的第一输入端(图中位于右侧的输入端);
对于U1的第二输入端(图中位于左侧的输入端),由于电子设备充电装置进行连接,因此,S2的按键被按下,S2闭合,此时,在位信号(即R1的第二端的输出)为高电平(5V),也即U1的第二输入端的输入为高电平;
由于U1是与非门电路,当两个输入都是高电平时,输出为低电平,此时,S1导通,也即充电电路导通,可为电子设备充电。
3)充电装置连接上交流电源,同时,也与电子设备连接时,假设电子设备漏电,此时,电子设备内部的VBUS与地之间的等效电阻为会小(假设为10k),此时,电压输入端25的电压约为0.9V,该电压输入到比较器U2的同相输入端;由于该同相输入端的电压(0.9V)小于反相输入端的电压(1.35V),因此,输出为低电平,并输入给U1的第一端;
由于U1是与非门,只要有一端为低电平,U1的输出就为高电平,这样,S1不会闭合,也即充电电路仍然处于断路状态,经U3转换后得到的电压并不能为漏电的电子设备充电,从而提升了充电安全性。
在第3)种情况下,如果一直漏电就会一直处于第3)种情况下的状态,如果漏电问题被消除,会根据第2)种情况进行处理;如果充电装置与电子设备断开,则会根据第1)种情况进行处理。
实施例六
基于以上各实施例,参见图6,本实施例针对实施例二中的漏电检测电路还包括第二开关S2(也基于PMOS实现)的充电装置的工作原理进行描述。由于本实施例中的绝大多数电路跟实施例五相同,因此,下面仅针对涉及第二开关的工作原理进行详细描述,其他部分可参考实施例五的描述,本实施例不再赘述。需要说明的是,以下各段中的序号仅用于区分各个描述的部分,并不表示严格的执行顺序。
1)当充电装置接入交流电源(220V)且没有与电子设备连接时,由实施例五分析可知U1输出为高电平,经过控制电路的反相器U4后,转成低电平,输入到S2的控制端,PMOS管导通(相当于S2闭合),从而使漏电检测电路22工作。
2)当充电装置连接上交流电源,同时,也与电子设备连接时,假设电子设备不漏电,通过实施例五的分析可知U1输出为低电平,通过反向器U4后,U4输出为高电平,并输入到S2的控制端,PMOS截止(相当于S2断开),这样,在充电电路工作时,电压输出端25的电压不会反向加到LDO上,进一步保证的LDO的安全。
3)充电装置连接上交流电源,同时,也与电子设备连接时,假设电子设备漏电,此时,由实施例五的分析可知U1输出高电平,通过反向器U4后,U4输出为低电平,并输入到PMOS的控制端,PMOS导通(相当于S2闭合),从而使漏电检测电路22工作,只要一直发生漏电,就会一直维持该状态,直至漏电问题被消除,此时,会转到第2)种情况进行处理。
实施例七
基于上述各实施例,参见图7,本实施例中,与上述各实施例主要的改变在于控制电路变为一个MCU(micro controller unit,微控制单元),通过MCU来实现各种控制。其中,MCU通常是指具有指令处理能力的处理器,例如,单片机,或者CPU,并且MCU还集成模数转换器(ADC)功能。
参见图7,下面对本实施例中的各个电路进行具体介绍。
充电电路21包括AC-DC转换电路(U3)、第一电阻R1以及第一开关S1,U3以及S1的介绍可参见上述各实施例,第一电阻R1的取值可以是10毫-100毫欧,S1仍然像上述实施例一样采用PMOS管。
漏电检测电路22的构成可参见上述各实施例介绍,这里不再介绍。漏电检测结果输出给MCU23。
在位检测电路24包括第一电阻R1,放大器A1,A1的输出端用于输出在位检测结果给MCU的一个输入端。在位检测电路24的原理是检测R1两端的电压,然后通过放大器A1进行放大后输出到MCU的一个输入端。需要说明的是,本实施例中的在位检测电路的方法也可适用于前述各实施例使用分立元器件构成的电路,当然,MCU的功能也可由分立元器件来实现,具体实现方法为本领域技术人员所公知的技术,这里并不赘述。
控制电路包括MCU23,MCU接收该在位检测结果的输入端为一个ADC输入端,MCU内部会将该输入端的输入的模拟电压进行模数转换,转成数字信号,并判断是否超过某个阈值,如果是,则认为在位;否则,认为不在位。MCU通过判断是否在位并结合 漏电检测结果来控制S1、S2的闭合及断开。其中,S1、S2在何时闭合、断开的方法可参见前述各实施例,这里并不赘述。
实施例八
参见图2,基于以上各实施例,本实施例公开了一种充电系统80,包括:充电装置81以及电子设备82;充电装置81与电子设备82之间通过通过电缆83(通常也会具有数据传输功能,此时通常也称数据线)相连。其中,充电装置可以基于上述实施例一至七中的任一种实施例中的充电装置。
上举较佳实施例,对本发明的目的、技术方案和优点进行了进一步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种充电装置,用于给电子设备充电,其特征在于,包括:充电电路、漏电检测电路、控制电路、在位检测电路以及电压输出端,其中:
    所述充电电路包括:第一电压转换电路、第一开关;其中,所述第一电压转换电路的输入端与交流电源相连,所述第一电压转换电路的输出端通过所述第一开关连接到所述电压输出端;所述第一开关的控制端与所述控制电路相连;
    所述漏电检测电路包括:第二电压转换电路、串联电阻;其中,所述第二电压转换电路的输入端与所述第一电压转换电路的输出端相连,所述第二电压转换电路的输出端通过所述串联电阻与所述电压输出端相连;所述漏电检测电路用于检测所述电压输出端与地之间是否漏电,并通过所述电压输出端输出漏电检测结果;
    所述第一电压转换电路用于将输入的交流电压转换为第一直流电压;
    所述第二电压转换电路用于将所述第一直流电压转换为低于所述第一直流电压且不会触发所述电子设备充电的第二直流电压;
    所述在位检测电路用于检测所述电子设备是否在位,得到用于指示所述电子设备是否在位的在位信号,并输出所述在位信号给所述控制电路;
    所述控制电路用于根据所述漏电检测结果判断未漏电以及通过所述在位信号判断所述电子设备在位时,通过所述第一开关的控制端闭合所述第一开关,使得所述第一电压转换电路输出的所述第一直流电压能够为所述电子设备充电;
    所述控制电路还用于在判断漏电或者判断所述电子设备不在位时,断开所述第一开关以阻止所述第一直流电压为所述电子设备充电。
  2. 如权利要求1所述的充电装置,其特征在于:
    所述第一开关在所述充电装置接入所述交流电源时默认处于断开状态。
  3. 如权利要求1或2任一所述的充电装置,其特征在于:
    所述在位检测电路包括:触点开关,所述触点开关用于当所述充电装置与所述电子设备连接时被按下,并产生用于指示在位的第一在位信号。
  4. 如权利要求1或2任一所述的充电装置,其特征在于:
    所述在位检测电路具体用于根据所述电子设备的充电接口上的标识符(ID)引脚或者配置通道(CC)引脚来检测所述电子设备是否在位。
  5. 如权利要求1-4任一所述的充电装置,其特征在于:所述控制电路包括:分压电路、比较器以及与非门电路;
    所述分压电路用于将所述第二直流电压进行分压后得到一个由所述分压电路的输出端输出的分压信号;
    所述分压电路的输出端与所述比较器的反相输入端相连;
    所述比较器的同相输入端与所述电压输出端相连;
    所述比较器的输出端与所述所述与非门电路的一个输入端相连;
    所述与非门电路的另一个输入端与所述在位检测电路输出所述在位信号的一端相连;
    所述与非门电路的输出端用于与所述第一开关的控制端相连。
  6. 如权利要求1-5任一所述的充电装置,其特征在于,所述漏电检测电路还包括:第二开关;
    所述第二开关串联在由所述第二电压转换电路的输出端、所述串联电阻以及所述电压输出端构成的串联线路中;
    所述第二开关的控制端与所述控制电路相连;
    所述控制电路还用于通过所述第二开关的控制端控制所述第二开关在所述漏电检测电路进行漏电检测时处于闭合状态。
  7. 如权利要求6所述的充电装置,其特征在于:
    所述控制电路还用于当所述第一开关闭合时,通过所述第二开关的控制端断开所述第二开关。
  8. 如权利要求6或7所述的充电装置,其特征在于:
    所述第二开关在所述充电装置接入所述交流电源时默认处于闭合状态。
  9. 如权利要求6-8任一所述的充电装置,其特征在于:
    所述控制电路与所述第一开关的控制端连接的一端通过一个反相器后与所述第二开关的控制端相连。
  10. 如权利要求1-9任一所述的充电装置,其特征在于:
    所述第二电压转换电路输出的电压为1.8V。
  11. 如权利要求1-10任一所述的充电装置,其特征在于:
    所述第二电压转换电路为低压降稳压器。
  12. 一种充电系统,其特征在于,包括:电子设备,如权利要求1-11任一所述的充电装置,所述充电装置用于给所述电子设备充电。
PCT/CN2018/115324 2017-11-14 2018-11-14 充电装置及充电系统 WO2019096142A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18878245.2A EP3700045B1 (en) 2017-11-14 2018-11-14 Charging device and charging system
US15/930,883 US11249143B2 (en) 2017-11-14 2020-05-13 Charging apparatus and charging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711124480.2A CN109787305B (zh) 2017-11-14 2017-11-14 充电装置及充电系统
CN201711124480.2 2017-11-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/930,883 Continuation US11249143B2 (en) 2017-11-14 2020-05-13 Charging apparatus and charging system

Publications (1)

Publication Number Publication Date
WO2019096142A1 true WO2019096142A1 (zh) 2019-05-23

Family

ID=66494959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115324 WO2019096142A1 (zh) 2017-11-14 2018-11-14 充电装置及充电系统

Country Status (4)

Country Link
US (1) US11249143B2 (zh)
EP (1) EP3700045B1 (zh)
CN (1) CN109787305B (zh)
WO (1) WO2019096142A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129844A (zh) * 2019-12-31 2020-05-08 联想(北京)有限公司 一种供电设备及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI664785B (zh) * 2018-05-02 2019-07-01 晨星半導體股份有限公司 用於電子裝置的保護電路及相關的保護方法
CN108738228B (zh) * 2018-07-23 2021-10-29 维沃移动通信有限公司 一种电路板组件及终端
CN114019412B (zh) * 2021-10-29 2024-06-21 许继电源有限公司 一种交流充电桩短路检测装置
CN114710738B (zh) * 2022-03-31 2023-03-24 深圳市微源半导体股份有限公司 一种基于通信方式的tws耳机的汗液检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045769A (en) * 1989-11-14 1991-09-03 The United States Of America As Represented By The Secretary Of The Navy Intelligent battery charging system
CN103576044A (zh) * 2012-07-18 2014-02-12 株式会社京滨 漏电检测装置
CN203722216U (zh) * 2014-02-20 2014-07-16 华为终端有限公司 一种用于移动终端的保护电路和移动终端
US20160105015A1 (en) * 2014-10-09 2016-04-14 Delta Electronics, Inc. Ground detecting apparatus and relay action detecting apparatus
CN106463974A (zh) * 2014-12-26 2017-02-22 华为技术有限公司 一种连接器和充电系统
CN208001164U (zh) * 2017-11-14 2018-10-23 华为技术有限公司 充电装置及充电系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003058A (en) 1997-09-05 1999-12-14 Motorola, Inc. Apparatus and methods for performing arithimetic operations on vectors and/or matrices
JP2006101635A (ja) * 2004-09-29 2006-04-13 Mitsumi Electric Co Ltd 過充電/過放電検出装置及び過充電/過放電検出回路並びに半導体装置
JP4894646B2 (ja) * 2007-06-15 2012-03-14 トヨタ自動車株式会社 充電装置および充電システム
EP2184827B1 (en) * 2007-07-24 2015-12-09 Panasonic Intellectual Property Management Co., Ltd. Charge monitoring device
JP5215040B2 (ja) * 2008-05-27 2013-06-19 株式会社ケーヒン 漏電検出回路
JP2011109877A (ja) * 2009-11-20 2011-06-02 Panasonic Electric Works Co Ltd 給電制御装置
JP5087064B2 (ja) * 2009-11-20 2012-11-28 パナソニック株式会社 給電制御装置
JP5853165B2 (ja) 2010-07-30 2016-02-09 パナソニックIpマネジメント株式会社 電気推進車両用充電器及びそれに適用される漏電確認方法
CN102436365B (zh) 2010-12-20 2014-04-09 中国电子科技集团公司第四十一研究所 一种频谱分析仪中线性频谱数据转换为对数数据的方法及装置
TWI470900B (zh) * 2010-12-22 2015-01-21 Ind Tech Res Inst 互動式充電管理系統及其方法
CN202340141U (zh) * 2011-10-25 2012-07-18 鸿富锦精密工业(深圳)有限公司 充电设备
JP5894427B2 (ja) * 2011-12-16 2016-03-30 パナソニック株式会社 給電制御装置
CN103166172B (zh) * 2011-12-17 2017-06-20 富泰华工业(深圳)有限公司 漏电保护电路、具有漏电保护电路的插座及电子装置
KR20150098381A (ko) * 2014-02-20 2015-08-28 삼성전자주식회사 전자 장치의 전원 제어방법 및 그 전자 장치
US20170264112A1 (en) * 2014-09-18 2017-09-14 Takashin Co., Ltd. Charging system
CN104638740B (zh) * 2015-02-28 2017-02-22 重庆长安汽车股份有限公司 电动汽车充电装置
CN104767258B (zh) * 2015-04-02 2018-12-11 珠海泰坦科技股份有限公司 一种用于电动汽车充电的智能交流适配器
US10181742B2 (en) * 2015-05-14 2019-01-15 Mediatek Inc. Electronic device, charger within the electronic device, and detecting method for detecting abnormal status of connector of electronic device
CN206117195U (zh) * 2016-08-24 2017-04-19 东莞启益电器机械有限公司 防漏电充电器
CN106655389A (zh) 2016-12-30 2017-05-10 维沃移动通信有限公司 一种充电保护方法、装置以及电路
CN107147503B (zh) * 2017-04-28 2020-06-02 华为技术有限公司 受电设备和poe系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045769A (en) * 1989-11-14 1991-09-03 The United States Of America As Represented By The Secretary Of The Navy Intelligent battery charging system
CN103576044A (zh) * 2012-07-18 2014-02-12 株式会社京滨 漏电检测装置
CN203722216U (zh) * 2014-02-20 2014-07-16 华为终端有限公司 一种用于移动终端的保护电路和移动终端
US20160105015A1 (en) * 2014-10-09 2016-04-14 Delta Electronics, Inc. Ground detecting apparatus and relay action detecting apparatus
CN106463974A (zh) * 2014-12-26 2017-02-22 华为技术有限公司 一种连接器和充电系统
CN208001164U (zh) * 2017-11-14 2018-10-23 华为技术有限公司 充电装置及充电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3700045A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129844A (zh) * 2019-12-31 2020-05-08 联想(北京)有限公司 一种供电设备及方法
CN111129844B (zh) * 2019-12-31 2022-03-25 联想(北京)有限公司 一种供电设备及方法

Also Published As

Publication number Publication date
CN109787305A (zh) 2019-05-21
EP3700045A4 (en) 2020-12-23
US11249143B2 (en) 2022-02-15
CN109787305B (zh) 2024-05-14
US20200274373A1 (en) 2020-08-27
EP3700045B1 (en) 2022-05-18
EP3700045A1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
WO2019096142A1 (zh) 充电装置及充电系统
CN208001164U (zh) 充电装置及充电系统
US10181742B2 (en) Electronic device, charger within the electronic device, and detecting method for detecting abnormal status of connector of electronic device
US10658860B2 (en) Electronic device, charger within the electronic device, and detecting method for detecting abnormal status of connector of electronic device
CN101436830B (zh) 电源装置及其保护方法
WO2018076623A1 (zh) 一种检测充电异常的方法、装置及电源适配器
US8248035B2 (en) Voltage converting apparatus
TW201541797A (zh) Usb適配器及usb線
US20190109484A1 (en) Electronic device, charger, and charging method
TWI625025B (zh) 充放電裝置及其控制方法
TW201819930A (zh) 高接觸電阻偵測
CN105634092A (zh) 充电电路、带usb端口的充电器和充电系统
CN106771517A (zh) 一种移动终端及其显示屏过流检测方法及系统
CN206807043U (zh) 一种充电电路及移动终端
US10554058B2 (en) Systems and methods for monitoring an operating status of a connector
CN104215810A (zh) 一种电动汽车传导式充电导引信号检测电路及系统
CN104182315B (zh) 一种控制调试功能的电路、电子设备及其对应的调试设备
CN207459702U (zh) 一种漏电保护装置及一种充电设备
CN104182020A (zh) 一种基于单端口实现双向供电的装置及方法
CN107706977B (zh) 一种充电电流的检测方法以及充电装置
WO2016141814A1 (zh) 电源适配器
TWM488804U (zh) 供電裝置
CN207475279U (zh) 节能高效应急电源切换控制电路
US10476290B2 (en) Charging two-terminal portable electronic devices
CN112531796A (zh) 一种充电接口的控制电路和充电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018878245

Country of ref document: EP

Effective date: 20200518