WO2019096133A1 - 透镜装置、摄像装置及移动体 - Google Patents

透镜装置、摄像装置及移动体 Download PDF

Info

Publication number
WO2019096133A1
WO2019096133A1 PCT/CN2018/115264 CN2018115264W WO2019096133A1 WO 2019096133 A1 WO2019096133 A1 WO 2019096133A1 CN 2018115264 W CN2018115264 W CN 2018115264W WO 2019096133 A1 WO2019096133 A1 WO 2019096133A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
electric motor
lens
motor
lens device
Prior art date
Application number
PCT/CN2018/115264
Other languages
English (en)
French (fr)
Inventor
小山高志
本庄谦一
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880014292.0A priority Critical patent/CN110352372A/zh
Publication of WO2019096133A1 publication Critical patent/WO2019096133A1/zh
Priority to US16/723,483 priority patent/US10921550B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to a lens device, an image pickup device, and a moving body.
  • Patent Document 1 discloses a lens driving device including a motor that drives a zoom lens and a motor that drives the focus lens.
  • Patent Document 1 Utility Model Registration No. 2598758
  • a lens device may include a first motor and a second motor.
  • the lens device may be provided with a lens.
  • the lens device may be provided with a cam ring that drives the lens in the direction of the optical axis of the lens.
  • the lens device may include a gear portion that transmits power of the first motor and the second motor to the cam ring.
  • the gear portion may include a first gear that is coupled to the first drive shaft of the first electric motor.
  • the gear portion may include a second gear that is coupled to the second drive shaft of the second electric motor.
  • the gear portion may include a third gear that meshes with the first gear and the second gear. The power of the first electric motor and the second electric motor can be transmitted to the cam ring via the third gear.
  • the third gear may be a second-stage gear having a fourth gear that meshes with the first gear and the second gear and a fifth gear that has fewer teeth than the fourth gear.
  • the gear portion may include a sixth gear that meshes with the fifth gear.
  • the rotation shaft of the third gear may be disposed between a first straight line passing through the rotation shaft of the first gear and the rotation shaft of the second gear, and a second straight line parallel to the first straight line and passing through the rotation shaft of the sixth gear.
  • the gear portion may include a seventh gear that is provided on the cam ring and transmits power of the first electric motor and the second electric motor via the sixth gear.
  • the first drive shaft and the second drive shaft may be disposed on the same circumference centered on the optical axis.
  • the electrical characteristics of the design of the first electric motor and the electrical characteristics of the design of the second electric motor may be the same.
  • the model of the first electric motor and the model of the second electric motor may be the same.
  • the first motor and the second motor may be DC motors.
  • the input terminals of one set of the first electric motor and the input terminals of one set of the second electric motor may be connected in parallel with a set of output terminals of the power supply via a set of leads. Power from the power source can be supplied to the first motor and the second motor via a set of leads.
  • the lens device may include a detecting unit that detects the number of revolutions of the first motor and the second motor.
  • the lens device may include a control unit that controls electric power supplied from the power source to the first electric motor and the second electric motor via a set of lead wires in accordance with the number of revolutions.
  • the lens can be a focusing lens.
  • An image pickup apparatus may be provided with the above lens apparatus.
  • the imaging device may include an imaging unit that images the light imaged by the lens device.
  • the moving body according to an aspect of the present invention may be a moving body including the above-described image pickup device and moving.
  • FIG. 1 is a diagram showing an example of a functional block of an image pickup apparatus according to the present embodiment.
  • Fig. 2 is a view for explaining the arrangement of a motor.
  • Fig. 3 is a view for explaining the arrangement of a motor.
  • FIG. 4 is a view showing an example of a gear configuration of a gear portion.
  • Fig. 5 is a view for explaining the arrangement of gears.
  • Fig. 6 is a view showing an example of the appearance of a drone and a remote operation device.
  • FIG. 1 shows an example of a functional block of the image pickup apparatus 100 according to the present embodiment.
  • the imaging device 100 includes a lens device 200 and an imaging unit 102.
  • the imaging unit 102 includes an image sensor 120, an imaging control unit 110, a memory 130, and a power source 140.
  • the lens device 200 includes a plurality of lenses 210 , a plurality of lens holding frames 212 , a lens control unit 220 , a memory 222 , a motor 231 , a motor 232 , a gear unit 240 , a cam ring 260 , and a detecting unit 270 .
  • the image sensor 120 may be composed of a CCD or a CMOS.
  • the image sensor 120 outputs image data of an optical image formed through the plurality of lenses 210 to the imaging control unit 110.
  • the imaging control unit 110 can be configured by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the imaging control unit 110 can control the imaging device 100 based on an operation command issued by the user to the imaging device 100 via the operation unit.
  • the memory 130 may be a computer readable recording medium including at least one of flash memories of SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 130 stores programs and the like necessary for the imaging control unit 110 to control the image sensor 120 and the like.
  • the memory 130 may be provided inside the casing of the image pickup apparatus 100.
  • the memory 130 can be detached from the housing of the image pickup apparatus 100.
  • the power source 140 supplies power to the imaging unit 102 and the lens device 200, respectively.
  • the power source 140
  • the lens device 200 may be an interchangeable lens that is detachably provided to the imaging unit 102.
  • the lens holding frame 212 holds the lens 210.
  • the pin 214 provided in the lens holding frame 212 is engaged with the cam groove of the cam ring 260.
  • the cam ring 260 is rotated to move the pin 214 along the cam groove, so that the lens 210 moves together with the lens holding frame 212 in the optical axis direction.
  • the plurality of lenses 210 may function as a zoom lens, a variable focus lens, and a focus lens. At least a portion or all of the plurality of lenses 210 are configured to be movable along the optical axis.
  • the gear portion 240 transmits the power of the motor 231 and the motor 232 to the cam ring 260.
  • the cam ring 260 receives the power transmitted from the motor 231 and the motor 232 via the gear portion 240, and rotates around the optical axis.
  • the motor 231 and the motor 232 may be DC motors.
  • the motor 231 and the motor 232 may be brushed DC motors or brushless DC motors.
  • the electrical characteristics of the design of the motor 231 and the electrical characteristics of the design of the motor 232 can be the same.
  • the model of the motor 231 and the model of the motor 232 can be the same. That is, the motor 231 and the motor 232 may be of the same type.
  • the motor 231 and the motor 232 are examples of the first motor and the second motor.
  • the electric motor 231 and the electric motor 232 transmit power to the cam ring 260 via the gear portion 240 to rotate the cam ring 260.
  • the detecting unit 270 detects the number of revolutions of one of the motor 231 and the motor 232.
  • the detecting portion 270 may include, for example, a light chopper.
  • a set of input terminals of the motor 231 and a set of input terminals of the motor 232 are connected in parallel with a set of output terminals of the power source 140 via a set of leads 224. Power from the power source 140 is supplied to the motor 231 and the motor 232 via a set of leads 224.
  • the input terminal on the first pole (for example, the positive electrode) side of the motor 231 and the input terminal on the first pole side of the motor 232 can be electrically connected to the output terminal on the first pole side of the power source 140.
  • the input terminal on the second pole (for example, the positive electrode) side of the motor 231 and the input terminal on the second pole side of the motor 232 can be electrically connected to the output terminal on the second pole side of the power source 140.
  • the lens control unit 220 controls the electric power supplied from the power source 140 to the motor 231 and the motor 232 via the set of leads 224 based on the number of revolutions detected by the detecting unit 270.
  • the lens control unit 220 drives the motor 231 and the motor 232 in accordance with a lens control command from the imaging unit 102, and moves one or a plurality of lenses 210 in the optical axis direction via the gear unit 240 and the cam ring 260.
  • the lens control commands are, for example, a zoom control command and a focus control command.
  • the lens control unit 220 performs at least one of a zooming operation and a focusing operation by moving at least one of the lenses 210 along the optical axis.
  • the lens control unit 220 controls the motor 231 and the motor 232 so that the cam ring 260 reciprocally reciprocates in the first rotation direction and the second rotation direction.
  • the lens control unit 220 performs a swing operation by slightly reciprocally driving the focus lens.
  • the swing operation is an operation of calculating an evaluation value indicating the degree of blur of an image such as a contrast value while the focus lens is slightly vibrated along the optical axis, and then gradually approaching the in-focus state while determining the direction in which the optical axis should move along the optical axis.
  • the lens control unit 220 is an example of a control unit.
  • the lens control unit 220 performs a wobbling operation in accordance with an autofocus command from the imaging unit 102.
  • the memory 222 stores control values of the plurality of lenses 210.
  • the memory 222 may include at least one of flash memories such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the lens 210 is required to be enlarged in order to improve optical performance.
  • the lens device 200 is a lens device used in a so-called medium-sized image camera or the like
  • the lens 210 included in the lens device 200 may be enlarged.
  • the lens 210 may become heavy.
  • the motor needs to generate a relatively large torque.
  • the cam ring 260 is driven by the two motors 231 and 232. Therefore, it is possible to suppress the torque required to be generated by one motor, and therefore it is possible to suppress an increase in size of the motor.
  • the diameter 401 of the lens barrel 400 when the two motors 231 and the motor 232 having a smaller diameter are arranged as shown in FIG. 2 can be made larger than the diameter of the lens barrel 400 when a motor 235 having a larger diameter is arranged as shown in FIG.
  • the diameter of 402 is small.
  • the reduction ratio of the gear portion 240 can be reduced.
  • the number of gears constituting the gear portion 240 can be reduced while suppressing an increase in size of the motor.
  • energy loss can be suppressed.
  • the noise of the gear portion 240 can be reduced.
  • the influence of the backlash can be reduced.
  • FIG. 4 is a view showing an example of a gear configuration of the gear portion 240.
  • the gear portion 240, the motor 231, and the motor 232 are disposed along the outer circumferential surface of the fixed cylinder 262 of the lens device 200.
  • the gear portion 240 includes a gear 241 that is coupled to the drive shaft 233 of the motor 231.
  • the gear 241 is an example of the first gear.
  • the gear portion 240 includes a gear 242 that is coupled to a drive shaft 234 of the motor 232.
  • the gear 242 is an example of the second gear.
  • Gear 241 and gear 242 may be spur gears.
  • the lens device 200 includes a detecting unit 270 that detects the rotation of the gear 241.
  • the detecting unit 270 includes an optical chopper 271, an optical chopper 272, and a grating disk 273.
  • the grating disk 273 has a gear 274 that meshes with the gear 241.
  • the grating disk 273 rotates in response to the rotation of the drive shaft 233 of the motor 231.
  • the grating disk 273 includes slits 275 that are radially spaced apart.
  • the optical chopper 271 and the optical chopper 272 include a light emitting unit and a light receiving unit.
  • a grating disk 273 is disposed between the light emitting portion and the light receiving portion. The light emitted from the light-emitting portion is received by the light-receiving portion via the slit 275, and the amount of rotation of the motor 231 is determined based on the light-receiving pattern.
  • the gear 243 meshes with a gear 241 to which the drive shaft 233 of the motor 231 is connected and a gear 242 to which the drive shaft 234 of the motor 232 is connected.
  • the rotational speed of the gear 241 and the rotational speed of the gear 242 are substantially the same. Therefore, the lens control unit 220 controls the driving of the motor 231 and the motor 232 based on the amount of rotation of the motor 231 detected by the detecting unit 270.
  • the motor 231 and the motor 232 are connected to the lens control unit 220 via a set of leads, and the same current is input from the lens control unit 220 to the motor 231 and the motor 232.
  • the lens control unit 220 can regard the motor 231 and the motor 232 as one motor, and control the current input to the motor 231 and the motor 232 and the applied voltage based on the number of revolutions from the detecting unit 270.
  • the current and voltage input to the motor 231 and the motor 232 may be currents and voltages of the same magnitude.
  • the detecting unit 270 can detect the rotation of the gear 242 connected to the drive shaft 234 of the motor 232.
  • the detecting unit 270 can also detect the rotation of the gear 243 that meshes with the gear 241 and the gear 242.
  • the gear portion 240 further includes a gear 243 that meshes with the gear 241 and the gear 242.
  • the gear 243 is an example of a third gear.
  • the power of the motor 231 and the motor 232 is transmitted to the cam ring 260 via the gear 243.
  • the gear 243 is a two-stage gear having a large gear 2433 that meshes with the gear 241 and the gear 242 and a small gear 2434 that has a smaller number of teeth than the large gear 2433.
  • the large gear 2433 is an example of the fourth gear.
  • Pinion gear 2434 is an example of a fifth gear.
  • Gear portion 240 also includes gear 244, gear 245, and gear 246.
  • the gear 244 is a two-stage gear having a large gear 2443 that meshes with the pinion 2434 and a pinion 2444 that has a smaller number of teeth than the large gear 2443.
  • Gear 244 is an example of a sixth gear.
  • the gear 245 is a two-stage gear having a large gear 2453 that meshes with the pinion 2444 and a pinion 2454 that has a smaller number of teeth than the large gear 2453.
  • the gear 246 is a two-stage gear having a large gear 2463 meshing with the pinion gear 2454 and a pinion gear 2464 having a smaller number of teeth than the large gear 2463.
  • the gear portion 240 further includes a gear 247 disposed on the cam ring 260 that meshes with the pinion 2464.
  • a gear 247 may be provided inside the cam ring 260.
  • the gear 247 is an example of the seventh gear. The power from the motor 231 and the motor 232 is transmitted to the cam ring 260 via the gear 241, the gear 242, the gear 243, the gear 244, the gear 245, the gear 246, and the gear 247.
  • the drive shaft 233 of the motor 231 and the drive shaft 234 of the motor 232 may be disposed on the same circumference centered on the optical axis 211. With this configuration, the diameter 401 of the lens barrel 400 accommodating the lens 210 can be reduced.
  • the gear meshing with the other gears generates a resistance in a direction orthogonal to the rotation axis of the gear by rotation. Resistance can cause energy loss, so it is best to offset the resistance.
  • a resistance 501 is generated between the gear 241 and the gear 243
  • a resistance 502 is generated between the gear 242 and the gear 243. Therefore, the resistance 503 generated between the gear 243 and the gear 244 preferably has a component in the opposite direction to the force in the combined direction of the resistance 501 and the resistance 502. Therefore, the resistance between the gears can be canceled each other, and the loss of energy can be suppressed.
  • the shaft center 2431 of the gear 243 may be disposed at a first straight line L1 that passes through the shaft center (the drive shaft 234) of the gear 241 and the shaft center (the drive shaft 233) of the gear 242, and is parallel to the first straight line L1 and passes through the gear 244. Between the second straight line L2 of the shaft center 2441.
  • the gear 241, the gear 242, the gear 243, and the gear 244 in this way, the resistance between the gears can be canceled each other, and the loss of energy can be suppressed.
  • the shaft center of the gear is a concept that also includes a rotating shaft of the gear.
  • the imaging device 100 as described above may be mounted on a mobile body.
  • the imaging device 100 may be mounted on a drone (UAV) as shown in FIG. 6.
  • the UAV 10 may include a UAV main body 20, a universal joint 50, a plurality of imaging devices 60, and an imaging device 100.
  • the universal joint 50 and the imaging device 100 are examples of an imaging system.
  • the UAV 10 is an example of a moving body propelled by the propulsion unit.
  • the mobile body includes the concept of a flying body such as another aircraft moving in the air, a vehicle moving on the ground, a ship moving on the water, and the like.
  • the UAV body 20 is provided with a plurality of rotating blades.
  • a plurality of rotors are examples of propulsion.
  • the UAV body 20 causes the UAV 10 to fly by controlling the rotation of the plurality of rotors.
  • the UAV body 20, for example, uses four rotating wings to fly the UAV 10.
  • the number of rotating wings is not limited to four.
  • the UAV 10 can also be a fixed wing aircraft without a rotating wing.
  • the imaging apparatus 100 is a camera for capturing an object included in a desired imaging range.
  • the universal joint 50 rotatably supports the image pickup apparatus 100.
  • the universal joint 50 is an example of a support mechanism.
  • the universal joint 50 employs an actuator that rotatably supports the image pickup apparatus 100 through the pitch axis.
  • the universal joint 50 also employs an actuator that rotatably supports the image pickup apparatus 100 around the roll axis and the yaw axis, respectively.
  • the universal joint 50 can also change the posture of the imaging device 100 by rotating the imaging device 100 around at least one of the yaw axis, the pitch axis, and the roll axis.
  • the plurality of imaging devices 60 are sensing cameras that image the surroundings of the UAV 10 in order to control the flight of the UAV 10 .
  • the two camera units 60 may also be disposed at the front of the UAV 10, that is, the front side.
  • the other two imaging devices 60 may be disposed on the bottom surface of the UAV 10.
  • the two camera units 60 on the front side are paired and can be used as a so-called stereo camera.
  • the two camera units 60 on the bottom side are also paired and can also be used as stereo cameras.
  • the three-dimensional spatial data around the UAV 10 can also be generated based on the images captured by the plurality of imaging devices 60.
  • the number of imaging devices 60 provided in the UAV 10 is not limited to four.
  • the UAV 10 may be provided with at least one imaging device 60.
  • the UAV 10 may also have at least one imaging device 60 on each of the head, tail, side, bottom, and top surfaces of the UAV 10.
  • the viewing angle that can be set by the imaging device 60 can be wider than the viewing angle that can be set by the imaging device 100.
  • the imaging device 60 may also have a single focus lens or a fisheye lens.
  • the remote operating device 300 communicates with the UAV 10 to perform remote operation on the UAV 10.
  • the remote operating device 300 can communicate wirelessly with the UAV 10.
  • the remote operation device 300 transmits, to the UAV 10, instruction information indicating various commands related to the movement of the UAV 10 such as ascending, descending, accelerating, decelerating, advancing, retreating, and rotating.
  • the indication information includes, for example, indication information that causes the height of the UAV 10 to rise.
  • the indication information may indicate the height at which the UAV 10 should be located.
  • the UAV 10 moves to a height indicated by the indication information received from the remote operation device 300.
  • the indication information may include a rising instruction that causes the UAV 10 to rise. UAV10 rises during the acceptance of the rising command. It is possible to limit the rise when the UAV 10 receives the rising command but the height of the UAV 10 reaches the upper limit height.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

在聚焦透镜等的透镜比较重时,存在透镜的驱动速度变慢的情况。透镜装置(200)可以具备第1电动机(231)及第2电动机(232)。透镜装置(200)可以具备透镜(210)。透镜装置(200)可以具备沿着透镜(210)的光轴(211)的方向驱动透镜(210)的凸轮环(260)。透镜装置(200)可以具备向凸轮环(260)传递动力的第1电动机(231)及第2电动机(232)的动力的齿轮部(240)。齿轮部(240)可以包括与第1电动机(231)的第1驱动轴(233)连接的第1齿轮(241)。齿轮部(240)可以包括与第2电动机(232)的第2驱动轴(234)连接的第2齿轮(242)。齿轮部(240)可以包括与第1齿轮(241)及第2齿轮(242)啮合的第3齿轮(243)。第1电动机(231)及第2电动机(232)的动力可以经由第3齿轮(243)向凸轮环(260)传递。

Description

透镜装置、摄像装置及移动体 技术领域
本发明涉及透镜装置、摄像装置及移动体。
背景技术
专利文献1公开了具备驱动变焦透镜的电机和驱动聚焦透镜的电机的透镜驱动装置。
专利文献1实用新型登记2598758号公报
发明内容
在聚焦透镜等的透镜比较重时,存在透镜的驱动速度变慢的情况。
为了解决上述问题,根据本发明一个方面的透镜装置可以具备第1电动机及第2电动机。透镜装置可以具备透镜。透镜装置可以具备沿着透镜的光轴的方向驱动透镜的凸轮环。透镜装置可以具备向凸轮环传递第1电动机及第2电动机的动力的齿轮部。
齿轮部可以包括与第1电动机的第1驱动轴连接的第1齿轮。齿轮部可以包括与第2电动机的第2驱动轴连接的第2齿轮。齿轮部可以包括与第1齿轮及第2齿轮啮合的第3齿轮。第1电动机及第2电动机的动力可以经由第3齿轮向凸轮环传递。
第3齿轮可以是具有与第1齿轮及第2齿轮啮合的第4齿轮和齿数比第4齿轮少的第5齿轮的2级齿轮。齿轮部可以包括与第5齿轮啮合的第6齿轮。
第3齿轮的旋转轴可以配置在穿过第1齿轮的旋转轴和第2齿轮的旋转轴的第1直线和与第1直线平行且穿过第6齿轮的旋转轴的第2直线之间。
齿轮部可以包括设于凸轮环并经由第6齿轮传递第1电动机及第2电动机的动力的第7齿轮。
第1驱动轴及第2驱动轴可以配置在以光轴为中心的同一圆周上。
第1电动机的设计上的电气特性和第2电动机的设计上的电气特性可以相同。
第1电动机的机型和第2电动机的机型可以相同。
第1电动机及第2电动机可以是直流电机。
第1电动机的一组的输入端子及第2电动机的一组的输入端子可以经由一组引线与电源的一组输出端子并联。来自电源的电力可以经由一组引线供应给第1电动机及第2电动机。
透镜装置可以具备检测第1电动机及第2电动机的一个的转速的检测部。透镜装置可以具备根据转速来控制从电源经由一组引线供应给第1电动机及第2电动机的电力的控制部。
透镜可以是聚焦透镜。
根据本发明一个方面的摄像装置可以具备上述透镜装置。摄像装置可以具备对由透镜装置成像的光进行摄像的摄像部。
根据本发明一个方面的移动体可以是具备上述摄像装置并移动的移动体。
根据本发明的一个方面,在聚焦透镜等的透镜比较重时,能够防止透镜的驱动速度变慢。
此外,上述发明内容未列举本发明的必要的全部特征。此外,这些特征组的子组合也可以成为发明。
附图说明
图1是表示根据本实施方式的摄像装置的功能组块的实例的图。
图2是用于说明电动机的配置的图。
图3是用于说明电动机的配置的图。
图4是表示齿轮部的齿轮构成的实例的图。
图5是用于说明齿轮的配置的图。
图6是表示无人机及远距离操作装置的外观的实例的图。
符号说明:
10  UAV
20  UAV本体
50  万向节
60  摄像装置
100 摄像装置
102 摄像部
110 摄像控制部
120 图像传感器
130 存储器
140 电源
200 透镜装置
210 透镜
211 光轴
212 透镜保持框
214 销
220   透镜控制部
222   存储器
224   引线
231   电动机
232   电动机
233   驱动轴
234   驱动轴
235   电动机
240   齿轮部
241,242,243,244,245,246,247 齿轮
260   凸轮环
270   检测部
271,272 光斩波器
273   光栅圆盘
274   齿轮
275   狭缝
300   远距离操作装置
具体实施方式
以下,通过发明的实施方式来说明本发明,但是以下的实施方式并不限定权利要求书所涉及的发明。此外,并不是所有实施方式中所说明的特征组合对于发明的解决方案所必须的。对于本领域技术人员显而易见的是,可以对以下实施例进行各种修改或改进。从权利要求书的描述中显而易见的是,进行了这样的修改或改进的方式也可包含于本发明的技术范围。
权利要求书、说明书、附图及摘要中包含受著作权的保护的事项。任何人只要按专利局的文件或记录所示对这些文件进行复制,著作权所有人就不反对。但是,在除此以外的情况下,保留一切的著作权。
图1表示根据本实施方式的摄像装置100的功能组块的实例。摄像装置100具备透镜装置200和摄像部102。
摄像部102具有图像传感器120、摄像控制部110、存储器130及电源140。透镜装置200具有多个透镜210、多个透镜保持框212、透镜控制部220、存储器222、电动机231、电动机232、齿轮部240、凸轮环260及检测部270。
图像传感器120可以由CCD或CMOS构成。图像传感器120将经由多个透镜210成像的光学像的图像数据向摄像控制部110输出。摄像控制部110可以由CPU或MPU等的微处理器、MCU等的微控制器等构成。摄像控制部110可以根据由用户经由操作部对摄像装置100发出的动作指令,控制摄像装置100。存储器130可以是计算机可读记录介质,包括SRAM、DRAM、EPROM、EEPROM及USB存储器等的闪速存储器的至少一个。存储器130存储摄像控制部110控制图像传感器120等所需的程序等。存储器130可以设于摄像装置100的壳体的内部。存储器130可以设为能够从摄像装置100的壳体拆卸。电源140分别向摄像部102及透镜装置200供应给电力。电源140可以是电池。
透镜装置200可以是可拆卸地设于摄像部102的互换透镜。透镜保持框212保持透镜210。设于透镜保持框212的销214与凸轮环260的凸轮槽卡合。凸轮环260通过旋转,使销214沿凸轮槽移动,使透镜210与透镜保持框212一起沿着光轴方向移动。多个透镜210可以起到变焦透镜、可变焦距透镜及聚焦透镜的功能。多个透镜210的至少一部分或全部配置为可沿光轴移动。
齿轮部240向凸轮环260传递电动机231及电动机232的动力。凸轮环260经由齿轮部240接受从电动机231及电动机232传递的动力,以光轴为中心旋转。电动机231及电动机232可以是直流电机。电动机231及电动机232可以是带刷直流电机或无刷直流电机。电动机231的设计上的电气特性和电动机232的设计上的电气特性可以相同。向电动机231及电动机232输入的电流的大小若相同,则电动机231的转速及电动机232的转速可以实质相同。电动机231的机型和电动机232的机型可以相同。即,电动机231和电动机232可以是同一种类。电动机231及电动机232是第1电动机及第2电动机的实例。
电动机231及电动机232经由齿轮部240向凸轮环260传递动力,使凸轮环260旋转。检测部270检测电动机231及电动机232的一个的转速。检测部270可以包括例如光斩波器。电动机231的一组的输入端子及电动机232的一组的输入端子经由一组引线224与电源140的一组输出端子并联。来自电源140的电力经由一组引线224供应给电动机231及电动机232。电动机231的第1极(例如,正极)侧的输入端子及电动机232的第1极侧的输入端子可以与电源140的第1极侧的输出端子电连接。电动机231的第2极(例如,正极)侧的输入端子及电动机232的第2极侧的输入端子可以与电源140的第2极侧的输出端子电连接。
透镜控制部220根据由检测部270检测的转速,控制从电源140经由一组引线224供应给电动机231及电动机232的电力。透镜控制部220按照来自摄像部102的透镜控制指令,驱动电动机231及电动机232,经由齿轮部240及凸轮环260使一个或多个透镜210沿光轴方向移动。透镜控制指令例如是变焦控制指令及聚焦控制指令。透镜控制部220通过使透镜 210的至少一个沿光轴移动,执行变焦动作及聚焦动作的至少一方。透镜控制部220在执行例如动态图像摄影时的自动聚焦动作时,控制电动机231及电动机232,使得凸轮环260沿着第1旋转方向及第2旋转方向微小地往复旋转。透镜控制部220通过微小地往复驱动聚焦透镜,执行摆动动作。这里,摆动动作是指,在沿光轴使聚焦透镜微小振动的同时算出表示对比度值等的图像的模糊程度的评价值,接着在确定应沿光轴移动的方向的同时逐渐接近对焦状态的动作。透镜控制部220是控制部的实例。透镜控制部220按照来自摄像部102的自动聚焦指令,执行摆动动作。
存储器222存储多个透镜210的控制值。存储器222可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪速存储器的至少一个。
存在为了提高光学性能而要求透镜210大型化的情况。例如,透镜装置200为所谓中画幅像机等中采用的透镜装置时,存在透镜装置200具备的透镜210大型化的情况。这样,若透镜210大型化,则存在透镜210变重的情况。例如,为了通过摆动动作微小地往复驱动比较重的聚焦透镜,电动机需要产生比较大的转矩。
由一个电动机产生驱动一个或多个大型的透镜210所需的转矩时,存在电动机大型化的情况。电动机若大型化,则容纳透镜210的镜筒的尺寸也随之大型化。因而,根据本实施方式的透镜装置200,利用两个电动机231及232来驱动凸轮环260。从而可抑制需要由一个电动机产生的转矩,因此能够抑制电动机的大型化。例如,可使如图2所示的配置较小直径的两个电动机231及电动机232时的镜筒400的直径401比图3所示的配置较大直径的一个电动机235时的镜筒400的直径402小。
此外,若由两个电动机产生转矩,则与由一个电动机产生转矩相比,总转矩增大。若转矩增大,则能够减小齿轮部240的减速比。即,在抑制电动机的大型化的同时,能够减少构成齿轮部240的齿轮的个数。通过减少齿轮的个数,可抑制能量损失。此外,通过减少齿轮的个数,能够减少齿轮部240的噪音。而且,通过减少齿轮的个数,能够降低齿隙的影响。
图4是表示齿轮部240的齿轮构成的实例的图。齿轮部240、电动机231及电动机232沿透镜装置200的固定筒262的外周面而配置。齿轮部240包括与电动机231的驱动轴233连接的齿轮241。齿轮241是第1齿轮的实例。齿轮部240包括与电动机232的驱动轴234连接的齿轮242。齿轮242是第2齿轮的实例。齿轮241及齿轮242可以是正齿轮。透镜装置200具备检测齿轮241的旋转的检测部270。检测部270具有光斩波器271、光斩波器272及光栅圆盘273。光栅圆盘273具有与齿轮241啮合的齿轮274。光栅圆盘273响应电动机231的驱动轴233的旋转而旋转。光栅圆盘273包括放射状等间隔配置的狭缝275。光斩波器271及光斩波器272具备发光部和受光部。在发光部和受光部之间配置光栅圆盘273。发光部 发出的光经由狭缝275由受光部受光,根据该受光图案来确定电动机231的旋转量。
齿轮243与电动机231的驱动轴233所连接的齿轮241及电动机232的驱动轴234所连接的齿轮242啮合。从而,齿轮241的转速和齿轮242的转速实质上相同。因而,透镜控制部220根据检测部270检测的电动机231的旋转量,控制电动机231及电动机232的驱动。电动机231及电动机232经由一组引线与透镜控制部220连接,从透镜控制部220向电动机231及电动机232输入相同的电流。透镜控制部220可以将电动机231及电动机232视为一个电动机,根据来自检测部270的转速,控制对电动机231及电动机232输入的电流及施加的电压。对电动机231及电动机232输入的电流及电压可以是同样大小的电流及电压。此外,检测部270可以检测与电动机232的驱动轴234连接的齿轮242的旋转。检测部270也可以检测与齿轮241及齿轮242啮合的齿轮243的旋转。
齿轮部240还包括与齿轮241及齿轮242啮合的齿轮243。齿轮243是第3齿轮的实例。电动机231及电动机232的动力经由齿轮243向凸轮环260传递。齿轮243是具有与齿轮241及齿轮242啮合的大齿轮2433和齿数比大齿轮2433少的小齿轮2434的2级齿轮。大齿轮2433是第4齿轮的实例。小齿轮2434是第5齿轮的实例。
齿轮部240还包括齿轮244、齿轮245及齿轮246。齿轮244是具有与小齿轮2434啮合的大齿轮2443和齿数比大齿轮2443少的小齿轮2444的2级齿轮。齿轮244是第6齿轮的实例。
齿轮245是具有与小齿轮2444啮合的大齿轮2453和齿数比大齿轮2453少的小齿轮2454的2级齿轮。齿轮246是具有与小齿轮2454啮合的大齿轮2463和齿数比大齿轮2463少的小齿轮2464的2级齿轮。
齿轮部240还包括设于凸轮环260的与小齿轮2464啮合的齿轮247。齿轮247可以设于凸轮环260的内侧。齿轮247是第7齿轮的实例。来自电动机231及电动机232的动力经由齿轮241、齿轮242、齿轮243、齿轮244、齿轮245、齿轮246及齿轮247,向凸轮环260传递。
如图2所示,电动机231的驱动轴233及电动机232的驱动轴234可以配置在以光轴211为中心的同一圆周上。通过这样配置,能够减小容纳透镜210的镜筒400的直径401。
与其他齿轮啮合的齿轮通过旋转,在与齿轮的旋转轴正交的方向产生阻力。阻力会造成能量的损失,因此最好抵消掉阻力。例如,如图5所示,齿轮241及齿轮242若顺时针旋转,则在齿轮241和齿轮243之间产生阻力501,在齿轮242和齿轮243之间产生阻力502。因而,在齿轮243和齿轮244之间产生的阻力503最好具有与阻力501和阻力502的合成方向的力相反方向的分量。从而,能够使齿轮间的阻力互相抵消,抑制能量的损失。
齿轮243的轴中心2431可以配置在穿过齿轮241的轴中心(驱动轴234)和齿轮242的轴中心(驱动轴233)的第1直线L1和与第1直线L1平行且穿过齿轮244的轴中心2441的第2直线L2之间。这样,通过配置齿轮241、齿轮242、齿轮243及齿轮244,能够使齿轮间的阻力互相抵消,抑制能量的损失。此外,齿轮的轴中心是还包括齿轮的旋转轴的概念。
上述那样的摄像装置100也可以搭载于移动体。摄像装置100也可以搭载于如图6所示的无人机(UAV)。UAV10可以具备UAV本体20、万向节50、多个摄像装置60及摄像装置100。万向节50及摄像装置100是摄像系统的实例。UAV10是由推进部推进的移动体的实例。移动体除了UAV外,也包括在空中移动的其他航空器等的飞行体、地上移动的车辆、水上移动的船舶等的概念。
UAV本体20具备多个旋转翼。多个旋转翼是推进部的实例。UAV本体20通过控制多个旋转翼的旋转,使UAV10飞行。UAV本体20例如采用4个旋转翼使UAV10飞行。旋转翼的数目不限于4个。此外,UAV10也可以是不具有旋转翼的固定翼机。
摄像装置100是用于拍摄包括在期望的摄像范围内的被摄体的摄像机。万向节50可旋转地支撑摄像装置100。万向节50是支撑机构的实例。例如,万向节50采用致动器,通过俯仰轴可旋转地支撑摄像装置100。万向节50还采用致动器,分别以滚转轴及偏航轴为中心可旋转地支撑摄像装置100。万向节50也可以通过以偏航轴、俯仰轴及滚转轴的至少一个为中心旋转摄像装置100,来变更摄像装置100的姿势。
多个摄像装置60是为了控制UAV10的飞行而对UAV10的周围进行摄像的感测用摄像机。两个摄像装置60也可以设置在UAV10的机首即正面。而且,另两个摄像装置60也可以设置在UAV10的底面。正面侧的两个摄像装置60是成对的,并可用作所谓的立体摄像机。底面侧的两个摄像装置60也是成对的,并也可用作立体摄像机。根据由多个摄像装置60摄像的图像,也可以生成UAV10的周围的三维空间数据。UAV10具备的摄像装置60的数目不限于4个。UAV10具备至少一个摄像装置60即可。UAV10也可以在UAV10的机首、机尾、侧面、底面及顶面各自具备至少一个摄像装置60。摄像装置60可设定的视角可以比摄像装置100可设定的视角宽。摄像装置60也可以具有单焦点透镜或鱼眼透镜。
远距离操作装置300与UAV10通信,对UAV10进行远距离操作。远距离操作装置300可以与UAV10无线通信。远距离操作装置300向UAV10发送表示与上升、下降、加速、减速、前进、后退、旋转等的UAV10的移动相关的各种指令的指示信息。指示信息包含例如使UAV10的高度上升的指示信息。指示信息可以表示UAV10应该位于的高度。UAV10移动到位于由从远距离操作装置300接收的指示信息所表示的高度。指示信息可以包含使UAV10上升的上升指令。UAV10在接受上升指令期间上升。可以在UAV10即使接受上升指令但是 UAV10的高度达到上限高度时,限制上升。
以上,用实施方式说明了本发明,但是本发明的技术范围不限于上述实施方式所记载的范围。对于本领域技术人员显而易见的是,可以对上述实施方式进行各种修改或改进。从权利要求书的描述中显而易见的是,进行了这样的修改或改进的形态也可包含于本发明的技术范围。
应该注意的是,权利要求书、说明书及附图中所示的装置、系统、程序及方法中的动作、顺序、步骤及阶段等各处理的执行顺序没有特别地明确陈述为“先前”、“之前”等,只要前面处理的输出不被用于后面的处理中,则能够以任意的顺序实现。关于权利要求书、说明书及附图中的动作流程,即使为了方便而采用“首先”、“接着”等进行了说明,也不意味着必须以该顺序实施。

Claims (14)

  1. 一种透镜装置,其具备:
    第1电动机及第2电动机;
    透镜;
    沿着所述透镜的光轴的方向驱动所述透镜的凸轮环;以及
    向所述凸轮环传递所述第1电动机及所述第2电动机的动力的齿轮部。
  2. 如权利要求1所述的透镜装置,其中,
    所述齿轮部包括:
    与所述第1电动机的第1驱动轴连接的第1齿轮;
    与所述第2电动机的第2驱动轴连接的第2齿轮;
    与所述第1齿轮及所述第2齿轮啮合的第3齿轮,
    所述第1电动机及所述第2电动机的动力经由所述第3齿轮向所述凸轮环传递。
  3. 如权利要求2所述的透镜装置,其中,
    所述第3齿轮是具有与所述第1齿轮及所述第2齿轮啮合的第4齿轮和齿数比所述第4齿轮少的第5齿轮的2级齿轮,
    所述齿轮部还包括与第5齿轮啮合的第6齿轮。
  4. 如权利要求3所述的透镜装置,其中,
    所述第3齿轮的旋转轴配置在穿过所述第1齿轮的旋转轴和所述第2齿轮的旋转轴的第1直线和与所述第1直线平行且穿过所述第6齿轮的旋转轴的第2直线之间。
  5. 如权利要求3所述的透镜装置,其中,
    所述齿轮部
    还包括设于所述凸轮环并经由所述第6齿轮传递所述第1电动机及所述第2电动机的动力的第7齿轮。
  6. 如权利要求2所述的透镜装置,其中,
    所述第1驱动轴及所述第2驱动轴配置在以所述光轴为中心的同一圆周上。
  7. 如权利要求1所述的透镜装置,其中于,
    所述第1电动机的设计上的电气特性和所述第2电动机的设计上的电气特性相同。
  8. 如权利要求1所述的透镜装置,其中,
    所述第1电动机的机型和所述第2电动机的机型相同。
  9. 如权利要求1所述的透镜装置,其中,
    所述第1电动机及所述第2电动机是直流电机。
  10. 如权利要求1所述的透镜装置,其中,
    所述第1电动机的一组的输入端子及所述第2电动机的一组的输入端子经由一组引线与电源的一组输出端子并联,
    来自所述电源的电力经由所述一组引线供应给所述第1电动机及所述第2电动机。
  11. 如权利要求10所述的透镜装置,其进一步具有:
    检测所述第1电动机及所述第2电动机的一个的转速的检测部;以及
    根据所述转速,对从所述电源经由所述一组引线供应给所述第1电动机及所述第2电动机的电力进行控制的控制部。
  12. 如权利要求1所述的透镜装置,其中,
    所述透镜是聚焦透镜。
  13. 一种摄像装置,其具备:
    如权利要求1至12中任一项所述的透镜装置;以及
    对由所述透镜装置成像的光进行摄像的摄像部。
  14. 一种移动体,其具备如权利要求13所述的摄像装置并移动。
PCT/CN2018/115264 2017-11-17 2018-11-13 透镜装置、摄像装置及移动体 WO2019096133A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880014292.0A CN110352372A (zh) 2017-11-17 2018-11-13 透镜装置、摄像装置及移动体
US16/723,483 US10921550B2 (en) 2017-11-17 2019-12-20 Lens device, camera device, and moving body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-222188 2017-11-17
JP2017222188A JP2019095487A (ja) 2017-11-17 2017-11-17 レンズ装置、撮像装置、及び移動体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/723,483 Continuation US10921550B2 (en) 2017-11-17 2019-12-20 Lens device, camera device, and moving body

Publications (1)

Publication Number Publication Date
WO2019096133A1 true WO2019096133A1 (zh) 2019-05-23

Family

ID=66538888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115264 WO2019096133A1 (zh) 2017-11-17 2018-11-13 透镜装置、摄像装置及移动体

Country Status (4)

Country Link
US (1) US10921550B2 (zh)
JP (1) JP2019095487A (zh)
CN (1) CN110352372A (zh)
WO (1) WO2019096133A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083542A (zh) * 2019-06-14 2020-12-15 杭州海康威视数字技术股份有限公司 一种变焦摄像机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547980B2 (ja) * 2017-12-19 2019-07-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd レンズ装置、撮像装置、移動体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1573398A (zh) * 2003-06-19 2005-02-02 佳能株式会社 动力传动装置、透镜镜筒、以及摄像装置
CN1797058A (zh) * 2004-11-30 2006-07-05 夏普株式会社 透镜驱动装置、摄像组件及便携式电子设备
JP2007241000A (ja) * 2006-03-09 2007-09-20 Kyocera Corp カメラモジュールとそのカメラモジュールを備えた携帯端末
CN102401970A (zh) * 2010-09-15 2012-04-04 奥林巴斯株式会社 镜框、摄像装置、信息终端
CN103389557A (zh) * 2012-05-11 2013-11-13 奥林巴斯映像株式会社 摄像装置的透镜框驱动装置
CN204515217U (zh) * 2015-04-29 2015-07-29 中山联合光电科技股份有限公司 一种变焦镜头的传动装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165977A (ja) * 1983-03-08 1984-09-19 Shibaura Eng Works Co Ltd 複合ブラシレスサ−ボモ−タ
JPS60254028A (ja) * 1984-05-30 1985-12-14 Canon Inc 複数の電動モ−タ−を有するカメラ
GB2210704B (en) * 1987-10-02 1991-11-06 Olympus Optical Co Zoom mechanism for zoom lenses
JP2598758Y2 (ja) 1990-03-02 1999-08-16 ソニー株式会社 レンズ駆動装置
JPH05215951A (ja) * 1992-02-03 1993-08-27 Olympus Optical Co Ltd エンコーダ装置
JPH07287274A (ja) * 1994-04-15 1995-10-31 Nikon Corp 焦点調整装置を備えたカメラ
JPH089602A (ja) * 1994-06-23 1996-01-12 Nakamichi Corp 複合型モータ
JP2003202486A (ja) * 2002-01-04 2003-07-18 Canon Inc レンズ駆動制御装置
JP4638719B2 (ja) * 2004-12-01 2011-02-23 Hoya株式会社 レンズ鏡筒
JP4597650B2 (ja) * 2004-12-01 2010-12-15 Hoya株式会社 レンズ鏡筒
US7450832B2 (en) * 2004-12-01 2008-11-11 Hoya Corporation Imaging device having an optical image stabilizer
JP4647982B2 (ja) * 2004-12-01 2011-03-09 Hoya株式会社 撮像装置
JP4638718B2 (ja) * 2004-12-01 2011-02-23 Hoya株式会社 レンズ鏡筒
JP4445458B2 (ja) * 2005-11-24 2010-04-07 シャープ株式会社 レンズ駆動装置およびそれを用いた撮像装置
JP2009258240A (ja) * 2008-04-14 2009-11-05 Tamron Co Ltd レンズ駆動機構及びそのレンズ駆動機構を用いた撮像装置
JP5245735B2 (ja) * 2008-11-07 2013-07-24 株式会社ニコン レンズ鏡筒及び撮像装置
JP2011252936A (ja) * 2010-05-31 2011-12-15 Canon Inc レンズ鏡筒
JP2012013769A (ja) * 2010-06-29 2012-01-19 Canon Inc 撮像装置
DE102011117743B4 (de) * 2011-01-18 2021-07-15 Carl Zeiss Microscopy Gmbh Mikroskopobjektiv mit mindestens einer in Richtung der optischen Achse verschiebbaren Linsengruppe
EP2963330A1 (en) * 2014-06-30 2016-01-06 Axis AB Monitoring device, and method of adjusting a fixed monitoring device
JP6442917B2 (ja) * 2014-08-21 2018-12-26 リコーイメージング株式会社 レンズ鏡筒
CN106716212B (zh) * 2014-09-30 2018-04-20 富士胶片株式会社 变焦透镜镜筒、可换镜头及电视摄像机装置
JP2016157037A (ja) * 2015-02-26 2016-09-01 キヤノン株式会社 レンズ駆動装置
CN104793313B (zh) * 2015-04-29 2017-05-31 中山联合光电科技股份有限公司 一种应用于光学变焦镜头的传动机构
KR102569718B1 (ko) * 2015-11-09 2023-08-25 삼성전자 주식회사 카메라 장치
CN205899224U (zh) * 2016-08-08 2017-01-18 深圳市大疆创新科技有限公司 移动拍摄设备
JP6399140B2 (ja) * 2017-04-13 2018-10-03 株式会社ニコン 撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1573398A (zh) * 2003-06-19 2005-02-02 佳能株式会社 动力传动装置、透镜镜筒、以及摄像装置
CN1797058A (zh) * 2004-11-30 2006-07-05 夏普株式会社 透镜驱动装置、摄像组件及便携式电子设备
JP2007241000A (ja) * 2006-03-09 2007-09-20 Kyocera Corp カメラモジュールとそのカメラモジュールを備えた携帯端末
CN102401970A (zh) * 2010-09-15 2012-04-04 奥林巴斯株式会社 镜框、摄像装置、信息终端
CN103389557A (zh) * 2012-05-11 2013-11-13 奥林巴斯映像株式会社 摄像装置的透镜框驱动装置
CN204515217U (zh) * 2015-04-29 2015-07-29 中山联合光电科技股份有限公司 一种变焦镜头的传动装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083542A (zh) * 2019-06-14 2020-12-15 杭州海康威视数字技术股份有限公司 一种变焦摄像机

Also Published As

Publication number Publication date
US20200124822A1 (en) 2020-04-23
US10921550B2 (en) 2021-02-16
JP2019095487A (ja) 2019-06-20
CN110352372A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
US10545392B2 (en) Gimbal and unmanned aerial vehicle and control method thereof
WO2019096133A1 (zh) 透镜装置、摄像装置及移动体
US20200137312A1 (en) Photographing device, photographing system, mobile body, control method and program
US11194120B2 (en) Lens device, camera device, and movable body
JP6018331B1 (ja) レンズ装置、撮像システム、移動体、及び制御方法
JP6596740B2 (ja) レンズ装置、撮像システム、移動体
WO2018078736A1 (ja) レンズ装置、撮像システム、移動体、及び制御方法
JP6705104B2 (ja) レンズ装置、撮像装置、及び移動体
CN106060357B (zh) 成像设备、无人机及机器人
JP2020034643A (ja) 制御装置、撮像装置、制御方法、及びプログラム
WO2020216037A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
JP6844086B2 (ja) 撮像装置、及び移動体
JP6565071B2 (ja) 制御装置、撮像装置、飛行体、制御方法、及びプログラム
WO2020216039A1 (zh) 控制装置、摄像系统、移动体、控制方法以及程序
JP6743337B1 (ja) 制御装置、撮像装置、撮像システム、制御方法、及びプログラム
WO2021143425A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
JP6788153B2 (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
JP2018010082A (ja) 光学装置、移動体、保持位置調整方法、及びプログラム
US20210231908A1 (en) Control device, camera device, control method, and program
JP6318427B2 (ja) レンズ装置、撮像システム、移動体、及び制御方法
WO2020125453A1 (zh) 镜头装置、摄像装置及移动体
JP2020052379A (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
JP2021021828A (ja) レンズ装置、及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878822

Country of ref document: EP

Kind code of ref document: A1