WO2019095915A1 - 一种锌碘电池结构 - Google Patents

一种锌碘电池结构 Download PDF

Info

Publication number
WO2019095915A1
WO2019095915A1 PCT/CN2018/110553 CN2018110553W WO2019095915A1 WO 2019095915 A1 WO2019095915 A1 WO 2019095915A1 CN 2018110553 W CN2018110553 W CN 2018110553W WO 2019095915 A1 WO2019095915 A1 WO 2019095915A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
cation exchange
exchange membrane
battery structure
disposed
Prior art date
Application number
PCT/CN2018/110553
Other languages
English (en)
French (fr)
Inventor
王连卫
施方尧
申南熙
许春芳
徐少辉
朱一平
熊大元
陈少强
褚君浩
Original Assignee
华东师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东师范大学 filed Critical 华东师范大学
Priority to US16/764,860 priority Critical patent/US11165084B2/en
Publication of WO2019095915A1 publication Critical patent/WO2019095915A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/138Primary casings, jackets or wrappings of a single cell or a single battery adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • H01M50/1385Hybrid cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a battery structure, in particular to a zinc-iodine battery structure and a preparation method of the zinc-iodine battery, belonging to the fields of material science and engineering.
  • a water molecule is also brought to the other pole separated by the cation exchange membrane, from the positive electrode to the negative electrode during charging, and vice versa, from the negative electrode to the positive electrode, this change causes the positive and negative water volume changes, This in turn leads to a change in volume and ultimately to a change in pressure, the higher the concentration of ZnI 2 is, the stronger.
  • This kind of characteristic if there is no effective method to deal with, will not only limit the increase of the concentration of ZnI 2 , that is, limit the increase of energy density, and it is easy to cause damage to the battery.
  • the dendrite problem faced by general zinc batteries is also considered.
  • the working voltage of the zinc-iodine battery is close to the electrochemical window of water, and it is easy to generate hydrogen and oxygen at the two electrodes during charging. This poses a hidden danger to the safety of the fabricated battery.
  • An object of the present invention is to provide a zinc iodine battery structure and a method of fabricating the same, which solve the above problems of the prior art.
  • a zinc-iodine battery structure comprises a casing, wherein a cavity is formed in the casing, and a cation exchange membrane for dividing the cavity into two parts is arranged in the middle of the cavity; and a glass for protecting the cation exchange membrane is disposed on both sides thereof a fibrous member; a graphite felt impregnated with a ZnI 2 solution is disposed on the outer side of the glass fiber member; and a Bi powder having a thickness of less than 300 mesh is uniformly applied to the graphite felt at the output end of the negative electrode (the total amount of 0.5-1.5 mg/cm 2 is about the amount of zinc iodide) One thousand molecules a), the graphite felt at the output of the positive electrode is coated with less than 300 mesh Sm powder (the total amount of 0.5-1.5 mg / cm 2 is about one thousand molecules of zinc iodide); this measure can be used to solve the charging process Frequent bubble problems.
  • a carbon plate as a current extraction passage of the battery is
  • the return channel has an aspect ratio greater than 10 and a diameter between 0.5 and 1.5 mm, which is the key to solving the pressure change during charging and discharging.
  • the outer casing of the battery is made of PVC plastic.
  • the cation exchange membrane is a homogeneous cation exchange membrane.
  • the fiberglass member is selected from the group consisting of a glass mat or a glass cloth.
  • the glass fiber member protects the cation exchange membrane with a glass felt of about 1-10 mm thickness for suppressing dendrite growth.
  • the ZnI 2 solution has a molar concentration of from 1 to 5 mol/l.
  • the ZnI 2 solution is added with an alcohol having a volume of about 1/10 of the total volume, and the concentration of the alcohol and the effect thereof are explained.
  • the volume of the negative electrode must decrease when the volume of the positive electrode increases, and vice versa. Moreover, assuming that the system pressure is constant, the total volume of the positive and negative electrodes remains substantially constant.
  • a recirculation channel can be established between the positive and negative electrodes to allow the water carried by the zinc ions to flow back, thereby compensating for the pressure difference caused by the volume change of water molecules along with the zinc ions passing through the membrane (this device)
  • a pressure regulating bypass device such a channel is required to allow liquid to flow but the resistance is relatively large, that is, the electrical conductivity is relatively poor, so that electrical leakage or short circuit is not caused.
  • this problem can be solved by designing the geometry of the return channel, such as the width and aspect ratio.
  • the homogeneous cation exchange membrane with smaller resistance only allows the passage of positive ions, so that the self-discharge can be effectively reduced; the serious self-discharge problem is overcome;
  • the invention is a non-liquid flow battery, which eliminates the complicated liquid flow system, so that the zinc iodine battery can be applied to daily life like a dry battery.
  • the dendritic problem can be solved by using a glass fiber product (glass felt or glass cloth) to protect the separator.
  • the graphite felt at the output end of the negative electrode is evenly coated with ultrafine (less than 300 mesh) Bi powder (0.5-1.5 mg/cm 2 , the total amount is about one thousand molecules of zinc iodide) and the graphite felt at the positive output end.
  • ultra-fine (less than 300 mesh) Sm powder 0.5-1.5mg/cm2, the total amount is about one thousand molecules of zinc iodide. It effectively solves the bubble problem that occurs when charging.
  • Figure 1 is a schematic view of the mechanism of the present invention
  • a zinc-iodine battery structure as shown in FIG. 1 includes a casing in which a cavity is formed, and a cation exchange membrane for dividing the cavity into two portions is disposed in the middle of the cavity; a glass fiber member for protecting a cation exchange membrane; a graphite felt impregnated with a ZnI 2 solution on the outer side of the glass fiber member; and a carbon plate as a current extraction passage of the battery on the outer side of the graphite felt; between the two graphite felts A return channel is provided; the return channel has a length to diameter ratio of more than 10 and a diameter of between 0.5 and 1.5 mm, which is the key to solving the pressure change during charging and discharging.
  • the outer casing of the battery is made of PVC plastic.
  • the cation exchange membrane is a homogeneous cation exchange membrane.
  • the fiberglass member is selected from the group consisting of glass mats.
  • the glass fiber member protects the cation exchange membrane with a glass felt of about 1-10 mm thickness for suppressing dendrite growth.
  • the graphite felt needs to be subjected to the following treatment: the graphite felt at the output end of the negative electrode is evenly coated with ultrafine (less than 300 mesh) Bi powder (the total amount of 0.5-1.5 mg square centimeter is about one thousand molecules of zinc iodide) An ultrafine (less than 300 mesh) Sm powder (0.5-1.5 mg/cm 2 ) is applied to the graphite felt at the positive output end, and the total amount is about one thousand molecules of zinc iodide.
  • the ZnI 2 solution has a molar concentration of from 1 to 5 mol/l.
  • the ZnI 2 solution is added with an alcohol having a volume of about 1/10 of the total volume to improve the solvency of iodine.
  • ZnI 2 is purified, and an additional pure iodine element I 2 is added to the positive electrode in an amount of twice the total moles of zinc iodide.
  • the aqueous solution concentration of ZnI 2 may be from 1 mol/l to 5 mol/l, and that 1/10 of absolute ethanol of the total volume of the ZnI 2 solution is added to the solution.
  • the charging of a single battery follows the first current limit (recommended current density is less than 15mA/cm 2 ), and then the principle of constant voltage (recommended ⁇ 1.36V). Pay attention to the voltage of about 1.3V.
  • the storage capacity of this battery is equal to the concentration of zinc iodide. In proportion, the storage density of the 5 mol/l ZnI 2 electrolyte has been close to that of the lithium ion battery. In addition, the battery's ability to charge and discharge can be as long as thousands of times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Cell Separators (AREA)

Abstract

本发明公开了一种锌碘电池结构,包括外壳,所述的外壳内形成腔体,腔体的中间设置有将腔体分割成两部分的阳离子交换膜;其负极输出端设置有保护阳离子交换膜的玻璃纤维件;在玻璃纤维件的外侧设置有浸润有ZnI2溶液的石墨毡;负极输出端的石墨毡上敷有Bi粉,正极输出端的石墨毡上敷有Sm粉。在石墨毡的外侧设置有作为电池的电流引出通道的碳板;在两个石墨毡之间设置有回流通道。采用电阻较小的均相阳离子交换膜,克服了严重的自放电问题;采用开放流动系统的液流电池,有效解决了充放电过程中体积会变化导致的压强变化的问题。通过在阳离子交换膜的两侧,使用玻璃纤维制品使充电过程中生成的枝晶体无法到达隔膜,避免刺穿隔膜而导致短路。

Description

一种锌碘电池结构 技术领域
本发明涉及一种电池结构,具体为一种锌碘电池结构以及这种锌碘电池的制作方法,属于属于材料科学与工程领域。
背景技术
日常生活中,常用的可充电电池(亦称二次电池)有铅蓄电池和锂离子电池等,对于铅蓄电池,价钱便宜是一大优势,但铅对环境有害,目前欧洲许多国家已经开始禁用。锂离子电池具有能量密度高的优点,而且相对来说环境友好,但由于使用有机电解质,易着火,固态电解质的锂离子电池成本又比较高,而且还不成熟。这两种电池还有共同的缺点就是循环能力有限,象铅蓄电池,一般只达到500次左右,即使是最好的锂离子电池,目前也就是两千多次。因此迫切需要一种电池,它安全、环保,具有较高的储能密度和较好的循环能力,且造价还比较低,锌碘电池可以满足这一要求。
锌碘电池的最初报道是由美国西北大学PNNL国家实验室发出的,他们做的其实是锌碘液流电池,发表于Nature Communications 6,6303(2015)。从电池的储能特性看,其能量密度已接近磷酸铁锂电池,但液流电池的特征决定了其无法小型化。
我们对这种锌碘液流电池进行改造,试图摆脱液流装置的束缚,发现有两个问题:(1)如何克服严重的自放电问题?(2)充放电过程中体积会变化导致的压强变化。我们知道水也会微弱电离的,H 2O←→OH -+H +,而OH -又是Zn 2+的络合剂,可以形成[Zn(OH) n] 2-n(其中n=1,2,3,4,5)络合物,这样,充电或放电时Zn 2+、[Zn(OH)] +、H +都可以在电场力驱动下通过阳离子交换膜进入另一极,而[Zn(OH)] +不稳定,很容易变成[Zn(OH)] +←→Zn 2++OH -而OH -+H +→H 2O,这就相当于在交换锌离子的同时,将一个水分子也带到由阳离子交换膜分隔的另外一极,充电时由从正极带到负极,而放电时相反,从负极带到正极,这种变化导致了正负极水量的变化,进而导致体积的变化,并最终导致压强的变化,ZnI 2浓度越高越强烈。这种特性,如果没有有效方法应对,不仅会限制ZnI 2浓度的提高,亦即限制能量密度的提高,而且极易造成电池的损坏。除了两个主要问题,还要考虑一般性的锌电池所要面对的枝晶问题。此外,锌碘电池的工作电压与水的电化学窗口比较接近,充电时极易在两个电极产生氢气和氧气。从而给所制作的电池的安全带来隐患。
发明内容
本发明的目的是为了提供一种锌碘电池结构以及这种锌碘电池的制作方法;以解决现有技术的上述问题。
本发明的目的是通过以下技术方案来实现的。
一种锌碘电池结构,包括一外壳,所述的外壳内形成腔体,腔体 的中间设置有将腔体分割成两部分的阳离子交换膜;其两侧均设置有保护阳离子交换膜的玻璃纤维件;在玻璃纤维件的外侧设置有浸润有ZnI 2溶液的石墨毡;负极输出端的石墨毡上均匀敷上小于300目的Bi粉(0.5-1.5mg/平方厘米总量约为碘化锌量的一千分子一),在正极输出端的石墨毡敷上小于300目的Sm粉(0.5-1.5mg/平方厘米总量约为碘化锌量的一千分子一);采取该措施可解决充电过程常发生的气泡问题。在石墨毡的外侧设置有作为电池的电流引出通道的碳板;在两个石墨毡之间设置有回流通道;
所述的回流通道的长径比大于10,直径为0.5-1.5mm之间,它是解决充放电过程中压强变化的关键。
所述的电池的外壳采用PVC塑料。
所述的阳离子交换膜为均相阳离子交换膜。
所述的玻璃纤维件选自玻璃毡或玻璃布。
所述的玻璃纤维件采用大约1-10mm厚的玻璃毡保护阳离子交换膜,用来抑制枝晶生长。
所述的ZnI 2溶液的摩尔浓度为1-5mol/l。
所述的ZnI 2溶液中添加有体积约为总体积1/10容量的酒精,并且说明酒精的浓度和所起的作用)。
从正负电极体积的变化规律看,正极体积增大时负极体积必然减小,反之亦然。而且,假定系统压强不变,正负两电极的总体积是保持基本不变的。我们考虑能否在正负两侧电极间建立回流通道,让被锌离子带过去的水流回来,从而弥补因水分子随着锌离子穿过隔膜造 成体积变化而带来的压差(这一装置又称作压力调节旁路器)这样的通道要求能够让液体流过但电阻比较大,也就是说让导电能力比较差,从而不会造成电学上的漏电或短路。这样,通过对回流通道的几何形状(如宽度以及长径比等因素)的设计,该问题可以获得解决。
通过本发明技术方案设计而成的锌碘电池具有以下有益效果:
1、电阻较小的均相阳离子交换膜只容许正离子通过,从而可以有效地减小自放电;克服了严重的自放电问题;
2、本发明为非液流电池,省去了繁杂的液流系统,使得锌碘电池可以像干电池一样应用于日常生活。
3、通过在阳离子交换膜的两侧,使用玻璃纤维制品使充电过程中生成的枝晶体无法到达隔膜,避免刺穿隔膜而导致短路,也就可以使枝晶问题得到解决。也就是说,利用玻璃纤维制品(玻璃毡或玻璃布)护住隔膜,可以解决枝晶问题。
4、负极输出端的石墨毡均匀敷上超细(小于300目)的Bi粉(0.5-1.5mg/平方厘米,总量约为碘化锌量的一千分子一)而在正极输出端的石墨毡敷上超细(小于300目)的Sm粉(0.5-1.5mg/平方厘米,总量约为碘化锌量的一千分子一。有效解决充电时出现的气泡问题。
附图说明
图1为本发明的机构示意图;
图中,1、阳离子交换膜 2,3、玻璃纤维件 4,5、石墨毡 6, 7、碳板 8、回流通道。
具体实施方式
下面结合附图与具体实施例进一步阐述本发明的技术特点。
如图1所示的一种锌碘电池结构,包括一外壳,所述的外壳内形成腔体,腔体的中间设置有将腔体分割成两部分的阳离子交换膜;其两侧均设置有保护阳离子交换膜的玻璃纤维件;在玻璃纤维件的外侧设置有浸润有ZnI 2溶液的石墨毡;在石墨毡的外侧设置有作为电池的电流引出通道的碳板;在两个石墨毡之间设置有回流通道;所述的回流通道的长径比大于10,直径为0.5-1.5mm之间,它是解决充放电过程中压强变化的关键。
所述的电池的外壳采用PVC塑料。
所述的阳离子交换膜为均相阳离子交换膜。
所述的玻璃纤维件选自玻璃毡。
所述的玻璃纤维件采用大约1-10mm厚的玻璃毡保护阳离子交换膜,用来抑制枝晶生长。
所述的石墨毡需经过下列处理:负极输出端的石墨毡均匀敷上超细(小于300目)的Bi粉(0.5-1.5mg平方厘米总量约为碘化锌量的一千分子一)而在正极输出端的石墨毡敷上超细(小于300目)的Sm粉(0.5-1.5mg/平方厘米,总量约为碘化锌量的一千分子一。
所述的ZnI 2溶液的摩尔浓度为1-5mol/l。
所述的ZnI 2溶液中添加有体积为总体积约1/10容量的酒精,提 高碘的溶解能力。
在化学药剂方面,ZnI 2经过纯化,在正极需额外添加分析纯碘单质I 2,量为碘化锌总的摩尔数的2倍。ZnI 2的水溶液浓度可以是1mol/l至5mol/l,并需在溶液中添加ZnI 2溶液总体积的1/10的无水乙醇。
单节电池的充电遵循先限流(建议电流密度小于15mA/cm 2),再恒压(建议<1.36V)的原则,注意电压约为1.3V,这个电池的储电能力与碘化锌浓度成正比,5mol/l ZnI 2电解液的储能密度已经与锂离子电池接近。另外,这种电池充放电的循环能力也可以长达数千次。
我们还发现,这种电池没有过放电问题,因为即使在过放电后,按限流限压模式也很容易恢复,这是绝大部分二次电池都达不到的。

Claims (7)

  1. 一种锌碘电池结构,包括外壳,所述的外壳内形成腔体,其特征在于:腔体的中间设置有将腔体分割成两部分的阳离子交换膜;其负极输出端设置有保护阳离子交换膜的玻璃纤维件;在玻璃纤维件的外侧设置有浸润有ZnI 2溶液的石墨毡;其中,负极输出端的石墨毡上均匀敷上小于300目的Bi粉,正极输出端的石墨毡敷上小于300目的Sm粉;在石墨毡的外侧设置有作为电池的电流引出通道的碳板;在两个石墨毡之间设置有回流通道;所述的回流通道的长径比大于10,直径为0.5-1.5mm之间。
  2. 根据权利要求1所述的一种锌碘电池结构,其特征在于:所述的电池的外壳采用PVC塑料。
  3. 根据权利要求1所述的一种锌碘电池结构,其特征在于:所述的阳离子交换膜为均相阳离子交换膜。
  4. 根据权利要求1所述的一种锌碘电池结构,其特征在于:所述的玻璃纤维件选自玻璃毡或玻璃布。
  5. 根据权利要求1所述的一种锌碘电池结构,其特征在于:所述的玻璃纤维件采用大约1mm厚的玻璃毡保护阳离子交换膜。
  6. 根据权利要求1所述的一种锌碘电池结构,其特征在于:所述的ZnI 2溶液的摩尔浓度为1-5mol/l。
  7. 根据权利要求1所述的一种锌碘电池结构,其特征在于:所述的ZnI 2溶液中添加有体积为总体积1/10容量的酒精。
PCT/CN2018/110553 2017-11-17 2018-10-16 一种锌碘电池结构 WO2019095915A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/764,860 US11165084B2 (en) 2017-11-17 2018-10-16 Zinc-iodine battery structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711142958.4 2017-11-17
CN201711142958.4A CN108110294B (zh) 2017-11-17 2017-11-17 一种锌碘电池结构

Publications (1)

Publication Number Publication Date
WO2019095915A1 true WO2019095915A1 (zh) 2019-05-23

Family

ID=62206871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110553 WO2019095915A1 (zh) 2017-11-17 2018-10-16 一种锌碘电池结构

Country Status (3)

Country Link
US (1) US11165084B2 (zh)
CN (1) CN108110294B (zh)
WO (1) WO2019095915A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110294B (zh) * 2017-11-17 2021-05-25 华东师范大学 一种锌碘电池结构
CN109473735A (zh) * 2018-09-21 2019-03-15 华东师范大学 一种还原性氧化石墨烯的石墨毡的制备方法及其应用
CN113410478B (zh) * 2021-06-16 2022-09-06 中国科学技术大学 一种用于锌碘液流电池的石墨毡复合电极、其制备方法和应用
CN115693022B (zh) * 2022-11-23 2023-08-18 浙江大学杭州国际科创中心 一种基于共价有机框架的锌碘电池隔膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190664A (ja) * 1986-02-17 1987-08-20 Mitsui Toatsu Chem Inc 亜鉛−沃素二次電池のデンドライト防止法
CN101702427A (zh) * 2009-11-23 2010-05-05 中材科技股份有限公司 抗铅枝晶穿透电池隔膜的制备方法
CN103682357A (zh) * 2012-09-24 2014-03-26 海洋王照明科技股份有限公司 石墨烯复合电极材料与制备方法、铅碳电池负极铅膏与制备方法及铅碳电池
CN106252690A (zh) * 2016-08-12 2016-12-21 清华大学深圳研究生院 一种延长全钒液流电池循环寿命的方法及系统
CN108110294A (zh) * 2017-11-17 2018-06-01 华东师范大学 一种锌碘电池结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769670A (en) * 1980-10-17 1982-04-28 Toshiba Corp Solid electrolyte battery
JPS63150865A (ja) * 1986-12-15 1988-06-23 Mitsui Toatsu Chem Inc 電池
CN101593841B (zh) * 2008-05-30 2012-05-30 比亚迪股份有限公司 一种氧化还原液流电池和氧化还原液流电池组
CN103247816B (zh) * 2013-04-26 2016-09-14 北京好风光储能技术有限公司 一种半固态液流电池
US9748595B2 (en) * 2013-11-25 2017-08-29 Battelle Memorial Institute High-energy-density, aqueous, metal-polyiodide redox flow batteries
CN103928705A (zh) * 2013-12-25 2014-07-16 申思 锌氯电能储存装置
CN105742656B (zh) * 2014-12-11 2018-10-02 中国科学院大连化学物理研究所 一种锌碘液流电池
KR101719685B1 (ko) * 2015-08-12 2017-03-24 롯데케미칼 주식회사 레독스 흐름 전지의 충방전 제어 방법
US10727539B2 (en) * 2017-05-26 2020-07-28 Battelle Memorial Institute Zinc-iodine secondary energy storage methods, devices, and electrolytes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190664A (ja) * 1986-02-17 1987-08-20 Mitsui Toatsu Chem Inc 亜鉛−沃素二次電池のデンドライト防止法
CN101702427A (zh) * 2009-11-23 2010-05-05 中材科技股份有限公司 抗铅枝晶穿透电池隔膜的制备方法
CN103682357A (zh) * 2012-09-24 2014-03-26 海洋王照明科技股份有限公司 石墨烯复合电极材料与制备方法、铅碳电池负极铅膏与制备方法及铅碳电池
CN106252690A (zh) * 2016-08-12 2016-12-21 清华大学深圳研究生院 一种延长全钒液流电池循环寿命的方法及系统
CN108110294A (zh) * 2017-11-17 2018-06-01 华东师范大学 一种锌碘电池结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, BIN ET AL.: "Ambipolar Zinc-Polyiodide Electrolyte for a High-Energy Density Aqueous Redox Flow Battery", NATURE COMMUNICATIONS, vol. 6, 24 February 2015 (2015-02-24), XP055548294 *

Also Published As

Publication number Publication date
CN108110294B (zh) 2021-05-25
CN108110294A (zh) 2018-06-01
US11165084B2 (en) 2021-11-02
US20200343570A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019095915A1 (zh) 一种锌碘电池结构
CN103915262B (zh) 锂离子电容器负极预嵌锂的方法
CN104008893B (zh) 锂离子混合型电容器的制备方法及其锂离子混合型电容器
CN104051734B (zh) 一种多金属氧酸盐碳纳米管锂离子电池用电极材料及其制备方法
CN104795567B (zh) 基于碘离子溶液正极和有机物负极的水系锂离子/钠离子电池
CN108808080B (zh) 纳米复合凝胶电解质、锂二次电池及其制备方法
CN103050732B (zh) 一种钛酸锂基化学电源
JP2019517712A5 (zh)
CN111740177A (zh) 正极材料、正极、电池和电池组
CN106207242A (zh) 水系电解液和电池
CN106206063A (zh) 水系混合超级电容器及其制备方法
CN105428704B (zh) 一种改性氧化还原型固态电解质及其制备方法和应用
CN113871736A (zh) 一种复合负极极片、电池以及制备方法
CN110061299A (zh) 一种锂离子电池电极原位预嵌锂的方法
CN204315664U (zh) 一种铝硫电池用石墨烯/有机硫/聚苯胺复合材料正极
CN108550905B (zh) 一种纳米复合钒电解液及其制备方法和包括其的静态钒电池
CN105811478A (zh) 电池充电管理方法以及充电管理系统
CN104934634B (zh) 电池
CN210074028U (zh) 基于减少传质和扩散控制的多层电极及储能设备
CN103515610A (zh) 锂离子电极材料及锂离子动力电池
JP2011249238A5 (zh)
CN108400372A (zh) 一种宽温全固态锂离子电池
CN106129406B (zh) 一种光伏储能锂离子电池
JP2016192255A (ja) バナジウムレドックス電池
CN206040884U (zh) 多极耳圆柱型电池的电芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879468

Country of ref document: EP

Kind code of ref document: A1