WO2019093558A1 - 투광형 화합물 박막 제조 방법, 이로부터 제조된 화합물 박막 및 이러한 화합물 박막을 포함하는 태양 전지 - Google Patents

투광형 화합물 박막 제조 방법, 이로부터 제조된 화합물 박막 및 이러한 화합물 박막을 포함하는 태양 전지 Download PDF

Info

Publication number
WO2019093558A1
WO2019093558A1 PCT/KR2017/012916 KR2017012916W WO2019093558A1 WO 2019093558 A1 WO2019093558 A1 WO 2019093558A1 KR 2017012916 W KR2017012916 W KR 2017012916W WO 2019093558 A1 WO2019093558 A1 WO 2019093558A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thin film
forming
patterned
substrate
Prior art date
Application number
PCT/KR2017/012916
Other languages
English (en)
French (fr)
Inventor
이도권
이장미
김인호
정증현
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2019093558A1 publication Critical patent/WO2019093558A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a technique for selectively forming a light absorption layer thin film only on a specific region of an electrode using electrochemical deposition and selective electrodeposition, A compound thin film of a light transmitting type prepared therefrom, and a solar cell including such a light transmitting compound thin film.
  • Solar cells are classified into silicon solar cells, compound thin film solar cells, organic or hybrid solar cells depending on the type of light absorption layer.
  • CIS Copper Indium
  • CIGS Copper Indium Gallium
  • CZTS Cu 2 ZnSnS 4
  • the cell (hereinafter referred to as a compound thin film solar cell) has a high photoelectric conversion efficiency comparable to a polycrystalline silicon solar cell, and is advantageous in that it is chemically, optically and electrically stable, and light and flexible compared to an organic material-based solar cell.
  • a compound thin film solar cell is attracting attention as a next-generation solar cell that can expand the application of the solar cell to an area that can not be realized by a silicon solar cell (for example, a building window type, a curved surface type, etc.).
  • the solar cell manufactured by the former method can transmit only light of a long wavelength, so that the usable color is restricted to the red series. Therefore, the utilization of the product may be lowered.
  • the recombination loss at the interface between the back electrode and the light absorbing layer becomes larger, and the efficiency of the solar cell manufactured using the former method is lowered.
  • a thin film can be patterned simultaneously with the formation of a thin film without removing the light absorbing layer thin film, a light emitting thin film solar cell having characteristics of high material use efficiency without loss of a light absorbing layer material for imparting light transmittance And a method for producing the same can be provided.
  • the characteristics of the rear electrode, the light absorbing layer thin film or the interface thereof are deteriorated at the cut surface of the back electrode or the light absorbing layer formed as a result of patterning, Loss may occur, which may lead to a decrease in the efficiency of the solar cell.
  • the light transmittance can be given before the compound thin film solar cell in such a manner that the efficiency of the solar cell is not lowered, it is possible to manufacture a high value added solar cell superior in terms of cost, efficiency (output) Solar cell utilization and added value are expected to be even higher.
  • the present invention has been made in order to solve the problems described above, and it is an object of the present invention to provide an electrochemical deposition (or electrodeposition) electrodeposition method and a selective electrodeposition And to provide a method for producing a light-transmitting compound thin film having transparency.
  • Another object of the present invention is to provide a method of manufacturing a light-emitting type thin film solar cell, in which a patterned electrode is formed to prevent shunt and recombination loss caused by exposure of a side surface or a cut surface of the patterned electrode, (Or passivation film) on the side or cut surface of the light-emitting type compound thin film, which is produced from the method of producing the light-transmitting compound thin film described above.
  • a process of patterning the back electrode of the thin film solar cell is required.
  • the light generated on the side surface or the cut surface of the back electrode The thickness of the absorbing layer thin film becomes thin, and the quality of the thin film may also be deteriorated.
  • Another technical problem to be solved by the present invention is to form a light absorbing layer on the entire area of an electrode for imparting light transmittance to a thin film solar cell and then to remove a part of the light absorbing layer by mechanical or laser processing
  • a compound thin film of the above-mentioned light-transmitting type which can avoid the loss of the light absorbing layer material outside only and ensures the light transmitting property simultaneously with the formation of the light absorbing layer thin film.
  • Another technical problem to be solved by the present invention is to provide a light-emitting type compound thin film which can be applied to a building window, an automobile glass and a sunroof, a portable electronic device, and the like, Thereby providing a solar cell.
  • an electrochemical cell including an electrolytic solution prepared by mixing a precursor and a solvent, and a working electrode in which an electrode patterned with a specific pattern is formed on a substrate
  • a circuit configuration step of forming a electrodeposition circuit by connecting a chemical cell to a voltage application device or a current application device and applying a reduced voltage or current to the working electrode using the voltage application device or the current application device, And a thin film forming step of selectively depositing a thin film only on a partial area of the electrode according to the shape of the patterned electrode.
  • the method may further include forming an electrode substrate on which an electrode patterned with a specific pattern is formed on the predetermined substrate before the circuit forming step, Forming a passivation film on a predetermined region on the electrode, forming a passivation film on the predetermined region on the electrode, forming a passivation film on the electrode using a photolithography process for forming a photoresist on the electrode, And removing the photoresist formed on the electrode.
  • the method may further include forming an electrode substrate on which an electrode patterned with a specific pattern is formed on the predetermined substrate before the circuit forming step,
  • the method may include forming an electrode on the predetermined substrate, forming the specific pattern on the electrode using a laser, and forming a passivation film on a predetermined region on the electrode.
  • one surface of the electrode patterned with the specific pattern may be a side surface of the electrode on which the specific pattern is patterned, or a cut surface generated as the specific pattern is patterned on the electrode on which the specific pattern is patterned. have.
  • the thin film formed according to the thin film forming step may further include a heat treatment step of performing heat treatment in a selenium or sulfur-containing gas atmosphere.
  • the specific pattern may be a pattern of one or more circular or polygonal hollow holes.
  • the predetermined substrate is formed of soda-lime glass
  • the electrode patterned with the specific pattern may be formed of molybdenum (Mo).
  • the electrolyte solution may be produced to dissolve at least one of potassium chloride, sulfamic acid, potassium hydrogen phthalate, selenium dioxide, copper chloride hydrate, and indium chloride in distilled water to a predetermined pH .
  • the passivation film is formed of an oxide, a nitride, and / or a nitride of at least one metal selected from the group consisting of nickel, tungsten, molybdenum, copper, titanium, zinc, tin, iron, chromium, aluminum, silicon,
  • the passivation film may be formed in any one of the electrode and the electrode and the passivation film may be formed in a predetermined region on the electrode by sputtering, thermal evaporation, e-beam evaporation and atomic layer deposition ), Spin coating, doctor blading, spraying, electro-spraying, or electrodeposition coating to form a passivation film on a predetermined area on the electrode.
  • a compound thin film formed by the method for producing a compound thin film according to an embodiment of the present invention.
  • a solar cell including the above-described compound thin film.
  • a thin film already formed using selective electrochemical deposition It is possible to provide a thin film of a compound which secures translucency simultaneously with the synthesis of a thin film.
  • a light transmitting type thin film solar cell having no loss of light transmittance by a passivation film can be manufactured.
  • the present invention it is possible to provide a thin film solar cell having light transmittance (light fastness) and aesthetics and high efficiency (or high output).
  • a thin film solar cell capable of mass production by using an electrodeposition technology applicable at room temperature and atmospheric pressure, which is lower in initial facility investment and process cost than a vacuum process, A manufacturing process can be realized.
  • the light emitting type solar cell according to the present invention is characterized by high light-emitting property, aesthetic property, low cost and high output, it is composed of an inorganic compound and is superior in terms of stability. ) Can be applied as high value-added solar cells.
  • the present invention it is possible to realize a light projecting type solar cell in which the method of controlling the light transmittance of the light absorbing layer is simple, manufacturing productivity is improved, and multistage and strict process control is unnecessary.
  • FIG. 1 is a flow chart illustrating a procedure of a method of manufacturing a compound thin film according to an embodiment of the present invention.
  • FIG. 2 and FIG. 3 are flowcharts illustrating a procedure of the electrode substrate forming step according to an exemplary embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a part of a process for producing a compound thin film according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a configuration of an electrodeposition circuit using an electrochemical cell for producing a compound thin film according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional SEM photograph of the patterned and passivated electrode according to an experimental example of the present invention.
  • FIG. 7 is a cross-sectional SEM photograph of a thin film selectively formed on the patterned and passivated electrode according to an experimental example of the present invention.
  • FIG. 8 is a diagram for comparing light transmittance characteristics of a thin film formed in a passivation film formed according to an experimental example of the present invention and a thin film formed without a passivation film according to a comparative example 2.
  • FIG. 8 is a diagram for comparing light transmittance characteristics of a thin film formed in a passivation film formed according to an experimental example of the present invention and a thin film formed without a passivation film according to a comparative example 2.
  • FIG. 9 is a view showing an example of a photovoltaic cell manufactured according to an experimental example of the present invention and a conventional photovoltaic cell manufactured by a conventional technique.
  • FIG. 10 is an SEM cross-sectional photograph of an electrode which is patterned according to Comparative Example 2 but does not include a passivation film.
  • FIG. 11 is an SEM cross-sectional photograph of a thin film selectively formed on an electrode which is patterned according to Comparative Example 2 but does not include a passivation film.
  • FIG. 12 is a SEM photograph showing a cross section of a solar cell manufactured according to an experimental example of the present invention.
  • FIG. 13 is a graph showing current-voltage characteristics of a solar cell device including a thin film manufactured according to an experimental example and a comparative example 2 of the present invention.
  • FIG 14 is a graph showing a result of a diode analysis on a current-voltage curve of a solar cell element manufactured by an experimental example and a comparative example 2 of the present invention.
  • step " and " process " for components used in the following description are given or mixed in consideration of ease of specification, and do not have their own meaning or role.
  • a detailed description of related art is omitted when it is determined that the gist of the embodiments disclosed in the present specification may be blurred.
  • FIG. 1 is a flow chart showing a procedure of a method for producing a compound thin film according to an embodiment of the present invention (hereinafter referred to as “compound thin film producing method (1)”)
  • FIG. 4 is a schematic diagram showing a partial process of the compound thin film production method (1).
  • FIG. 4 is a flowchart illustrating a procedure of a detailed procedure of an electrode substrate production step (S100) according to an embodiment.
  • the compound thin film manufacturing method (1) includes a circuit forming step (S200) for forming an electrodeposition circuit using an electrodepositing circuit (100) using an electrochemical cell and a thin film forming step (S300) for synthesizing a thin film.
  • an electrochemical cell including an electrolytic solution prepared by mixing a predetermined precursor and a solvent and a working electrode in which electrodes patterned with a specific pattern are formed on a predetermined substrate is applied to a voltage application device or a current Thereby forming an electrodeposition circuit.
  • a reducing voltage or a current is applied to the working electrode to selectively deposit a thin film on the electrode according to the shape of the electrode patterned with the specific pattern.
  • the compound thin film manufacturing method (1) may further include an electrode substrate forming step (SlOO) in which a specific pattern providing a position at which the thin film is to be formed is formed before the circuit forming step (S200).
  • the electrode substrate generating step S100 is a detailed process, Forming a passivation film or a recombination preventing film in a predetermined region on the electrode (S110), forming a photoresist on the electrode using the photolithography process (S120) (S130), and removing the photoresist formed on the electrode (S140).
  • the electrode substrate forming step S100 may include forming an electrode on the predetermined substrate S110, forming the specific pattern on the electrode using the laser S121 And forming a passivation film or a recombination preventing film in a predetermined area on the electrode (S130).
  • photolithography or laser processing may be used according to various embodiments of the present invention, but the present invention is not limited thereto.
  • the predetermined substrate described in this specification may be formed of soda-lime glass, and the electrode patterned with a specific pattern may be used as a back electrode of the solar cell and may be formed of molybdenum (Mo) And the specific pattern may be, but not limited to, a pattern of one or more circular or polygonal hollow holes.
  • the material of the substrate and the electrode may be selected from any material capable of forming the substrate and the electrode, and the patterned pattern may be modified in any form.
  • the electrolyte solution described in this specification is a solution in which the electrolyte solution contains potassium chloride (KCl) sulfamic acid (HSO 3 NH 2 ), potassium hydrogen phthalate ((KOOC) C 6 H 4 COOH), selenium dioxide (SeO 2 ) copper chloride dehydrate and indium chloride may be dissolved in distilled water to produce a predetermined pH.
  • the electrochemical cell described in this specification may include a counter electrode formed of platinum in addition to the working electrode, And may further comprise a reference electrode formed of silver or silver chloride.
  • a predetermined region of the electrode patterned with the specific pattern in the electrode substrate formation step S100 may be formed on the side of the patterned electrode or on the electrode patterned with the specific pattern, Lt; / RTI >
  • the passivation film may be formed of nickel, tungsten, molybdenum, copper, titanium, zinc, tin, iron, chromium, aluminum, or the like in the step of forming the passivation film or the recombination preventing film in predetermined regions on the electrodes shown in FIGS. Silicon, magnesium, or an alloy thereof, but it is possible to prevent shunt and recombination loss caused by exposure of the side surface or the cut surface of the patterned electrode, Can be used as long as it is a material having no solar cell light transmittance loss due to application of a passivation film.
  • the step of forming the passivation film or the recombination preventing film in the predetermined region on the electrode (S130) may be performed by a vacuum process such as sputtering, thermal evaporation, e-beam evaporation, atomic layer deposition, A passivation film or a recombination preventing film is formed on a predetermined region on the electrode using any one of a vapor deposition method, a non-vacuum coating method such as spin coating, doctor blading, spraying, electro-spraying and electrodeposition Process.
  • a vacuum process such as sputtering, thermal evaporation, e-beam evaporation, atomic layer deposition
  • a passivation film or a recombination preventing film is formed on a predetermined region on the electrode using any one of a vapor deposition method, a non-vacuum coating method such as spin coating, doctor blading, spraying, electro-spraying and electrodeposition Process.
  • the compound thin film manufacturing method (1) may further include a heat treatment step (S400) after the thin film forming step (S300).
  • the thin film formed in the thin film formation step S300 may be heat-treated in a selenium (Se) or sulfur (S) containing gas atmosphere, but it is not necessarily performed in a selenium or sulfur- Type gas atmosphere, and the heat treatment temperature and time can be variously set.
  • reference numeral 401 denotes a substrate corresponding to the predetermined substrate described with reference to FIGS. 1 to 3 1 to 3
  • reference numeral 403 denotes a photoresist as described with reference to FIGS. 1 to 3
  • reference numeral 404 denotes a passivation film as described with reference to FIGS. 1 to 3
  • a recombination preventing film, and 405 may be the thin film described with reference to Figs.
  • Reference numeral 410 denotes a schematic diagram of the process of forming the electrode 402 on a predetermined substrate 401 in step S110.
  • Reference numeral 420 denotes a photoresist 403 (or a photoresist layer) having a specific pattern formed on the electrode And it may correspond to the step S120.
  • Reference numeral 430 denotes a passivation film 404 (or a passivation layer) formed on the photoresist 403, which corresponds to S130, and 440 corresponds to S140 after removing the photoresist 403.
  • the 450 is a schematic representation of the formation of the thin film 405 at step S300 or step S400.
  • the thin film 405 may serve as a light absorbing layer, and the solar cell formed to include the thin film 405 may include a part It can have a light transmitting property by hollow holes.
  • FIG. 5 is a schematic diagram showing a configuration of a electrodeposition circuit 100 using an electrochemical cell for performing a circuit forming step S200 and a thin film forming step S300 of the compound thin film manufacturing method (1).
  • the electrodeposition circuit 100 using an electrochemical cell is formed by filling an electrolyte solution 140 in an electrolytic bath and providing a substrate, a working electrode 110, a counter electrode 150, a reference electrode 130, And may further include a light source 170 for providing light, that is, an illumination light.
  • the electrolyte solution 140 may include additives such as a precursor of the elements constituting the CIS-based compound, a solvent, and other counter ion sources and a complexing agent.
  • the precursor may be a metal such as copper (Cu), indium (In), gallium (Ga), tin (Zn), zinc (Sn), silver (Ag) and aluminum (Al) sulphate, it may be nitrate, acetate or hydroxide, selenium oxide (SeO 2), selenite acid (H 2 SeO 3) or, but may be a non-metallic precursor such as chloride, selenium (SeCl 4), with various embodiments of the present invention;
  • the precursor used may be any material or compound capable of forming a CIS-based thin film by electrodeposition.
  • the atomic ratio of Cu, In and Se contained in the electrolyte solution 140 containing such a precursor is 0.8 To 1.2: 1 to 5: 1.8 to 2.2.
  • the atomic ratio described above may be 1: 4: 2.
  • the precursor described above is mixed with an appropriate solvent to prepare an electrolyte solution.
  • the precursor may be dissolved, and a sufficient amount of electricity Any solvent having conductivity can be used without limitation.
  • the solvent used in preparing the electrolyte solution in the circuit configuration step S200 may be water, alcohol, or a mixture of water and alcohol.
  • the pH of the electrolytic solution prepared by mixing the precursor and the solvent through the circuit configuration step (S200) may be maintained in the range of 1.5 to 3. This is because, when the pH of the electrolyte solution 140 is less than 1.5 or more than 3, it is difficult to produce a uniform thin film, and a problem of precipitation of a plate phase such as CuSe may occur. However, it is not necessarily limited to such a pH value.
  • the electrolyte solution 140 may further include, as an additive, a supporting electrolyte and a complexing agent in addition to the precursor and the solvent.
  • the supporting electrolyte is for increasing the electrical conductivity of the electrolyte solution, and may be formed of a material such as potassium chloride (KCl) or lithium chloride (LiCl).
  • the complexing agent is a material for controlling the mobility of the specific ion in the electrolyte solution, for example, triethanolamine (N (CH 2 CH 3) 3), citric acid (C 6 H 8 O 7) , tartaric acid (C 4 H 6 O 6), sulfamic acid (from the group consisting of NH 2 SO 3 H), sodium citrate (Na 3 C 6 H 5 O 7) and phthalic acid potassium (C 8 H 5 KO 4) , thio cyanide, potassium (KSCN) Any one or a mixture of two or more selected may be used, but is not limited thereto.
  • the electrolytic bath can be made transparent by using a transparent material such as quartz or glass.
  • the substrate may be a substrate containing a molybdenum, to which a CIS compound as a light absorbing layer is electrodeposited.
  • substrates containing molybdenum have excellent electrical conductivity, are relatively inexpensive, have a similar thermal expansion coefficient to a CIS compound as a light absorbing layer, and are excellent in ohmic contact.
  • a metal substrate may be used as the substrate.
  • molybdenum may not be included.
  • the material of the substrate is not limited.
  • the counter electrode 150 and the reference electrode 130 may be widely used in electrodeposition.
  • the size, shape, and the like of the counter electrode 150 and the reference electrode 130 may be variously configured without limitation.
  • a platinum (Pt) electrode may be used as the counter electrode 150, and when a molybdenum substrate is used as a substrate to which the CIS compound is electrodeposited and a platinum electrode is used as the counter electrode 150 , And the schematic diagram of the electrodeposition circuit is the same as "(-) Mo
  • the compound thin film (CIS) ii) the reduction reaction of the cations occurring at the CIS / electrolyte interface, iii) in the electrolyte, And iv) the oxidation reaction of the anions occurring at the counter electrode Pt are sequentially performed to form one closed circuit.
  • the thickness of the compound thin film formed through electrodeposition, t is proportional to the amount of electric charge flowed into the electrodeposition circuit as shown in the following Equation 1:
  • I, t ED , n, F, M, A, and ⁇ are the sum of the currents flowing through the electrodeposition circuit, the time taken for electrodeposition, , The Faraday constant, the molecular weight of the compound, the area of the thin film, and the density of the thin film.
  • the current flowing under a given voltage is proportional to the reaction rate of steps i) to iv), and if either of these reactions is relatively slow compared to the rest, the overall reaction rate is determined by this slowest reaction step.
  • light is used as a catalyst for the overall reaction comprising i) to iv), and the total reaction rate is increased by accelerating the rate of the slowest of the irradiated lights i) to iv) And the like.
  • the compound thin film manufacturing method (1) is a method of forming a compound thin film on a surface of a thin film by placing a pattern shielding means 120 on the working electrode 110 and performing photoelectrochemical deposition (photoelectrochemical deposition) It is possible to provide a compound thin film having a desired pattern on its surface due to the difference in thickness between a region where light is received and a region where light is not received.
  • the light source 170 must be capable of irradiating the entire area of the substrate, and if the light to be irradiated has a wavelength smaller than the wavelength corresponding to the bandgap of the compound semiconductor manufactured by electrodeposition, Various kinds of illumination lamps can be used without any limitation.
  • the thin film growth thickness difference in the region where the light is received (the region where the light reaches) and the region where the light is shielded by the photomask (the region where the light does not reach) during the thin film growth by the photo-electrodeposition may have a surface pattern corresponding to the shape of the light shielding means 120 as well as having a light transmitting property by patterning a specific pattern of a hollow hole pattern Lt; / RTI >
  • the photomask can be used without limitation as long as it is chemically stable in the electrolyte solution 140.
  • the antireflection film may be provided on the back surface of the photomask in order to significantly induce the thickness difference of the compound thin film due to the cut-off of light. That is, according to the photo-electrodeposition performed in various embodiments of the present invention, a thinner film than that of the conventional electrodeposition method can be manufactured under the condition of the same electric field intensity.
  • the thin film forming step S300 through application of a current or a voltage can be performed at a room temperature and an atmospheric pressure, for example, at a temperature of 0 to 80 DEG C and at a pressure of 0.9 to 1.1 atm. May be a voltage in the range of -0.4 to -0.6 V (e.g., -0.5 V), but is not limited thereto.
  • the voltage application time may be 1 to 130 minutes.
  • a process of applying a reducing voltage or current to the working electrode by the current or voltage supply device 160 and a process of irradiating light toward the light shielding means using the light source 170 may be performed together.
  • the thin film forming step S300 may be performed by using Cu, In, Ga, Se individual elements or two or more kinds of alloying elements (for example, Cu-In, Cu-Ga) (Or a CIGS single film) by stacking a plurality of stacks (for example, Cu-Se, In-Se, Ga-Se) on a stack and then performing a heat treatment process.
  • alloying elements for example, Cu-In, Cu-Ga
  • stacks for example, Cu-Se, In-Se, Ga-Se
  • Such a thin film forming method can ensure a relatively faster process speed than the thin film forming method by the above-described electrodeposition circuit, and can also be applied to an inline process.
  • the color layer formed through the color layer forming step may be a layer formed of CuSe.
  • the compound thin film manufacturing method (1) may further include a heat treatment step (S400) as described above, and the heat treatment step (S400) may include a step of forming a thin film of electrodeposited compound, A process for densification of the structure, wherein the heat treatment temperature may be from 200 ° C to 700 ° C.
  • selenium or sulfur in the gaseous phase can react with molybdenum to form selenium molybdenum (MoSe 2 ) or molybdenum sulfide (MoS 2 ), and a suitable thickness of selenium molybdenum disulfide or molybdenum sulfide Denium can enhance the adhesion and ohmic contact.
  • MoSe 2 selenium molybdenum
  • MoS 2 molybdenum sulfide
  • a suitable thickness of selenium molybdenum disulfide or molybdenum sulfide Denium can enhance the adhesion and ohmic contact.
  • 50 to 150 nm may be set as an appropriate thickness, but it is not limited thereto.
  • the compound thin film finally prepared according to the compound thin film production method (1) may be a thin film of a CIS type compound and may have the following composition.
  • Each of A and B is independently any one selected from the group consisting of In, Ga, Zn, Sn and Al, and 0? X and y? 1.
  • examples of the CIS-based thin film include a copper indium-selenium (CIS) thin film, a copper indium gallium selenium (CIGS) thin film or a copper zinc tin oxide (CZTS) thin film.
  • the compound thin film prepared according to the production method (1) may be such a CIS-based thin film.
  • various embodiments of the present invention can provide a CIS-based thin film or a compound thin film manufactured by electrochemical deposition, selective electrodeposition, and self-accelerated photoelectrochemical deposition, Such a CIS-based thin film or a compound thin film can be used as a light-absorbing thin film of high efficiency and high quality because of its dense microstructure, flat surface and uniformity. Especially, a thin film having a copper-deficient composition essential for a high- . Further, various embodiments of the present invention may provide a thin film solar cell using such a high-quality thin film as a light absorbing layer.
  • a high-value-added solar cell having both translucency and esthetics can be realized.
  • the process for patterning the back electrode is as follows.
  • a photoresist (photoresist) is laminated on the rear electrode.
  • HMDS hexamethyldisilazane
  • a photoresist is applied to improve adhesion between the substrate and the photoresist.
  • HMDS was spin-coated at 3000 rpm for 30 seconds.
  • the photoresist was spin-coated at 1000 rpm for 10 seconds using Merck's AZ 5214E material and then spin-coated at 5000 rpm for 40 seconds.
  • the rear electrode substrate was subjected to a soft-bake treatment for 120 seconds on a hot-plate at 120 ° C., and chromium Cr) photomask was aligned to perform an exposure process.
  • the pattern of the chrome mask is a pattern in which circular chrome having a diameter of 90 ⁇ m is arranged at right and left sides and 146 ⁇ m apart at the top and bottom, respectively.
  • the light absorbing layer is designed to have an aperture ratio and light transmittance of about 30% .
  • the rear electrode substrate after the exposure was developed for 45 seconds using an aqueous solution of TMAH (Tetramethylammonium hydroxide) as a developer as a developer. Thereafter, the developer and the remaining photosensitive agent were removed with distilled water and sufficiently dried.
  • TMAH Tetramethylammonium hydroxide
  • the rear electrode substrate was immersed in an etching solution capable of removing molybdenum, and a portion not covered with the photoresist was etched (etched) and removed to form a pattern on the rear electrode.
  • TWME-600 (PUWAN CHEMICAL CO., LTD.), which is a main raw material of nitric acid, was used as the etching solution.
  • a passivation film for preventing shunt and recombination loss of the solar cell on the side or cut surface of the patterned rear electrode 0.7 M of nickel acetate dihydrate and 0.7 M of ethanolamine were dissolved in 2 ml of anhydrous isopropyl alcohol, The precursor solution was prepared by reacting on a hot plate at 300 rpm for 12 hours, and then the passivation film precursor solution was spin-coated on the patterned rear electrode substrate at 3000 rpm for 30 seconds.
  • the photoresist on top of the patterned back electrode was removed using acetone solution and a heat treatment process was performed for 1 hour on a hot plate at 275 DEG C to oxidize the passivation precursor film applied on the side of the back electrode pattern or on the cut surface.
  • Electrolyte solutions for electrodeposition were prepared by dissolving 240 mM potassium chloride, 12 mM sulfamate, 12 mM potassium phthalate, 5.2 mM selenium dioxide, 2.4 mM copper chloride and 9.6 mM indium chloride in 120 mL of distilled water to maintain the pH at 2.2. .
  • a rear electrode substrate having passivation of the pattern side surface or a cut surface in a prepared electrolyte solution is used as a working electrode, a platinum (Pt) )
  • a silver-silver chloride electrode (Ag / AgCl) as a reference electrode and applying a constant voltage of -0.56 V to the reference electrode using a PARSTS MC potentiostat of AMETEK for 5400 seconds to form a CIS- .
  • the CIS-based light absorbing layer can be formed only on the remaining area except the area where the molybdenum rear electrode is etched and removed.
  • the prepared CIS thin film was placed in a quartz tube and heat-treated at 580 ° C for 30 minutes.
  • selenium (Se) was added to the alumina crucible in the quartz tube and the argon (Ar) gas was flowed constantly at a rate of 100 sccm.
  • a molybdenum back electrode is etched and a molybdenum-covered passivation film on a side surface or a cross- As shown in FIG. 6,
  • the CIS-based thin film is selectively formed according to the shape of the substrate on which the pattern side surface or the cut surface is passivated according to an experimental example of the present invention.
  • FIG. 8 is a graph showing the relationship between the CIS-based light-absorbing layer thin film produced by the above-described Experimental Example and the CIS-based light-absorbing layer thin film prepared without the passivation film by a comparative example described later, in order to confirm whether the light transmittance of the solar cell is inhibited by forming the passivation film (PerkinElmer Co., Ltd., Lamda 35).
  • the results are shown in Table 1. < tb > < TABLE >
  • the loss of the transmittance of the solar cell manufactured according to one experimental example of the present invention is less than 1% as compared with the comparative example described later. That is, according to an experimental example of the present invention, it is possible to form a passivation film on a side surface or a cut surface of a patterned rear electrode, and to manufacture a solar cell having a high light transmittance as designed by a photomask, .
  • a CIS-based thin film was formed by the same electrodeposition method using the electrolyte solution prepared in the same manner as in the above-mentioned Experimental Example, and a CIS-based light absorbing layer was prepared on the non-patterned rear electrode substrate.
  • FIG. 9 (a) and 9 (b) are views showing a comparison between the light-transmitting CIS-based solar cell manufactured according to the above-described experimental example and the conventional CIS-based solar cell produced according to the comparative example 1 , And FIG. 9 (c) is an enlarged view of FIG. 9 (a).
  • the CIS-based thin film produced on Comparative Example 1 is opaque whereas the CIS-based thin film formed on the rear electrode on which the side or cut surface of the pattern is passivated is semitransparent And the like.
  • a CIS-based thin film was formed by the same electrodeposition method using the electrolyte solution prepared in the same manner as in the above Experimental Example, except that a passivation film was not formed on the side or cut surface of the pattern in the patterned rear electrode formation process, A substrate was prepared, and a CIS-based light absorbing layer thin film was prepared thereon.
  • the CIS light absorbing layer thin films prepared in Experimental Example and Comparative Example 2 were immersed in an aqueous solution containing cadmium sulfate, thiourea, ammonia water, and distilled water at 60 ° C for 15 minutes to immerse the CdS thin film as a buffer layer,
  • a window layer was formed by depositing a zinc oxide (ZnO) layer and an aluminum-doped Al-deped ZnO layer by RF sputtering.
  • a nickel and aluminum layer used as a collector electrode was deposited to a thickness of 50 nm and 400 nm, respectively, using a vacuum evaporator, thereby completing a solar cell device.
  • FIG. 12 is a SEM photograph showing a cross section of a CIS solar cell manufactured according to an experimental example of the present invention.
  • the graph of the current-voltage characteristics of each solar cell device was measured using a solar simulator (Yamashita Denso Corp., YSS-50S).
  • 13 (a) and 13 (b) are graphs showing the current-voltage characteristics of the solar cell device using the CIS-based light-absorbing layer thin films prepared in Experimental Example and Comparative Example 2, respectively.
  • the solar cell manufactured in Comparative Example 2 has an open circuit voltage (V OC ) of 0.374 V, a short circuit current density (J SC ) of 39.4 mA / cm 2 , a filling rate of 0.506, and a photoelectric efficiency of 7.46% While the solar cell manufactured according to one experimental example of the present invention had an open circuit voltage of 0.411 V, a short circuit current density of 38.4 mA / cm 2 , a filling rate of 0.590, and a photoelectric efficiency of 9.31%. Therefore, it can be seen from FIG. 13 that the open circuit voltage, the filling rate, and the photoelectric efficiency are significantly increased in the solar cell manufactured according to the experimental example of the present invention, compared with the solar cell device manufactured by the comparative example 2.
  • the shunt conductance was 0.99 mS cm -2 to 0.77 mS cm -2
  • the reverse saturation current also referred to as the recombination current
  • the loss due to shunting and recombination can be effectively reduced by applying the passivation film to the solar cell with the patterned rear electrode side or cut surface produced according to various embodiments of the present invention.
  • the present invention it is possible to provide a light projecting type thin film solar cell having light transmittance and aesthetics and high output.
  • the electrodeposition technique applicable at room temperature and atmospheric pressure is used for manufacturing a light-transmissive thin film solar cell, manufacture of a thin film for a solar cell capable of mass- Process can be realized.
  • the light-transmissive thin film solar cell is characterized by high aesthetics, low cost, and high output, and is superior in terms of stability since it is composed of an inorganic compound. It can be applied as a high-value-added solar cell as a battery (VIPV) or the like.
  • VIPV battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 전기화학적 침착법(electrochemical deposition)과 선택적 전착법(selective electrodeposition)을 이용하여 전극 상에 광흡수층 박막을 선택적으로 형성함으로써 투광형의 화합물 박막을 제조하는 기술에 관한 것이다. 본 발명에 따르면, 소정의 전구체와 용매를 혼합하여 제조된 전해질 용액과, 기 준비된 기판 상에 특정 패턴이 패터닝된 전극이 형성된 형태의 작업전극을 포함하는 전기 화학 전지를 전압 인가 장치 또는 전류 인가 장치에 연결하여 전착 회로를 구성하는 회로 구성 단계와, 상기 전압 인가 장치 또는 전류 인가 장치를 이용하여 상기 작업전극에 환원 전압 또는 전류를 인가하고, 상기 특정 패턴이 패터닝된 전극의 형상에 따라 상기 전극 상의 일부 영역에만 박막이 선택적으로 전착되는 박막 형성 단계를 포함하는 화합물 박막 제조 방법을 제공할 수 있다. 또한 본 발명에 따르면, 투광형 박막 태양 전지 제조를 목적으로 패터닝된 전극의 측면 또는 절단면의 노출로 인해 발생하는 션트(shunt) 및 재결합 손실을 방지하기 위해, 패터닝된 전극의 측면 또는 절단면 위에 산화물 기반 재결합 방지막(또는 패시베이션 막)을 포함하는 투광형 화합물 박막을 제조하는 방법을 제공할 수 있다.

Description

투광형 화합물 박막 제조 방법, 이로부터 제조된 화합물 박막 및 이러한 화합물 박막을 포함하는 태양 전지
본 발명은 전기화학적 침착법(electrochemical deposition)과 선택적 전착법(selective electrodeposition)을 이용하여 선택적으로 전극 상의 특정 영역에만 광흡수층 박막을 형성하는 기술에 관한 것으로, 특히, 이러한 기술을 이용하여 광투과도를 갖는 투광형의 화합물 박막을 제조하는 방법, 이로부터 제조된 투광형의 화합물 박막 및 이러한 투광형의 화합물 박막을 포함하는 태양 전지에 관한 것이다.
기후변화협약과 함께 환경오염 문제와 온실가스에 의한 지구온난화에 대한 관심이 증폭되면서, 친환경 재생 에너지원으로서의 태양 전지에 대한 관심이 높아지고 있다. 태양 전지는 광흡수층의 종류에 따라 실리콘 태양 전지, 화합물 박막 태양 전지, 유기 또는 하이브리드 태양 전지 등으로 분류된다.
현재의 전 세계 태양 전지 시장은 실리콘 태양 전지가 주도하고 있으나, 우리나라와 같이 국토 면적이 제한된 환경에서는 건물이 밀집한 도심에서도 활용 가능한 형태의 태양 전지 개발이 절실하다. 왜냐하면, 실리콘 태양 전지는 무겁고, 불투명하며, 결정질 실리콘 특유의 일률적이고 투박한 외관 때문에 건물, 자동차, 휴대용 전자기기 등으로의 응용은 극히 제한적이기 때문이다.
한편, 박막으로 구성되어 무게가 가볍고 유연한(flexible) 형태를 띨 수 있어, 응용 분야의 비약적 확장이 가능한 박막 태양 전지에 대한 관심과 투자가 점점 커지고 있다.
CIS(CuInSe2, 셀렌화구리인듐) 또는 CIGS(Cu(In1-xGax)Se2, 셀렌화구리인듐갈륨) 및 CZTS(Cu2ZnSnS4, 황화구리아연주석)로 대표되는 화합물 기반 박막 태양 전지(이하, 화합물 박막 태양 전지)는 다결정 실리콘 태양 전지에 필적하는 높은 광전변환효율을 갖고, 유기물 기반의 태양 전지에 비해 화학적, 광학적, 전기적으로 안정하면서도 가볍고 유연하게 제조할 수 있다는 장점이 있다. 따라서, 이러한 화합물 박막 태양 전지는 실리콘 태양 전지가 구현할 수 없는 분야(예를 들면 건물 창호형, 곡면 대응형 등)로 태양 전지의 응용을 확장할 수 있는 차세대 태양 전지로 각광받고 있다.
그러나 종래의 CIGS 박막 태양 전지의 경우, 몰리브덴(Mo)과 같은 금속 후면 전극과 광흡수층 박막에 의해 광투과가 불가하므로, 불투명한 특성을 나타낸다. 따라서, 이러한 종래의 CIGS 박막 태양 전지는 건물 창호, 자동차 유리 및 썬루프, 휴대용 전자기기 등 투광성(채광성)이 요구되는 제품 분야에 응용될 수 없는 한계를 지니고 있었다.
CIGS와 같은 화합물 박막 태양 전지에 투광성을 부여하기 위한 방법으로는, 후면 전극을 투명 전도성 산화물 전극으로 대체하고 광 투과가 가능할 정도도 광흡수층을 얇게 형성하는 방법과, 불투명한 후면전극 및 광흡수층 박막에 중공 홀을 패터닝하여 형성하는 방법이 있다.
그러나, 상술한 방법들 중 전자의 방법에 의해 제조된 태양 전지는 장파장의 빛만 투과시킬 수 있어 구현 가능한 색이 적색 계열에 국한되므로 제품의 활용도가 떨어질 수 있고, 광투과도를 높이기 위해 광흡수층 박막을 얇게 만들수록 후면 전극과 광흡수층 계면에서의 재결합 손실이 커져 전자의 방법을 이용하여 제조한 태양 전지의 효율이 저하되는 문제가 발생하게 된다.
또한, 상술한 방법들 중 후자의 방법에 의해 태양 전지를 제조할 경우, 투광도 확보를 위해 기 형성된 광흡수층 박막을 제거하여 패터닝하는 과정에서 광흡수층 소재의 손실을 감수해야만 하는 문제점이 발생한다.
상술한 방법들과 달리, 광흡수층 박막을 제거하는 공정 없이, 박막 형성과 동시에 박막을 패터닝할 수 있다면, 투광성 부여를 위한 광흡수층 재료 손실 없이도 높은 재료 사용 효율의 특징을 보유한 투광형 박막 태양 전지와 이의 제조 방법을 제공할 수 있다.
한편, 박막 태양 전지에 투광성을 부여하기 위해 광흡수층을 패터닝하는 경우, 패터닝의 결과로 형성되는 후면 전극 또는 광흡수층의 절단면에서 후면 전극, 광흡수층 박막 또는 그 계면의 특성이 저하되어, 션팅 또는 재결합 손실이 발생할 수 있고, 이는 태양 전지 효율 저하로 이어질 수 있다.
태양 전지의 효율 저하가 일어나지 않는 방식으로 화합물 박막 태양전에 투광성을 부여할 수 있다면, 심미성 확보뿐 아니라, 가격, 효율(출력) 및 안정성 측면에서도 월등한 고부가가치 태양 전지를 제조할 수 있게 되며, 해당 태양 전지의 활용도와 부가가치는 더욱 높아질 것으로 기대된다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명이 해결하고자 하는 기술적 과제는, 전기화학적 침착법(또는 전착법, electrochemical deposition or electrodeposition) 및 선택적 전착법(selective electrodeposition)을 이용하여 광투과도를 갖는 투광형의 화합물 박막을 제조하는 방법을 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 다른 기술적 과제는, 투광형 박막 태양 전지 제조를 목적으로 패터닝된 전극의 측면 또는 절단면의 노출로 인해 발생하는 션트(shunt) 및 재결합 손실을 방지하기 위해, 패터닝된 전극의 측면 또는 절단면 위에 산화물 기반 재결합 방지막(또는 패시베이션 막)을 포함하되, 상술한 투광형 화합물 박막을 제조하는 방법으로부터 제조된 투광형의 화합물 박막을 제공하는 것이다.
이에 더하여, 투광형 박막 태양 전지 제조를 위해 선택적 전착 기술을 적용하려면 박막 태양 전지의 후면 전극을 패터닝하는 과정이 필요한데, 이 때, 후면 전극의 패터닝 결과 형성되는 후면 전극의 측면 또는 절단면에 형성되는 광흡수층 박막의 두께는 얇아지게 되고, 박막의 품질 역시 저하될 수 있다. 그 결과, 절단면의 전면 투명 전극과 후면 전극 사이에서 션트 손실이 발생할 수 있고, 절단면의 후면 전극과 광흡수층의 계면 또는 광흡수층 내에서 재결합 손실이 커질 수 있는 문제를 방지하고자, 본 발명은 패터닝된 전극의 특정 영역에 패시베이션 막을 형성하는 것을 통해 상술한 션트 및 재결합 손실 발생 문제를 해결하고자 한다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 통상적으로 박막 태양 전지에 투광성을 부여하기 위한 전극의 전체 면적 위에 광흡수층을 형성한 후 기계적 또는 레이저 가공에 의해 광흡수층 일부를 제거하는 과정에서 발생할 수 밖에 없는 광흡수층 재료의 손실을 피할 수 있도록 하고, 광흡수층 박막 형성과 동시에 투광성을 확보한 상술한 투광형의 화합물 박막을 포함하는 태양 전지를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 건물 창호, 자동차 유리와 썬루프, 휴대용 전자기기 등에 응용할 수 있고, 투광성(채광성) 및 심미성이 부가된, 상술한 투광형의 화합물 박막을 포함하는 태양 전지를 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 해결하기 위해 본 발명의 일 실시예는, 소정의 전구체와 용매를 혼합하여 제조된 전해질 용액과, 기 준비된 기판 상에 특정 패턴이 패터닝된 전극이 형성된 형태의 작업전극을 포함하는 전기 화학 전지를 전압 인가 장치 또는 전류 인가 장치에 연결하여 전착 회로를 구성하는 회로 구성 단계, 그리고, 상기 전압 인가 장치 또는 전류 인가 장치를 이용하여 상기 작업전극에 환원 전압 또는 전류를 인가하고, 상기 특정 패턴이 패터닝된 전극의 형상에 따라 상기 전극 상의 일부 영역에만 박막이 선택적으로 전착되는 박막 형성 단계를 포함하는 화합물 박막 제조 방법을 제공한다.
본 발명의 일 실시예에 있어서, 상기 회로 구성 단계 이전에, 상기 소정의 기판 상에 특정 패턴이 패터닝된 전극이 형성된 전극 기판을 제조하는 전극 기판 생성 단계를 더 포함할 수 있고, 상기 전극 기판 생성 단계는, 상기 소정의 기판 상에 전극을 형성하는 과정, 상기 전극 상에 포토레지스트를 형성하는 포토리소그래피 공정을 이용하여 상기 특정 패턴을 형성하는 과정, 상기 전극 상의 기 설정된 영역에 패시베이션 막을 형성하는 과정, 상기 전극 상에 형성된 포토레지스트를 제거하는 과정을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 회로 구성 단계 이전에, 상기 소정의 기판 상에 특정 패턴이 패터닝된 전극이 형성된 전극 기판을 제조하는 전극 기판 생성 단계를 더 포함할 수 있고, 상기 전극 기판 생성 단계는, 상기 소정의 기판 상에 전극을 형성하는 과정, 레이저를 이용하여 상기 전극 상에 상기 특정 패턴을 형성하는 과정, 상기 전극 상의 기 설정된 영역에 패시베이션 막을 형성하는 과정을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 특정 패턴이 패터닝된 전극의 일면은 상기 특정 패턴이 패터닝된 전극의 측면 또는 상기 특정 패턴이 패터닝된 전극 상에 상기 특정 패턴이 패터닝됨에 따라 생성된 절단면일 수 있다.
본 발명의 일 실시예에 있어서, 상기 박막 형성 단계에 따라 생성된 박막을 셀레늄 또는 황 함유 기체 분위기 하에서 열처리하는 열처리 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 특정 패턴은 하나 이상의 원 또는 다각 형상의 중공 홀 형태의 패턴일 수 있다.
본 발명의 일 실시예에 있어서, 상기 소정의 기판은 소다-석회 유리(soda-lime glass)로 형성되고, 상기 특정 패턴이 패터닝된 전극은 몰리브데늄(Mo)으로 형성될 수 있다.
본 발명의 일 실시예에 있어서, 상기 전해질 용액은 염화칼륨, 술팜산, 프탈산수소칼륨, 이산화셀레늄, 염화구리이수화물 및 염화인듐 중 적어도 어느 하나 이상을 증류수에 용해시켜 기 지정된 pH가 되도록 생성될 수 있다.
본 발명의 일 실시예에 있어서, 상기 패시베이션 막은 니켈, 텅스텐, 몰리브덴, 구리, 티타늄, 아연, 주석, 철, 크롬, 알루미늄, 실리콘 및 마그네슘 중 어느 하나의 금속 또는 둘 이상의 합금으로 이루어지는 산화물, 질화물 및 황화물 중 어느 하나의 형태로 형성될 수 있고, 상기 전극 상의 기 설정된 영역에 패시베이션 막을 형성하는 과정은 스퍼터, 열 증착(thermal evaporation), 전자빔 증착(e-beam evaporation) 및 원자층 증착(atomic layer deposition), 스핀코팅, 닥터블레이딩, 분사, 전기분사(electro-spraying) 또는 전착의 코팅법을 이용하여 상기 전극 상의 기 설정된 영역에 패시베이션 막을 형성하는 과정일 수 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 다른 실시예는, 본 발명의 일 실시예에 따른 화합물 박막 제조 방법에 의해 생성된 화합물 박막을 제공한다.
상기 기술적 과제를 해결하기 위한 본 발명의 또 다른 실시예는, 상술한 화합물 박막을 포함하는 태양 전지를 제공한다.
본 발명에 따르면, 종래에 투광형 박막 태양 전지 구현을 위해 통상적으로 실시하는 광흡수층 형성 후 그 일부를 제거하는 공정과는 달리, 선택적 전기화학 침착법(selective electrochemical deposition)을 이용하여 이미 합성된 박막을 제거하는 공정 없이 박막 합성과 동시에 투광성을 확보한 화합물 박막을 제공할 수 있다.
또한 본 발명에 따르면, 종래의 광흡수층 제거 공정 중 발생하는 재료 손실을 없앨 수 있어, 광흡수층 재료의 사용 효율을 극대화할 수 있는 장점이 있다.
또한, 본 발명에 따르면, 투광형 박막 태양 전지의 구현을 위해 패터닝된 전극의 측면 또는 절단면의 노출에 의해 발생하는 션트 경로의 형성 문제 및 패턴화된 전극의 측면 또는 절단면에서의 재결합 손실 증가 문제를 용액 공정에 의한 산화물 기반 패시베이션 막을 형성하는 것을 통해 해결할 수 있어, 박막 태양 전지의 효율을 증대시킬 수 있다.
또한, 본 발명에 따르면, 패턴화된 전극의 측면 또는 절단면 위에 재결합 방지막 또는 패시베이션 막을 형성하더라도 투광성이 높은 산화물 기반 패시베이션 소재를 사용함으로써, 패시베이션 막에 의한 광투과도 손실이 없는 투광형의 박막 태양 전지를 제조할 수 있다.
또한 본 발명에 따르면, 투광성(채광성) 및 심미성을 가지면서도 고효율(또는 고출력)을 갖는 박막 태양 전지를 제공할 수 있다.
또한 본 발명에 따르면, 상온 및 상압에서 적용 가능한 전착 기술을 이용하므로, 진공 공정에 비해 초기 설비 투자 및 공정 비용이 낮으며, 원재료의 사용 효율이 높고 대면적화가 용이하여 양산화가 가능한 박막 태양 전지의 제조 공정을 실현할 수 있다.
또한, 본 발명에 따른 투광형 태양 전지는 높은 채광성, 심미성, 저가 및 고출력의 특징을 지니면서도 무기 화합물로 구성되어 안정성 측면에서도 월등하므로, 건물일체형 태양전지(BIPV), 자동차일체형 태양전지(VIPV) 등의 고부가가치 태양 전지로 응용될 수 있다.
또한, 본 발명에 따르면, 광흡수층의 투광성 제어 방법이 단순하고, 제조 생산성을 향상시킬 수 있으며, 다단계의 엄격한 공정 제어가 불필요한 투광형 태양 전지를 구현할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 화합물 박막을 제조하는 방법의 절차를 도시한 흐름도이다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 전극 기판 생성 단계의 세부 과정의 절차를 도시한 흐름도이다.
도 4는 본 발명의 일 실시예에 따른 화합물 박막을 제조하는 방법의 일부 공정을 모식화하여 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 화합물 박막을 제조하기 위한 전기 화학 전지를 이용한 전착 회로의 구성을 도시한 모식도이다.
도 6은 본 발명의 일 실험예에 따라 패턴화 및 패시베이션된 전극의 단면 SEM 사진이다.
도 7은 본 발명의 일 실험예에 따라 패턴화 및 패시베이션된 전극 상에 선택적으로 형성된 박막의 단면 SEM 사진이다.
도 8은 본 발명의 일 실험예에 따라 패시베이션 막이 형성된 형태로 제조된 박막과 비교예 2에 의해 패시베이션 막 없이 제조된 박막의 광투과도 특성을 비교하기 위해 도시한 도면이다.
도 9는 본 발명의 일 실험예에 따라 제조한 태양 전지와 종래의 기술 의해 제조된 통상의 태양 전지 사진의 예를 도시한 도면이다.
도 10은 비교예 2에 따라, 패턴화되었으나 패시베이션 막은 포함하지 않은 전극의 SEM 단면 사진이다.
도 11은 비교예 2에 따라, 패턴화되었으나 패시베이션 막은 포함하지 않은 전극 상에 선택적으로 형성된 박막의 SEM 단면 사진이다.
도 12는 본 발명의 일 실험예에 따라 제조한 태양 전지의 단면을 나타낸 SEM 사진이다.
도 13은 본 발명의 일 실험예 및 비교예 2에 의해 제조된 박막을 포함하는 태양 전지 소자의 전류-전압 특성을 나타낸 그래프이다.
도 14는 본 발명의 일 실험예 및 비교예 2에 의해 제조된 태양 전지 소자의 전류-전압 곡선에 대한 다이오드 분석 결과를 도시한 도면이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 도면에 나타난 각 구성요소의 크기, 형태, 형상은 다양하게 변형될 수 있고, 명세서 전체에 대하여 동일/유사한 부분에 대해서는 동일/유사한 도면 부호를 붙였다.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "단계" 및 "과정" 등은 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략하였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉 또는 결합)"되어 있다고 할 때, 이는 "직접적으로 연결(접속, 접촉 또는 결합)"되어 있는 경우뿐만 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결(접속, 접촉 또는 결합)"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함(구비 또는 마련)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 “포함(구비 또는 마련)”할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함하며, 분산되어 실시되는 구성요소들은 특별한 제한이 있지 않는 한 결합된 형태로 실시될 수도 있다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 화합물 박막을 제조하는 방법(이하, “화합물 박막 제조 방법(1)”이라 함)의 절차를 도시한 흐름도이고, 도 2 및 도 3은 본 발명의 일 실시예에 따른 전극 기판 생성 단계(S100)의 세부 과정의 절차를 도시한 흐름도이며, 도 4는 화합물 박막 제조 방법(1)의 일부 공정을 나타낸 모식도이다.
화합물 박막 제조 방법(1)은 전기 화학 전지를 이용한 전착 회로(100)를 이용하여 전착 회로를 구성하는 회로 구성 단계(S200)와 박막을 합성하는 박막 형성 단계(S300)를 포함한다.
회로 구성 단계(S200)는 소정의 전구체와 용매를 혼합하여 제조된 전해질 용액과, 소정의 기판 상에 특정 패턴이 패터닝된 전극이 형성된 형태의 작업전극을 포함하는 전기 화학 전지를 전압 인가 장치 또는 전류 인가 장치에 연결하여 전착 회로를 구성하는 단계를 말한다.
박막 형성 단계(S300)는 상기 작업전극에 환원 전압 또는 전류를 인가하여, 상기 특정 패턴이 패터닝된 전극의 형상에 따라 상기 전극 상에 선택적으로 박막이 전착되는 단계를 말한다.
또한, 화합물 박막 제조 방법(1)은 회로 구성 단계(S200) 이전에 박막이 형성될 위치를 제공하는 특정 패턴이 패터닝된 전극 기판을 형성하는 전극 기판 생성 단계(S100)를 더 포함할 수 있다.
전극 기판 생성 단계(S100)의 세부 과정을 도시한 도 2 및 도 3을 참조하면, 도 2에 도시된 바와 같이, 전극 기판 생성 단계(S100)는 그 세부 과정으로서, 상기 소정의 기판 상에 전극을 형성하는 과정(S110), 상기 전극 상에 포토레지스트를 형성하는 포토리소그래피 공정을 이용하여 상기 특정 패턴을 형성하는 과정(S120), 상기 전극 상의 기 설정된 영역에 패시베이션 막 또는 재결합 방지막을 형성하는 과정(S130), 상기 전극 상에 형성된 포토레지스트를 제거하는 과정(S140)을 포함할 수 있다.
또한, 도 3에 도시된 바와 같이, 전극 기판 생성 단계(S100)는 상기 소정의 기판 상에 전극을 형성하는 과정(S110), 레이저를 이용하여 상기 전극 상에 상기 특정 패턴을 형성하는 과정(S121), 상기 전극 상의 기 설정된 영역에 패시베이션 막 또는 재결합 방지막을 형성하는 과정(S130)을 포함할 수 있다.
즉, 전극 기판 생성 단계(S100)에서 특정 패턴을 전극 상에 패터닝할 때, 본 발명의 다양한 실시예에 따라 포토리소그래피 또는 레이저 가공법 등을 이용할 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 명세서 상에서 설명되는 소정의 기판은 소다-석회 유리(soda-lime glass)로 형성될 수 있고, 특정 패턴이 패터닝된 전극은 태양 전지의 후면전극으로 사용될 수 있고 몰리브데늄(Mo)으로 형성될 수 있으며, 특정 패턴은 하나 이상의 원 또는 다각 형상의 중공 홀 형태의 패턴일 수 있으나 이에 제한되는 것은 아니다. 따라서 기판 및 전극의 재료는 기판 및 전극을 형성할 수 있는 어떠한 재료로도 선택될 수 있고, 패터닝된 패턴 역시 어떤 형태로든 변형되어 실시 가능하다.
또한, 본 명세서 상에서 설명되는 전해질 용액은 전해질 용액은 염화칼륨(KCl) 술팜산(HSO3NH2), 프탈산수소칼륨((KOOC)C6H4COOH), 이산화셀레늄(SeO2), 염화구리이수화물(copper chloride dehydrate) 및 염화인듐(Indiumchlorid) 중 적어도 어느 하나 이상을 증류수에 용해시켜 기 지정된 pH가 되도록 생성된 것일 수 있고, 본 명세서 상에서 설명되는 전기 화학 전지는 작업 전극 외에 백금으로 형성된 상대전극과 은 또는 염화은으로 형성된 기준전극을 더 포함할 수 있다.
또한, 전극 기판 생성 단계(S100)에서 특정 패턴이 패터닝된 전극의 기 설정된 영역은 상기 특정 패턴이 패터닝된 전극의 측면 또는 상기 특정 패턴이 패터닝된 전극 상에 상기 특정 패턴이 패터닝됨에 따라 생성된 절단면일 수 있다.
도 2 및 도 3에 도시된 상기 전극 상의 기 설정된 영역에 패시베이션 막 또는 재결합 방지막을 형성하는 과정(S130)에서 패시베이션 막은 니켈, 텅스텐, 몰리브덴, 구리, 티타늄, 아연, 주석, 철, 크롬, 알루미늄, 실리콘, 마그네슘 각각 또는 이들의 합금으로 이루어지는 산화물, 질화물, 황화물 중 하나 또는 둘 이상으로부터 선택된 물질로 형성될 수 있으나, 패터닝된 전극의 측면 또는 절단면의 노출로 인해 발생하는 션트 및 재결합 손실을 방지하면서도 투광성이 높아 패시베이션 막 적용에 의한 태양전지 광투과도 손실이 없는 소재라면 모두 사용될 수 있다.
또한, 상기 전극 상의 기 설정된 영역에 패시베이션 막 또는 재결합 방지막을 형성하는 과정(S130)은 스퍼터, 열 증착(thermal evaporation), 전자빔 증착(e-beam evaporation) 원자층 증착(atomic layer deposition) 등의 진공 증착법과 스핀코팅, 닥터블레이딩, 분사, 전기분사(electro-spraying), 전착 등의 비진공 코팅법 중 어느 하나의 코팅법을 이용하여 상기 전극 상의 기 설정된 영역에 패시베이션 막 또는 재결합 방지막을 형성하는 과정일 수 있다.
다시 도 1을 참조하면, 화합물 박막 제조 방법(1)은 박막 형성 단계(S300) 이후 열처리 단계(S400)를 더 포함할 수 있다. 열처리 단계(S400)는 박막 형성 단계(S300)에 따라 생성된 박막을 셀레늄(Se) 또는 황(S) 함유 기체 분위기 하에서 열처리할 수 있으나 반드시 셀레늄 또는 황 함유 기체 분위기 하에서 수행될 필요는 없으며 이외에도 여러 형태의 기체 분위기 하에서 열처리 될 수 있고, 열처리 온도와 시간은 다양하게 설정될 수 있다.
앞서 도 1 내지 도 3을 참조하여 설명한 화합물 박막 제조 방법(1)의 일부 세부 공정을 모식화하여 나타낸 도 4를 참조하면, 401은 도 1 내지 도 3을 참조하여 설명한 소정의 기판에 해당할 수 있고, 402는 도 1 내지 도 3을 참조하여 설명한 전극에 해당할 수 있으며, 403은 도 1 내지 도 3을 참조하여 설명한 포토레지스트일 수 있고, 404는 도 1 내지 도 3을 참조하여 설명한 패시베이션 막 또는 재결합 방지막일 수 있으며, 405는 도 1 내지 도 3을 참조하여 설명한 박막일 수 있다.
410은 소정의 기판(401) 상에 전극(402)을 형성하는 과정인 S110 과정을 모식화하여 나타낸 것이고, 420은 전극 상에 특정 패턴을 갖는 포토레지스트(403, 또는 포토레지스트 층)을 형성시킨 것을 모식화하여 나타낸 것으로 S120 과정에 해당할 수 있다.
430은 패시베이션 막(404, 또는 패시베이션 층)을 포토레지스트(403) 상에 형성한 것을 나타낸 것으로 S130에 해당할 수 있으며, 440은 포토레지스트(403)를 제거한 것으로 S140에 해당할 수 있다.
450은 S300 단계 또는 S400 단계 이후에 박막(405)이 형성된 것을 모식화하여 나타낸 것으로, 박막(405)은 광흡수층으로의 역할을 수행할 수 있으며, 박막(405)을 포함하도록 형성된 태양 전지는 일부 중공된 홀에 의해 투광성을 가질 수 있다.
도 5는 화합물 박막 제조 방법(1)의 회로 구성 단계(S200) 및 박막 형성 단계(S300)를 수행하기 위한 전기 화학 전지를 이용한 전착 회로(100)의 구성을 도시한 모식도이다.
전기 화학 전지를 이용한 전착 회로(100)는, 전해 욕조(bath) 내부에 전해질 용액(140)을 채우고, 기판, 작업 전극(110), 상대 전극(150), 기준 전극(130) 등을 구비함으로써 구성될 수 있으며, 그 외에 빛을 제공하는 위한 광원(170), 즉 조명등을 별도로 더 구비할 수 있다.
전해질 용액(140)은 CIS계 화합물을 구성하는 원소들의 전구체, 용매 및 기타 반대이온 공급원 및 착화제와 같은 첨가제를 포함할 수 있다. 전구체는 예컨대, 구리(Cu), 인듐(In), 갈륨(Ga), 주석(Zn), 아연(Sn), 은(Ag) 및 알루미늄(Al)과 같은 금속 또는 이들 중 둘 이상의 합금의 염화물, 황산염, 질산염, 아세트산염 또는 수산화물일 수 있고, 산화셀레늄(SeO2), 아셀렌산(H2SeO3) 또는 염화셀레늄(SeCl4)과 같은 비금속 전구체일 수도 있으나, 본 발명의 다양한 실시예에 사용되는 전구체는 전착법에 의해 전착되어 CIS계 박막을 형성할 수 있는 물질 또는 화합물이라면 제한 없이 사용될 수 있다.
또한, 전구체로서, 구리(Cu), 인듐(In) 및 셀레늄(Se)의 전구체를 사용하는 경우라면, 이러한 전구체를 포함하는 전해질 용액(140)에 포함된 Cu, In 및 Se의 원자비는 0.8 ~ 1.2 : 1 ~ 5 : 1.8 ~ 2.2일 수 있다. 예컨대 상술한 원자비는 1 : 4 : 2일 수 있다. 이러한 조성비를 만족하도록 전구체 조성물을 구성하는 경우, 더욱 우수한 광 흡수 효율을 갖고, 평탄도 및 밀도 등이 우수한 화합물 박막을 제조할 수 있다.
또한, 회로 구성 단계(S200)에서 전술한 소정의 전구체를 적당한 용매와 혼합하여 전해질 용액을 제조하게 되는데, 이때 사용 가능한 용매로는 상기 전구체가 용해될 수 있으면서도 전착법을 수행하기에 적당한 정도의 전기전도도를 갖는 용매라면 제한 없이 사용될 수 있다. 예컨대 회로 구성 단계(S200)의 전해질 용액 제조시 사용되는 용매는 물, 알코올 또는 물과 알코올의 혼합물일 수 있다.
또한, 회로 구성 단계(S200)를 통해 전구체와 용매가 혼합되어 제조된 전해질 용액의 pH는 1.5 내지 3의 범위로 유지될 수 있다. 왜냐하면, 전해질 용액(140)의 pH가 1.5 미만이거나 3을 초과하는 경우에는 균일한 박막을 제조하기 어렵고, CuSe와 같은 판상이 석출되는 문제점이 발생될 수도 있기 때문이다. 그러나, 반드시 이러한 pH 수치에 제한되는 것은 아니다.
전해질 용액(140)은 전구체 및 용매 이외에도 첨가제로서, 지지 전해질(supporting electrolyte) 및 착화제(complexing agent)를 더 포함할 수도 있다. 지지 전해질은 전해질 용액의 전기전도도를 높여주기 위한 것으로, 예컨대, 염화칼륨(KCl) 또는 염화리튬(LiCl) 등과 같은 물질로 형성될 수 있다.
또한, 착화제는 전해질 용액 중의 특정 이온의 이동도를 조절하기 위한 물질로서, 예컨대, 트리에탄올아민(N(CH2CH3)3), 시트르산(C6H8O7), 타르타르산(C4H6O6), 술팜산(NH2SO3H), 구연산나트륨(Na3C6H5O7) 및 프탈산수소칼륨(C8H5KO4), 티오시안화칼륨(KSCN)으로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있지만, 이에 제한되는 것은 아니다.
전해 욕조는 석영이나 유리 등의 투명한 재료를 사용하여 빛의 투과가 용이하게 할 수 있다. 또한, 기판은 광흡수층인 CIS계 화합물이 전착되는 대상으로서, 몰리브데늄을 포함한 기판일 수 있다. 일반적으로 몰리브데늄을 포함하는 기판은 전기전도도가 우수하고 상대적으로 저가이며 광흡수층인 CIS계 화합물과의 열팽창계수가 유사하고 또한 저항접촉(ohmic contact)이 우수하다.
한편, 기판으로서 금속 기판을 사용할 수도 있으며, 금속 기판을 사용할 경우에는 몰리브데늄을 포함하지 않을 수 있고, 이 경우 기판의 재질에 별다른 제한이 있는 것은 아니다.
상대 전극(150) 및 기준 전극(130)은 전착법에 일반적으로 통용되는 재질의 전극이 널리 사용될 수 있으며, 그 크기 및 형태 등에 관한 사항도 별다른 제한 없이 다양하게 구성될 수 있다. 예를 들어 상대 전극(150)으로는 백금(Pt) 전극 등을 사용할 수 있으며, CIS계 화합물이 전착되는 기판으로서 몰리브데늄 기판을 사용하고, 상대 전극(150)으로 백금 전극을 사용하는 경우라면, 전착 회로의 구성도는 “( - ) Mo | CIS [405] | 전해질 | Pt( + )”와 같다.
전착을 통해 화합물 박막이 성장하는 동안 상기 전착 회로 내에서는 i) Mo 기판, 화합물 박막(CIS) 내에서의 전자 또는 정공의 흐름, ii) CIS / 전해질 계면에서 일어나는 양이온들의 환원반응, iii) 전해질 내에서의 이온들의 확산, 및 iv) 상대 전극(Pt)에서 일어나는 음이온의 산화반응이 순차적으로 일어나면서 하나의 닫힌 회로를 형성한다. 이때, 전착을 통해 형성되는 화합물 박막의 두께, t는 하기 수학식 1과 같이 전착 회로에 흘려준 전하량에 비례한다:
<수학식 1>
Figure PCTKR2017012916-appb-I000001
상기 수학식 1에서, I, tED, n, F, M, A, ρ는 각각 전착 회로에 흐르는 전류, 전착에 걸린 시간, 화합물을 구성하는 이온들의 전하수의 합(CIS에서 n = 13), 패러데이 상수, 화합물의 분자량, 박막의 면적, 그리고 박막의 밀도를 나타낸다.
주어진 전압 하에서 흐르는 전류는 상기 i) ~ iv) 단계의 반응속도에 비례하는데, 이들 반응 중 어느 하나가 나머지에 비해 상대적으로 느릴 경우, 전체 반응속도는 이 가장 느린 반응단계에 의해 결정된다. 따라서, 본 발명의 다양한 실시예에서는 i) ~ iv) 단계를 포함하는 전체 반응의 촉매로서 빛을 이용하고, 조사된 빛이 i) ~ iv) 단계 중 가장 느린 반응의 속도를 촉진시킴으로써 전체 반응속도를 촉진하는 효과를 거둘 수 있게 된다.
화합물 박막 제조 방법(1)은 박막의 표면에 구현하고자 하는 문양의 차광 수단(120)을 작업 전극(110) 위에 위치시킨 채 광원(170)을 이용하여 광전기화학적 침착(광전착, photoelectrochemical deposition)에 의해 화합물 반도체 박막을 제조함으로써, 박막 중 빛을 받은 영역과 그렇지 않은 영역의 두께 차에 의해, 표면에 원하는 문양이 구현된 화합물 박막을 제공할 수도 있다.
이 때, 광원(170)은 기판의 모든 면적을 조사(irradiation)할 수 있어야 하며, 조사되는 빛이 전착으로 제조되는 화합물 반도체의 밴드갭에 해당하는 파장보다 작은 파장을 갖는 것이라면, 그 크기, 형태 및 종류 등에 별다른 제한 없이 다양한 조명등이 사용될 수 있다.
광전착에 의한 박막 성장 중 빛을 받는 영역(빛이 도달하는 영역)과 포토마스크에 의해 빛이 가려진 영역(빛이 도달하지 않는 영역)에서의 박막 성장 두께 차이에 의해, 화합물 박막 제조 방법(1)에 따라 생성된 박막은 중공 홀 형태의 특정 패턴이 패터닝되어 투광성을 가질 뿐만 아니라, 차광 수단(120)의 형상에 대응되는 표면 문양(pattern)을 가질 수도 있어(두께 차 유도 현상), 우수한 심미성을 지닐 수도 있다.
차광 수단(120)이 포토마스크인 경우, 포토마스크는 전해질 용액(140) 내에서 화학적으로 안정한 재질이면 제한 없이 사용될 수 있다. 또한, 전술한 바와 같이, 빛의 차단에 따른 화합물 박막의 두께 차를 뚜렷하게 유도하기 위해 포토마스크 배면에 반사방지막을 구비할 수 있다. 즉, 본 발명의 다양한 실시예에서 수행하는 광전착에 의하면, 같은 전기장 세기와 같은 시간의 조건에서 종래 전착법보다 더 두꺼운 박막을 제조할 수 있다.
전류 또는 전압 인가를 통한 박막 형성 단계(S300)는, 예를 들어 상온 및 상압, 즉 0 ~ 80℃의 온도 및 0.9 ~ 1.1 기압 조건 하에서 수행될 수 있으며, 전류를 가해주기 위한 전압(DC 전압에 의한 전류 인가)은 - 0.4 ~ - 0.6 V의 범위(예컨대- 0.5 V)의 전압일 수 있지만, 이에 제한되는 것은 아니다. 또한, 전압 인가시간은 1 내지 130분일 수 있다. 또한, 전류 또는 전압 공급 장치(160)에 의한 작업 전극에 환원 전압 또는 전류를 인가하는 과정과 광원(170)을 이용하여 차광 수단을 향해 빛을 조사시키는 과정을 함께 수행할 수도 있다.
또한 박막 형성 단계(S300)는 상술한 바와 달리, Cu, In, Ga, Se 개별 원소, 또는 개별 원소 2종 이상의 합금 (예를 들어 Cu-In, Cu-Ga), 또는 개별 원소 2종 이상의 화합물 (예를 들어 Cu-Se, In-Se, Ga-Se)을 다량(stack)으로 쌓고, 이후 열처리 과정을 통해 CIGS박막(또는 CIGS 단일막)을 형성하는 단계일 수 있다.
이러한 박막 형성 방법은 상술한 전착 회로에 의한 박막 형성 방법보다 상대적으로 빠른 공정 속도를 확보할 수 있고, 인라인(inline) 공정에도 적용이 가능하다.
한편, 전착 회로를 통해 박막을 형성할 때, Se이나 S을 박막에 포함하지 않고, 이후 열처리 과정 중에 분위기 기체에 존재하는 Se이나 S와 금속 전구체 막을 반응시켜 결과적으로 CIGS 박막을 합성하는 방법을 통해 박막 형성 및 열처리 단계(S300 및 S400)를 구현할 수도 있다.
화합물 박막 제조 방법(1) 박막 형성 단계(S300)에 따라 생성된 화합물 박막을 작업 전극(110)으로 사용하고, 광전착법을 이용하여 화합물 박막 상에 색상층을 형성하는 색상층 형성 단계(도시하지 않음)를 더 포함할 수도 있다. 색상층 형성 단계를 통해 생성되는 색상층은 CuSe로 형성되는 층일 수 있다.
이에 더하여, 화합물 박막 제조 방법(1)은 전술한 바와 같이 열처리 단계(S400)를 더 포함할 수 있으며, 열처리 단계(S400)는 전착된 화합물 박막의 상형성 또는 결정립성장(grain growth)을 통한 미세구조의 치밀화(densification)를 위한 과정으로서, 이때 열처리 온도로는 200℃ 내지 700℃일 수 있다.
이러한 열처리 과정에 의해서 기상의 셀레늄이나 황이 몰리브데늄과 반응하여 셀렌화몰리브데늄(MoSe2)이나 황화몰리브데늄(MoS2)이 형성될 수 있으며, 적절한 두께의 셀렌화몰리브데늄이나 황화몰리브데늄은 접착력(adhesion)의 증가와 저항접촉(ohmic contact)을 우수하게 만들 수 있다. 예컨대, 적절한 두께로는 50 ~ 150nm가 설정될 수 있으나, 반드시 이에 제한되는 것은 아니다.
본 발명의 다양한 실시예에 있어서, 화합물 박막 제조 방법(1)에 따라 최종적으로 제조된 화합물 박막은 CIS계 화합물 박막 일 수 있으며, 하기 조성을 가질 수 있다.
Cu(A1-x Bx)(Se1-ySy)2
상기 A 및 B는, 각각 독립적으로, In, Ga, Zn, Sn 및 Al로 이루어진 군으로부터 선택된 어느 하나의 원소이며, 0 ≤ x, y ≤ 1이다.
따라서, 상기 CIS계 박막에 대한 구체적인 예들로서, 구리인듐셀렌(CIS) 박막, 구리인듐갈륨셀렌(CIGS) 박막 또는 구리아연주석황(CZTS) 박막 등을 예로 들 수 있고, 전술한 바와 같이 화합물 박막 제조 방법(1)에 따라 제조된 화합물 박막은 이러한 CIS계 박막일 수 있다.
즉, 본 발명의 다양한 실시예는 전술한 전기화학적 침착법(electrochemical deposition), 선택적 전착법(selective electrodeposition) 및 자가가속 광전기화학침착 방법에 의해서 제조된 CIS계 박막 또는 화합물 박막을 제공할 수 있으며, 이러한 CIS계 박막 또는 화합물 박막은 그 미세구조가 치밀하고, 표면이 평탄하고 균일하기 때문에 고효율 및 고품질의 광흡수 박막으로 사용될 수 있으며, 특히 고효율 CIS계 태양 전지를 위해 필수적인 구리-결핍 조성을 갖는 박막일 수 있다. 또한, 본 발명의 다양한 실시예는, 이러한 고품질의 박막을 광흡수층으로 이용하는 박막 태양 전지를 제공할 수도 있다.
본 발명의 다양한 실시예에 따라 투광성 및 심미성을 동시에 지니는 고부가가치 태양 전지를 구현할 수 있다.
이하, 실험예 및 비교예를 통하여 본 발명을 더욱 상세하게 설명하기로 하되, 하기 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위를 제한하는 것은 아니다.
<실험예>
화합물 박막 제조 방법(1)을 구현하기 위해 전극(후면전극)으로는 소다-석회 유리 위에 DC 스퍼터를 이용하여 몰리브데늄을 1 μm 두께로 증착한 것을 사용하였다.
후면전극을 패터닝하기 위한 과정은 다음과 같다.
먼저 후면전극 상에 포토레지스트(photoresist, 감광제)를 적층한다. 기판과 포토레지스트 접착력을 향상시키기 위해 HMDS(Hexamethyldisilazane)를 도포한 후 포토레지스트를 도포한다. HMDS는 3000 rpm에서 30초 간 스핀코팅 하였으며, 포토레지스트는 Merck 사의 AZ 5214E 물질을 이용하여 1000 rpm으로 10초 간 스핀코팅 후, 5000 rpm으로 40초 간 스핀코팅하였다.
포토레지스트 스핀코팅을 마친 후면전극 기판을 120 ℃의 핫플레이트(hot-plate) 위에서 120초 간 소프트 베이크(soft-bake) 처리한 후, 상기 포토레지스트를 도포한 후면전극 위에 일정한 패턴을 갖는 크롬(Cr) 포토마스크를 정렬하여 노광(exposure) 공정을 수행하였다. 크롬 마스크의 패턴은 90 μm의 지름을 갖는 원 모양의 크롬을 좌우, 위아래 각각 146 μm 간격으로 배열한 패턴으로, 결과적으로 광흡수층이 약 30%의 개구율(aperture ratio) 및 광투과도를 갖도록 설계하였다.
상기 노광 후의 후면전극 기판을 주원료가 TMAH(Tetramethylammonium hydroxide)인 수용액을 현상액(developer)으로 사용하여 45초 간 현상하였다. 이후, 증류수로 현상액 및 잔여 감광제를 제거하고 충분히 건조시켰다.
상기 현상 공정을 마친 후면전극 기판을 몰리브데늄을 제거할 수 있는 에칭액에 담가, 포토레지스트에 덮여 있지 않은 부분을 식각(에칭)하여 제거함으로써 후면전극에 패턴을 형성하였다. 상기 에칭액은 질산이 주 원료인 TWME-600(풍원화학)을 사용하였다.
상기 패턴화된 후면전극의 측면 또는 절단면 위에, 태양전지의 션트 및 재결합 손실 방지를 위한 패시베이션 막을 형성하기 위해, 아세트산니켈사수화물 0.7 M, 에탄올아민 0.7 M을 무수 이소프로필 알코올 2ml에 용해시켜 70 ℃ 핫플레이트 위에서 300 rpm으로 12시간 동안 반응시켜 전구체 용액을 제조한 후, 패턴화된 후면전극 기판 위에 패시베이션 막 전구체 용액을 3000 rpm으로 30초 간 스핀코팅 하였다.
패턴화된 후면전극 상부의 포토레지스트를 아세톤 용액을 사용하여 제거하고, 후면전극 패턴 측면 또는 절단면 위에 도포된 패시베이션 전구체 막을 산화시키기 위해 275 ℃의 핫플레이트 위에서 1시간 동안 열처리 공정을 수행하였다.
전착을 위한 전해질 용액은 염화칼륨 240 mM, 술팜산 12 mM, 프탈산수소칼륨 12 mM, 이산화셀레늄 5.2 mM, 염화구리이수화물 2.4 mM 그리고 염화인듐 9.6 mM을 120 mL의 증류수에 용해시켜 pH가 2.2가 유지되도록 제조하였다.
설계된 광투과도를 갖는 광흡수층 박막을 형성시키기 위해, 제조된 전해질 용액 내에서 상기 패턴 측면 또는 절단면이 패시베이션된 후면전극 기판을 작업전극(working electrode)으로, 백금(Pt) 기판을 상대전극(counter electrode)으로, 은-염화은 전극(Ag/AgCl)을 기준전극(reference electrode)으로 사용하고, AMETEK사의 PARSTS MC 포탠셔스탯을 이용하여 기준전극 대비 -0.56 V의 정전압을 5400초 동안 인가하여 CIS계 박막을 제조하였다. 이 과정을 통해 몰리브데늄 후면전극이 식각되어 제거된 영역을 제외한 나머지 면적에만 CIS계 광흡수층 박막을 형성할 수 있다.
상기 제조된 CIS계 박막을 석영관에 넣고 580 ℃에서 30분 동안 열처리 공정을 진행하였다. 반응로 내부의 셀레늄 분위기를 조절하기 위해, 석영관 내 알루미나 도가니에 셀레늄(Se)을 넣고 300 ℃로 증발시켰으며, 아르곤(Ar) 기체를 100 sccm의 속도로 일정하게 흘려 주었다.
패턴화 및 패시베이션된 후면전극 및 그 위에 선택적으로 형성된 CIS계 광흡수층 박막의 단면 모폴로지를 관찰하기 위해 주사전자현미경(FE-SEM, Inspect F50)을 사용하였으며, 그 결과를 각각 도 6과 도 7에 도시하였다.
도 6을 참조하면, 후술하는 비교예(도 10)와 비교할 때, 본 발명의 일 실험예에 따라 몰리브데늄 후면전극이 식각되어 패터닝된 측면 또는 절단면에 몰리브데늄을 덮은 패시베이션 막이 약 150 nm 두께로 형성되었음을 알 수 있다.
또한, 도 7을 참조하면, 본 발명의 일 실험예에 따라 패턴 측면 또는 절단면이 패시베이션된 기판의 형상에 의해 CIS계 박막이 선택적으로 형성됨을 확인할 수 있다.
도 8은 패시베이션 막을 형성함으로써 태양전지의 투광성이 저해되는지를 확인하기 위해, 상기 기술한 실험예에 의해 제조된 CIS계 광흡수층 박막과 후술하는 비교예에 의해 패시베이션 막 없이 제조된 CIS계 광흡수층 박막의 광투과도 특성을 자외선-가시광 분광도계(PerkinElmer사, Lamda 35)를 이용하여 측정한 결과를 도시한 도면이다.
도 8에 따르면, 후술하는 비교예에 비해, 본 발명의 일 실험예에 따라 제조한 태양전지의 투과도 손실이 1% 이내로 미미한 것을 확인할 수 있다. 즉, 본 발명의 일 실험예에 따라 패터닝된 후면전극 측면 또는 절단면에 패시베이션 막을 형성하고도 후술하는 비교예 대비 광투과도 손실 거의 없이, 포토마스크에 의해 설계된 대로 높은 투광성을 가지는 태양전지를 제조할 수 있다는 사실을 알 수 있다. 
<비교예 1>
상술한 실험예와 동일한 방법으로 제조된 전해질 용액을 사용하여 동일한 전착방법에 의해 CIS계 박막을 형성하되, 패터닝되지 않은 후면전극 기판을 준비하여 그 위에 CIS계 광흡수층 박막을 제조하였다.
도 9의 (a) 및 (b)는 각각 상술한 실험예에 따라 제조한 투광형 CIS계 태양전지와 비교예 1에 의해 제조된 통상의 CIS계 태양전지 사진의 예를 비교하여 도시한 도면이고, 도 9의 (c)는 도 9의 (a)를 확대한 모습을 나타낸 도면이다.
도 9를 참조하면, 비교예 1에 의해 제조된 CIS계 박막이 불투명 것에 반해, 본 발명의 실험예에 따라 패터닝되고 그 패턴의 측면 또는 절단면이 패시베이션된 후면전극 위에 제조된 CIS계 박막은 반투명한 특성을 가짐을 알 수 있다.
<비교예 2>
상술한 실험예와 동일한 방법으로 제조된 전해질 용액을 사용하여 동일한 전착방법에 의해 CIS계 박막을 형성하되, 패턴화된 후면전극 형성 과정에서 패턴의 측면 또는 절단면 위에 패시베이션 막을 형성하지 않은 조건으로 후면전극 기판을 준비하여 그 위에 CIS계 광흡수층 박막을 제조하였다.
비교예 2에 따라, 패턴화되었으나 패시베이션 막은 포함하지 않은 후면전극 기판 및 그 위에 성막한 CIS계 광흡수층 박막의 단면 모폴로지를 상술한 실험예와 동일한 방법으로 관찰했으며, 그 결과를 각각 도 10과 도 11에 도시하였다.
도 10을 참조하면, 본 발명의 일 실험예에 따라 제조된 패터닝 및 패시베이션된 후면전극 단면 사진(도 6)과 비교할 때, 비교예 2에 따라 제조된 몰리브데늄 후면전극 측면에 패시베이션 막이 없음을 확인할 수 있다.
또한, 도 11에 따르면, 후면전극이 식각되어 제거된 영역에 광흡수층 박막이 무전해 도금과 같은 현상으로 증착된 경우, 이를 제거하는 과정에서 후면전극 측면 또는 절단면뿐만 아니라 후면전극 윗면 일부가 노출되는 것을 확인할 수 있다. 이는, 이후 태양전지 제조 과정 중 윈도우 층을 증착할 때, 후면전극이 드러난 영역과 윈도우 층이 맞닿게 되면서 션트 경로(shunt path)를 형성하게 해, 결과적으로 태양전지의 광전변환효율을 떨어드리는 요인으로 작용할 수 있다.
상술한 실험예 및 비교예 2에서 제조된 CIS계 광흡수층 박막을 황산카드뮴, 싸이오요소, 암모니아수 및 증류수가 혼합된 수용액에 60 ℃에서 15분 간 담가 버퍼층인 CdS 박막을 입히고, 그 위에 교류 고주파 스퍼터링(RF sputtering)으로 산화아연(ZnO)층과 알루미늄이 도핑된 산화아연(Al-deped ZnO) 층을 증착함으로 윈도우 층을 형성하였다. 다시 그 위에 진공 증착기로 집전극으로 쓰이는 니켈과 알루미늄 층을 각각 50 nm, 400 nm 두께로 증착하여 태양전지 소자를 완성하였다.
도 12는 본 발명의 일 실험예에 따라 제조한 CIS 태양전지의 단면을 나타낸 SEM 사진이다. 각 태양전지 소자의 전류-전압 특성 그래프를 솔라시뮬레이터(solar simulator, Yamashita Denso사, YSS-50S)를 이용하여 측정하였다.
도 13의 a) 및 b)는 각각 상술한 실험예 및 비교예 2에서 제조된 CIS계 광흡수층 박막을 사용한 태양전지 소자의 전류-전압 특성을 나타낸 그래프이다.
비교예 2에 의해 제조된 태양전지는 개방전압(open circuit voltage, VOC) 0.374 V, 단락전류밀도(short circuit current density, JSC) 39.4 mA/cm2 , 충진율 0.506, 광전효율 7.46%로 측정된 반면, 본 발명의 일 실험예에 의해 제조된 태양전지는 개방전압 0.411 V, 단락전류밀도 38.4 mA/cm2 , 충진율 0.590, 광전효율 9.31%로 측정되었다. 따라서, 비교예 2에 의해 제조된 태양전지 소자에 비해, 본 발명의 일 실험예에 따라 제조된 태양전지는 개방전압, 충진율, 및 광전효율이 두드러지게 증가한 것을 도 13을 통해 확인할 수 있다.
실험예 및 비교예 2에 의해 제조된 태양전지 소자의 광전특성 변화를 해석하기 위해, 전류-전압 곡선에 대해 다이오드 분석을 수행하였고, 그 결과그래프를 도 14에 도시하고, 결과값을 아래 표 1에 나타내었다.
디바이스 Gsh/A / mS cm-2 RsA / Ω cm2 n j0 / mA/cm2
비교예 2 0.99 ± 0.03 1.64 ± 0.01 1.92 ± 0.01 (7.18 ± 0.09) x 10-3
실험예 0.77 ± 0.01 1.14 ± 0.01 1.87 ± 0.01 (3.39 ± 0.05) x 10-3
표 1에 나타낸 바와 같이, 본 발명의 일 실험예에 따라 제조된 태양전지 소자의 경우, 비교예 2에 의해서 제조된 태양전지에 비해 션트 전도성(shunt conductance)이 0.99 mS cm-2 에서 0.77 mS cm-2로 감소하였고, 재결합 전류라고도 불리는 역포화전류(reverse saturation current)도 7.18 x 10-3 mA/cm2 에서 3.39 x 10-3 mA/cm2 으로 감소했음을 알 수 있다.
따라서, 본 발명의 다양한 실시예에 따라 제조된 패턴화된 후면전극 측면 또는 절단면에 패시베이션 막을 태양전지에 적용함으로써 효과적으로 션팅 및 재결합에 의한 손실을 줄일 수 있음을 확인할 수 있다.
지금까지 본 발명의 일 실험예의 상세한 설명을 통해, 투광형 박막 태양 전지 구현을 위해 특정 패턴이 패터닝된 전극(후면전극)의 측면 또는 절단면의 노출로 인해 발생하는 션트 경로의 형성 문제 및 패턴화된 후면전극의 측면 또는 절단면에서의 재결합 손실 증가 문제를 패시베이션 막 형성을 통해 해결할 수 있음을 확인하였다.
또한, 본 발명의 일 실험예에 따라 패턴화된 후면전극의 측면 또는 절단면 위에 재결합 방지막 또는 패시베이션 막을 형성하더라도, 광투과도 손실이 거의 없는 투광형 박막 태양 전지를 제조할 수 있음을 확인하였다.
따라서, 본 발명의 다양한 실시예 및 실험예에 따라 투광성 및 심미성을 지니면서도 고출력을 특징으로 하는 투광형 박막 태양전지를 제공할 수 있다. 또한, 본 발명의 다양한 실시예에 따르면 투광형 박막 태양전지 제조를 위해 상온, 상압에서 적용 가능한 전착 기술을 이용하므로, 진공 공정에 비해 초기 설비투자비 및 공정비가 적으며 양산화가 가능한 태양 전지용 박막의 제조 공정을 실현할 수 있다.
이와 같이, 본 발명의 다양한 실시예에 따른 투광형 박막 태양 전지는 높은 심미성, 저가, 고출력을 특징으로 하면서도, 무기 화합물로 구성되어 안정성 측면에서도 월등하므로, 건물일체형 태양전지(BIPV), 자동차일체형 태양전지(VIPV) 등으로서의 고부가가치 태양 전지로 응용할 수 있다.
상술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (11)

  1. 소정의 전구체와 용매를 혼합하여 제조된 전해질 용액과, 기 준비된 기판 상에 특정 패턴이 패터닝된 전극이 형성된 형태의 작업전극을 포함하는 전기 화학 전지를 전압 인가 장치 또는 전류 인가 장치에 연결하여 전착 회로를 구성하는 회로 구성 단계; 및
    상기 전압 인가 장치 또는 전류 인가 장치를 이용하여 상기 작업전극에 환원 전압 또는 전류를 인가하고, 상기 특정 패턴이 패터닝된 전극의 형상에 따라 상기 전극 상의 일부 영역에만 박막이 선택적으로 전착되는 박막 형성 단계를 포함하는 것을 특징으로 하는 화합물 박막 제조 방법.
  2. 제1항에 있어서,
    상기 회로 구성 단계 이전에, 상기 소정의 기판 상에 특정 패턴이 패터닝된 전극이 형성된 전극 기판을 제조하는 전극 기판 생성 단계를 더 포함하고,
    상기 전극 기판 생성 단계는,
    상기 소정의 기판 상에 전극을 형성하는 과정, 상기 전극 상에 포토레지스트를 형성하는 포토리소그래피 공정을 이용하여 상기 특정 패턴을 형성하는 과정, 상기 전극 상의 기 설정된 영역에 패시베이션 막을 형성하는 과정, 상기 전극 상에 형성된 포토레지스트를 제거하는 과정을 포함하는 것을 특징으로 하는 화합물 박막 제조 방법.
  3. 제1항에 있어서,
    상기 회로 구성 단계 이전에, 상기 소정의 기판 상에 특정 패턴이 패터닝된 전극이 형성된 전극 기판을 제조하는 전극 기판 생성 단계를 더 포함하고,
    상기 전극 기판 생성 단계는,
    상기 소정의 기판 상에 전극을 형성하는 과정, 레이저를 이용하여 상기 전극 상에 상기 특정 패턴을 형성하는 과정, 상기 전극 상의 기 설정된 영역에 패시베이션 막을 형성하는 과정을 포함하는 것을 특징으로 하는 화합물 박막 제조 방법.
  4. 제1항에 있어서,
    상기 박막 형성 단계에 따라 생성된 박막을 셀레늄 또는 황 함유 기체 분위기 하에서 열처리하는 열처리 단계를 더 포함하는 것을 특징으로 하는 화합물 박막 제조 방법.
  5. 제1항에 있어서,
    상기 특정 패턴은 하나 이상의 원 또는 다각 형상의 중공 홀 형태의 패턴인 것을 특징으로 하는 화합물 박막 제조 방법.
  6. 제1항에 있어서,
    상기 소정의 기판은 소다-석회 유리(soda-lime glass)로 형성되고, 상기 특정 패턴이 패터닝된 전극은 몰리브데늄(Mo)으로 형성되는 것을 특징으로 하는 화합물 박막 제조 방법.
  7. 제2항 또는 제3항에 있어서,
    상기 기 설정된 영역은 상기 특정 패턴이 패터닝된 전극의 측면 또는 상기 특정 패턴이 패터닝된 전극 상에 상기 특정 패턴이 패터닝됨에 따라 생성된 절단면인 것을 특징으로 하는 화합물 박막 제조 방법.
  8. 제1항에 있어서,
    상기 전해질 용액은 염화칼륨, 술팜산, 프탈산수소칼륨, 이산화셀레늄, 염화구리이수화물 및 염화인듐 중 적어도 어느 하나 이상을 증류수에 용해시켜 기 지정된 pH가 되도록 생성된 것을 특징으로 하는 화합물 박막 제조 방법.
  9. 제2항 또는 제3항에 있어서,
    상기 패시베이션 막은 니켈, 텅스텐, 몰리브덴, 구리, 티타늄, 아연, 주석, 철, 크롬, 알루미늄, 실리콘 및 마그네슘 중 어느 하나의 금속 또는 둘 이상의 합금으로 이루어지는 산화물, 질화물 및 황화물 중 어느 하나의 형태로 형성되고,
    상기 전극 상의 기 설정된 영역에 패시베이션 막을 형성하는 과정은 스퍼터, 열 증착(thermal evaporation), 전자빔 증착(e-beam evaporation) 및 원자층 증착(atomic layer deposition), 스핀코팅, 닥터블레이딩, 분사, 전기분사(electro-spraying) 또는 전착의 코팅법을 이용하여 상기 전극 상의 기 설정된 영역에 패시베이션 막을 형성하는 과정인 것을 특징으로 하는 화합물 박막 제조 방법.
  10. 제1항에 따른 화합물 박막 제조 방법에 의해 생성된 것을 특징으로 하는 화합물 박막.
  11. 제10항에 따른 화합물 박막을 포함하는 것을 특징으로 하는 태양 전지.
PCT/KR2017/012916 2017-11-08 2017-11-15 투광형 화합물 박막 제조 방법, 이로부터 제조된 화합물 박막 및 이러한 화합물 박막을 포함하는 태양 전지 WO2019093558A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0148121 2017-11-08
KR20170148121 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019093558A1 true WO2019093558A1 (ko) 2019-05-16

Family

ID=66437870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012916 WO2019093558A1 (ko) 2017-11-08 2017-11-15 투광형 화합물 박막 제조 방법, 이로부터 제조된 화합물 박막 및 이러한 화합물 박막을 포함하는 태양 전지

Country Status (2)

Country Link
KR (1) KR102091566B1 (ko)
WO (1) WO2019093558A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0157889B1 (ko) * 1995-07-24 1999-02-01 문정환 선택적 구리 증착방법
KR20070104021A (ko) * 2006-04-21 2007-10-25 광주과학기술원 전기화학증착법을 이용한 태양전지 제조방법
KR20100089898A (ko) * 2007-11-30 2010-08-12 우시 썬테크 파워 컴퍼니 리미티드 태양전지 금속 전극의 전기화학적 침착 방법
KR101044906B1 (ko) * 2010-06-03 2011-06-28 주식회사 테스 태양 전지의 제조방법
KR101327536B1 (ko) * 2012-07-17 2013-11-08 한국과학기술연구원 Cis계 박막의 제조방법, 이로부터 제조된 cis계 박막 및 상기 박막을 포함하는 박막 태양전지

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100020756A (ko) * 2008-08-13 2010-02-23 인하대학교 산학협력단 패턴이 형성된 투명전극 및 이를 이용한 태양전지
KR101644788B1 (ko) * 2015-07-07 2016-08-03 한밭대학교 산학협력단 반투명성 화합물 박막 태양전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0157889B1 (ko) * 1995-07-24 1999-02-01 문정환 선택적 구리 증착방법
KR20070104021A (ko) * 2006-04-21 2007-10-25 광주과학기술원 전기화학증착법을 이용한 태양전지 제조방법
KR20100089898A (ko) * 2007-11-30 2010-08-12 우시 썬테크 파워 컴퍼니 리미티드 태양전지 금속 전극의 전기화학적 침착 방법
KR101044906B1 (ko) * 2010-06-03 2011-06-28 주식회사 테스 태양 전지의 제조방법
KR101327536B1 (ko) * 2012-07-17 2013-11-08 한국과학기술연구원 Cis계 박막의 제조방법, 이로부터 제조된 cis계 박막 및 상기 박막을 포함하는 박막 태양전지

Also Published As

Publication number Publication date
KR102091566B1 (ko) 2020-03-20
KR20190052607A (ko) 2019-05-16

Similar Documents

Publication Publication Date Title
US7704863B2 (en) Method of the application of a zinc sulfide buffer layer on a semiconductor substrate
Bhattacharya et al. CuIn1− xGaxSe2-based photovoltaic cells from electrodeposited precursor films
EP0956600B1 (en) PREPARATION OF Cu x In y Ga z Se n (x=0-2, y=0-2, z=0-2, n=0-3) PRECURSOR FILMS BY ELECTRODEPOSITION FOR FABRICATING HIGH EFFICIENCY SOLAR CELLS
US8741685B2 (en) Sulfurization and selenization of electrodeposited CIGS films by thermal annealing
CN105140319B (zh) 一种薄膜太阳能电池及其制备方法
KR101327536B1 (ko) Cis계 박막의 제조방법, 이로부터 제조된 cis계 박막 및 상기 박막을 포함하는 박막 태양전지
JP5928612B2 (ja) 化合物半導体太陽電池
WO2013191451A1 (ko) 이중의 밴드갭 기울기가 형성된 czts계 박막의 제조방법, 이중의 밴드갭 기울기가 형성된 czts계 태양전지의 제조방법 및 그 czts계 태양전지
US20110132764A1 (en) Formation of a transparent conductive oxide film for use in a photovoltaic structure
Naghavi et al. Electrodeposition of In2S3 buffer layer for Cu (In, Ga) Se2 solar cells
JPH10273783A (ja) カルコパイライト光吸収膜の製造法
Sahu et al. Electrodeposition of CuInSe2 thin films from aqueous solution
Bhattacharya et al. Electroless deposition of CdTe thin films
WO2019093558A1 (ko) 투광형 화합물 박막 제조 방법, 이로부터 제조된 화합물 박막 및 이러한 화합물 박막을 포함하는 태양 전지
WO2012148208A2 (en) Solar cell and method of preparing the same
WO2013089305A1 (ko) 전자빔 조사를 이용한 몰리브덴 박막의 전도도 향상 방법
TW201427054A (zh) 光電變換元件及其製造方法、光電變換元件的緩衝層的製造方法與太陽電池
US11031517B2 (en) Method of manufacturing light transmission type compound thin film, compound thin film manufactured therefrom, and solar cell including the same
WO2019054556A1 (ko) 화합물 박막 제조 방법, 이로부터 제조된 화합물 박막 및 이러한 화합물 박막을 포함하는 태양 전지
JP2831200B2 (ja) 薄膜太陽電池の製造方法
WO2014030980A1 (en) Solar cell and method of fabricating the same
WO2021107221A1 (ko) Cis 계 박막, 이를 포함하는 태양전지 및 그 제조 방법
US20200243784A1 (en) Selenium-Fullerene Heterojunction Solar Cell
JPH11145493A (ja) 薄膜太陽電池の製造方法
WO2019054550A1 (ko) 투명 전도성 산화물 후면전극을 가지는 칼코게나이드계 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931343

Country of ref document: EP

Kind code of ref document: A1