WO2019093433A1 - エチレン/テトラフルオロエチレン共重合体 - Google Patents

エチレン/テトラフルオロエチレン共重合体 Download PDF

Info

Publication number
WO2019093433A1
WO2019093433A1 PCT/JP2018/041538 JP2018041538W WO2019093433A1 WO 2019093433 A1 WO2019093433 A1 WO 2019093433A1 JP 2018041538 W JP2018041538 W JP 2018041538W WO 2019093433 A1 WO2019093433 A1 WO 2019093433A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
group
tetrafluoroethylene
polymerization
peak intensity
Prior art date
Application number
PCT/JP2018/041538
Other languages
English (en)
French (fr)
Inventor
遼一 矢野
達也 舩岡
隆宏 北原
岳史 関口
一暢 内田
裕子 高野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880071201.7A priority Critical patent/CN111315791B/zh
Priority to US16/762,764 priority patent/US11548960B2/en
Priority to EP18876618.2A priority patent/EP3708597A4/en
Priority to CN202210889691.XA priority patent/CN115160469B/zh
Publication of WO2019093433A1 publication Critical patent/WO2019093433A1/ja
Priority to US17/976,939 priority patent/US11905349B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0892Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms containing monomers with other atoms than carbon, hydrogen or oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating

Definitions

  • the present invention relates to ethylene / tetrafluoroethylene copolymers.
  • Ethylene / tetrafluoroethylene copolymer [ETFE] is excellent in heat resistance, weather resistance, electrical insulation, non-adhesiveness, etc., and is further excellent in moldability and mechanical strength among fluorine resins, so that it is melted.
  • Ethylene / tetrafluoroethylene copolymer [ETFE] is excellent in heat resistance, weather resistance, electrical insulation, non-adhesiveness, etc., and is further excellent in moldability and mechanical strength among fluorine resins, so that it is melted.
  • By processing by a molding method it is used for a wide range of molded articles such as coated electric wires, tubes, sheets, films and the like, and various studies have been made.
  • Patent Document 1 ETFE having a specific monomer composition ratio and a specific amount of copper oxide are used in order to produce a molded article excellent in heat resistance and stress crack resistance with high productivity.
  • the fluorine-containing copolymer composition containing is described.
  • Patent Document 2 discloses a repeating unit derived from ethylene, a repeating unit derived from tetrafluoroethylene, and a specific fluorovinyl compound for the purpose of improving heat resistance and improving cracking resistance at high temperatures. Ethylene-tetrafluoroethylene-based copolymers comprising derived repeat units are described.
  • Patent Document 3 discloses a tetrafluoroethylene-based copolymer produced by polymerization using peroxydicarbonate as a polymerization initiator for the purpose of providing a copolymer which does not cause foaming due to volatile components during molding. Also described is a method of stabilizing tetrafluoroethylene-based copolymers which are contacted with ammonia or ammonium salts of weak acids after polymerization.
  • the fluorine-containing copolymer composition described in Patent Document 1 has a problem in the dispersion uniformity of an acid acceptor such as copper oxide, and the quality stability of the heat resistance and mechanical strength of the resulting molded article is obtained. And there was room for improvement.
  • the ethylene-tetrafluoroethylene-based copolymer described in Patent Document 2 can not suppress gelation and thermal decomposition in a molding machine when it is intended to be melt-molded at a high temperature, and it is difficult to obtain a good molded product The
  • Even if stabilized by the method described in Patent Document 3 there is room for improvement in that coloring occurs at high temperatures.
  • the ethylene / tetrafluoroethylene copolymer described in Patent Document 4 has room for improvement in terms of heat resistance, melt processability, and mechanical properties.
  • An object of the present invention is to provide an ethylene / tetrafluoroethylene copolymer which is excellent in melt processability and heat resistance, in view of the above-mentioned present situation.
  • Another object of the present invention is to provide an ethylene / tetrafluoroethylene copolymer excellent in mechanical properties and melt processability.
  • the inventors of the present invention found that the loss tangent satisfies a specific condition, and the intensity ratio of a specific group measured by Fourier transform infrared spectroscopy satisfies a specific condition. It is found that the ethylene / tetrafluoroethylene copolymer exhibits extremely excellent heat resistance and is excellent in melt moldability by being satisfied, and the present invention has been completed.
  • the present invention satisfies the following formula (1) and is -CF 2 H group, -CF 2 CH 2 COF group, -COF group, -COOH group, -CF which is measured by Fourier transform infrared spectroscopy monomer dimer and CF 2 CH 2 COOH group 2 COOH group, -COOCH 3 group, the peak intensity of vibration from -CONH 2 group and -CH 2 OH group satisfies the following formula (2) Ethylene / tetrafluoroethylene copolymer (hereinafter, also described as “the first ethylene / tetrafluoroethylene copolymer of the present invention”).
  • PI A peak intensity of vibration from -CF 2 H group
  • PI B peak intensity of vibration from -CF 2 CH 2 COF group
  • PI C peak intensity of vibration from -COF groups
  • PI D -COOH peak intensity of vibration from the group
  • PI E -CF 2 COOH group dimeric and CF 2 CH 2 peak intensity of vibration derived from a monomer of the COOH groups
  • PI F oscillation derived from -COOCH 3 group
  • Peak intensity PI G Peak intensity of vibration derived from -CONH 2 group
  • PI H Peak intensity of vibration derived from -CH 2 OH group
  • the first ethylene / tetrafluoroethylene copolymer of the present invention comprises polymerized units (a) based on ethylene and polymerized units (b) based on tetrafluoroethylene, and polymerized units (a) based on ethylene
  • the molar ratio (a) / (b) with respect to the polymerized units (b) based on tetrafluoroethylene is preferably 50 to 10/50 to 90, and the molar ratio (a) / (b) is 44 to 41. It is more preferable that the ratio is / 56 to 59, and it is further preferable that the molar ratio (a) / (b) is 43.5 to 41.5 / 56.5 to 58.5.
  • the ethylene / tetrafluoroethylene copolymer of the present invention comprises a polymerized unit based on ethylene (a), a polymerized unit based on tetrafluoroethylene (b), and a monomer copolymerizable with ethylene and tetrafluoroethylene. It is also preferred to include the polymerized units (c).
  • N is an integer of 2 to 8.
  • the structural unit derived from the monomer of the above general formula (A1) is preferably 0.1 to 5.0 mol%, preferably 1.8 to 2.8 mol based on the total structural units of the above-mentioned copolymer. %, More preferably 1.8 to 2.6 mol%, and still more preferably 2.0 to 2.6 mol%.
  • the ethylene / tetrafluoroethylene copolymer of the present invention preferably satisfies the following formula (3) in composition analysis of the copolymer obtained by measurement from 1 H-NMR.
  • the first ethylene / tetrafluoroethylene copolymer of the present invention preferably has a melt flow rate at 297 ° C. of 0.1 to 60.0 g / 10 min, and preferably 4.0 to 45.0 g / 10 min. It is more preferable that
  • the present inventors also as a second invention that the loss tangent satisfies specific conditions, and that the ethylene / tetrafluoroethylene copolymer having a specific composition limited is excellent in mechanical properties and melt formability.
  • the present invention has been completed.
  • the present invention is also based on ethylene-based polymerized units (a), tetrafluoroethylene-based polymerized units (b), and monomers copolymerizable with ethylene and tetrafluoroethylene, and satisfying the following formula (1):
  • the molar ratio (a) / (b) of the polymerized units (a) based on ethylene and the polymerized units (b) based on tetrafluoroethylene containing the polymerized units (c) is 44 to 41/56 to 59, Ethylene / tetrafluoroethylene copolymer characterized by having polymerized units (c) of at least 1.8 mol% with respect to all constitutional units (hereinafter, “the second ethylene / tetrafluoroethylene copolymer of the present invention”) Also described).
  • Y represents a fluoroalkyl group.
  • Y represents a fluoroalkyl group.
  • It is preferable that it is a polymerization unit based on a monomer represented by the following general formula (A2): CH 2 CX- (CF 2) n Z (A2) (In the formula, X and Z are the same or different and each represents a hydrogen atom or a fluorine atom. N is an integer of 2 to 8.)
  • the molar ratio (a) / (b) of the polymerized units (a) based on ethylene and the polymerized units (b) based on tetrafluoroethylene is 43. More preferably, it is 5 to 41.5 / 56.5 to 58.5.
  • the present invention is also a molded article characterized by being obtained by molding the first or second ethylene / tetrafluoroethylene copolymer of the present invention.
  • the molded article of the present invention is preferably a film or a sheet.
  • the present invention is also an electric wire characterized by having a core wire and a covering material comprising the first and second ethylene / tetrafluoroethylene copolymers of the present invention.
  • the first ethylene / tetrafluoroethylene copolymer (ETFE) of the present invention and the second ethylene / tetratetraethylene copolymer of the present invention It includes both fluoroethylene copolymers (ETFE).
  • the first ethylene / tetrafluoroethylene copolymer of the present invention is excellent in melt processability and heat resistance by having the above configuration.
  • the second ethylene / tetrafluoroethylene copolymer of the present invention is excellent in mechanical properties and melt processability by having the above configuration.
  • the first ethylene / tetrafluoroethylene (hereinafter also described as “TFE”) copolymer of the present invention (hereinafter also described as “ETFE”) satisfies the following formula (1). 75 ⁇ tan ⁇ (60) / tan ⁇ (5) ⁇ 100 ⁇ 225 (1) tan ⁇ (5): Loss in the dynamic viscoelasticity measurement at 320 ° C. in the air atmosphere at 5 minutes from the start of measurement tan ⁇ (60): In the dynamic viscoelasticity measurement at 320 ° C.
  • the loss tangent polymer material after 60 minutes is a visco-elastic body, has both elasticity and viscosity properties, and dynamic visco-elasticity measurement is known as one of methods to know visco-elastic behavior.
  • the amplitude ratio of stress and strain and the phase difference are detected, from which the storage elastic modulus G ′ and the loss elastic modulus G ′ ′ are calculated.
  • the value obtained by dividing G ′ ′ by G ′ is the loss tangent tan ⁇
  • the loss tangent tan ⁇ value is low, the proportion of the elastic component is high, and when the tan ⁇ value is high, the proportion of the viscous component can be considered to be high.
  • tan ⁇ (60) / tan ⁇ (5) is the loss tangent after 60 minutes to the loss tangent 5 minutes after the start of the measurement of the dynamic viscoelasticity measurement in the dynamic viscoelasticity measurement at 320 ° C. in an air atmosphere It means tangent change rate.
  • tan ⁇ (60) / tan ⁇ (5) is less than 75, the proportion in elasticity increases, for example, gelation easily occurs in a molding machine, foreign matter is generated in high-temperature molding, or corn breaks (eg, wire molding) There is a problem that it becomes easy to occur (cover breakage). Further, if it exceeds 225, thermal decomposition occurs preferentially, so that the polymer is reduced in molecular weight and causes deterioration of mechanical physical properties.
  • the above tan ⁇ (5) and tan ⁇ (60) are loss tangent tan ⁇ after 5 minutes and after 60 minutes from the start of melting of ETFE at a measurement temperature of 320 ° C. in an air atmosphere using a rotary rheometer having a heating furnace. It is measured.
  • the conditions of the rotary rheometer are a diameter of 25 mm of a parallel disk, a measurement gap of 1.0 mm, a frequency of 1 rad / s, and a measurement distortion of 3%.
  • the melting start time is the time when ETFE is put in the heating furnace under the measurement temperature atmosphere.
  • the air atmosphere is, for example, a normal air (oxygen concentration is about 20% by volume) atmosphere.
  • the first ETFE of the present invention is a dimer of —CF 2 H group, —CF 2 CH 2 COF group, —COF group, —COOH group, —CF 2 COOH group measured by Fourier transform infrared spectroscopy. It is preferable that the peak intensity of vibration derived from a monomer of — and CF 2 CH 2 COOH group, —COOCH 3 group, —CONH 2 group and —CH 2 OH group satisfy the following formula (2).
  • PI A peak intensity of vibration from -CF 2 H group
  • PI B peak intensity of vibration from -CF 2 CH 2 COF group
  • PI C peak intensity of vibration from -COF groups
  • PI D -COOH peak intensity of vibration from the group
  • PI E -CF 2 COOH group dimeric and CF 2 CH 2 peak intensity of vibration derived from a monomer of the COOH groups
  • PI F oscillation derived from -COOCH 3 group
  • PI G peak intensity of vibration from -CONH 2 group
  • PI H peak intensity said peak intensity of vibration from -CH 2 OH group, 300 ° C.
  • PI A / (PI B + PI C + PI D + PI E + PI F + PI G + PI H ) in the above formula (2) is 0.60 or more means that the proportion of —CF 2 H groups in ETFE is —CF 2 It shows that the amount is larger than the total amount of CH 2 COF group, -COF group, -COOH group, -CF 2 COOH group, -COOCH 3 group, -CONH 2 group and -CH 2 OH group.
  • the above formula (2) is used as an index indicating the amount of —CF 2 H group in ETFE.
  • the ETFE of the present invention has excellent heat resistance by satisfying the above formula (2), and can suppress coloring at high temperatures.
  • the above groups are introduced into the ethylene / tetrafluoroethylene copolymer by appropriately selecting a polymerization unit (c) based on a polymerization initiator used at the time of polymerization, or a monomer copolymerizable with ethylene and TFE described later. can do.
  • the first ETFE of the present invention gelation and thermal decomposition in a molding machine are suppressed by the synergy of satisfying the above formulas (1) and (2), and excellent melt processability can be realized. Moreover, since it has the outstanding heat resistance, the coloring in high temperature can also be suppressed and it can use suitably for the use which heat resistance is requested
  • ETFE satisfying the above formulas (1) and (2) is a kind of a polymerization initiator, a method of adding a chain transfer agent, a molar ratio of a polymerization unit (a) based on ethylene and a polymerization unit (b) based on TFE, ethylene And it can manufacture by adjusting the content rate of the polymerization unit (c) based on the monomer copolymerizable with TFE.
  • a fluorine-containing polymerization initiator is used as the polymerization initiator
  • the molar ratio of the polymerization unit (a) to the polymerization unit (b) is 41 to 44/56 to 59, or the chain transfer agent is continuously added or Both of the formulas (1) and (2) can be satisfied by adding separately.
  • the molar ratio of the polymerization unit (a) to the polymerization unit (b) is 41 to 44/56 to 59, and the content ratio of the polymerization unit (c) Of at least 1.8 mol% and by continuous addition or partial addition of a chain transfer agent can satisfy both Formulas (1) and (2).
  • the first ETFE of the present invention is excellent in both heat resistance and mechanical strength, and can suppress the generation of foreign substances during high temperature molding, so that ethylene-based polymerized units (a) and TFE can be used.
  • the molar ratio (a) / (b) of the polymer unit (b) is preferably 50 to 10/50 to 90.
  • the molar ratio (a) / (b) is more preferably 45 to 20/55 to 80, still more preferably 45 to 30/55 to 70, since the heat resistance is more excellent. It is more preferably 41/56 to 59, and particularly preferably 43.5 to 41.5 / 56.5 to 58.5.
  • the first ETFE of the present invention preferably comprises a polymerized unit (a), a polymerized unit (b), and a polymerized unit (c) based on ethylene and a monomer copolymerizable with TFE.
  • the content ratio of polymerized units (c) based on a monomer copolymerizable with ethylene and TFE is 0 to 10.0 mol% with respect to the total of polymerized units (a) and polymerized units (b) preferable.
  • the second ETFE of the present invention satisfies the following formula (1) and is copolymerizable with ethylene-based polymerized units (a), tetrafluoroethylene-based polymerized units (b), and ethylene and tetrafluoroethylene
  • the molar ratio (a) / (b) of the ethylene-based polymerized units (a) and the tetrafluoroethylene-based polymerized units (a) / (b) is 44 to 41/56.
  • the amount of the polymerized units (c) is 1.8 mol% or more based on all constitutional units.
  • the second ETFE of the present invention satisfies the above formula (1) and has a limited specific composition, thereby suppressing gelation and thermal decomposition in a molding machine and achieving excellent melting. Processability can be realized, and further, mechanical characteristics can be improved while maintaining melt processability. In addition, the generation of foreign matter in high temperature molding can be suppressed.
  • fills the said Formula (1) can be obtained by continuing addition or division
  • the second ETFE of the present invention is superior in both heat resistance and mechanical strength, and can suppress the generation of foreign substances during high-temperature molding, so that ethylene-based polymerized units (a) and TFE can be used. More preferably, the molar ratio (a) / (b) with respect to the polymerized units (b) based on (b) is 43.5-41.5 / 56.5-58.5.
  • the content ratio of the above-mentioned polymerized units (c) is from the viewpoint of further improving the heat resistance, and from the fact that generation of foreign substances in molding can be further suppressed, the polymerized units (a) And 1.8 mol% or more is preferable with respect to the sum total of polymerization unit (b), 1.9 mol% or more is more preferable, 2.0 mol% or more is especially preferable, 2.2 mol% or more is still more preferable. Moreover, 8.0 mol% or less is preferable, 5.0 mol% or less is more preferable, 2.8 mol% or less is more preferable, 2.6 mol% or less is still more preferable, 2.5 mol% or less is particularly preferable preferable.
  • the ETFE of the present invention preferably has a —CF 2 H group at the main chain terminal.
  • a —CF 2 H group at the end of the main chain and satisfying the formulas (1) and (2) a very excellent heat resistant copolymer can be obtained.
  • the ETFE of the present invention may have a terminal group other than —CF 2 H group at the main chain terminal.
  • the ETFE of the present invention has polymerized units (a) based on ethylene and polymerized units (b) based on TFE.
  • the polymerized unit (a) based on ethylene represents a repeating unit represented by -CH 2 CH 2-
  • the polymerized unit (b) based on TFE is represented by -CF 2 CF 2- It represents a repeating unit.
  • the polymerization unit (c) based on a monomer copolymerizable with ethylene and TFE means the polymer in the polymer when the monomer is copolymerized to become a part of the constitution of the polymer.
  • the structural part derived from the said monomer is represented.
  • the polymerization unit based on the monomer represented by the general formula (A1) represents a repeating unit represented by -CH 2 -CXY-.
  • Y in the general formula (A1) represents a fluoroalkyl group, but the fluoroalkyl group may be linear or branched.
  • the carbon number of the fluoroalkyl group is preferably 2 to 10, more preferably 2 to 8, and still more preferably 2 to 6.
  • N in the above general formula (A2) is an integer of 2 to 8.
  • n is preferably an integer of 2 to 6, more preferably an integer of 2 to 4, and still more preferably 3.
  • the content ratio of the polymerization unit based on the monomer represented by the general formula (A1) or (A2) is a foreign substance in high temperature molding from the viewpoint of further improving the heat resistance. It is preferable that the amount be 0 to 10.0 mol% with respect to the total of the polymer units (a) and (b), because It is more preferably 0.1 to 5.0 mol%, still more preferably 0.5 to 5.0 mol%, particularly preferably 1.8 to 3.0 mol%. Particularly preferably 1.8 to 2.8 mol%, still more preferably 1.8 to 2.6 mol%, and 2.0 to 2.6 mol%. Is even more preferred.
  • the ETFE of the present invention is more excellent in melt processability and heat resistance, and can further suppress generation of foreign matter at high temperature molding, so 80 ⁇ tan ⁇ (60) / tan ⁇ (5) ⁇ 100 ⁇ 200.
  • 80 ⁇ tan ⁇ (60) / tan ⁇ (5) ⁇ 100 ⁇ 200.
  • Preferably satisfies 80 ⁇ tan ⁇ (60) / tan ⁇ (5) ⁇ 100 ⁇ 190, and still more preferably 90 ⁇ tan ⁇ (60) / tan ⁇ (5) ⁇ 100 ⁇ 180, It is even more preferable to satisfy 100 ⁇ tan ⁇ (60) / tan ⁇ (5) ⁇ 100 ⁇ 160.
  • the ETFE of the present invention preferably further satisfies the following formula (3) in composition analysis of a copolymer obtained by measurement from 1 H-NMR. (Ethylene unit-number of bonds of ethylene unit) / total number of ethylene units sandwiched by CF 2 ⁇ 0.060 (3)
  • the above formula (3) indicates that the ratio of the number of bonds of ethylene units to the number of ethylene units sandwiched by CF 2 in ETFE is smaller.
  • the number of bonds between ethylene units is smaller than a specific ratio, it is possible to obtain ETFE having excellent melt processability and heat resistance, in which gelation and thermal decomposition in a high temperature environment are suppressed.
  • the above formula (3) is influenced by the polymerization temperature, and by polymerizing at a low temperature, it is possible to lower the total numerical value of ethylene units sandwiched between (ethylene unit-number of ethylene units) / CF 2 .
  • the polymerization temperature is preferably 10 to 80.degree. C., more preferably 15 to 50.degree. C., and still more preferably 25 to 40.degree.
  • the ETFE of the present invention preferably further satisfies the following formula (4).
  • MIT value bending life measured in accordance with ASTM D-2176 (times)
  • MFR Melt flow rate measured at 297 ° C.
  • the MIT value described above is a 0.20 to 0.23 mm thick film press-molded under conditions of 300 ° C. and 3.0 MPaG and a strip of 1.3 cm wide and 90 mm long The samples cut out into the shape were measured with a MIT type bending fatigue tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.) in accordance with ASTM D-2176 to measure the number of bendings required to break.
  • the above-mentioned MFR conforms to ASTM D3307-01, and using a melt indexer (made by Toyo Seiki Co., Ltd.), the mass of polymer flowing out per 10 minutes from a nozzle with an inner diameter of 2 mm and a length of 8 mm under 5 Kg load at 297 ° C. (G / 10 min).
  • the MFR and MIT values are in a trade-off relationship, and the smaller the MFR, the higher the molecular weight, and hence the MIT value. That is, when the mechanical properties are improved while maintaining the melt processability, the MIT value becomes high even in the same MFR. The higher the value of “-28000 ⁇ log (MFR) +128000”, the better the mechanical properties even in the same MFR.
  • ETFE of the present invention becomes more excellent in mechanical strength by satisfying the above-mentioned formula (4), and is particularly suitable for applications such as electric wires and tubes.
  • the formula (4) has an ethylene / tetrafluoroethylene-based polymer unit (a) and a tetrafluoroethylene-based polymer unit (b) at a molar ratio (a) / (b) of 44 to 41.
  • the structural unit derived from the monomer of the above general formula (A2) to the unit is 1.8 to 3.0 mol% (preferably 1.8 to 2.8 mol%, more preferably 1 (8) to 2.6 mol%, more preferably 2.0 to 2.6 mol%).
  • the ETFE of the present invention more preferably satisfies MITMIT-28000 ⁇ log (MFR) +128000, and further preferably MIT ⁇ -28000 ⁇ log (MFR) +129000, and further MITMIT-28000. It is particularly preferable to satisfy x log (MFR) + 130000.
  • the content of each monomer unit is a value obtained by performing 19 F-NMR analysis.
  • the melting point of ETFE of the present invention is preferably 200 ° C. or more. If the melting point is too low, it will be inferior in heat resistance because it causes deformation when used at high temperature.
  • the melting point is more preferably 200 ° C. or more, still more preferably 220 ° C. or more, and particularly preferably 230 ° C. or more. Moreover, it is also preferable that it is 245 degreeC or more.
  • the upper limit of the melting point is not particularly limited, but may be 280 ° C.
  • the melting point is the temperature of the peak of the endothermic curve obtained by measuring heat using a differential scanning calorimeter at a heating rate of 10 ° C./minute according to ASTM D-4591.
  • the melt flow rate [MFR] at 297 ° C. of the ETFE of the present invention is preferably 0.1 to 60.0 g / 10 min, more preferably 50.0 g / 10 min or less, and 45.0 g It is more preferably 10 minutes or less, more preferably 3.0 g / 10 minutes or more, and still more preferably 4.0 g / 10 minutes or more.
  • MFR conforms to ASTM D3307-01, using a melt indexer (made by Toyo Seiki Co., Ltd.), mass of polymer flowing out per 10 minutes from a nozzle with an inner diameter of 2 mm and a length of 8 mm under a 5 Kg load at 297 ° C. g / 10 min).
  • the ETFE of the present invention preferably has a thermal decomposition initiation temperature of 370 ° C. or higher. From the viewpoint of heat resistance, 375 ° C. or higher is more preferable, and 380 ° C. or higher is even more preferable.
  • the thermal decomposition initiation temperature is a temperature at which the mass of the fluoropolymer decreases by 1% by mass by raising the temperature at 10 ° C./minute in an air atmosphere using a differential thermal / thermogravimetric measurement apparatus.
  • a 1.5 mm thick film press-molded under the conditions of 300 ° C. and 3.0 MPa G is heated at 232 ° C. for 168 hours, and the yellow index value before heating is -40 or less, yellow before and after heating
  • the index change degree is 100 or less.
  • the degree of change is more preferably 70 or less.
  • the yellow index is measured according to ASTM-D1925. The heating is performed using an electric furnace at 232 ° C. for 168 hours.
  • One of the preferred embodiments of the first ETFE of the present invention satisfies the above formulas (1) and (2), and has a polymerized unit (a), a polymerized unit based on TFE (b) and a general formula (A2) It consists of a polymerization unit based on the monomer to be represented, and the molar ratio (a) / (b) of the polymerization unit (a) to the polymerization unit (b) is 44 to 41/56 to 59 (more preferably 43) 5 to 41.5 / 56.5 to 58.5), and the content ratio of the polymerized units based on the monomer represented by the general formula (A2) is that of the polymerized units (a) and the polymerized units (b)
  • the form is 0.1 to 8.0 mol% (more preferably 1.8 to 2.5 mol%) with respect to the total.
  • ETFE having extremely excellent melt processability and heat resistance.
  • generation of foreign matter in high temperature molding can be further suppressed.
  • the above-mentioned ETFE satisfies the above-mentioned formula (3).
  • One of the preferred embodiments of the second ETFE of the present invention satisfies the above formula (1) and is a single unit represented by the polymerized unit (a), the polymerized unit based on TFE (b) and the general formula (A2)
  • the polymer unit is composed of a polymer unit based on a monomer, and the molar ratio (a) / (b) of the polymer unit (a) to the polymer unit (b) is 44 to 41/56 to 59 (more preferably 43.5 to 41) 5 / 56.5 to 58.5), and the content of polymerized units based on the monomer represented by the general formula (A2) is relative to the total of the polymerized units (a) and the polymerized units (b)
  • the form is 1.8 to 2.8 mol%.
  • ETFE having extremely excellent melt processability, mechanical properties and heat resistance.
  • generation of foreign matter in molding can be further suppressed.
  • the above-mentioned ETFE satisfies the above-mentioned formula (3).
  • the ETFE of the present invention is obtained, for example, by polymerizing ethylene and TFE, and, if necessary, a monomer copolymerizable with ethylene and TFE, using a polymerization initiator, preferably a fluorine-containing polymerization initiator. It can be manufactured.
  • suspension polymerization As the above-mentioned polymerization, suspension polymerization, solution polymerization, emulsion polymerization, bulk polymerization and the like can be adopted, and in particular, suspension polymerization in an aqueous medium using a solvent, a polymerization initiator and a chain transfer agent is preferable. . Water is preferred as the aqueous medium.
  • a fluorinated solvent in addition to the aqueous medium.
  • the fluorinated solvent hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CFHCl, etc .; CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFCl 3 Hydrofluoroalkanes such as CF 3 CFHCFHCF 2 CF 2 CF 3 , CF 2 HCF 2 CF 2 CF 2 CF 2 H, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H, etc .; CH 3 OC 2 F 5 , CH 3 OC 3 F 7 CF 3 CF 2 CH 2 OCHF 2 , CF 3 CHFCF 2 OCH 3 , CHF 2 CF 2 OCH 2 F, (CF 3 ) 2 CHCF 2 OCH
  • Perfluoroalkanes and the like, and among them, perfluoroalkanes are preferable. These fluorine-containing solvents may be used alone or in combination of two or more. The amount of the fluorinated solvent used is preferably 10 to 100% by mass with respect to the aqueous medium from the viewpoint of suspension and economy.
  • the polymerization initiator and the fluorine-containing polymerization initiator are not particularly limited, and conventionally known ones can be used.
  • polymerization initiator examples include oil-soluble radical polymerization initiators represented by peroxycarbonates, persulfates, perborates, perchlorates, perphosphates, ammonium salts of percarbonates, potassium salts, sodium And water soluble radical polymerization initiators such as salts.
  • oil-soluble radical polymerization initiators are preferable, and peroxydicarbonate is more preferable.
  • the above peroxydicarbonate can be used by diluting in a fluorinated solvent such as methanol, an aliphatic hydrocarbon solvent or trichlorofluoroethane.
  • X 1 is the same or different and is a hydrogen atom, a fluorine atom or a chlorine atom
  • m is an integer of 2 to 8
  • di-perfluoropropionyl peroxide, di ( ⁇ -hydroperfluorohexanoyl) peroxide (DHP), di ( ⁇ -chloroperfluoropropionyl) peroxide and the like can be exemplified.
  • the formula: [Cl (CF 2 CFCl) l CF 2 C ( O) O] 2
  • peroxides such as di (trichloroperfluorohexanoyl) peroxide and the like.
  • the polymerization initiator may be added collectively at the start of the polymerization, but it is preferable to add the polymerization initiator continuously or dividedly from the start of the polymerization to the end of the polymerization.
  • Continuous addition means continuous addition without interruption from the polymerization start to the polymerization end, and split addition means continuous addition in a plurality of times from the polymerization start to the polymerization end.
  • the addition amount of the polymerization initiator may be appropriately determined according to the purpose of the obtained ETFE, but for example, the total addition amount is 0.01 to 20 parts by mass with respect to 100 parts by mass of the obtained polymer. Is preferably 0.01 to 10 parts by mass, and more preferably 0.02 to 8 parts by mass.
  • a chain transfer agent is preferably used.
  • chain transfer agent conventionally known chain transfer agents can be used, for example, hydrocarbons such as ethane, isopentane, n-hexane and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone and the like
  • acetic acid esters such as ethyl acetate and butyl acetate
  • alcohols such as methanol and ethanol
  • mercaptans such as methyl mercaptan
  • halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride and methyl chloride.
  • the chain transfer agent is preferably at least one selected from the group consisting of hydrocarbons, aromatics, ketones, alcohols, mercaptans and halogenated hydrocarbons.
  • the chain transfer agent may be used alone or in combination of a plurality of them.
  • a chain transfer agent may be added all at once at the start of polymerization, but it is preferable to continuously add or divide the chain transfer agent from the start of polymerization to the end of polymerization.
  • the addition amount of the chain transfer agent may vary depending on the size of the chain transfer constant of the compound used as the chain transfer agent, but can be appropriately determined according to the purpose of the ETFE to be obtained, for example, the total addition amount is the polymerization solvent
  • the content is preferably 0.005 to 20% by mass, more preferably 0.01 to 10% by mass, and still more preferably 0.01 to 8% by mass.
  • the polymerization temperature in the above polymerization is not particularly limited, and can be, for example, 0 to 100 ° C.
  • the polymerization pressure can be appropriately set according to the type and amount of the solvent used, the vapor pressure, the polymerization temperature and other polymerization conditions, but it is usually 0 to 9.8 MPa.
  • the said polymerization satisfy
  • ETFE melt flow rate value one hour after the introduction of the polymerization initiator
  • Mf Melt flow rate value of the ethylene-tetrafluoroethylene copolymer obtained by polymerization
  • Mh Melt flow rate value of the ethylene-tetrafluoroethylene copolymer obtained by polymerization
  • the above Mh is, for example, a value obtained by collecting 6 g of ETFE in polymerization one hour after the introduction of the polymerization initiator, washing and drying, and obtaining an ETFE powder obtained by the above-mentioned MFR measurement method. It is.
  • the above Mf is a melt flow rate value of the ethylene-tetrafluoroethylene copolymer obtained by polymerization, and is the melt flow rate at 297 ° C. described above. That is, it is preferable that ETFE of this invention is obtained by polymerizing ethylene and TFE using a polymerization initiator, and the said superposition
  • the melt flow rate value decreases with the progress of polymerization, but the melt flow rate value one hour after the introduction of the polymerization initiator, that is, the value of the melt flow rate at the initial stage where the melt flow rate value is high, and
  • ETFE having excellent melt processability and excellent heat resistance can be produced.
  • the polymerization preferably satisfies log 10 (Mh / Mf) ⁇ 0.9, more preferably satisfies log 10 (Mh / Mf) ⁇ 0.8, and log 10 (Mh / Mf) ⁇ 0.7. It is more preferable to satisfy the following condition: log 10 (Mh / Mf) ⁇ 0.6 is even more preferable, and it is particularly preferable to satisfy log 10 (Mh / Mf) ⁇ 0.5.
  • the ETFE of the present invention is excellent in melt processability and heat resistance, and can further suppress the generation of foreign matter in high-temperature molding, so that it can be applied to various molded articles.
  • the present invention is also a molded article obtained by molding the ETFE of the present invention.
  • the molding method for obtaining the molded article of the present invention is not particularly limited.
  • conventionally known molding methods such as injection molding, extrusion molding, blow molding, press molding, rotational molding, electrostatic coating and the like can be adopted.
  • the ETFE of the present invention is excellent in melt processability and heat resistance, it is particularly suitable for molded articles obtained by injection molding or extrusion.
  • the shape of the molded article of the present invention is not limited.
  • various shapes such as a sheet, a film, a rod, a pipe, and a fiber can be used.
  • the application of the molded article is not particularly limited.
  • various films or sheets, bags, wire coverings, dishes such as beverage containers, cables, pipes, fibers, bottles, gasoline tanks, and other various industries A molded article etc. are mentioned.
  • films or sheets are preferred.
  • seat it is suitable for a solar cell backsheet, an aircraft mold release film, a semiconductor mold release film, a highly weather resistant sheet etc.
  • the molded article of the present invention is suitable as a wire covering material.
  • a covering material of the electric wire for example, a covering material of the electric wire used for an electric device such as a robot, a motor, a generator, a transformer, etc .; used for a communication device such as a telephone, a wireless device, a computer It can be used for the covering of electric wires used in railway vehicles, automobiles, aircrafts, ships and the like. In particular, it can be applied to applications requiring heat resistance, and is particularly suitable as a covering material for electric wires used in electric devices such as the above-described robot, motor, generator, transformer, and the like.
  • the present invention is also an electric wire having a core wire and a covering material containing the ETFE of the present invention.
  • the diameter of the conductor and the coating thickness of ETFE can be appropriately selected by having the above-mentioned coating material, but the electric wire of the present invention can be used, for example, as a heat-resistant wire having a coating thickness of ETFE of 5 to 500 ⁇ m. Since the heat resistance is excellent, it is possible to satisfy, for example, the heat resistance standard of 150 ° C. and 200 ° C. of UL1581 or the standard of Class E of automobile wire standard LV-112.
  • the said covering material may contain the other component in the range which does not impair the effect of this invention.
  • Other resin, an additive, etc. are mentioned as another component.
  • the other resins include ETFE copolymers other than ETFE of the present invention, and melt-moldable fluororesins other than ETFE copolymers.
  • the additive include a heat stabilizer, a pigment, a UV absorber, a filler, a crosslinking agent, a crosslinking aid, an organic peroxide and the like.
  • the core wire may be plated with tin, silver or the like.
  • Sectional area of the core wire is preferably 0.01 ⁇ 200 mm 2, more preferably 0.05 ⁇ 100 mm 2, more preferably 0.1 ⁇ 50 mm 2. If the cross-sectional area of the core wire is equal to or more than the lower limit value of the above range, it is preferable because a signal or power of a sufficient capacity can be transmitted. If the cross-sectional area of a core wire is below the upper limit of the said range, since it is excellent in flexibility, it is preferable.
  • the thickness of the covering material is preferably 1 to 5000 ⁇ m, more preferably 5 to 1000 ⁇ m, and still more preferably 5 to 500 ⁇ m. If the thickness of the above-mentioned covering material is more than the lower limit of the above-mentioned range, electric insulation and mechanical strength will become sufficient. If the thickness of the above-mentioned covering material is below the upper limit of the above-mentioned range, the amount of materials of covering material used can be controlled and the cost of electric wire can be held down. Further, the wire is not heavy, and it is suitable as a wire for aircraft, a wire for automobile, and a robot wire for which weight reduction is desired.
  • the electric wire of the present invention can be produced, for example, by melting the ETFE of the present invention and extruding it from the discharge port of the die around the core to form a covering material around the core.
  • dies crosshead was provided are mentioned.
  • a cable, a wire, etc. are mentioned as an electric wire of this invention. Specifically, coaxial cables, high frequency cables, flat cables, heat resistant cables and the like can be mentioned.
  • composition 19 F-NMR measurement was performed using a nuclear magnetic resonance apparatus AC300 (manufactured by Bruker-Biospin) with the measurement temperature as the melting point of the polymer + 20 ° C., and the integral value of each peak was determined.
  • the heat was measured at a temperature rising rate of 10 ° C./min according to ASTM D-4591 using a differential scanning calorimeter RDC 220 (manufactured by Seiko Instruments Inc.), and the melting point was determined from the peak of the obtained endothermic curve.
  • MFR MFR conforms to ASTM D3307-01, using a melt indexer (made by Toyo Seiki Co., Ltd.), mass of polymer flowing out per 10 minutes from a nozzle with an inner diameter of 2 mm and a length of 8 mm under a 5 Kg load at 297 ° C. g / 10 min) as MFR.
  • Thermal decomposition start temperature The thermal decomposition initiation temperature is raised at 10 ° C./minute in an air atmosphere using a differential thermal / thermogravimetric analyzer TG / DTA 6200 or TG / DTA 7200 (manufactured by Hitachi High-Tech Science Co., Ltd.), and the mass of the fluoropolymer is 1 The temperature at which the reduction by mass% was taken as the thermal decomposition start temperature.
  • Tan ⁇ Using a rotary rheometer (MCR 302, manufactured by Anton Peer) having a heating furnace, measure the loss tangent tan ⁇ after 5 minutes and 60 minutes from the start of melting of ETFE at a measurement temperature of 320 ° C. in an air atmosphere. , Tan ⁇ (5) and tan ⁇ (60), respectively. As conditions, a parallel disk with a diameter of 25 mm was used, the measurement gap was 1.0 mm, the frequency was 1 rad / s, and the measurement distortion was 3%. At the start of melting, it was time when the resin was put in the heating furnace under the measurement temperature atmosphere. If 75 ⁇ tan ⁇ (60) / tan ⁇ (5) ⁇ 100 ⁇ 225, it can be said that it has good melt processability.
  • PI A / (PI B + PI C + PI D + PI E + PI F + PI G + PI H )
  • PI A peak intensity of vibration from -CF 2 H group
  • PI B peak intensity of vibration from -CF 2 CH 2 COF group
  • PI C peak intensity of vibration from -COF groups
  • PI D -COOH peak intensity of vibration from the group
  • PI E -CF 2 COOH group dimeric and CF 2 CH 2 peak intensity of vibration derived from a monomer of the COOH groups
  • PI F oscillation derived from -COOCH 3 group
  • Peak intensity PI G Peak intensity of vibration derived from -CONH 2 group
  • PI H Peak intensity of vibration derived from -CH 2 OH group
  • a 200 ⁇ m core wire (copper wire) was coated with ETFE at a thickness of 100 ⁇ m of the coating layer.
  • the conditions are as follows. Molding temperature 330 ° C DDR (Draw-Down Ratio) 113 Take-up speed 50 m / min.
  • the ETFE coated wire as described above was heat aged at 232 ° C. for 168 hours according to the conditions of UL 1581 and the tensile elongation and tensile breaking strength before and after heat aging were evaluated.
  • the tensile test of the coating layer of the coated electric wire molded by the above method was measured using a table-top precision universal testing machine AGS-X (manufactured by Shimadzu Corporation). The thing which was able to be satisfied with the 200 degreeC heat resistance test based on UL1581 is made into (circle) what can not be satisfied.
  • MIT test A film 0.20 to 0.23 mm thick which was press-formed under conditions of 300 ° C. and 3.0 MPaG was cut out into a strip of 1.3 cm wide and 90 mm long to obtain a sample. This is mounted on a MIT-type bending fatigue tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), and is repeatedly bent under the conditions (load 1.25 kg, bending angle 135 degrees, 175 times / minute) according to ASTM D-2176. A test was conducted to measure the number of bendings required to break. In the column of “MIT (parameters)” in Tables 1 to 3, ⁇ ⁇ indicates that the following formula (4) is satisfied, and ⁇ indicates that the MIT does not satisfy. MIT ⁇ -28000 ⁇ log (MFR) +128000 (4)
  • Example 1 In a stirrer-equipped autoclave (volume 4.11 L), 1214 g of deionized water was charged, and the inside of the autoclave was sufficiently purged with nitrogen under vacuum. Thereafter, the inside of the autoclave is vacuum deaerated, and 878 g of octaflucyclobutane (hereinafter referred to as "C318"), 303 g of TFE, 8.8 g of ethylene, perfluoro (1,1,5-trichloro) are contained in the autoclave which has been vacuumed. 6.75 g of hydro-1-pentene and 2 g of cyclohexane were charged, and the autoclave was heated to 28 ° C.
  • C318 octaflucyclobutane
  • DHP di ( ⁇ -hydroperfluorohexanoyl) peroxide
  • the internal pressure was maintained at 1.2 MPaG.
  • a total amount of 23.7 g was continuously charged also for perfluoro (1,1,5-trihydro-1-pentene) to continue polymerization.
  • Example 2 In a stirrer-equipped autoclave (volume 4.11 L), 1214 g of deionized water was charged, and the inside of the autoclave was sufficiently purged with nitrogen under vacuum. Thereafter, the inside of the autoclave is vacuum deaerated, and 878 g of C318, 303 g of TFE, 8.8 g of ethylene, and 6.75 g of perfluoro (1,1,5-trihydro-1-pentene) are contained in the autoclave which has been vacuumed. 3 g of cyclohexane was charged, and the autoclave was heated to 28 ° C. Next, 11.7 g of an 8% DHP perfluorohexane solution was introduced into the autoclave to initiate polymerization.
  • the internal pressure was maintained at 1.2 MPaG.
  • 25.0 g of a total amount of perfluoro (1,1,5-trihydro-1-pentene) was continuously charged to continue polymerization.
  • Two hours after the initiation of polymerization, and after 4 hours, 7.8 g of a 8% DHP perfluorohexane solution was additionally charged, and thereafter 1.7 g was additionally charged every 100 minutes.
  • 1.0 g of cyclohexane was additionally added twice every two hours from the start of polymerization, and 1.0 g was additionally added after 5 hours and 40 minutes from the start of polymerization.
  • the pressure was released to atmospheric pressure, and the reaction product was washed with water and dried to obtain 250 g of a powder of MFR 30.1 g / 10 min.
  • Example 3 The amount of cyclohexane initially charged is changed to 1 g, and the same procedure as in Example 2 is carried out except that 7 hours and 32 minutes after initiation of polymerization, the pressure is released to atmospheric pressure, and the reaction product is washed with water and dried. It obtained 248 g of powder of fluorine resin of 0 g / 10 min.
  • Example 4 In a stirrer-equipped autoclave (volume 4.11 L), 1214 g of deionized water was charged, and the inside of the autoclave was sufficiently purged with nitrogen under vacuum. Thereafter, the inside of the autoclave is vacuum deaerated, and 878 g of C318, 306 g of TFE, 8.8 g of ethylene, 6.75 g of perfluoro (1,1,5-trihydro-1-pentene) are contained in the autoclave which has been vacuumed. 2.5 g of cyclohexane was charged, and the autoclave was heated to 28 ° C. Next, 12.1 g of an 8% DHP perfluorohexane solution was introduced into the autoclave to initiate polymerization.
  • the internal pressure was maintained at 1.2 MPaG.
  • 15.8 g in total amount was continuously charged also for perfluoro (1,1,5-trihydro-1-pentene) to continue polymerization.
  • Two hours after the initiation of polymerization 12.1 g of an 8% DHP perfluorohexane solution and an additional 6.8 g of an 8% DHP perfluorohexane solution after 4 hours were charged, followed by an additional 1.7 g every 100 minutes.
  • Example 5 In a stirrer-equipped autoclave (volume 4.11 L), 1214 g of deionized water was charged, and the inside of the autoclave was sufficiently purged with nitrogen under vacuum. Thereafter, the inside of the autoclave is vacuum deaerated, and 878 g of C318, 284 g of TFE, 11.2 g of ethylene, 5.82 g of perfluoro (1,1,5-trihydro-1-pentene) are put in the autoclave which has been vacuumed. 5.0 g of cyclohexane was charged, and the autoclave was heated to 28 ° C. Next, 7.8 g of an 8% DHP perfluorohexane solution was charged into the autoclave to initiate polymerization.
  • the internal pressure was maintained at 1.2 MPaG.
  • polymerization was continued by continuously charging a total amount of 12.0 g also for perfluoro (1,1,5-trihydro-1-pentene). 7.8 g of an 8% DHP perfluorohexane solution was added three times and three times of 3.9 g every 1 hour and 30 minutes from the start of polymerization.
  • Example 6 In a stirrer-equipped autoclave (volume 4.11 L), 1214 g of deionized water was charged, and the inside of the autoclave was sufficiently purged with nitrogen under vacuum. Thereafter, the inside of the autoclave is vacuum degassed, and 878 g of C318 and 318 g of TFE, 7.9 g of ethylene, 6.23 g of perfluoro (1,1,5-trihydro-1-pentene), and cyclohexane are put in the autoclave which has been vacuumed. 4.5 g was charged and the autoclave was heated to 28 ° C. Next, 7.8 g of an 8% DHP perfluorohexane solution was charged into the autoclave to initiate polymerization.
  • the internal pressure was maintained at 1.2 MPaG.
  • polymerization was continued by continuously charging a total amount of 14.0 g also for perfluoro (1,1,5-trihydro-1-pentene). 7.8 g of an 8% DHP perfluorohexane solution was added three times and three times of 3.9 g every 1 hour and 30 minutes from the start of polymerization.
  • Example 7 52.0 kg of deionized water was charged into an agitator-equipped autoclave (inner volume: 175 L), and the inside of the autoclave was fully purged with nitrogen under vacuum. Then, the inside of the autoclave was vacuum deaerated, and 37.4 kg of C318, 10.0 kg of tetrafluoroethylene, 0.32 kg of ethylene, and perfluoro (1,1,5-trihydro-1) were contained in the autoclave which was in a vacuum. 235.2 g of pentene) and 140 g of cyclohexane were charged, and the autoclave was heated to 35 ° C.
  • SBP di-secondary butyl peroxy carbonate
  • Example 8 52.0 kg of deionized water was charged into an agitator-equipped autoclave (volume 175 L), and the inside of the autoclave was fully purged with vacuum nitrogen. Thereafter, the inside of the autoclave was vacuum deaerated, and 37.4 kg of C318 and 12.82 kg of TFE, 0.37 kg of ethylene, perfluoro (1,1,5-trihydro-1-pentene) 306 were contained in the autoclave which was in a vacuum. .6 g and 170.3 g of cyclohexane were charged, and the autoclave was heated to 28 ° C. Next, 515.2 g of an 8% DHP perfluorohexane solution was charged into the autoclave to initiate polymerization.
  • the internal pressure was maintained at 1.2 MPaG.
  • polymerization was continued by continuously charging a total amount of 1.15 kg of perfluoro (1,1,5-trihydro-1-pentene) as well. Two hours after the initiation of the polymerization, 515.2 g of a 8% DHP perfluorohexane solution was added two hours later, 289.5 g four hours later, and 73.7 g twice more every 100 minutes thereafter.
  • Comparative Example 1 In a stirrer-equipped autoclave (volume 4.11 L), 1215 g of deionized water was charged, and the inside of the autoclave was fully purged with nitrogen under vacuum. Thereafter, the inside of the autoclave is vacuum deaerated, and 878 g of C318, 266 g of TFE, 13.7 g of ethylene, 5.2 g of perfluoro (1,1,5-trihydro-1-pentene) are contained in the autoclave which has been vacuumed. 7 g of cyclohexane was charged, and the autoclave was heated to 28 ° C. Next, 7.9 g of an 8% DHP perfluorohexane solution was introduced into the autoclave to initiate polymerization.
  • the internal pressure was maintained at 1.2 MPaG.
  • polymerization was continued by continuously charging a total amount of 12.5 g also for perfluoro (1,1,5-trihydro-1-pentene).
  • An 8% DHP perfluorohexane solution was additionally added 7.9 g one hour and thirty minutes after the initiation of polymerization, 7.8 g after three hours, and 3.9 g after four hours and thirty minutes. After 8 hours and 18 minutes from the start of polymerization, the pressure was released to atmospheric pressure, and the reaction product was washed with water and dried to obtain 256 g of a powder of MFR 14.7 g / 10 min.
  • Comparative example 2 In a stirrer-equipped autoclave (volume 4.11 L), 1214 g of deionized water was charged, and the inside of the autoclave was sufficiently purged with nitrogen under vacuum. Thereafter, the inside of the autoclave is vacuum deaerated, and 878 g of C318, 266 g of TFE, 13.5 g of ethylene, 5.22 g of perfluoro (1,1,5-trihydro-1-pentene) are contained in the autoclave which has been vacuumed. 8.5 g of cyclohexane was charged, and the autoclave was heated to 28 ° C.
  • Comparative example 3 In a stirrer-equipped autoclave (volume 4.11 L), 1280 g of deionized water was charged, and the inside of the autoclave was sufficiently purged with nitrogen under vacuum. Thereafter, the inside of the autoclave is vacuum deaerated, and 891 g of C318, 225 g of TFE, 9.4 g of ethylene, 6.1 g of perfluoro (1,1,5-trihydro-1-pentene) are contained in the autoclave under vacuum. After charging 4.1 g of cyclohexane, the autoclave was heated to 35 ° C.
  • NPP di-n-propyl peroxydicarbonate
  • Comparative example 4 416 L of deionized water was charged into an agitator-equipped autoclave (inner volume: 1000 L), and the inside of the autoclave was fully purged with nitrogen under vacuum. After that, the inside of the autoclave was vacuum deaerated, and 287 kg of C318, 76.1 kg of tetrafluoroethylene, 2.4 kg of ethylene, 1.47 kg of (perfluorohexyl) ethylene, 0.83 kg of cyclohexane were placed in the autoclave under vacuum. After charging, the autoclave was heated to 35 ° C. Thereafter, 3.1 kg of NPP was charged into the autoclave to initiate polymerization.
  • the system pressure was maintained at 1.20 MPaG. Then, a total amount of 19.1 kg of (perfluorohexyl) ethylene was continuously charged to continue polymerization.
  • Comparative example 5 The amount of cyclohexane initially charged is changed to 1.33 kg, and in the same manner as in Comparative Example 4 except for charging, the pressure is released to return to atmospheric pressure 28 hours after the polymerization starts, and the reaction product is washed with water and dried to obtain MFR35. 230 kg of a fluorocarbon resin powder of 1 g / 10 min was obtained.
  • Comparative example 6 54.5 kg of deionized water was charged into an agitator-equipped autoclave (inner volume: 175 L), and the inside of the autoclave was fully purged with nitrogen under vacuum. Then, the inside of the autoclave was vacuum deaerated, and 37.6 kg of C318, 10.3 kg of tetrafluoroethylene, 0.31 kg of ethylene, and perfluoro (1,1,5-trihydro-1) were contained in the autoclave which was in a vacuum. 164.4 g of pentene) and 205 g of cyclohexane were charged, and the autoclave was heated to 35 ° C. Thereafter, 299.8 g of SBP was added to initiate polymerization.
  • the pressure in the system was maintained at 1.20 MPaG.
  • a total amount of 1.02 kg of (perfluorohexyl) ethylene was continuously charged to continue polymerization.
  • the pressure is released to atmospheric pressure, and after removing the solvent and the polymerization water, 44.7 kg of deionized water and 1.3 kg of 28% ammonia water are charged, and the tank is maintained while maintaining the stirring rotation speed at 150 rpm.
  • the mixture was reacted at an internal temperature of 80 ° C. for 5 hours, cooled, washed with water and dried to obtain 22.3 kg of a fluorocarbon resin powder having a MFR of 39.0 g / 10 min.
  • the ETFE powders obtained in Examples 7 to 8 and Comparative Examples 5 to 6 were each 20 kg under the conditions shown in Table 4 using a ⁇ 32 mm twin screw extruder (manufactured by JSW) having a vent mechanism equipped with a pressure reducing device. Pelletized.
  • a core wire (copper wire) of 200 ⁇ m was coated with ETFE to a thickness of 100 ⁇ m of the coating layer using a ⁇ 20 extruder.
  • the coated wire was evaluated for tensile elongation and tensile strength before and after heat aging (heat crack resistance evaluation) according to the conditions of UL1581.
  • the wire covering foreign material evaluation was performed by the method mentioned above. The results are shown in Table 5.
  • Examples 7 to 8 were able to satisfy the 200 ° C. heat resistance test in accordance with UL 1581 of ETFE, and Comparative Examples 5 to 6 were not satisfied. Further, in Examples 7 to 8, the foreign matter was scarcely generated and the evaluation was ⁇ , but in Comparative Examples 5 to 6, many foreign matter was generated.
  • the ETFE of the present invention can be applied to various molded products because it can suppress the generation of foreign substances during molding.
  • Wire coverings used in electric devices such as robots, motors, generators, transformers;
  • Wire coverings used in communication devices such as telephones, radios, computers, data communication devices, etc.
  • Railway cars, automobiles It can be used for the covering of electric wires used in aircraft, ships, etc.
  • it can be applied to applications requiring heat resistance, and is particularly suitable as a covering material for electric wires used in electric devices such as the above-described robot, motor, generator, transformer, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

溶融加工性に優れ、かつ、耐熱性に優れるエチレン/テトラフルオロエチレン共重合体を提供する。 本発明は、下記式(1)を満たし、かつ、 フーリエ変換赤外分光法で測定された-CFH基、-CFCHCOF基、-COF基、-COOH基、-CFCOOH基の二量体とCFCHCOOH基の単量体、-COOCH基、-CONH基及び-CHOH基に由来する振動のピーク強度が下記式(2)を満たすことを特徴とするエチレン/テトラフルオロエチレン共重合体である。 75≦tanδ(60)/tanδ(5)×100≦225 (1) tanδ(5):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から5分後の損失正接 tanδ(60):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から60分後の損失正接 PI/(PI+PI+PI+PI+PI+PI+PI)≧0.60 (2) PI:-CFH基に由来する振動のピーク強度 PI:-CFCHCOF基に由来する振動のピーク強度 PI:-COF基に由来する振動のピーク強度 PI:-COOH基に由来する振動のピーク強度 PI:-CFCOOH基の二量体とCFCHCOOH基の単量体に由来する振動のピーク強度 PI:-COOCH基に由来する振動のピーク強度 PI:-CONH基に由来する振動のピーク強度 PI:-CHOH基に由来する振動のピーク強度

Description

エチレン/テトラフルオロエチレン共重合体
本発明は、エチレン/テトラフルオロエチレン共重合体に関する。
エチレン/テトラフルオロエチレン共重合体〔ETFE〕は、耐熱性、耐候性、電気絶縁性、非粘着性等に優れており、更に、フッ素樹脂の中でも成形性及び機械的強度にも優れるため、溶融成形方法により加工することによって、被覆電線、チューブ、シート、フィルム等の広範囲の成形品に利用されており、種々の検討がなされている。
例えば、特許文献1には、耐熱性及び耐ストレスクラック性に優れた成形体を、生産性よく製造することを目的として、特定の単量体組成比を有するETFEと、特定量の酸化銅とを含有する含フッ素共重合体組成物が記載されている。
特許文献2には、耐熱性に優れ、かつ高温での耐ひび割れ性を改良することを目的として、エチレンから誘導された繰り返し単位、テトラフルオロエチレンから誘導された繰り返し単位及び特定のフルオロビニル化合物から誘導された繰り返し単位を含んで成るエチレン-テトラフルオロエチレン系共重合体が記載されている。
また、特許文献3には、成形時に揮発分による発泡を生じない共重合体を提供することを目的として、パーオキシジカーボネートを重合開始剤とする重合により生成したテトラフルオロエチレン系共重合体を重合後にアンモニアまたは弱酸のアンモニウム塩と接触させるテトラフルオロエチレン系共重合体の安定化方法も記載されている。
特許文献4には、エチレン、テトラフルオロエチレン、及び、下記一般式:
CH=CH-Rf
(式中、Rfは炭素数4以上のパーフルオロアルキル基を表す。)で表される含フッ素ビニルモノマーの共重合単位を含み、全単量体の合計量に対する前記含フッ素ビニルモノマーの含有率が0.8~2.5モル%であり、エチレン/テトラフルオロエチレンのモル比が33.0/67.0~44.0/56.0であり、CH指数が1.40以下であり、融点が230℃以上であり、メルトフローレートが40(g/10分)以下であることを特徴とするエチレン/テトラフルオロエチレン共重合体が記載されている。
国際公開第2013/015202号 特開昭59-197411号公報 特開平01-115933号公報 国際公開第2010/123002号
しかしながら、特許文献1に記載された含フッ素共重合体組成物は、酸化銅のような受酸剤の分散均一性に課題があり、得られる成形品の耐熱性、機械的強度の品質安定面で改善の余地があった。特許文献2に記載されたエチレン-テトラフルオロエチレン系共重合体は、高温で溶融成形しようとすると成形機内でのゲル化及び熱分解を抑制できず、良好な成形品を得ることが困難であった。また、特許文献3に記載された方法で安定化しても、高温時に着色が発生する等の点で改善の余地があった。特許文献4に記載されたエチレン/テトラフルオロエチレン共重合体は、耐熱性及び溶融加工性、機械的特性の点で改善の余地があった。
本発明は、上記現状に鑑み、溶融加工性に優れ、かつ、耐熱性に優れるエチレン/テトラフルオロエチレン共重合体を提供することを目的とする。
また、機械的特性及び溶融加工性に優れるエチレン/テトラフルオロエチレン共重合体を提供することを目的とする。
本発明者らは、上記課題を解決するための手段を鋭意検討した結果、損失正接が特定の条件を満たし、フーリエ変換赤外分光法で測定された特定の基の強度比が特定の条件を満たすことで、エチレン/テトラフルオロエチレン共重合体が極めて優れた耐熱性を示し、かつ、溶融成形性にも優れることを見出し、本発明を完成するに至った。
すなわち、本発明は、下記式(1)を満たし、かつ、フーリエ変換赤外分光法で測定された-CFH基、-CFCHCOF基、-COF基、-COOH基、-CFCOOH基の二量体とCFCHCOOH基の単量体、-COOCH基、-CONH基及び-CHOH基に由来する振動のピーク強度が下記式(2)を満たすことを特徴とするエチレン/テトラフルオロエチレン共重合体(以下、「本発明の第1のエチレン/テトラフルオロエチレン共重合体」とも記載する)である。
75≦tanδ(60)/tanδ(5)×100≦225  (1)
tanδ(5):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から5分後の損失正接
tanδ(60):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から60分後の損失正接
PI/(PI+PI+PI+PI+PI+PI+PI)≧0.60    (2)
PI:-CFH基に由来する振動のピーク強度
PI:-CFCHCOF基に由来する振動のピーク強度
PI:-COF基に由来する振動のピーク強度
PI:-COOH基に由来する振動のピーク強度
PI:-CFCOOH基の二量体とCFCHCOOH基の単量体に由来する振動のピーク強度
PI:-COOCH基に由来する振動のピーク強度
PI:-CONH基に由来する振動のピーク強度
PI:-CHOH基に由来する振動のピーク強度
本発明の第1のエチレン/テトラフルオロエチレン共重合体は、エチレンに基づく重合単位(a)、及び、テトラフルオロエチレンに基づく重合単位(b)を有し、エチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)とのモル%比(a)/(b)が50~10/50~90であることが好ましく、モル%比(a)/(b)が44~41/56~59であることがより好ましく、モル%比(a)/(b)が43.5~41.5/56.5~58.5であることが更に好ましい。
また、本発明のエチレン/テトラフルオロエチレン共重合体は、エチレンに基づく重合単位(a)、テトラフルオロエチレンに基づく重合単位(b)、並びにエチレン及びテトラフルオロエチレンと共重合可能な単量体に基づく重合単位(c)を含むことも好ましい。
上記重合単位(c)は、下記一般式(A1):
CH=CXY    (A1)
(式中、Xは、水素原子又はフッ素原子を表す。Yは、フルオロアルキル基を表す。)で表される単量体に基づく重合単位であることが好ましく、一般式(A1)で表される単量体は、下記一般式(A2):
CH=CX-(CFZ    (A2)
(式中、X及びZは、同一又は異なって、水素原子又はフッ素原子を表す。nは、2~8の整数である。)で表される単量体に基づく重合単位であることがより好ましい。
また、上記共重合体の全構成単位に対する上記一般式(A1)の単量体に由来する構成単位が0.1~5.0モル%であることが好ましく、1.8~2.8モル%であることがより好ましく、1.8~2.6モル%であることが更に好ましく、2.0~2.6モル%であることが更により好ましい。
更に、本発明のエチレン/テトラフルオロエチレン共重合体は、H-NMRから測定して得られる共重合体の組成分析にて、下記式(3)を満たすことが好ましい。
(エチレン単位-エチレン単位の結合数)/CFに挟まれたエチレン単位の合計数≦0.060 (3)
本発明の第1のエチレン/テトラフルオロエチレン共重合体は、297℃でのメルトフローレートが0.1~60.0g/10分であることが好ましく、4.0~45.0g/10分であることがより好ましい。
本発明者らはまた第2の発明として、損失正接が特定の条件を満たし、限定された特定の組成を有するエチレン/テトラフルオロエチレン共重合体が、機械的特性及び溶融成形性に優れることを見出し、本発明を完成するに至った。
本発明はまた、下記式(1)を満たし、かつエチレンに基づく重合単位(a)、テトラフルオロエチレンに基づく重合単位(b)、並びにエチレン及びテトラフルオロエチレンと共重合可能な単量体に基づく重合単位(c)を含み、エチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)とのモル%比(a)/(b)が44~41/56~59であり、全構成単位に対する重合単位(c)が1.8モル%以上であることを特徴とするエチレン/テトラフルオロエチレン共重合体(以下、「本発明の第2のエチレン/テトラフルオロエチレン共重合体」とも記載する)でもある。
75≦tanδ(60)/tanδ(5)×100≦225  (1)
tanδ(5):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から5分後の損失正接
tanδ(60):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から60分後の損失正接
上記重合単位(c)は、下記一般式(A1):
CH=CXY    (A1)
(式中、Xは、水素原子又はフッ素原子を表す。Yは、フルオロアルキル基を表す。)で表される単量体に基づく重合単位であることが好ましく、下記一般式(A2):
CH=CX-(CFZ    (A2)
(式中、X及びZは、同一又は異なって、水素原子又はフッ素原子を表す。nは、2~8の整数である。)で表される単量体に基づく重合単位であることがより好ましい。
本発明の第2のエチレン/テトラフルオロエチレン共重合体は、エチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)とのモル%比(a)/(b)が43.5~41.5/56.5~58.5であることが更に好ましい。
本発明はまた、本発明の第1又は第2のエチレン/テトラフルオロエチレン共重合体を成形して得られることを特徴とする成形品でもある。本発明の成形品は、フィルム又はシートであることが好ましい。
本発明はそして、芯線と、本発明の第1及び第2のエチレン/テトラフルオロエチレン共重合体からなる被覆材とを有することを特徴とする電線でもある。
以下、特に断りなく「本発明のエチレン/テトラフルオロエチレン共重合体(ETFE)」と記載する場合、本発明の第1のエチレン/テトラフルオロエチレン共重合体(ETFE)及び第2のエチレン/テトラフルオロエチレン共重合体(ETFE)の両方を包含する。
本発明の第1のエチレン/テトラフルオロエチレン共重合体は、上記構成を有することによって、溶融加工性に優れ、かつ、耐熱性に優れる。
本発明の第2のエチレン/テトラフルオロエチレン共重合体は、上記構成を有することによって、機械的特性及び溶融加工性に優れる。
以下、本発明を具体的に説明する。
本発明の第1のエチレン/テトラフルオロエチレン(以下「TFE」とも記載する)共重合体(以下「ETFE」とも記載する)は、下記式(1)を満たす。
75≦tanδ(60)/tanδ(5)×100≦225  (1)
tanδ(5):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から5分後の損失正接
tanδ(60):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から60分後の損失正接
ポリマー材料は粘弾性体であり、弾性と粘性の両方の性質を合わせ持っており、粘弾性挙動を知る方法の一つとして動的粘弾性測定が知られている。動的粘弾性測定では応力と歪の振幅比と位相差が検出され、ここから貯蔵弾性率G’と損失弾性率G”が算出される。G”をG’で割った値が損失正接tanδであり、損失正接tanδ値が低いと弾性成分の割合が高くなり、tanδ値が高いと、粘性成分の割合が高いと考えることができる。上記分析手法により、高温環境下における、ゲル化(再結合)と分解の挙動を観測することが可能となる。
tanδ(60)/tanδ(5)は、空気雰囲気下の320℃における動的粘弾性測定において、動的粘弾性測定の測定開始から5分後の損失正接に対する、60分後の損失正接の損失正接変化率を意味する。
本発明のETFEは、式(1)を満たすことによって、高温環境下におけるゲル化及び熱分解が抑制され優れた溶融加工性、耐熱性を実現できる。tanδ(60)/tanδ(5)が75未満であると弾性に占める割合が大きくなることから、例えば成形機内でゲル化しやすく高温成形において異物を発生させたり、例えば電線成形の際にコーンブレイク(被覆切れ)が起きやすくなるといった問題がある。また225を超えてしまうと熱分解が優先的に生じるので、ポリマーが低分子量化し、機械的物性の低下を引き起こす。上記式(1)の範囲を満たすことによって、ゲル化(再結合)と分解を抑えることが可能となり分解による機械的特性の低下を抑えながら、溶融加工性、耐熱性に優れ、高温成形における異物の発生を抑制することができる。
上記tanδ(5)及びtanδ(60)は、加熱炉を有する回転式レオメータを用いて、空気雰囲気下で測定温度320℃におけるETFEの溶融開始時から5分後と60分後の損失正接tanδを測定したものである。回転式レオメータの条件は、平行円盤の直径25mm、測定ギャップ1.0mm、周波数1rad/s、測定歪3%である。
上記溶融開始時は、測定温度雰囲気下の加熱炉の中にETFEを入れた時の時間である。
上記空気雰囲気とは、例えば、通常の空気(酸素濃度は約20体積%)雰囲気である。
本発明の第1のETFEは、フーリエ変換赤外分光法で測定された-CFH基、-CFCHCOF基、-COF基、-COOH基、-CFCOOH基の二量体とCFCHCOOH基の単量体、-COOCH基、-CONH基及び-CHOH基に由来する振動のピーク強度が下記式(2)を満たすことが好ましい。
PI/(PI+PI+PI+PI+PI+PI+PI)≧0.60    (2)
PI:-CFH基に由来する振動のピーク強度
PI:-CFCHCOF基に由来する振動のピーク強度
PI:-COF基に由来する振動のピーク強度
PI:-COOH基に由来する振動のピーク強度
PI:-CFCOOH基の二量体とCFCHCOOH基の単量体に由来する振動のピーク強度
PI:-COOCH基に由来する振動のピーク強度
PI:-CONH基に由来する振動のピーク強度
PI:-CHOH基に由来する振動のピーク強度
上記ピーク強度は、ETFEを300℃、3.0MPaGの条件でプレス成型した厚さ200μmのフィルムをフーリエ変換赤外分光光度計(FT-IR)にて測定できる。
各末端基に由来する振動のピークとしては、2950~3000cm-1を1.5Åに規格化したのち、下記吸収周波数のピークを採用した。
-CFH基:3010cm-1
-CFCHCOF基:1846cm-1
-COF基:1884cm-1
-COOH基:1813cm-1
-CFCOOH基の二量体と-CFCHCOOH基の単量体:1760cm-1
-COOCH基:1795cm-1
-CONH基:3438cm-1
-CHOH基:3648cm-1
-CH-基:2975cm-1
上記式(2)における、PI/(PI+PI+PI+PI+PI+PI+PI)が0.60以上であることは、ETFEにおける-CFH基の割合が、-CFCHCOF基、-COF基、-COOH基、-CFCOOH基、-COOCH基、-CONH基及び-CHOH基の合計量に対して多いことを示している。
ETFEにおいて-CFH基を定量的に分析することは難しい。そのため、本発明では、上記式(2)を、ETFEにおける-CFH基の量を示す指標として用いている。
本発明のETFEは、上記式(2)を満たすことによって、優れた耐熱性を有し、高温での着色を抑制することができる。
重合時に用いる重合開始剤、又は、後述するエチレン及びTFEと共重合可能な単量体に基づく重合単位(c)を適宜選択することにより、上記の基をエチレン/テトラフルオロエチレン共重合体に導入することができる。
本発明の第1のETFEは、上記式(1)及び(2)を満たすことの相乗作用によって、成形機内でのゲル化及び熱分解が抑制され、優れた溶融加工性が実現できる。また、優れた耐熱性を有するため、高温での着色も抑制でき、耐熱性が要求される用途に好適に使用できる。
また、高温成形における異物の発生も抑制することができる。
上記式(1)及び(2)を満たすETFEは、重合開始剤の種類、連鎖移動剤の添加方法、エチレンに基づく重合単位(a)とTFEに基づく重合単位(b)のモル%比、エチレン及びTFEと共重合可能な単量体に基づく重合単位(c)の含有割合を調整することにより製造することができる。
例えば、重合開始剤として含フッ素重合開始剤を用いた場合、重合単位(a)と重合単位(b)のモル%比を41~44/56~59とすること、連鎖移動剤を連続添加又は分割添加することによって、式(1)及び(2)の両方を満たすことができる。また、重合開始剤として、含フッ素重合開始剤を用いない場合、重合単位(a)と重合単位(b)のモル%比を41~44/56~59とし、重合単位(c)の含有割合を1.8モル%以上にし、かつ、連鎖移動剤を連続添加又は分割添加する重合によって、式(1)及び(2)の両方を満たすことができる。
本発明の第1のETFEは、耐熱性及び機械的強度のいずれもが優れることから、また、高温成形における異物の発生を抑制することができることから、エチレンに基づく重合単位(a)とTFEに基づく重合単位(b)とのモル%比(a)/(b)が50~10/50~90であることが好ましい。より耐熱性に優れることから、モル%比(a)/(b)は、45~20/55~80であることがより好ましく、45~30/55~70であることがより好ましく、44~41/56~59であることが更に好ましく、43.5~41.5/56.5~58.5であることが特に好ましい。
本発明の第1のETFEは、重合単位(a)、重合単位(b)、並びに、エチレン及びTFEと共重合可能な単量体に基づく重合単位(c)からなるものであることが好ましい。
エチレン及びTFEと共重合可能な単量体に基づく重合単位(c)の含有割合は、重合単位(a)及び重合単位(b)の合計に対して0~10.0モル%であることが好ましい。
本発明の第2のETFEは、下記式(1)を満たし、かつ、エチレンに基づく重合単位(a)、テトラフルオロエチレンに基づく重合単位(b)、並びにエチレン及びテトラフルオロエチレンと共重合可能な単量体に基づく重合単位(c)を含み、エチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)とのモル%比(a)/(b)が44~41/56~59であり、全構成単位に対する重合単位(c)が1.8モル%以上である。
75≦tanδ(60)/tanδ(5)×100≦225  (1)
tanδ(5):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から5分後の損失正接
tanδ(60):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から60分後の損失正接
本発明の第2のETFEは、上記式(1)を満たし、限定された特定の組成を有することによって、成形機内でのゲル化及び熱分解が抑制され、優れた溶融加工性が実現でき、更に、溶融加工性を保ちながら機械的特性を向上できる。また、高温成形における異物の発生を抑制することができる。
上記特定の組成を有する場合、上記式(1)を満たすETFEは、重合時に連鎖移動剤を連続添加又は分割添加することによって得ることができる。
本発明の第2のETFEは、耐熱性及び機械的強度のいずれもがより優れることから、また、高温成形における異物の発生を抑制することができることから、エチレンに基づく重合単位(a)とTFEに基づく重合単位(b)とのモル%比(a)/(b)が、43.5~41.5/56.5~58.5であることがより好ましい。
本発明の第2のETFEにおいて、上記重合単位(c)の含有割合は、耐熱性をより向上させる観点から、また、成形における異物の発生をより抑制することができることから、重合単位(a)及び重合単位(b)の合計に対して1.8モル%以上が好ましく、1.9モル%以上がより好ましく、2.0モル%以上が特に好ましく、2.2モル%以上が更に好ましい。また、8.0モル%以下が好ましく、5.0モル%以下がより好ましく、2.8モル%以下が更に好ましく、2.6モル%以下が更により好ましく、2.5モル%以下が特に好ましい。
本発明のETFEは、主鎖末端に-CFH基を有することが好ましい。主鎖末端に-CFH基を有すること、並びに、式(1)及び(2)を満足することにより、極めて優れた耐熱性の共重合体となる。
本発明のETFEは、主鎖末端に-CFH基以外の末端基を有していてもよい。
本発明のETFEは、エチレンに基づく重合単位(a)、及び、TFEに基づく重合単位(b)を有する。
ここで、エチレンに基づく重合単位(a)とは、-CHCH-で表される繰り返し単位を表し、TFEに基づく重合単位(b)とは、-CFCF-で表される繰り返し単位を表している。
本発明のETFEにおいて、上記エチレン及びTFEと共重合可能な単量体としては、末端炭素-炭素二重結合を有し、エチレン及びTFEと共重合することができる単量体であれば特に制限されない。
ここで、エチレン及びTFEと共重合可能な単量体に基づく重合単位(c)とは、当該単量体が共重合して重合体の構成の一部となった場合の、重合体中の当該単量体に由来する構造部分を表している。
上記エチレン及びTFEと共重合可能な単量体としては、フッ化ビニリデン、クロロトリフルオロエチレン、フッ化ビニル、へキサフルオロプロピレン、へキサフルオロイソブテン、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)、CF=CF-OCH-Rf(式中、Rfは、炭素数1~5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体、一般式(A1):
CH=CXY    (A1)
(式中、Xは、水素原子又はフッ素原子を表す。Yは、フルオロアルキル基を表す。)で表される(フルオロアルキル)エチレン等が挙げられる。
上記エチレン及びTFEと共重合可能な単量体としては、中でも、上記一般式(A1)で表される(フルオロアルキル)エチレンが好ましい。
すなわち、上記ETFEは、エチレンに基づく重合単位(a)、TFEに基づく重合単位(b)及び下記一般式(A1):
CH=CXY    (A1)
(式中、Xは、水素原子又はフッ素原子を表す。Yは、フルオロアルキル基を表す。)で表される単量体に基づく重合単位からなるものであることもまた、本発明の好適な実施形態の1つである。
なお、上記一般式(A1)で表される単量体に基づく重合単位は、-CH-CXY-で表される繰り返し単位を表している。
上記一般式(A1)におけるYは、フルオロアルキル基を表すが、上記フルオロアルキル基は、直鎖であってもよいし、分岐鎖であってもよい。また、上記フルオロアルキル基の炭素数は、2~10であることが好ましく、2~8であることがより好ましく、2~6であることが更に好ましい。
上記一般式(A1)で表される単量体は、中でも、下記一般式(A2):
CH=CX-(CFZ    (A2)
(式中、X及びZは、同一又は異なって、水素原子又はフッ素原子を表す。nは、2~8の整数である。)で表される単量体であることが好ましい。
上記一般式(A2)におけるnは、2~8の整数である。nは、2~6の整数であることが好ましく、2~4の整数であることがより好ましく、3であることが更に好ましい。
上記一般式(A2)で表される単量体としては、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH等が挙げられる。
上記一般式(A2)で表される単量体としては、CH=CF(CFH、CH=CH(CFF、CH=CF(CFH、CH=CH(CFF、CH=CF(CFH、CH=CH(CFF、CH=CF(CFH、CH=CH(CFFからなる群より選択される少なくとも1種であることが好ましく、CH=CF(CFH、及び、CH=CH(CFFからなる群より選択される少なくとも1種がより好ましく、CH=CF(CFHが更に好ましい。
本発明の第1のETFEにおいて、上記一般式(A1)又は(A2)で表される単量体に基づく重合単位の含有割合は、耐熱性をより向上させる観点から、また、高温成形における異物の発生をより抑制することができることから、重合単位(a)及び重合単位(b)の合計に対して0~10.0モル%であることが好ましく、0.1~8.0モル%であることがより好ましく、0.1~5.0モル%であることが更により好ましく、0.5~5.0モル%であることが殊更に好ましく、1.8~3.0モル%であることが特に好ましく、1.8~2.8モル%であることがより好ましく、1.8~2.6モル%であることが更に好ましく、2.0~2.6モル%であることが更により好ましい。
本発明のETFEは、より溶融加工性及び耐熱性に優れることから、また、高温成形における異物の発生をより抑制することができることから、80≦tanδ(60)/tanδ(5)×100≦200を満たすことが好ましく、80≦tanδ(60)/tanδ(5)×100≦190を満たすことがより好ましく、90≦tanδ(60)/tanδ(5)×100≦180を満たすことが更に好ましく、100≦tanδ(60)/tanδ(5)×100≦160を満たすことが更により好ましい。
本発明のETFEは、更に、H-NMRから測定して得られる共重合体の組成分析にて、下記式(3)を満たすことが好ましい。
(エチレン単位-エチレン単位の結合数)/CFに挟まれたエチレン単位の合計数≦0.060 (3)
上記式(3)は、ETFE中のCFに挟まれたエチレン単位に対する、エチレン単位同士の結合数の割合より少ないことを示している。エチレン単位同士の結合数が特定の割合より少ないことによって、高温環境下におけるゲル化および熱分解が抑制され優れた溶融加工性、耐熱性を有するETFEとすることができる。
上記式(1)及び(2)を満たし、かつ、上記式(3)を満たすことによって、高温成形における異物の発生をより抑制することができる。また、耐熱性をより向上させることができる。
上記エチレン単位-エチレン単位の結合数と、CFに挟まれたエチレン単位の合計数は、H-NMRから測定して得られる。
上記式(3)は重合温度によって影響を受け、低温で重合することによって(エチレン単位-エチレン単位の結合数)/CFに挟まれたエチレン単位の合計数値を下げることが可能である。重合温度は10~80℃が好ましく、15℃~50℃がさらに好ましく、25℃~40℃がさらに好ましい。
本発明のETFEは、更に、下記式(4)を満たすことが好ましい。
MIT値≧-28000×log(MFR)+128000 (4)
MIT値:ASTM D-2176に準拠して測定した折り曲げ寿命(回)
MFR:297℃で測定したメルトフローレート
上記MIT値は、300℃、3.0MPaGの条件でプレス成形した厚さ0.20~0.23mmのフィルムを、幅1.3cm、長さ90mmの短冊状に切り出したサンプルをMIT式耐屈曲疲労試験機(安田精機製作所製)にて、ASTM D-2176に準拠し、破断するまでに要した折り曲げ回数を測定した。
上記MFRは、ASTM D3307-01に準拠し、メルトインデクサー(東洋精機社製)を用いて、297℃、5Kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)である。
MFRとMIT値はトレードオフの関係にあり、MFRが小さいと分子量が増加するため、MIT値もそれに伴って増加する。すなわち、溶融加工性を保ちながら機械的特性が向上するとき、同MFRでもMIT値が高くなる。上記「-28000×log(MFR)+128000」の値が、高ければ高いほど同MFRでも機械的特性に優れる。
そのため、本発明のETFEは、上記式(4)を満たすことによって、より機械強度に優れたものとなり、電線やチューブ等の用途に特に好適である。
上記式(4)は、エチレン/テトラフルオロエチレン共重合体のエチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)のモル%比(a)/(b)が44~41/56~59であること(好ましくはモル%比(a)/(b)が43.5~41.5/56.5~58.5であること)、及び、前記共重合体の全構成単位に対する上記一般式(A2)の単量体に由来する構成単位が1.8~3.0モル%であること(好ましくは1.8~2.8モル%であること、より好ましくは1.8~2.6モル%であること、更に好ましくは2.0~2.6モル%であること)により満たすことができる。
本発明のETFEは、更に、MIT≧-28000×log(MFR)+128000を満たすことがより好ましく、更に、MIT≧-28000×log(MFR)+129000を満たすことが更に好ましく、更に、MIT≧-28000×log(MFR)+130000を満たすことが特に好ましい。
本明細書において、各単量体単位の含有量は、19F-NMR分析を行うことにより得られる値である。
本発明のETFEは、融点は200℃以上が好ましい。融点が低すぎると、高温で使用した場合変形を引き起こすため耐熱性に劣る。融点は、200℃超であることがより好ましく、220℃以上が更に好ましく、230℃以上が特に好ましい。また、245℃以上であることも好ましい。融点の上限は特に限定されないが、280℃であってよい。
融点は、示差走査熱量計を用い、ASTM D-4591に準拠して昇温速度10℃/分にて熱測定を行い、得られた吸熱曲線のピークの温度である。
本発明のETFEは、297℃でのメルトフローレート〔MFR〕が0.1~60.0g/10分であることが好ましく、50.0g/10分以下であることがより好ましく、45.0g/10分以下であることがより好ましく、3.0g/10分以上であることがより好ましく、4.0g/10分以上であることが更に好ましい。
MFRは、ASTM D3307-01に準拠し、メルトインデクサー(東洋精機社製)を用いて、297℃、5Kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)である。
本発明のETFEは、熱分解開始温度が370℃以上であることが好ましい。耐熱性の観点から、375℃以上がより好ましく、380℃以上が更に好ましい。
熱分解開始温度は、示差熱・熱重量測定装置を用いて、空気雰囲気下で10℃/分で昇温し、フルオロポリマーの質量が1質量%減少するときの温度である。
本発明のETFEは、300℃、3.0MPaGの条件でプレス成型した厚さ1.5mmのフィルムを232℃で168時間加熱し、加熱前のイエローインデックス値が-40以下で、加熱前後のイエローインデックス変化度が100以下であることが好ましい。上記変化度は、70以下であることがより好ましい。
イエローインデックスは、ASTM-D1925に準じて測定する。
上記加熱は、電気炉を用い、232℃で168時間の条件で行う。
本発明の第1のETFEの好適な実施形態の一つは、上記式(1)及び(2)を満たし、重合単位(a)、TFEに基づく重合単位(b)及び一般式(A2)で表される単量体に基づく重合単位からなり、重合単位(a)と重合単位(b)とのモル%比(a)/(b)が44~41/56~59(より好ましくは、43.5~41.5/56.5~58.5)であり、一般式(A2)で表される単量体に基づく重合単位の含有割合が重合単位(a)及び重合単位(b)の合計に対して0.1~8.0モル%(より好ましくは、1.8~2.5モル%)である形態である。このような形態により、溶融加工性及び耐熱性が極めて優れたETFEとなる。また、高温成形における異物の発生をより抑制することができる。上記ETFEは、更に、上記式(3)を満たすことがより好ましい。
本発明の第2のETFEの好適な実施形態の一つは、上記式(1)を満たし、重合単位(a)、TFEに基づく重合単位(b)及び一般式(A2)で表される単量体に基づく重合単位からなり、重合単位(a)と重合単位(b)とのモル%比(a)/(b)が44~41/56~59(より好ましくは、43.5~41.5/56.5~58.5)であり、一般式(A2)で表される単量体に基づく重合単位の含有割合が重合単位(a)及び重合単位(b)の合計に対して1.8~~2.8モル%である形態である。このような形態により、溶融加工性、機械的特性及び耐熱性が極めて優れたETFEとなる。また、成形における異物の発生をより抑制することができる。上記ETFEは、更に、上記式(3)を満たすことがより好ましい。
本発明のETFEは、例えば、重合開始剤、好ましくは含フッ素重合開始剤を用いて、エチレンとTFEと、必要に応じてエチレン及びTFEと共重合可能な単量体と、を重合させることにより製造することができる。
上記重合としては、懸濁重合、溶液重合、乳化重合、塊状重合等を採用することができるが、特に、溶媒、重合開始剤及び連鎖移動剤を使用する水性媒体中での懸濁重合が好ましい。上記水性媒体としては水が好ましい。
上記懸濁重合においては、水性媒体に加えてフッ素系溶媒を使用することが好ましい。当該フッ素系溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン類;CFClCFClCFCF、CFCFClCFClCF等のクロロフルオロアルカン類;CFCFHCFHCFCFCF、CFHCFCFCFCFH、CFCFCFCFCFCFCFH等のハイドロフルオロアルカン類;CHOC、CHOCCFCFCHOCHF、CFCHFCFOCH、CHFCFOCHF、(CFCHCFOCH、CFCFCHOCHCHF、CFCHFCFOCHCF等のハイドロフルオロエーテル類;パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカン類;などが挙げられ、これらの中でもパーフルオロアルカン類が好ましい。これらの含フッ素溶媒は、1種でもよく、2種以上でもよい。
上記フッ素系溶媒の使用量としては、懸濁性、経済性の観点から、水性媒体に対して10~100質量%とするのが好ましい。
上記重合開始剤及び含フッ素重合開始剤は特に限定されず、従来公知のものを使用できる。
上記重合開始剤としては、例えば、パーオキシカーボネート類に代表される油溶性ラジカル重合開始剤や、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸のアンモニウム塩、カリウム塩、ナトリウム塩等の水溶性ラジカル重合開始剤等が挙げられる。これらのなかでも、油溶性ラジカル重合開始剤が好ましく、パーオキシジカーボネートがより好ましい。パーオキシジカーボネートとしては、例えば、一般式:
R-O-C(=O)-O-O-C(=O)-O-R
(式中、Rは、同一又は異なって、炭素数3~4のアルキル基、又は、アルコキシアルキル基を表す。)で表されるパーオキシジカーボネートが挙げられる。
上記式で表されるパーオキシジカーボネートとしては、ジイソプロピルパーオキシジカーボネート(IPP)、ジ-n-プロピルパーオキシジカーボネート(NPP)、ジ-sec-ブチルパーオキシジカーボネート(SBP)、ジ-2-エトキシエチルパーオキシジカーボネート等が挙げられる。
上記パーオキシジカーボネートは、メタノール、脂肪族炭化水素系溶媒、トリクロロフルオロエタンのようなフッ素系溶媒に希釈して使用することができる。
上記含フッ素重合開始剤としては、例えば、式:
[X2mC(=O)O]
(式中、Xは同一又は異なって、水素原子、フッ素原子、または塩素原子であり、mは2~8の整数を表す。)で示される過酸化物が好ましい。具体的には、ジ-パーフルオロプロピオニルパーオキサイド、ジ(ω-ヒドロパーフルオロヘキサノイル)パーオキサイド(DHP)、ジ(ω-クロロパーフルオロプロピオニル)パーオキサイド等が例示できる。
また、式:
[Cl(CFCFCl)CFC(=O)O]
で示される過酸化物、例えば、ジ(トリクロロパーフルオロヘキサノイル)パーオキサイドなども好ましい。
上記重合開始剤は、重合開始時に一括して添加してもよいが、重合開始剤を重合開始から重合終了まで連続添加又は分割添加することが好ましい。
連続添加とは、重合開始から重合終了まで中断することなく連続的に添加することをいい、分割添加とは、重合開始から重合終了まで複数回に分割して逐次添加することをいう。
重合開始剤の添加量は、得られるETFEの目的に応じて適宜決定すればよいが、例えば、添加量の合計が、得られる重合体100質量部に対して0.01~20質量部であることが好ましく、0.01~10質量部であることがより好ましく、0.02~8質量部であることが更に好ましい。
上記重合では、連鎖移動剤を用いることが好ましい。連鎖移動剤としては、従来公知の連鎖移動剤を使用することができるが、例えば、エタン、イソペンタン、n-ヘキサン、シクロヘキサンなどの炭化水素類;トルエン、キシレンなどの芳香族類;アセトンなどのケトン類;酢酸エチル、酢酸ブチルなどの酢酸エステル類;メタノール、エタノールなどのアルコール類;メチルメルカプタンなどのメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素などが好ましい。すなわち、上記連鎖移動剤は、炭化水素類、芳香族類、ケトン類、アルコール類、メルカプタン類及びハロゲン化炭化水素からなる群より選択される少なくとも1種であることが好ましい。連鎖移動剤は、上記の中の1種類で用いてもよく、複数個を組み合わせて使用しても良い。
上記重合では、連鎖移動剤を重合開始時に一括して添加しても良いが、連鎖移動剤を重合開始から重合終了まで連続添加又は分割添加することが好ましい。
連鎖移動剤の添加量は、連鎖移動剤として用いる化合物の連鎖移動定数の大きさにより変わりうるが、得られるETFEの目的に応じて適宜決定できるが、例えば、添加量の合計が、重合溶媒に対して0.005~20質量%であることが好ましく、0.01~10質量%であることがより好ましく、0.01~8質量%であることが更に好ましい。
上記重合における重合温度としては、特に制限されないが、例えば、0~100℃とすることができる。また、重合圧力としては、用いる溶媒の種類や量、蒸気圧、重合温度などの他の重合条件に応じて適宜設定することができるが、通常、0~9.8MPaである。
上記重合は、重合開始剤を用い、下記式(5)を満たすことが好ましい。この条件を満たすことによって、溶融加工性に優れ、かつ耐熱性に優れるETFEを製造することができる。また、高温成形における異物の発生をより抑制することができるETFEを製造することができる。
log10(Mh/Mf)≦1.0    (5)
Mh:重合開始剤を投入してから1時間後のメルトフローレート値
Mf:重合により得られたエチレン-テトラフルオロエチレン共重合体のメルトフローレート値
上記Mhは、重合開始剤を投入してから1時間後のメルトフローレート値である。上記Mhは、例えば、重合開始剤を投入してから1時間後に、重合中のETFEを6g採取し、洗浄、乾燥を行って得られたETFE粉末について、上述したMFRの測定方法により得られる値である。
上記Mfは、重合により得られたエチレン-テトラフルオロエチレン共重合体のメルトフローレート値であり、上述した297℃でのメルトフローレートである。
すなわち、本発明のETFEは、重合開始剤を用いて、エチレンとTFEとを重合することにより得られ、前記重合が上記式(5)を満たすものであることが好ましい。通常、メルトフローレート値は重合の進行とともに低下していくが、重合開始剤を投入してから1時間後のメルトフローレート値、すなわち、メルトフローレート値が高い初期段階の値と、メルトフローレート値が低い重合終了後のエチレン-テトラフルオロエチレン共重合体の値との比が式(5)を満足することによって、溶融加工性に優れ、かつ耐熱性に優れるETFEを製造することができる。また、高温成形における異物の発生をより抑制することができるETFEを製造することができる。
上記重合は、log10(Mh/Mf)≦0.9を満たすことが好ましく、log10(Mh/Mf)≦0.8を満たすことがより好ましく、log10(Mh/Mf)≦0.7を満たすことが更に好ましく、log10(Mh/Mf)≦0.6を満たすことが更により好ましく、log10(Mh/Mf)≦0.5を満たすことが特に好ましい。
式(5)を満足するための方法としては、例えば、上述したように重合開始剤及び連鎖移動剤を連続又は分割添加する方法が挙げられる。
本発明のETFEは、溶融加工性に優れ、かつ、耐熱性に優れるため、また、高温成形における異物の発生をより抑制することができるため、種々の成形品に適用可能である。本発明は、本発明のETFEを成形して得られる成形品でもある。
本発明の成形品を得るための成形方法は特に限定されず、例えば、射出成形、押出成形、ブロー成形、プレス成形、回転成形、静電塗装等の従来公知の成形方法を採用できる。本発明のETFEは、溶融加工性及び耐熱性に優れるため、特に、射出成形又は押出成形で得られる成形品により好適である。
本発明の成形品の形状は限定されず、例えば、シート状、フィルム状、ロッド状、パイプ状、繊維状等の種々の形状にすることができる。
上記成形品の用途としては特に限定されず、例えば、各種フィルム又はシート、袋、電線の被覆材、飲料用容器等の食器類、ケーブル、パイプ、繊維、ボトル、ガソリンタンク、その他の各種産業用成形品等が挙げられる。中でも、フィルム又はシートが好ましい。
上記フィルム又はシートとしては、太陽電池用バックシート、航空機離型フィルム、半導体離型フィルム、高耐候性シート等に好適である。
本発明の成形品は電線の被覆材として好適である。電線の被覆材としては、例えば、ロボット、電動機、発電機、変圧器等の電気機器に使用される電線の被覆材;電話、無線機、コンピュータ、データ通信機器等の通信用機器に使用される電線の被覆材;鉄道車両、自動車、航空機、船舶等で使用される電線の被覆材に使用できる。特に耐熱性が要求される用途に適用でき、上記ロボット、電動機、発電機、変圧器等の電気機器に使用する電線の被覆材として特に好適である。
本発明は、芯線と、本発明のETFEを含む被覆材とを有する電線でもある。本発明の電線は、上記被覆材を有することによって、導体の径及びETFEの被覆厚さは、適宜選定できるが、例えばETFEの被覆厚さが5~500μmの耐熱電線として使用可能であり、更に耐熱性に優れるため、例えば、UL1581の150℃や200℃の耐熱規格基準を満たしたり、自動車電線規格LV-112のClassEの基準を満たすことも可能である。
上記被覆材は、本発明の効果を損なわない範囲において、他の成分を含んでいてもよい。他の成分としては、他の樹脂、添加剤等が挙げられる。他の樹脂としては、本発明のETFE以外のETFE系共重合体、ETFE系共重合体以外の溶融成形可能なフッ素樹脂等が挙げられる。添加剤としては、熱安定剤、顔料、紫外線吸収剤、充填剤、架橋剤、架橋助剤、有機過酸化物等が挙げられる。
上記芯線の材料としては、銅、銅合金、アルミニウム、アルミニウム合金等が挙げられ、銅が好ましい。芯線には、錫、銀等のメッキが施されていてもよい。芯線の断面積は、0.01~200mmが好ましく、0.05~100mmがより好ましく、0.1~50mmが更に好ましい。芯線の断面積が前記範囲の下限値以上であれば、充分な容量の信号もしくは電力を伝送出来るので好ましい。芯線の断面積が前記範囲の上限値以下であれば、可とう性に優れるので好ましい。
上記被覆材の厚さは、1~5000μmが好ましく、5~1000μmがより好ましく、5~500μmが更に好ましい。上記被覆材の厚さが前記範囲の下限値以上であれば、電気絶縁性や機械強度が充分となる。上記被覆材の厚さが前記範囲の上限値以下であれば、被覆材の材料の使用量が抑制でき、電線のコストが抑えられる。また、電線が重くならず、軽量化が望まれる航空機用電線、自動車用電線、ロボット電線として好適となる。
本発明の電線は、たとえば、本発明のETFEを溶融し、ダイスの吐出口から芯線のまわりに押し出して、芯線の周りに被覆材を形成することによって製造できる。電線の製造に用いる装置としては、電線ダイスクロスヘッドが設けられた押出機等が挙げられる。
本発明の電線としては、ケーブル、ワイヤ等が挙げられる。具体的には、同軸ケーブル、高周波用ケーブル、フラットケーブル、耐熱ケーブル等が挙げられる。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
(組成)
核磁気共鳴装置AC300(Bruker-Biospin社製)を用い、測定温度をポリマーの融点+20℃として19F-NMR測定を行い、各ピークの積分値で求めた。
(融点)
示差走査熱量計RDC220(Seiko Instruments社製)を用い、ASTM D-4591に準拠して昇温速度10℃/分にて熱測定を行い、得られた吸熱曲線のピークから融点を求めた。
(MFR)
MFRは、ASTM D3307-01に準拠し、メルトインデクサー(東洋精機社製)を用いて、297℃、5Kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)をMFRとした。
(熱分解開始温度)
熱分解開始温度は、示差熱・熱重量測定装置TG/DTA6200あるいはTG/DTA7200(日立ハイテクサイエンス社製)を用いて、空気雰囲気下で10℃/分で昇温し、フルオロポリマーの質量が1質量%減少するときの温度を熱分解開始温度とした。
(tanδ)
加熱炉を有する回転式レオメータ(MCR302,Anton Peer社製)を用いて、空気雰囲気下における、測定温度320℃においてのETFEの溶融開始時から5分後及び60分後の損失正接tanδを測定し、それぞれtanδ(5)及びtanδ(60)とした。条件として、直径25mmの平行円盤を使用し、測定ギャップは1.0mm、周波数は1rad/s、測定歪は3%とした。上記溶融開始時は、測定温度雰囲気下の加熱炉の中に樹脂を入れた時の時間とした。
75≦tanδ(60)/tanδ(5)×100≦225であれば、良好な溶融加工性を有するということができる。
(揮発分)
電気炉を用い、以下の手順で揮発分(重量%)を測定した。
サンプルを精密天秤(0.1mgまで測定できるもの)を使用し、あらかじめ330℃で1時間空焼きしておいたアルミカップ(重量をAとする)に10±0.1gの範囲内になるように精秤する(全体の重量をBとする)。
測定1サンプルにつき、2個を準備する。この時、揮発分がわかっている標準サンプルも同時に計量し、レファレンスとする。これを330℃に温調しておいた電気炉に入れる。入れた時点から1時間後に、電気炉内を150℃まで冷却し、その後取り出しサンプル重量を精秤する(この重量をCとする。
以下の式により、サンプルの330℃、1時間での重量減少を計算し、揮発分(重量%)とする。
揮発分(重量%)=[(B-C)/(B-A)]×100
(着色)
300℃、3.0MPaGの条件でプレス成型した厚さ1.5mmのフィルムを232℃で168時間加熱し、加熱前後のイエローインデックスを測色色差系ZE6000(日本電色工業株式会社製)で規格ASTM-D1925に準じて、測定した。
また、電気炉を用い、330℃で1時間の条件で焼成して着色を目視で確認した。表中の評価基準は以下の通りである。
○・・・着色なし(白色)
△・・・わずかに着色(淡黄色)
×・・・着色(茶色・褐色)
(末端基の分析)
実施例及び比較例で得られたETFEを用い、300℃、3.0MPaGの条件でプレス成型した厚さ200μmのフィルムをフーリエ変換赤外分光光度計(FT-IR)にて測定した。
各末端基に由来する振動のピークとしては、2950~3000cm-1を1.5Åに規格化したのち、下記吸収周波数のピークを採用した。
-CFH基:3010cm-1
-CFCHCOF基:1846cm-1
-COF基:1884cm-1
-COOH基:1813cm-1
-CFCOOH基の二量体と-CFCHCOOH基の単量体:1760cm-1
-COOCH基:1795cm-1
-CONH基:3438cm-1
-CHOH基:3648cm-1
-CH-基:2975cm-1
FT-IRの測定結果から、下記式によりβを求めた。
β=PI/(PI+PI+PI+PI+PI+PI+PI
PI:-CFH基に由来する振動のピーク強度
PI:-CFCHCOF基に由来する振動のピーク強度
PI:-COF基に由来する振動のピーク強度
PI:-COOH基に由来する振動のピーク強度
PI:-CFCOOH基の二量体とCFCHCOOH基の単量体に由来する振動のピーク強度
PI:-COOCH基に由来する振動のピーク強度
PI:-CONH基に由来する振動のピーク強度
PI:-CHOH基に由来する振動のピーク強度
(耐熱クラック性評価)
φ20の押出機にて、200μmの芯線(銅線)に被覆層の厚み100μmでETFEを被覆した。条件は以下のとおりである。
成形温度330℃
DDR(Draw-Down Ratio)113
引き取り速度50m/分。
上記のようにETFEで被覆した電線をUL1581の条件に従って、232℃で168時間熱老化し、熱老化前後の引張伸び及び引張破断強度を評価した。
上記方法で成形した被覆した電線の被覆層の引張試験は、卓上形精密万能試験機AGS-X((株)島津製作所製)を用いて測定した。
UL1581に準拠する200℃耐熱試験に満足することができたものを〇、満足できなかったものを×とする。
(電線被覆異物評価)
φ20の押出機にて、300μmの芯線(銅線)に被覆層の厚み80μmでETFEを成形温度350℃、DDR(Draw-Down Ratio)142、引き取り速度50m/分の条件で被覆し、外径凹凸検出器(タキカワエンジニアリング(株)製)にて20μm以上の異物が検査される条件で評価した。
表5中の〇、△及び×は下記基準による。
0~5個以内:〇
6~20個以内:△
21個以上:×
※異物評価の基準(20μm以上、個数/1000m)
(MIT試験)
300℃、3.0MPaGの条件でプレス成形した厚さ0.20~0.23mmのフィルムを、幅1.3cm、長さ90mmの短冊状に切り出してサンプルを得た。これをMIT式耐屈曲疲労試験機((株)安田精機製作所製)に装着し、ASTM D-2176に準拠した条件(荷重1.25kg、折り曲げ角度135度、175回/分)にて繰り返し折り曲げ試験を行い、破断するまでに要した折り曲げ回数を測定した。
表1~3中の「MIT(パラメータ)」の欄は、MITが下記式(4)を満足するものを〇、満足しないものを×とした。
MIT≧-28000×log(MFR)+128000 (4)
(エチレン単位-エチレン単位の結合数)/CFに挟まれたエチレン単位の合計数
H-NMRから測定して得られる共重合体の組成分析にて、エチレン単位-エチレン単位の結合数)/CFに挟まれたエチレン単位の合計数を算出した。
上記H-NMRは、具体的には、H-NMRを用いて共重合体を混ぜた溶液(Cl-(CFCFCl)-Cl)で測定し、得られたデータから溶液(Cl-(CFCFCl)-Cl)単体のピークを差し引いて、得られたチャートに基づき、以下の式により算出した値を算出した。
エチレン単位-エチレン単位の結合数:1.0ppm~2.0ppmの積分値
CFに挟まれたエチレン単位:2.0ppm~3.7ppmの積分値
実施例1
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1214gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にオクタフルシクロブタン(以後「C318」と表記)を878gと、TFE303g、エチレン8.8g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)6.75g、シクロヘキサン2gを投入し、オートクレーブを28℃に加温した。次に8%のジ(ω-ヒドロパーフルオロヘキサノイル)パーオキサイド(以下「DHP」と略す)パーフルオロヘキサン溶液15.7gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=57.0/43.0モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量23.7gを連続して仕込んで重合を継続した。重合開始から1時間30分後、3時間後、4時間30分後に8%DHPパーフルオロヘキサン溶液7.8gを追加投入し、その後1時間30分毎に3.9g追加投入した。また、重合開始から1時間30分毎に3回シクロヘキサン1.5gを追加投入した。重合開始10時間30分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR45.7g/10分のフッ素樹脂の粉末252gをえた。
実施例2
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1214gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318を878gと、TFE303g、エチレン8.8g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)6.75g、シクロヘキサン3gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液11.7gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=58.0/42.0モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量25.0gを連続して仕込んで重合を継続した。重合開始から2時間後、4時間後に8%DHPパーフルオロヘキサン溶液7.8gを追加投入し、その後100分毎に1.7g追加投入した。また、重合開始から2時間毎に2回シクロヘキサン1.0g、重合開始から5時間40分後に1.0g追加投入した。重合開始9時間57分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR30.1g/10分のフッ素樹脂の粉末250gをえた。
実施例3
初期に仕込むシクロヘキサン量を1gに変更し、投入した以外は実施例2と同様にして、重合開始7時間32分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR6.0g/10分のフッ素樹脂の粉末248gをえた。
実施例4
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1214gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318を878gと、TFE306g、エチレン8.8g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)6.75g、シクロヘキサン2.5gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液12.1gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=58.0/42.0モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量15.8gを連続して仕込んで重合を継続した。重合開始から2時間後に8%DHPパーフルオロヘキサン溶液12.1g、4時間後に8%DHPパーフルオロヘキサン溶液を6.8gを追加投入し、その後100分毎に1.7g追加投入した。また、重合開始から2時間後、4時間後にシクロヘキサン1.75g追加投入した。重合開始7時間45分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR43.5g/10分のフッ素樹脂の粉末252gをえた。
実施例5
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1214gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318を878gと、TFE284g、エチレン11.2g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)5.82g、シクロヘキサン5.0gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液7.8gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=56.0/44.0モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量12.0gを連続して仕込んで重合を継続した。重合開始から1時間30分毎に8%DHPパーフルオロヘキサン溶液7.8gを3回、3.9gを3回追加投入した。また、重合開始から1時間30分毎にシクロヘキサン0.5g追加投入した。重合開始8時間8分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR14.0g/10分のフッ素樹脂の粉末254gをえた。
実施例6
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1214gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318を878gとTFE318g、エチレン7.9g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)6.23g、シクロヘキサン4.5gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液7.8gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=59.0/41.0モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量14.0gを連続して仕込んで重合を継続した。重合開始から1時間30分毎に8%DHPパーフルオロヘキサン溶液7.8gを3回、3.9gを3回追加投入した。また、重合開始から1時間30分毎にシクロヘキサン0.5g追加投入した。重合開始6時間36分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR15.0g/10分のフッ素樹脂の粉末254gをえた。
実施例7
撹拌機付きオートクレーブ(内容積175L)に脱イオン水52.0kg投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318を37.4kg、テトラフルオロエチレン10.0kg、エチレンを0.32kg、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)を235.2g、シクロヘキサン140gを投入し、オートクレーブを35℃に加温した。その後に30%ジ-セカンダリーブチルパーオキシカーボネート(以下「SBP」と略す)メタノール溶液を390.6gを投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内の圧力が低下するので、テトラフルオロエチレン/エチレン=57.5/42.5モル%の混合ガスを連続して供給し、系内の圧力を1.20MPaGに保った。そしてパーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量1.41kgを連続して仕込んで重合を継続した。重合開始から4時間30分後にシクロヘキサンを57.9g投入し、更に8時間30分後に53.0g投入した。重合開始27時間後、放圧して大気圧に戻し、溶媒と重合水を除去後、脱イオン水44.7kgと28%アンモニア水1.3kgを仕込み、撹拌回転数を150rpmで維持しながら、槽内温度80℃で5時間反応させ、冷却後、水洗、乾燥して、MFR34.7g/10分のフッ素樹脂粉末22.3kgをえた。
実施例8
撹拌機付きオートクレーブ(容積175L)に脱イオン水52.0kgを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318を37.4kgとTFE12.82kg、エチレン0.37kg、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)306.6g、シクロヘキサン170.3gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液515.2gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=57.5/42.5モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量1.15kgを連続して仕込んで重合を継続した。重合開始から2時間後に8%DHPパーフルオロヘキサン溶液515.2g、4時間後に289.5g、これ以後100分毎に73.7gを2回追加投入した。また、重合開始から2時間後にシクロヘキサン85.2g投入した。重合開始8時間15分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR30.0g/10分のフッ素樹脂の粉末18kgをえた。
比較例1
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1215gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318を878gと、TFE266g、エチレン13.7g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)5.2g、シクロヘキサン7gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液7.9gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=54.8/45.2モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量12.5gを連続して仕込んで重合を継続した。8%DHPパーフルオロヘキサン溶液を、重合開始から1時間30分後に7.9g、3時間後に7.8g、4時間30分後に3.9g追加投入した。重合開始8時間18分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR14.7g/10分のフッ素樹脂の粉末256gをえた。
比較例2
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1214gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318を878gと、TFE266g、エチレン13.5g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)5.22g、シクロヘキサン8.5gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液7.86gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=54.7/45.3モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量12.5gを連続して仕込んで重合を継続した。8%DHPパーフルオロヘキサン溶液を、重合開始から1時間30分後に7.9g、3時間後に7.8g追加投入し、その後1時間30分毎に3.9g追加投入した。重合開始8時間59分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR18.5g/10分のフッ素樹脂の粉末255gをえた。
比較例3
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1280gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318を891gと、TFE225g、エチレン9.4g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)6.1g、シクロヘキサン4.1gを投入し、オートクレーブを35℃に加温した。その後にジ-n-プロピルパーオキシジカーボネート(以下「NPP」と略す)6.98gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/エチレン=55.0/45.0モル%の混合ガスを連続して供給し、系内圧力を1.20MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量6.13gを連続して仕込んで重合を継続した。重合開始4時間52分後、放圧して大気圧に戻し、溶媒と重合水を除去後、蒸留水957.1gと28%アンモニア42.9gを仕込み、撹拌回転数を30rpmで維持しながら、槽内温度80℃で5時間反応させ、冷却後、水洗、乾燥して、MFR16.0g/10分のフッ素樹脂粉末125gをえた。
比較例4
撹拌機付きオートクレーブ(内容積1000L)に脱イオン水416Lを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318を287kg、テトラフルオロエチレン76.1kg、エチレンを2.4kg、(パーフルオロヘキシル)エチレン1.47kg、シクロヘキサン0.83kgを投入し、オートクレーブを35℃に加温した。その後にNPP3.1kgをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/エチレン=57.0/43.0モル%の混合ガスを連続して供給し、系内圧力を1.20MPaGに保った。そして、(パーフルオロヘキシル)エチレンについても合計量19.1kgを連続して仕込んで重合を継続した。重合開始3.5時間後にMFR調節のためにシクロヘキサン330gを追加し、さらに重合開始11.8時間後にシクロヘキサン1.0kgを追加し、重合開始22時間後、放圧して大気圧に戻し、溶媒と重合水を除去後、脱イオン水400kgと28%アンモニア水9kgを仕込み、撹拌回転数を30rpmで維持しながら、槽内温度80℃で5時間反応させ、冷却後、水洗、乾燥して、MFR4.4g/10分のフッ素樹脂粉末250kgをえた。
得られたフッ素樹脂粉末は、表2に示すようにMITパラメータを満たしておらず、MFRが小さいわりに機械特性が低い。
比較例5
初期に仕込むシクロヘキサン量を1.33kgに変更し、投入した以外は比較例4と同様にして、重合開始28時間後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR35.1g/10分のフッ素樹脂の粉末230kgをえた。
比較例6
撹拌機付きオートクレーブ(内容積175L)に脱イオン水54.5kg投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318を37.6kg、テトラフルオロエチレン10.3kg、エチレンを0.31kg、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)を164.4g、シクロヘキサン205gを投入し、オートクレーブを35℃に加温した。その後にSBP299.8gを投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内の圧力が低下するので、テトラフルオロエチレン/エチレン=57.5/42.5モル%の混合ガスを連続して供給し、系内の圧力を1.20MPaGに保った。そして(パーフルオロヘキシル)エチレンについても合計量1.02kgを連続して仕込んで重合を継続した。重合開始15時間後、放圧して大気圧に戻し、溶媒と重合水を除去後、脱イオン水44.7kgと28%アンモニア水1.3kgを仕込み、撹拌回転数を150rpmで維持しながら、槽内温度80℃で5時間反応させ、冷却後、水洗、乾燥して、MFR39.0g/10分のフッ素樹脂粉末22.3kgをえた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
実施例7~8及び比較例5~6で得られたETFEの粉末を、減圧装置を備えたベント機構を有するφ32mm二軸押出機(JSW社製)を用い、表4に示す条件で各々20kgペレット化した。
Figure JPOXMLDOC01-appb-T000004
上記方法で得られたペレットを用い、φ20押出機にて200μmの芯線(銅線)に被覆層の厚み100μmでETFEを被覆した。被覆した電線をUL1581の条件に従って、熱老化前後の引張伸び及び引張破断強度の評価(耐熱クラック性評価)をした。また、上述した方法で電線被覆異物評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
上記結果より、実施例7~8は、ETFEのUL1581に準拠する200℃耐熱試験に満足することができ、比較例5~6は満足しなかった。
また、実施例7~8では異物が殆ど発生せずに〇の評価であったのに対し、比較例5~6では異物が多く発生していた。
本発明のETFEは、成形における異物の発生を抑制することができるため種々の成形品に適用可能である。ロボット、電動機、発電機、変圧器等の電気機器に使用される電線の被覆材;電話、無線機、コンピュータ、データ通信機器等の通信用機器に使用される電線の被覆材;鉄道車両、自動車、航空機、船舶等で使用される電線の被覆材に使用できる。特に耐熱性が要求される用途に適用でき、上記ロボット、電動機、発電機、変圧器等の電気機器に使用する電線の被覆材として特に好適である。

 

Claims (21)

  1. 下記式(1)を満たし、かつ、
    フーリエ変換赤外分光法で測定された-CFH基、-CFCHCOF基、-COF基、-COOH基、-CFCOOH基の二量体とCFCHCOOH基の単量体、-COOCH基、-CONH基及び-CHOH基に由来する振動のピーク強度が下記式(2)を満たすことを特徴とするエチレン/テトラフルオロエチレン共重合体。
    75≦tanδ(60)/tanδ(5)×100≦225 (1)
    tanδ(5):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から5分後の損失正接
    tanδ(60):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から60分後の損失正接
    PI/(PI+PI+PI+PI+PI+PI+PI)≧0.60    (2)
    PI:-CFH基に由来する振動のピーク強度
    PI:-CFCHCOF基に由来する振動のピーク強度
    PI:-COF基に由来する振動のピーク強度
    PI:-COOH基に由来する振動のピーク強度
    PI:-CFCOOH基の二量体とCFCHCOOH基の単量体に由来する振動のピーク強度
    PI:-COOCH基に由来する振動のピーク強度
    PI:-CONH基に由来する振動のピーク強度
    PI:-CHOH基に由来する振動のピーク強度
  2. エチレンに基づく重合単位(a)、及び、テトラフルオロエチレンに基づく重合単位(b)を有し、エチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)とのモル%比(a)/(b)が50~10/50~90である請求項1記載のエチレン/テトラフルオロエチレン共重合体。
  3. エチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)とのモル%比(a)/(b)が44~41/56~59である請求項2に記載のエチレン/テトラフルオロエチレン共重合体。
  4. エチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)とのモル%比(a)/(b)が43.5~41.5/56.5~58.5である請求項3記載のエチレン/テトラフルオロエチレン共重合体。
  5. エチレンに基づく重合単位(a)、テトラフルオロエチレンに基づく重合単位(b)、並びにエチレン及びテトラフルオロエチレンと共重合可能な単量体に基づく重合単位(c)を含む請求項1~4のいずれか一項に記載のエチレン/テトラフルオロエチレン共重合体。
  6. 重合単位(c)は、下記一般式(A1):
    CH=CXY    (A1)
    (式中、Xは、水素原子又はフッ素原子を表す。Yは、フルオロアルキル基を表す。)で表される単量体に基づく重合単位である請求項5記載のエチレン/テトラフルオロエチレン共重合体。
  7. 一般式(A1)で表される単量体が、下記一般式(A2):
    CH=CX-(CFZ    (A2)
    (式中、X及びZは、同一又は異なって、水素原子又はフッ素原子を表す。nは、2~8の整数である。)で表される単量体に基づく重合単位である請求項6記載のエチレン/テトラフルオロエチレン共重合体。
  8. 前記共重合体の全構成単位に対する前記一般式(A1)の単量体に由来する構成単位が0.1~5.0モル%である請求項6又は7記載のエチレン/テトラフルオロエチレン共重合体。
  9. 前記共重合体の全構成単位に対する前記一般式(A1)の単量体に由来する構成単位が1.8~2.8モル%である請求項6又は7記載のエチレン/テトラフルオロエチレン共重合体。
  10. 前記共重合体の全構成単位に対する前記一般式(A1)の単量体に由来する構成単位が1.8~2.6モル%である請求項6又は7記載のエチレン/テトラフルオロエチレン共重合体。
  11. 前記共重合体の全構成単位に対する前記一般式(A1)の単量体に由来する構成単位が2・0~2.6モル%である、請求項6又は7記載のエチレン/テトラフルオロエチレン共重合体。
  12. 下記式(1)を満たし、かつ
    エチレンに基づく重合単位(a)、テトラフルオロエチレンに基づく重合単位(b)、並びにエチレン及びテトラフルオロエチレンと共重合可能な単量体に基づく重合単位(c)を含み、
    エチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)とのモル%比(a)/(b)が44~41/56~59であり、
    全構成単位に対する重合単位(c)が1.8モル%以上である
    ことを特徴とするエチレン/テトラフルオロエチレン共重合体。
    75≦tanδ(60)/tanδ(5)×100≦225 (1)
    tanδ(5):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から5分後の損失正接
    tanδ(60):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から60分後の損失正接
  13. 重合単位(c)は、下記一般式(A1):
    CH=CXY    (A1)
    (式中、Xは、水素原子又はフッ素原子を表す。Yは、フルオロアルキル基を表す。)で表される単量体に基づく重合単位である請求項12記載のエチレン/テトラフルオロエチレン共重合体。
  14. 一般式(A1)で表される単量体が、下記一般式(A2):
    CH=CX-(CFZ    (A2)
    (式中、X及びZは、同一又は異なって、水素原子又はフッ素原子を表す。nは、2~8の整数である。)で表される単量体に基づく重合単位である請求項13記載のエチレン/テトラフルオロエチレン共重合体。
  15. エチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)とのモル%比(a)/(b)が43.5~41.5/56.5~58.5である請求項12~14のいずれかに記載のエチレン/テトラフルオロエチレン共重合体。
  16. H-NMRから測定して得られる共重合体の組成分析にて、下記式(3)を満たす請求項1~15のいずれか一項に記載のエチレン/テトラフルオロエチレン共重合体。
    (エチレン単位-エチレン単位の結合数)/CFに挟まれたエチレン単位の合計数≦0.060 (3)
  17. 297℃でのメルトフローレートが0.1~60.0g/10分である請求項1~16のいずれか一項に記載のエチレン/テトラフルオロエチレン共重合体。
  18. 297℃でのメルトフローレートが4.0~45.0g/10分である請求項1~16のいずれか一項に記載のエチレン/テトラフルオロエチレン共重合体。
  19. 請求項1~18のいずれか一項に記載のエチレン/テトラフルオロエチレン共重合体を成形して得られることを特徴とする成形品。
  20. フィルム又はシートである請求項19記載の成形品。
  21. 芯線と、請求項1~18のいずれか一項に記載のエチレン/テトラフルオロエチレン共重合体からなる被覆材とを有することを特徴とする電線。

     
PCT/JP2018/041538 2017-11-10 2018-11-08 エチレン/テトラフルオロエチレン共重合体 WO2019093433A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880071201.7A CN111315791B (zh) 2017-11-10 2018-11-08 乙烯/四氟乙烯共聚物
US16/762,764 US11548960B2 (en) 2017-11-10 2018-11-08 Ethylene/tetrafluoroethylene copolymer
EP18876618.2A EP3708597A4 (en) 2017-11-10 2018-11-08 ETHYLENE / TETRAFLUOROETHYLENE COPOLYMER
CN202210889691.XA CN115160469B (zh) 2017-11-10 2018-11-08 乙烯/四氟乙烯共聚物
US17/976,939 US11905349B2 (en) 2017-11-10 2022-10-31 Ethylene/tetrafluoroethylene copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017217773 2017-11-10
JP2017-217773 2017-11-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/762,764 A-371-Of-International US11548960B2 (en) 2017-11-10 2018-11-08 Ethylene/tetrafluoroethylene copolymer
US17/976,939 Continuation US11905349B2 (en) 2017-11-10 2022-10-31 Ethylene/tetrafluoroethylene copolymer

Publications (1)

Publication Number Publication Date
WO2019093433A1 true WO2019093433A1 (ja) 2019-05-16

Family

ID=66438918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041538 WO2019093433A1 (ja) 2017-11-10 2018-11-08 エチレン/テトラフルオロエチレン共重合体

Country Status (5)

Country Link
US (2) US11548960B2 (ja)
EP (1) EP3708597A4 (ja)
JP (2) JP6719528B2 (ja)
CN (1) CN111315791B (ja)
WO (1) WO2019093433A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3708597A4 (en) * 2017-11-10 2021-07-28 Daikin Industries, Ltd. ETHYLENE / TETRAFLUOROETHYLENE COPOLYMER
KR20230074767A (ko) 2020-09-30 2023-05-31 다이킨 고교 가부시키가이샤 불소 수지 재료, 적층체, 튜브 및 튜브의 제조 방법
JP7112010B2 (ja) 2020-09-30 2022-08-03 ダイキン工業株式会社 フッ素樹脂、積層体およびチューブ
KR20230078717A (ko) 2020-09-30 2023-06-02 다이킨 고교 가부시키가이샤 불소 수지, 적층체, 튜브 및 튜브의 제조 방법
CN116209570A (zh) 2020-09-30 2023-06-02 大金工业株式会社 部分氟化树脂、层积体、管和管的制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197411A (ja) 1983-04-25 1984-11-09 Daikin Ind Ltd エチレン−テトラフルオロエチレンまたはクロロトリフルオロエチレン系共重合体
JPH01115933A (ja) 1987-10-28 1989-05-09 Daikin Ind Ltd テトラフルオロエチレン系共重合体の安定化方法
JP2000198813A (ja) * 1998-11-04 2000-07-18 Daikin Ind Ltd 含フッ素重合体の安定化方法
JP2002194008A (ja) * 2000-12-22 2002-07-10 Daikin Ind Ltd 含フッ素重合体の製造方法
WO2007089017A1 (ja) * 2006-02-03 2007-08-09 Daikin Industries, Ltd. -so3h基含有フルオロポリマー製造方法及び-so3h基含有フルオロポリマー
WO2010123002A1 (ja) 2009-04-21 2010-10-28 ダイキン工業株式会社 エチレン/テトラフルオロエチレン共重合体、電線及び回転成形用フッ素樹脂粉末
JP2011213894A (ja) * 2010-03-31 2011-10-27 Daikin Industries Ltd 組成物、ペレット、樹脂成形品及び電線、並びに、組成物の製造方法
WO2013015202A1 (ja) 2011-07-26 2013-01-31 旭硝子株式会社 含フッ素共重合体組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058973A1 (en) * 1997-06-23 1998-12-30 Daikin Industries, Ltd. Tetrafluoroethylene copolymer and use therefo
ES2313691T3 (es) * 2006-04-03 2009-03-01 Asahi Glass Company, Limited Composicion copolimerica de etileno/tetrafluoroetileno.
DK2450405T3 (da) * 2009-06-30 2014-01-20 Daikin Ind Ltd Sammensætning og fremgangsmåde til fremstilling af denne, pulverbelægningsmateriale, pellets, formet harpiks og elektrisk ledning
JPWO2011129405A1 (ja) * 2010-04-16 2013-07-18 旭硝子株式会社 含フッ素共重合体組成物の製造方法及びフッ素樹脂成形体
US9822225B2 (en) * 2012-12-25 2017-11-21 Daikin Industries, Ltd. Fluororesin film having excellent transparency
MY176541A (en) * 2013-11-07 2020-08-14 Agc Inc Mold release film and process for producing semiconductor package
JPWO2016002887A1 (ja) * 2014-07-04 2017-04-27 旭硝子株式会社 フッ素樹脂組成物およびその製造方法、ならびに、成形物、発泡成形物および被覆電線
CN108350197B (zh) * 2015-11-13 2021-07-02 Agc株式会社 树脂膜及其制造方法
WO2017082417A1 (ja) 2015-11-13 2017-05-18 旭硝子株式会社 共重合体およびこれを含む組成物
EP3708597A4 (en) * 2017-11-10 2021-07-28 Daikin Industries, Ltd. ETHYLENE / TETRAFLUOROETHYLENE COPOLYMER

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197411A (ja) 1983-04-25 1984-11-09 Daikin Ind Ltd エチレン−テトラフルオロエチレンまたはクロロトリフルオロエチレン系共重合体
JPH01115933A (ja) 1987-10-28 1989-05-09 Daikin Ind Ltd テトラフルオロエチレン系共重合体の安定化方法
JP2000198813A (ja) * 1998-11-04 2000-07-18 Daikin Ind Ltd 含フッ素重合体の安定化方法
JP2002194008A (ja) * 2000-12-22 2002-07-10 Daikin Ind Ltd 含フッ素重合体の製造方法
WO2007089017A1 (ja) * 2006-02-03 2007-08-09 Daikin Industries, Ltd. -so3h基含有フルオロポリマー製造方法及び-so3h基含有フルオロポリマー
WO2010123002A1 (ja) 2009-04-21 2010-10-28 ダイキン工業株式会社 エチレン/テトラフルオロエチレン共重合体、電線及び回転成形用フッ素樹脂粉末
JP2011213894A (ja) * 2010-03-31 2011-10-27 Daikin Industries Ltd 組成物、ペレット、樹脂成形品及び電線、並びに、組成物の製造方法
WO2013015202A1 (ja) 2011-07-26 2013-01-31 旭硝子株式会社 含フッ素共重合体組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3708597A4

Also Published As

Publication number Publication date
JP2019163467A (ja) 2019-09-26
CN115160469A (zh) 2022-10-11
US11905349B2 (en) 2024-02-20
US11548960B2 (en) 2023-01-10
EP3708597A1 (en) 2020-09-16
US20230069795A1 (en) 2023-03-02
CN111315791A (zh) 2020-06-19
JP6743937B2 (ja) 2020-08-19
EP3708597A4 (en) 2021-07-28
JP2019090013A (ja) 2019-06-13
CN111315791B (zh) 2022-08-16
US20200362077A1 (en) 2020-11-19
JP6719528B2 (ja) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6743937B2 (ja) エチレン/テトラフルオロエチレン共重合体
JP7177377B2 (ja) 含フッ素共重合体
JP5445583B2 (ja) エチレン/テトラフルオロエチレン共重合体、電線及び回転成形用フッ素樹脂粉末
JPWO2008047759A1 (ja) 含フッ素共重合体及び成形品
JP6206492B2 (ja) 耐熱電線用被覆材料、その製造方法および電線
JP7277843B2 (ja) 含フッ素共重合体
JP7108223B1 (ja) 含フッ素共重合体
JP7074998B2 (ja) エチレン/テトラフルオロエチレン共重合体
CN115160469B (zh) 乙烯/四氟乙烯共聚物
JP2019089876A (ja) エチレン/テトラフルオロエチレン共重合体
JP7121326B1 (ja) 含フッ素共重合体
JP7397390B1 (ja) 組成物、射出成形体、粉体塗料および被覆電線
JP7177376B2 (ja) 共重合体、成形体、射出成形体および被覆電線
WO2022181847A1 (ja) 含フッ素共重合体
US20230395282A1 (en) Coated electrical wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018876618

Country of ref document: EP

Effective date: 20200610