WO2013015202A1 - 含フッ素共重合体組成物 - Google Patents

含フッ素共重合体組成物 Download PDF

Info

Publication number
WO2013015202A1
WO2013015202A1 PCT/JP2012/068390 JP2012068390W WO2013015202A1 WO 2013015202 A1 WO2013015202 A1 WO 2013015202A1 JP 2012068390 W JP2012068390 W JP 2012068390W WO 2013015202 A1 WO2013015202 A1 WO 2013015202A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
copolymer composition
containing copolymer
ethylene
repeating unit
Prior art date
Application number
PCT/JP2012/068390
Other languages
English (en)
French (fr)
Inventor
海野 正男
定雄 兼徳
真治 和田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2013525698A priority Critical patent/JP5958467B2/ja
Priority to CN201280036844.0A priority patent/CN103732681A/zh
Priority to EP12816984.4A priority patent/EP2738218B1/en
Publication of WO2013015202A1 publication Critical patent/WO2013015202A1/ja
Priority to US14/164,413 priority patent/US9328214B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper

Definitions

  • the present invention relates to a fluorine-containing copolymer composition having excellent heat resistance and stress crack resistance.
  • ETFE ethylene / tetrafluoroethylene copolymer
  • ETFE compacts have become smaller, more complex, and thinner, and there is an increasing demand for cost reduction by improving productivity through high-speed molding.
  • ETFE is required to have higher melt fluidity.
  • it is effective to reduce the molecular weight of ETFE.
  • the molecular weight of ETFE is lowered, there is a problem that the heat resistance and stress crack resistance, which are the characteristics of ETFE, are lowered.
  • Patent Document 1 discloses a fluorine-containing copolymer composition having excellent molding processability without decreasing the mechanical strength of a molded product by blending ETFE having a low melt viscosity and ETFE having a high melt viscosity. Is obtained.
  • Patent Document 2 describes that ETFE excellent in stress crack resistance can be obtained by controlling the polymerization rate of ethylene and tetrafluoroethylene.
  • the methods disclosed in Patent Documents 1 and 2 cannot achieve both the high-speed moldability of the fluorinated copolymer composition and the heat resistance and stress crack resistance of the molded body.
  • Patent Document 3 by adding and mixing copper oxide in an effective amount of 10 parts by weight or less with 100 parts by weight of ETFE, even if exposed to an air atmosphere at a temperature of 340 ° C. or higher for a long time, coloring and It is disclosed that a fluorine-containing copolymer composition having no foaming and excellent thermal stability can be obtained.
  • the thermal stability in Patent Document 3 means the thermal stability with respect to the thermal history during molding, and is intended to suppress the decomposition, foaming, coloring, etc. of ETFE during molding. No consideration has been given to improving heat resistance and stress crack resistance.
  • An object of the present invention is to provide a fluorine-containing copolymer composition capable of producing a molded article excellent in heat resistance and stress crack resistance with high productivity.
  • the present invention provides a fluorine-containing copolymer composition having the following constitution.
  • the molar ratio of the unit (A) to the repeating unit (B) based on tetrafluoroethylene is 38/62 to 44/56, and the repeating unit (C) based on another monomer is the ethylene / tetrafluoroethylene copolymer.
  • the fluorine-containing copolymer is characterized by being 0.2 to 10 ppm relative to the ethylene / tetrafluoroethylene copolymer, and the volume flow rate at 297 ° C. of the fluorine-containing copolymer composition being 15 to 150 g / 10 minutes. Polymer composition.
  • the molar ratio of the repeating unit (A) based on ethylene to the repeating unit (B) based on tetrafluoroethylene is 39/61 to 42/58.
  • the other monomer is CH 2 ⁇ CX (CF 2 ) n Y (wherein X and Y are each independently a hydrogen atom or a fluorine atom, and n is an integer of 1 to 10).
  • Copolymer composition [9] The fluorine-containing copolymer composition according to any one of [1] to [8], wherein the volume flow rate of the fluorine-containing copolymer composition is 20 to 60 g / 10 minutes.
  • the fluorine-containing copolymer composition of the present invention has high melt fluidity, can be molded at high speed, and can reduce the production cost of the molded product by improving productivity.
  • the melt fluidity is good, it can be molded into a thin and complex shape.
  • the molded product obtained from the fluorinated copolymer composition of the present invention is excellent in heat resistance and stress crack resistance.
  • the fluorinated polymer composition of the present invention is used as a wire coating material.
  • the coating layer can be thinned.
  • the fluorine-containing copolymer composition of the present invention contains an ethylene / tetrafluoroethylene copolymer (ETFE) and copper oxide.
  • ETFE includes a repeating unit (A) based on ethylene (hereinafter sometimes referred to as “E”), a repeating unit (B) based on tetrafluoroethylene (hereinafter sometimes referred to as “TFE”), E And a repeating unit (C) based on other monomers copolymerizable with TFE (excluding E and TFE).
  • the molar ratio (E / TFE) of the repeating unit (A) based on E and the repeating unit (B) based on TFE is 38/62 to 44/56, preferably 39/61 to 42/58, Most preferably, it is 40/60 to 42/58.
  • the ratio of the repeating unit (A) based on E is larger than this range, the heat resistance, weather resistance, and chemical resistance of the molded body of the fluorine-containing copolymer composition (hereinafter sometimes referred to as “molded body”). The nature etc. may be reduced.
  • the ratio of the repeating unit (A) based on E is smaller than this range, the melting point of ETFE decreases or the mechanical strength of the molded body decreases.
  • the molar ratio (E / TFE) can be controlled by the ratio of E and TFE in the initial charge when ETFE is produced by polymerization. That is, the ratio of the repeating unit (B) based on TFE can be increased by increasing the initial charge amount of TFE more than the initial charge amount of E.
  • Other monomers may be added all at once in the initial stage, or may be continuously added during the polymerization.
  • Examples of other monomers of the repeating unit (C) include the following (1) to (7).
  • One or more other monomers can be used.
  • (1) General formula CH 2 CX (CF 2 ) n Y (wherein X and Y are each independently a hydrogen atom or a fluorine atom, and n is an integer of 1 to 10).
  • Compound.
  • Olefins such as propylene, butene and isobutylene (excluding E).
  • (3) Fluoroolefins that do not have hydrogen atoms in unsaturated groups such as hexafluoropropylene (HFP) and chlorotrifluoroethylene (CTFE) (excluding TFE).
  • HFP hexafluoropropylene
  • CTFE chlorotrifluoroethylene
  • a fluoroolefin having a hydrogen atom in an unsaturated group such as vinylidene fluoride (VDF), vinyl fluoride (VF), trifluoroethylene, hexafluoroisobutylene (HFIB) or the like.
  • VDF vinylidene fluoride
  • VF vinyl fluoride
  • HFIB hexafluoroisobutylene
  • PAVE Perfluoro (alkyl vinyl ether)
  • PMVE perfluoro (methyl vinyl ether)
  • PEVE perfluoro (ethyl vinyl ether)
  • PEVE perfluoro (propyl vinyl ether)
  • PPVE perfluoro (butyl vinyl ether)
  • PPD Perfluoro (2,2-dimethyl-1,3-dioxole)
  • 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole perfluoro (2-methylene-4- Fluorinated monomers having an aliphatic ring structure such as methyl-1,3-dioxolane).
  • CH 2 CX (CF 2 ) represented by n Y compound (hereinafter, referred to as "FAE”.)
  • X in the formula is preferably a hydrogen atom.
  • Y in the formula is preferably a fluorine atom.
  • N in the formula is preferably from 2 to 8, more preferably from 2 to 6, and particularly preferably 2, 4, or 6.
  • n in the formula exceeds 10, polymerization reactivity may be insufficient.
  • n is in the range of 2 to 8, the polymerization reactivity of FAE is good. Furthermore, it becomes easy to obtain a molded article excellent in heat resistance and stress crack resistance.
  • FAE 1 type (s) or 2 or more types can be used for FAE.
  • Preferable specific examples of FAE include CH 2 ⁇ CH (CF 2 ) 2 F, CH 2 ⁇ CH (CF 2 ) 4 F, CH 2 ⁇ CH (CF 2 ) 6 F, CH 2 ⁇ CF (CF 2 ) 4 F, CH 2 ⁇ CF (CF 2 ) 3 H and the like.
  • ETFE contains 0.1 to 2.6 mol% of repeating units (C) based on other monomers in all repeating units of the ETFE.
  • the content of the repeating unit (C) based on other monomers is preferably 0.2 to 2.5 mol%, more preferably 0.5 to 2.3 mol%.
  • the stress crack resistance of the molded article is lowered.
  • it exceeds 2.5 mol% the melting point of ETFE is lowered and the heat resistance of the molded product is lowered.
  • the content of the repeating unit (C) can be controlled by adjusting the addition amount of other monomers when producing ETFE by polymerization.
  • the volumetric flow rate of ETFE at 297 ° C. is 15 to 150 g / 10 minutes, preferably 20 to 100 g / 10 minutes, more preferably 20 to 70 g / 10 minutes, and most preferably 20 to 60 g / 10 minutes. Minutes.
  • the volume flow rate is also a measure of the molecular weight, and a small molecular weight indicates a high molecular weight, while a large volume flow indicates a low molecular weight.
  • the capacity flow rate is less than 15 g / 10 minutes, it is unsuitable for high-speed molding, and when it exceeds 150 g / 10 minutes, the stress crack resistance of the molded article is lowered. Within the above range, high-speed moldability is excellent and stress crack resistance is also excellent.
  • the capacity flow rate is measured by the method shown in the examples described later.
  • the volume flow rate of ETFE can be controlled by adjusting the molecular weight of ETFE. For example, by setting the weight average molecular weight of ETFE to about 300,000 to about 600,000, the capacity flow rate of ETFE at 297 ° C. can be set to 15 to 150 g / 10 minutes.
  • the melting point of ETFE is preferably 235 to 275 ° C, more preferably 237 to 270 ° C, and most preferably 240 to 260 ° C.
  • the melting point is less than 235 ° C.
  • the heat resistance is inferior, and the molded product melts down during the 232 ° C. heat resistance test of UL Standard No. 1581, which is not suitable.
  • the melting point exceeds 275 ° C., the stress crack resistance of the molded article may be lowered.
  • the molar ratio of (E / TFE) should be close to 50/50, and the crystallinity should be increased by reducing the content of other monomers.
  • the crystallinity can be lowered by increasing the content of other monomers such as increasing the TFE content (E / TFE) away from 50/50 and increasing the content of other monomers. I think it would be good.
  • the polymerization method using the radical polymerization initiator generally used is used.
  • examples of the polymerization method include bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • solution polymerization is preferable.
  • the radical polymerization initiator used for the polymerization is preferably a radical polymerization initiator having a half life of 10 hours and a temperature of 0 to 100 ° C., more preferably a radical polymerization initiator having a temperature of 20 to 90 ° C.
  • radical polymerization initiators include: azo compounds such as azobisisobutyronitrile; peroxydicarbonates such as diisopropyl peroxydicarbonate; tert-butyl peroxypivalate, tert-butyl peroxyisobutyrate, Peroxyesters such as tert-butylperoxyacetate; non-fluorinated diacyl peroxides such as isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide, lauroyl peroxide; (Z (CF 2 ) p COO) 2 (here Z is a hydrogen atom, a fluorine atom or a chlorine atom, and p is an integer of 1 to 10), etc .; perfluoro tert-butyl peroxide; potassium persulfate, sodium persulfate, No ammonium persulfate Peroxides and the like.
  • azo compounds such as azobisiso
  • examples of the polymerization medium include organic solvents such as fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorinated hydrocarbons, alcohols and hydrocarbons.
  • specific examples of the polymerization medium include perfluorocarbons such as n-perfluorohexane, n-perfluoroheptane, perfluorocyclobutane, perfluorocyclohexane, and perfluorobenzene; 1,1,2,2-tetrafluorocyclobutane, CF 3 CFHCF 2 CF 2 CF 3 , CF 3 (CF 2 ) 4 H, CF 3 CF 2 CFHCF 2 CF 3 , CF 3 CFHCFHCF 2 CF 3 , CF 2 HCFHCF 2 CF 2 CF 3 , CF 3 (CF 2 ) 5 H, CF 3 CH ( CF 3) CF 2 CF 2 CF 3, CF 3 CF (CF 2 ) 5 H, CF 3
  • Polymerization conditions are not particularly limited.
  • the polymerization temperature is preferably 0 to 100 ° C, more preferably 20 to 90 ° C.
  • the polymerization pressure is preferably from 0.1 to 10 MPa, more preferably from 0.5 to 3 MPa.
  • the polymerization time is preferably 1 to 30 hours.
  • the method for adjusting the molecular weight of ETFE is not particularly limited.
  • a method of adjusting the molecular weight at the time of polymerization such as addition of a chain transfer agent or control of the polymerization pressure, a method of adjusting the molecular weight by cutting the molecule by applying energy such as heat or radiation to the ETFE obtained by the polymerization, polymerization
  • the molecular chain of ETFE obtained in this way is chemically cleaved with radicals to adjust the molecular weight.
  • a method of controlling the molecular weight during polymerization using a chain transfer agent is preferred.
  • Chain transfer agents include methanol, ethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoropropanol, 1,1,1,3,3,3-hexafluoroisopropanol, 2, Alcohols such as 2,3,3,3-pentafluoropropanol; fluorination such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1,1-dichloro-1-fluoroethane Chlorinated hydrocarbons; hydrocarbons such as n-pentane, n-hexane, n-heptane and cyclohexane; hydrofluorocarbons such as CF 2 H 2 ; ketones such as acetone; mercaptans such as methyl mercaptan; methyl acetate and acetic acid Examples include esters such as ethyl; ethers such as diethyl ether and methyl ethyl ether.
  • the addition amount of the chain transfer agent is usually about 0.01 to 100% by mass with respect to the polymerization medium.
  • the melt viscosity (molecular weight) of the obtained ETFE can be adjusted. That is, ETFE having a low molecular weight can be obtained as the addition amount of the chain transfer agent is increased.
  • the fluorine-containing copolymer composition of the present invention contains copper oxide.
  • copper oxide cupric oxide is preferable because it is excellent in stability even in high humidity air.
  • the content of copper oxide is 0.2 to 10 ppm with respect to ETFE. Preferably it is 0.3 to 7 ppm, more preferably 0.3 to 5 ppm, and most preferably 0.5 to 5 ppm. When the content of copper oxide is less than 0.2 ppm or exceeds 10 ppm, the heat resistance of the molded product is lowered.
  • the average particle diameter of copper oxide is preferably 0.1 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m. If it is less than 0.1 ⁇ m, the dispersibility in ETFE is lowered, and physical properties such as tensile strength and elongation of the molded article may be lowered. If it exceeds 10 ⁇ m, the effect of improving the heat resistance of the molded product may be reduced.
  • the average particle diameter of copper oxide is a value measured by a laser diffraction particle size distribution measuring method. BET specific surface area of the copper oxide is preferably 5 ⁇ 30m 2 / g, more preferably 10 ⁇ 20m 2 / g.
  • the fluorine-containing copolymer composition of the present invention may contain other components in order to develop various properties.
  • Other ingredients include carbon black, titanium oxide, copper phthalocyanine blue, perylene red, iron oxide, yellow lead, and other pigments and dyes, polytetrafluoroethylene lubricant, silicone oil and other slidability-imparting agents, carbon black, carbon Conductivity-imparting substances such as nanotubes, graphite, stannic oxide, ionic liquid, carbon fiber, glass fiber, aramid fiber, california titanate whisker, aluminum borate whisker, calcium carbonate whisker, etc.
  • Thermal conductivity-imparting agents such as magnesium and graphite, fillers such as talc, coke, mica and glass beads, fluorine rubber, ethylene-propylene-diene rubber (EPDM), polyphenylene sulfide, polyether ether keto , Polyetherimide, polyamideimide, polysulfone, polyethersulfone, liquid crystal polymer, polyamide, semi-aromatic polyamide, polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), chloro Polymer materials such as trifluoroethylene / ethylene copolymer (ECTFE), modifiers such as aminosilane and phenylsilane, crystal nucleating agent foaming agent, foaming nucleating agent, crosslinking agents such as triallyl isocyanurate, antioxidants, Light stabilizers, ultraviolet absorbers and the like.
  • the content of other components can be appropriately selected depending on the properties to be imparted
  • the capacity flow rate at 297 ° C. of the fluorine-containing copolymer composition of the present invention is 15 to 150 g / 10 minutes, preferably 20 to 100 g / 10 minutes, more preferably 20 to 70 g / 10 minutes. Most preferably, it is 20 to 60 g / 10 minutes.
  • the capacity flow rate is less than 15 g / 10 min, it is not suitable for high-speed molding, and when it exceeds 150 g / 10 min, the stress crack resistance of the molded product is lowered. Within this range, high-speed moldability is excellent and stress crack resistance is also excellent.
  • the volume flow rate of the fluorine-containing copolymer composition shows the same value as the volume flow rate of ETFE.
  • Methods for adjusting the volume flow rate of the fluorinated copolymer composition include adjusting the molecular flow rate of ETFE by polymerization to adjust the volume flow rate of ETFE, mixing and kneading ETFE having a different volume flow rate, and fluorine content.
  • the molecular flow is cut by heat to adjust the volume flow rate of the fluorinated copolymer.
  • the fluorinated copolymer composition of the present invention is molded by a conventionally known molding method such as injection molding, extrusion molding, blow molding, press molding, rotational molding, electrostatic coating, etc. Can be produced. Since the fluorine-containing copolymer composition of the present invention has good fluidity at high temperatures, it is excellent in molding processability by high-speed molding. In particular, in the case of injection molding, since the melt fluidity is good, it can be molded into a thin and complex shape.
  • the molded body of the fluorine-containing copolymer composition obtained by molding the fluorine-containing copolymer composition of the present invention is excellent in heat resistance and stress crack resistance, (1) a robot, an electric motor, and a generator , Electrical machinery such as transformers, electrical wire covering materials for household electrical equipment, (2) electrical wire covering materials for communication transmission equipment such as telephones and radios, and (3) electronic equipment such as computers, data communication equipment, and terminal equipment.
  • the coating layer can be thinned, and various devices can be made smaller and thinner. Moreover, it can use suitably for a film, a monofilament, insert molding (injection molding) etc. as uses other than an electric wire coating
  • this molded body sample was exposed in a gear oven at 200 ° C. for 1 hour to check for cracks.
  • the number of samples was 5. Find the lowest annealing temperature (T1) at which cracks occur in all five molded body samples and the maximum annealing temperature (T2) at which cracks do not occur in all five molded body samples.
  • Tb The temperature was determined.
  • the stress crack temperature is an annealing temperature obtained by the above experiment and at which 50% of the molded body sample is broken. The higher the stress crack temperature, the higher the stress crack resistance.
  • the stress crack temperature is preferably 195 ° C. or higher.
  • Tb T1 ⁇ T (S / 100 ⁇ 1 / 2),
  • Tb stress crack temperature
  • T1 the lowest annealing temperature at which cracks occur in all molded body samples
  • ⁇ T Annealing temperature interval (5 ° C.)
  • S Crack occurrence probability at each temperature from the highest annealing temperature (T2) at which cracks do not occur in all molded body samples to the lowest annealing temperature (T1) at which cracks occur in all molded body samples (when 50% occurs) 0.5).
  • the average particle size of the copper oxide was measured using a laser diffraction particle size distribution analyzer HELOS-RODOS manufactured by Sympatec. Further, the BET specific surface area of copper oxide was measured by a BET method by adsorption of nitrogen gas using SORPTY-1750 manufactured by Carlo Erba.
  • PBPV tert
  • the obtained slurry of ETFE 1 was put into a 220 L (liter) granulation tank charged with 77 kg of water, and then heated to 105 ° C. with stirring to granulate while distilling off the solvent.
  • the obtained granulated product was dried at 150 ° C. for 5 hours to obtain 7.3 kg of granulated product 1 of ETFE1.
  • the copolymer composition of ETFE1 the molar ratio of the repeating unit based on TFE / the repeating unit based on E / the repeating unit based on PFBE was 57.6 / 40.3 / 2.1.
  • the melting point of ETFE was 244 ° C., and the capacity flow rate (melt flow rate) was 27 g / 10 min.
  • cupric oxide (average particle size 0.8 ⁇ m, BET specific surface area 12 m 2 / g) was added to the obtained granulated product 1, and the cylinder temperature was 260 to 280 ° C. with a 30 mm extruder. Melt extrusion was performed under conditions of a die temperature of 300 ° C. and a screw rotation speed of 30 rpm, and pellets 1 of the fluorinated copolymer composition 1 were produced. The volume flow rate of pellet 1 was 27 g / 10 min.
  • the obtained pellet 1 was press-molded at 300 ° C. to form a sheet 1 having a thickness of 1 mm (a molded body of the fluorinated copolymer composition 1). The initial tensile elongation of the sheet 1 was 535%. The tensile elongation after a heat test at 232 ° C. for 60 days was 399%.
  • the stress crack temperature was 198.5 ° C.
  • Example 2 In Example 1, except that 5 ppm of cupric oxide was added to the granulated product 1, melt extrusion was performed in the same manner as in Example 1 to prepare pellets 2 of the fluorinated copolymer composition 2.
  • the volume flow rate of pellet 2 was 27 g / 10 min.
  • the obtained pellet 2 was press-molded at 300 ° C. to form a sheet 2 having a thickness of 1 mm (molded body of the fluorinated copolymer composition 2).
  • the initial tensile elongation of the sheet 2 was 540%.
  • the tensile elongation after a heat test at 232 ° C. for 60 days was 307%.
  • the stress crack temperature was 198.5 ° C.
  • Example 3 In the same manner as in Example 1, the molar ratio of the repeating unit based on TFE / the repeating unit based on E / the repeating unit based on PFEE was 59.1 / 39.1 / 1.8, the melting point was 245 ° C., and the volume flow rate. A granulated product 2 of ETFE 2 having a (melt flow rate) of 28 g / 10 min was obtained. To the obtained granulated product 2, cupric oxide (average particle size 0.8 ⁇ m, BET specific surface area 12 m 2 / g) was added at 1.5 ppm, and the cylinder temperature was 260 to 280 ° C. with a 30 mm extruder.
  • melt extrusion was performed under conditions of a die temperature of 300 ° C. and a screw rotation speed of 30 rpm, and pellets 3 of the fluorinated copolymer composition 3 were produced.
  • the volume flow rate of the pellet 3 was 28 g / 10 minutes.
  • the obtained pellet 3 was press-molded at 300 ° C. to form a sheet 3 having a thickness of 1 mm (molded body of the fluorinated copolymer composition 3).
  • the initial tensile elongation of the sheet 3 was 480%.
  • the tensile elongation after the heat resistance test at 232 ° C. for 60 days was 385%.
  • the stress crack temperature was 197.5 ° C.
  • Example 1 In Example 1, except that 15 ppm of cupric oxide was added to the granulated product 1, melt extrusion was performed in the same manner as in Example 1 to prepare pellets 4 of the fluorinated copolymer composition 4. The volume flow rate of the pellet 4 was 27 g / 10 minutes. The obtained pellet 4 was press-molded at 300 ° C. to form a sheet 4 having a thickness of 1 mm (a molded body of the fluorinated copolymer composition 4). The initial tensile elongation of the sheet 4 was 530%. The tensile elongation after a heat test at 232 ° C. for 60 days was 150%. The stress crack temperature was 197.5 ° C.
  • Example 2 (Comparative Example 2) In Example 1, except that cupric oxide was not added, the granulated product 1 was melt-extruded in the same manner as in Example 1 to produce pellets 5.
  • the obtained pellet 5 was press-molded at 300 ° C. to form a sheet 5 (ETFE1 molded body) having a thickness of 1 mm.
  • the initial tensile elongation of the sheet 5 was 530%.
  • the tensile elongation after the heat resistance test at 232 ° C. for 60 days was 165%.
  • the stress crack temperature was 194.5 ° C.
  • an amount of PFBE corresponding to 1.5 mol% with respect to the total mole number of TFE and E was continuously charged. 7.0 hours after the start of polymerization, when 7.1 kg of the monomer mixed gas was charged, the temperature inside the polymerization tank was lowered to room temperature and the pressure in the polymerization tank was purged to normal pressure. The obtained slurry of ETFE3 was put into a 220 L granulation tank charged with 77 kg of water, and then the temperature was raised to 105 ° C. while stirring to granulate while removing the solvent by distillation. The obtained granulated product was dried at 150 ° C. for 5 hours to obtain 7.0 kg of granulated product 3 of ETFE3.
  • the copolymer composition of ETFE3 has a repeating unit based on TFE / a repeating unit based on E / a repeating unit based on PFBE of 53.1 / 45.3 / 1.6, a melting point of 261 ° C., a capacity flow rate ( Melt flow rate) was 30 g / 10 min.
  • the resulting granulated product 3 of ETFE 3 was melt-extruded in the same manner as in Comparative Example 2 to produce pellets 6.
  • the obtained pellet 6 was press-molded at 300 ° C. to form a 1 mm thick sheet 6 (formed body of ETFE3).
  • the initial tensile elongation of the sheet 6 was 510%.
  • the tensile elongation after a heat test at 232 ° C. for 60 days was 60%.
  • the stress crack temperature was 181.5 ° C.
  • Comparative Example 4 Comparative Example 3 except that the polymerization tank with a stirrer with an internal volume of 94 liters was degassed and charged with 78.1 kg of 1-hydrotridecafluorohexane, 29.0 kg of AK225cb, and 0.6 kg of PFBE. Thus, 7.2 kg of granulated product 4 of ETFE4 was obtained.
  • the copolymerization composition of ETFE4 is 53.2 / 45.3 / 1.5 in terms of a molar ratio of repeating unit based on TFE / repeating unit based on E / repeating unit based on PFBE, melting point is 262 ° C., capacity flow rate ( Melt flow rate) was 12 g / 10 min.
  • the obtained granulated product of ETFE4 was melt-extruded in the same manner as in Comparative Example 2 to produce pellets 7.
  • the obtained pellet 7 was press-molded at 300 ° C. to form a 1 mm-thick sheet 7 (formed body of ETFE4).
  • the initial tensile elongation of the sheet 7 was 500%.
  • the tensile elongation after the 60-day heat test was 60%.
  • the stress crack temperature was 192.5 ° C.
  • the fluorine-containing copolymer composition had a high capacity flow rate, excellent fluidity, and excellent high-speed moldability. Further, the stress crack temperature of the molded body (electric wire) was 195 ° C. or higher, and the stress crack resistance was excellent. Furthermore, in any of the molded bodies (sheets), the tensile elongation after being held in a gear oven maintained at 232 ° C. for 60 days was 200% or more, and the heat resistance was excellent. In contrast, Comparative Example 1 in which copper oxide was added in excess of 10 ppm relative to ETFE and Comparative Examples 2 to 4 in which copper oxide was not added were inferior in heat resistance of the molded body.
  • the molar ratio (E / TFE) of the repeating unit (A) based on E to the repeating unit (B) based on TFE is 38/62.
  • the stress crack resistance was low.
  • the fluorine-containing copolymer composition of the present invention is excellent in moldability by high speed molding. Moreover, the molded body of the obtained fluorine-containing copolymer composition is excellent in stress crack resistance and excellent in moldability. Therefore, (1) electric machines such as robots, electric motors, generators, transformers, etc., electric wire covering materials for household electric appliances, (2) electric wire covering materials for communication transmission equipment such as telephones and radios, (3) computers -Wire covering material for electronic devices such as data communication equipment and terminal equipment, (4) Wire covering material for railway vehicles, (5) Wire covering material for automobiles, (6) Wire covering material for aircraft, (7) Wire for ships It can be suitably used for wire covering materials for various equipment such as covering materials, (8) building / factory trunk lines, power plants, petrochemical / steel making plants, etc.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2011-162683 filed on July 26, 2011 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

 耐熱性及び耐ストレスクラック性に優れた成形体を、生産性よく製造できる含フッ素共重合体組成物を提供する。 ETFEと酸化銅とを含有し、前記ETFEは、エチレンに基づく繰り返し単位(A)と、テトラフルオロエチレンに基づく繰り返し単位(B)と、その他のモノマーに基づく繰り返し単位(C)とを含有し、繰り返し単位(A)と、繰り返し単位(B)とのモル比が38/62~44/56であり、繰り返し単位(C)をETFEの全繰返し単位中に0.1~2.6モル%含有し、前記酸化銅の含有量が、ETFEに対して0.2~10ppmであり、含フッ素共重合体組成物の297℃における容量流速が15~150g/10分である、含フッ素共重合体組成物。

Description

含フッ素共重合体組成物
 本発明は、耐熱性及び耐ストレスクラック性に優れた含フッ素共重合体組成物に関する。
 エチレン/テトラフルオロエチレン共重合体(以下、「ETFE」と称する場合がある)は、耐熱性、耐候性、電気絶縁性、非粘着性、撥水撥油性等に優れており、特にフッ素樹脂の中では成形性と機械的強度が高いという特徴を有する。このため、押出成形、ブロー成形、射出成形、回転成形などの溶融成形方法によりETFEを成形加工して、被覆電線、チューブ、シート、フィルム、フィラメント、ポンプケーシング、継ぎ手類、パッキング、ライニング、コーティング等の広範囲の成形加工品が生産されている(例えば、非特許文献1を参照。)。
 近年、ETFEの成形体が小型化、複雑化及び薄肉化してきており、また高速成形による生産性向上によるコスト低減という要求も高まっている。このような要求を満たすため、ETFEには、より一層高い溶融流動性が求められている。
 ETFEの溶融流動性を高くするには、ETFEの分子量を低くすることが有効である。しかしながら、ETFEの分子量を低くすると、ETFEの特徴である耐熱性、耐ストレスクラック性などが低下するという問題があった。
 特許文献1には、溶融粘度の低いETFEと、溶融粘度の高いETFEとをブレンドすることで、成形体の機械強度を低下させることなく、優れた成形加工性を有する含フッ素共重合体組成物が得られることが記載されている。
 特許文献2には、エチレンとテトラフルオロエチレンとの重合速度を制御することで、耐ストレスクラック性に優れるETFEが得られることが記載されている。
 しかしながら、特許文献1及び2に開示された方法によって、含フッ素共重合体組成物の高速成形性と、成形体の耐熱性及び耐ストレスクラック性とを、両立させることはできなかった。
 一方、特許文献3には、ETFEの100重量部に酸化銅を10重量部以下の有効量で添加混合することにより、340℃以上の温度で空気雰囲気下に長時間さらされても、着色や発泡が生起せず、熱的安定性が優れた含フッ素共重合体組成物が得られることが開示されている。
 しかしながら、特許文献3における熱安定性とは、成形時の熱履歴に対する熱安定性を意味し、成形時におけるETFEの分解、発泡、着色等を抑制することを目的としており、また、成形体の耐熱性や、耐ストレスクラック性を向上させることについては何ら検討されていない。
特開2000-212365号公報 特開2002-348302号公報 特公昭52-44895号公報
里川孝臣編「フッ素樹脂ハンドブック」489~499頁、日刊工業新聞社、1990年
 本発明の目的は、耐熱性及び耐ストレスクラック性に優れた成形体を、生産性よく製造できる含フッ素共重合体組成物を提供することにある。
 本発明は、以下の構成を有する含フッ素共重合体組成物を提供する。
 [1]エチレン/テトラフルオロエチレン共重合体と、酸化銅とを含有する含フッ素共重合体組成物であって、前記エチレン/テトラフルオロエチレン共重合体は、エチレンに基づく繰り返し単位(A)と、テトラフルオロエチレンに基づく繰り返し単位(B)と、エチレン及びテトラフルオロエチレンと共重合可能な、エチレン及びテトラフルオロエチレンを除くその他のモノマーに基づく繰り返し単位(C)とを含有し、エチレンに基づく繰り返し単位(A)とテトラフルオロエチレンに基づく繰り返し単位(B)とのモル比が38/62~44/56であり、その他のモノマーに基づく繰り返し単位(C)を前記エチレン/テトラフルオロエチレン共重合体の全繰返し単位中に0.1~2.6モル%含有し、前記酸化銅の含有量が、前記エチレン/テトラフルオロエチレン共重合体に対して0.2~10ppmであり、前記含フッ素共重合体組成物の297℃における容量流速が15~150g/10分であることを特徴とする含フッ素共重合体組成物。
 [2]前記エチレン/テトラフルオロエチレン共重合体は、エチレンに基づく繰り返し単位(A)とテトラフルオロエチレンに基づく繰り返し単位(B)とのモル比が39/61~42/58である前記[1]に記載の含フッ素共重合体組成物。
 [3]前記エチレン/テトラフルオロエチレン共重合体の融点が、235~275℃である前記[1]又は[2]に記載の含フッ素共重合体組成物。
 [4]前記酸化銅の平均粒径が0.1~10μmであり、BET表面積が5~30m/gである前記[1]~[3]のいずれかに記載の含フッ素共重合体組成物。
 [5]前記酸化銅が酸化第2銅である前記[1]~[4]のいずれかに記載の含フッ素共重合体組成物。
 [6]前記酸化銅の含有量が、前記エチレン/テトラフルオロエチレン共重合体に対して0.5~5ppmである前記[1]~[5]のいずれかに記載の含フッ素共重合体組成物。
 [7]前記その他のモノマーが、CH=CX(CFY(式中、X及びYはそれぞれ独立に、水素原子又はフッ素原子であり、nは1~10の整数である。)で表わされる化合物である、前記[1]~[6]のいずれかに記載の含フッ素共重合体組成物。
 [8]前記その他のモノマーが、CH=CH(CFF(ここで、nは2~8の整数である。)で表わされる化合物である、前記[7]に記載の含フッ素共重合体組成物。
 [9]前記含フッ素共重合体組成物の容量流速が20~60g/10分である前記[1]~[8]のいずれかに記載の含フッ素共重合体組成物。
 本発明の含フッ素共重合体組成物は、高い溶融流動性を有し、高速成形が可能で、生産性向上による成形体の製造コストの低減が可能である。特に、射出成形の場合は、溶融流動性が良好なため、薄肉で複雑な形状に成形することが可能である。
 また、本発明の含フッ素共重合体組成物から得られる成形体は、耐熱性及び耐ストレスクラック性に優れており、例えば、本発明の含フッ素重合体組成物を電線被覆材として用いる場合は、被覆層の薄肉化が可能となる。
 本発明の含フッ素共重合体組成物は、エチレン/テトラフルオロエチレン共重合体(ETFE)と、酸化銅とを含有する。
 ETFEは、エチレン(以下、「E」と称する場合がある)に基づく繰り返し単位(A)と、テトラフルオロエチレン(以下、「TFE」と称する場合がある)に基づく繰り返し単位(B)と、E及びTFEと共重合可能なその他のモノマー(ただし、E及びTFEを除く)に基づく繰り返し単位(C)とを含有する。
 Eに基づく繰り返し単位(A)とTFEに基づく繰り返し単位(B)とのモル比(E/TFE)は、38/62~44/56であり、好ましくは39/61~42/58であり、最も好ましくは、40/60~42/58である。Eに基づく繰り返し単位(A)の比率がこの範囲より大きいと、含フッ素共重合体組成物の成形体(以下、「成形体」と称する場合がある。)の耐熱性、耐候性、耐薬品性などが低下する場合がある。Eに基づく繰り返し単位(A)の比率がこの範囲より小さいと、ETFEの融点が低下したり、成形体の機械的強度が低下する。上記モル比(E/TFE)は、重合によってETFEを製造する際における初期仕込みのEとTFEの比率で制御が可能である。すなわち、TFEの初期仕込み量を、Eの初期仕込み量よりも多くすることにより、TFEに基づく繰り返し単位(B)の割合を大きくすることができる。また、その他のモノマーは初期に一括添加してもよく、重合中に連続添加してもよい。
 繰り返し単位(C)のその他のモノマーとしては、例えば、以下の(1)~(7)等が挙げられる。その他のモノマーは1種又は2種以上を用いることができる。
 (1)一般式CH=CX(CFY(式中、X及びYはそれぞれ独立に、水素原子又はフッ素原子であり、nは1~10の整数である。)で表される化合物。
 (2)プロピレン、ブテン、イソブチレン等のオレフィン(ただし、Eを除く。)。
 (3)ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)等の不飽和基に水素原子を有しないフルオロオレフィン(ただし、TFEを除く)。
 (4)フッ化ビニリデン(VDF)、フッ化ビニル(VF)、トリフルオロエチレン、ヘキサフルオロイソブチレン(HFIB)等の不飽和基に水素原子を有するフルオロオレフィン。
 (5)ペルフルオロ(メチルビニルエーテル)(PMVE)、ペルフルオロ(エチルビニルエーテル)(PEVE)、ペルフルオロ(プロピルビニルエーテル)(PPVE)、ペルフルオロ(ブチルビニルエーテル)(PBVE)等のペルフルオロ(アルキルビニルエーテル)(PAVE)。
 (6)CF=CFOCFCF=CF、CF=CFO(CFCF=CF等の不飽和結合を2個有するペルフルオロビニルエーテル類。
 (7)ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)(PDD)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等の脂肪族環構造を有する含フッ素モノマー類。
 なかでも、その他のモノマーとしては、CH=CX(CFYで表される化合物(以下、「FAE」と称する。)が好ましい。式中のXは水素原子が好ましい。式中のYはフッ素原子が好ましい。式中のnは2~8が好ましく、2~6がより好ましく、2,4,又は6が特に好ましい。nが2未満であると成形体の耐熱性や耐ストレスクラックが低下する傾向にある。式中のnが10を超えると重合反応性が不十分になる場合がある。なかでも、nが2~8の範囲にあるとFAEの重合反応性が良好である。更には、耐熱性及び耐ストレスクラック性に優れた成形体が得られ易くなる。FAEは1種又は2種以上を用いることができる。
 FAEの好ましい具体例としては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFF、CH=CF(CFH等が挙げられる。
 ETFEは、その他のモノマーに基づく繰り返し単位(C)を、当該ETFEの全繰返し単位中に、0.1~2.6モル%含有する。その他のモノマーに基づく繰り返し単位(C)の含有量は、0.2~2.5モル%が好ましく、0.5~2.3モル%がより好ましい。繰り返し単位(C)の含有量が、0.1モル%未満であると、成形体の耐ストレスクラック性が低下する。2.5モル%を超えると、ETFEの融点が低下し、成形体の耐熱性が低下する。
 繰り返し単位(C)の含有量は、ETFEを重合により製造する際に、その他のモノマーの添加量を調整することで制御できる。
 ETFEの297℃における容量流速は、15~150g/10分であり、好ましくは20~100g/10分であり、より好ましくは20~70g/10分であり、最も好ましくは、20~60g/10分である。容量流速は、分子量の尺度でもあり、小さいと分子量が高く、大きいと分子量が低いことを示す。容量流速が15g/10分未満であると、高速成形に不向きであり、150g/10分を超えると、成形体の耐ストレスクラック性が低下する。上記の範囲にあると高速成形性に優れ、耐ストレスクラック性にも優れる。なお、本発明において、容量流速は、後述する実施例に示す方法で測定される。
 ETFEの容量流速は、ETFEの分子量を調整することにより制御できる。
 例えば、ETFEの重量平均分子量を、約300,000~約600,000とすることにより、ETFEの297℃における容量流速を15~150g/10分とすることができる。
 ETFEの融点は、235~275℃が好ましく、237~270℃がより好ましく、240~260℃が最も好ましい。融点が235℃未満であると、耐熱性が劣り、UL規格1581号の232℃耐熱試験の際に成形体がメルトダウンし、適合しない。融点が275℃を超えると、成形体の耐ストレスクラック性が低下する場合がある。ETFEの融点を高めるには、(E/TFE)のモル比を50/50に近づけ、なおかつ、その他のモノマーの含有量を減らすことにより結晶性を高めればよいと考えられる。また、融点を低くするには、TFEの含有量を多くするなど(E/TFE)のモル比を50/50から遠ざけ、かつ、その他のモノマーの含有量を増やすことにより結晶性を低下させればよいと考えられる。
 本発明で用いるETFEの製造方法は、特に制限はなく、一般に用いられているラジカル重合開始剤を用いる重合方法が用いられる。重合方法としては、塊状重合、溶液重合、懸濁重合、乳化重合等が挙げられる。特に、溶液重合が好ましい。
 重合に用いるラジカル重合開始剤としては、その半減期が10時間である温度が0~100℃であるラジカル重合開始剤が好ましく、20~90℃であるラジカル重合開始剤がより好ましい。
 ラジカル重合開始剤の具体例としては、アゾビスイソブチロニトリル等のアゾ化合物;ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネート;tert-ブチルパーオキシピバレート、tert-ブチルパーオキシイソブチレート、tert-ブチルパーオキシアセテート等のパーオキシエステル;イソブチリルパーオキシド、オクタノイルパーオキシド、ベンゾイルパーオキシド、ラウロイルパーオキシド等の非フッ素系ジアシルパーオキシド;(Z(CFCOO)(ここで、Zは水素原子、フッ素原子又は塩素原子であり、pは1~10の整数である。)等の含フッ素ジアシルパーオキシド;パーフルオロtert-ブチルパーオキシド;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物等が挙げられる。
 ETFEを溶液重合にて製造する場合、重合媒体としては、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒等が挙げられる。
 重合媒体の具体例としては、n-ペルフルオロヘキサン、n-ペルフルオロヘプタン、ペルフルオロシクロブタン、ペルフルオロシクロヘキサン、ペルフルオロベンゼン等のペルフルオロカーボン類;1,1,2,2-テトラフルオロシクロブタン、CFCFHCFCFCF、CF(CFH、CFCFCFHCFCF、CFCFHCFHCFCF、CFHCFHCFCFCF、CF(CFH、CFCH(CF)CFCFCF、CFCF(CF)CFHCFCF、CFCF(CF)CFHCFHCF、CFCH(CF)CFHCFCF、CFCFCHCH、CF(CFCHCH等のハイドロフルオロカーボン類;CFCHOCFCFH、CF(CF)CFCFOCH、CF(CFOCH等のハイドロフルオロエーテル類等が挙げられる。中でも、CF(CFH、CFCHOCFCFHがより好ましく、CF(CFHが最も好ましい。
 重合条件は、特に限定されない。重合温度は0~100℃が好ましく、20~90℃がより好ましい。重合圧力は0.1~10MPaが好ましく、0.5~3MPaがより好ましい。重合時間は1~30時間が好ましい。
 本発明において、ETFEの分子量の調整方法、すなわち、ETFEの容量流速の調整方法は、特に制限はない。例えば、連鎖移動剤の添加、重合圧の制御など重合時に分子量を調整する方法、重合により得られたETFEを熱や放射線といったエネルギーを加えることにより分子を切断し、分子量を調整する方法、重合して得られたETFEの分子鎖をラジカルにより化学的に切断し、分子量を調整する方法などがある。特に、連鎖移動剤を使用して重合時に分子量を制御する方法が好ましい。
 連鎖移動剤としては、メタノール、エタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、2,2,3,3,3-ペンタフルオロプロパノール等のアルコール類;1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,1-ジクロロ-1-フルオロエタン等のフッ化塩化炭化水素;n-ペンタン、n-ヘキサン、n-ヘプタン、シクロヘキサン等の炭化水素類;CF等のハイドロフルオロカーボン類;アセトン等のケトン類;メチルメルカプタン等のメルカプタン類;酢酸メチル、酢酸エチル等のエステル類;ジエチルエーテル、メチルエチルエーテル等のエーテル類等が挙げられる。連鎖移動剤の添加量は、通常重合媒体に対して、0.01~100質量%程度である。連鎖移動剤の添加量を調節することにより、得られるETFEの溶融粘度(分子量)を調節することができる。すなわち、連鎖移動剤の添加量を高くするほど低分子量のETFEが得られる。
 本発明の含フッ素共重合体組成物は、酸化銅を含有する。酸化銅としては、湿度の高い空気中でも安定性に優れるという理由から酸化第2銅が好ましい。酸化銅の含有量は、ETFEに対して0.2~10ppmである。好ましくは0.3~7ppmであり、より好ましくは0.3~5ppmであり、最も好ましくは0.5~5ppmである。酸化銅の含有量が0.2ppm未満であったり、10ppmを超えると、成形体の耐熱性が低下する。
 酸化銅の平均粒径は、0.1~10μmが好ましく、0.5~5μmがより好ましい。0.1μm未満であると、ETFEへの分散性が低下し、成形体の引張強伸度などの物性の低下を招くおそれがある。10μmを超えると、成形体の耐熱性改良の効果が低下するおそれがある。なお、本発明において、酸化銅の平均粒径は、レーザー回折式粒度分布測定法で測定した値のことである。
 酸化銅のBET比表面積は、5~30m/gが好ましく、10~20m/gがより好ましい。5m/g未満であると、成形体の耐熱性改良の効果が低下するおそれがある。30m/gを超えると、酸化銅が凝集しETFEへの分散性が低下し、成形体の引張強伸度などの物性の低下を招くおそれがある。
 本発明の含フッ素共重合体組成物は、種々の特性を発現させるため他の成分を含有してもよい。他の成分としては、カーボンブラック、酸化チタン、銅フタロシアニンブルー、ぺリレンレッド、酸化鉄、黄鉛などの顔料・染料、ポリテトラフルオロエチレンルブリカント、シリコーンオイルなどの摺動性付与剤、カーボンブラック、カーボンナノチューブ、グラファイト、酸化第2スズ、イオン性液体などの導電性付与物質、カーボンファイバー、ガラス繊維、アラミド繊維、チタン酸カリウィスカー、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカーなどの繊維強化剤、アルミナ、酸化マグネシウム、グラファイト、などの熱伝導性付与剤、タルク、コークス、マイカ、ガラスビーズなどのフィラー、フッ素ゴム、エチレン-プロピレン-ジエンゴム(EPDM)、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリサルフォン、ポリエーテルサルフォン、液晶ポリマー、ポリアミド、半芳香族ポリアミド、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)などの高分子材料、アミノシラン、フェニルシランなどの改質剤、結晶核剤発泡剤、発泡核剤、トリアリルイソシアヌレートなどの架橋剤、酸化防止剤、光安定剤、紫外線吸収剤などである。その他の成分の含有量は、付与する特性に応じて適宜選択できる。
 本発明の含フッ素共重合体組成物の297℃における容量流速は、15~150g/10分であり、好ましくは20~100g/10分であり、より好ましくは20~70g/10分であり、最も好ましくは、20~60g/10分である。容量流速が15g/10分未満であると、高速成形に適さず、150g/10分を超えると、成形体の耐ストレスクラック性が低下する。この範囲にあると高速成形性に優れ、耐ストレスクラック性にも優れる。
 含フッ素共重合体組成物が、本発明の範囲の微量の銅化合物のみを含有する場合には、含フッ素共重合体組成物の容量流速は、ETFEの容量流速と同じ値を示す。含フッ素共重合体組成物の容量流速を調整する方法としては、重合によりETFEの分子量を調整してETFEの容量流速を調整すること、容量流速のことなるETFEを混合・混練すること、含フッ素共重合体組成物をペレット化する際、熱により分子鎖を切断して含フッ素共重合物の容量流速を調整すること等が挙げられる。
 本発明の含フッ素共重合体組成物は、射出成形、押出成形、ブロー成形、プレス成形、回転成形、静電塗装等の従来公知の成形方法により成形加工して、含フッ素共重合体組成物の成形体を製造できる。
 本発明の含フッ素共重合体組成物は、高温時における流動性が良好であるので、高速成形による成形加工性に優れる。特に、射出成形の場合は、溶融流動性が良好なため、薄肉で複雑な形状に成形することが可能である。
 また、本発明の含フッ素共重合体組成物を成形して得られる含フッ素共重合体組成物の成形体は、耐熱性及び耐ストレスクラック性に優れるので、(1)ロボット、電動機、発電機、変圧器等の電気機械、家庭用電気機器の電線被覆材、(2)電話、無線機等の通信用伝送機器の電線被覆材、(3)コンピュータ・データ通信機器・端末機器等の電子機器の電線被覆材、(4)鉄道車両用電線被覆材、(5)自動車用電線被覆材、(6)航空機用電線被覆材、(7)船舶用電線被覆材、(8)ビル・工場幹線、発電所、石油化学・製鉄プラント等のシステム構成用電線被覆材等、各種機器類の電線被覆材の用途に好適に用いることができる。
 さらに、本発明の含フッ素共重合体組成物を電線被覆材用途に用いると、被覆層の薄肉化が可能であり、各種機器類をより小型化、薄型にできる。
 また、電線被覆材以外の用途として、例えば、フィルム、モノフィラメント、インサート成形(射出成形)等に好適に用いることができる。
 本発明を実施例と比較例を用いて詳細に説明するが、本発明はこれらに限定して解釈されない。
 [ETFEの共重合組成]
 溶融NMR分析及びフッ素含有量分析でETFEの共重合組成を求めた。
 [ETFEの融点]
 示差走査熱量計(セイコーインスツルメンツ社製DSC-220CU)を用い、試料約5mgを100℃から300℃まで、10℃/分で昇温してETFEの融点を求めた。
 [容量流速(g/10分)]
 テクノセブン社製メルトフローテスタを用いて、温度297℃、荷重5kg下に直径2.1mm、長さ8mmのオリフィス中にETFE又は含フッ素共重合体組成物を押出すとき、ETFE又は含フッ素共重合体組成物の押出し速度を容量流速として求めた。
 [成形体の引張り試験(MPa)]
 含フッ素共重合体組成物を300℃でプレスし、1mm厚みのシートを作製した。これをASTM D TypeVのダンベルで打ち抜き成形体試料を作製した。この成形体試料を引張り評点間7.62mm、室温で、引張り速度200mm/分で、引張り試験を実施した。5個の成形体試料について引張り試験を実施し、得られた測定値の平均値を求めた。
 [耐熱性評価]
 前記成形体試料を232℃に保持したギヤオーブン中に60日間保持した後に、室温で引張り試験を実施し、引張り伸びを測定した。伸びは200%以上であれば耐熱性が良好であると判断できる。
 [耐ストレスクラック性評価]
 30mmの押出し機にて1.8mmの芯線(スズメッキ銅撚線)に被覆厚0.5mmで含フッ素共重合体組成物を被覆した。条件は以下の通りである。
 成形温度320℃、DDR(Draw-Down Ratio)16、引き取り速度10m/分。
 上記のように含フッ素共重合体組成物で被覆した電線を5℃刻みの所定温度で96時間アニール処理した。アニール処理後、電線を電線自体に8巻き以上まきつけ(自己径巻きつけ)、成形体試料を作製した。次に、この成形体試料をギヤオーブンで200℃、1時間暴露し、クラックの有無を確認した。サンプル数は5個とした。5個すべての成形体試料にクラックが発生する最低アニール温度(T1)と、5個すべての成形体試料にクラックが発生しない最高アニール温度(T2)を求め、下記の式に代入してストレスクラック温度(Tb)を求めた。ストレスクラック温度とは、上記の実験で求めた、成形体試料の50%が割れるアニール温度である。ストレスクラック温度が高いほど、耐ストレスクラック性が高いことになる。ストレスクラック温度は195℃以上が好ましい。
 Tb=T1-ΔT(S/100-1/2)、
 上記式において、
  Tb:ストレスクラック温度、
  T1:全成形体試料にクラックが発生する最低アニール温度、
  ΔT:アニール温度の間隔(5℃)、
  S:全成形体試料にクラックが発生しない最高アニール温度(T2)から全成形体試料にクラックが発生する最低アニール温度(T1)までの各温度におけるクラックの発生確率(50%発生の時は、0.5)の総和。
 [酸化銅の平均粒径及びBET比表面積の測定]
 酸化銅の平均粒径は、Sympatec社製レーザー回折式粒度分布測定装置 HELOS-RODOSを用いて測定した。
 また、酸化銅のBET比表面積は、CarloErba社製のSORPTY-1750を用い、窒素ガス吸着によるBET法により測定した。
 (実施例1)
 内容積が94リットルの撹拌機付き重合槽を脱気して、1-ヒドロトリデカフルオロヘキサンの63.1kg、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(商品名「AK225cb」旭硝子社製、以下、AK225cbという)の42.1kg、及びCH=CHCFCFCFCF(以下、PFBEという)の0.7kgを仕込み、TFEの13.9kg、及びEの0.5kgを圧入し、重合槽内を66℃に昇温し、重合開始剤溶液としてターシャリーブチルパーオキシピバレート(以下、PBPVという)の1質量%のAK225cb溶液の460mLを仕込み、重合を開始させた。
 重合中圧力が一定になるようにTFE/E=60/40のモル比のモノマー混合ガスを連続的に仕込んだ。また、モノマー混合ガスの仕込みに合わせて、TFEとEの合計モル数に対して2.0モル%に相当する量のPFBEを連続的に仕込んだ。重合開始6.0時間後、モノマー混合ガスの7.4kgを仕込んだ時点で、重合槽内温を室温まで降温するとともに重合槽の圧力を常圧までパージした。
 得られたETFE1のスラリを、水の77kgを仕込んだ220L(リットル)の造粒槽に投入し、次いで撹拌しながら105℃まで昇温して溶媒を留出除去しながら造粒した。得られた造粒物を150℃で5時間乾燥して、ETFE1の造粒物1の7.3kgを得た。ETFE1の共重合組成は、TFEに基づく繰り返し単位/Eに基づく繰り返し単位/PFBEに基づく繰り返し単位のモル比が57.6/40.3/2.1であった。ETFEの融点は244℃で、容量流速(メルトフローレート)は27g/10分であった。
 得られた造粒物1に対し、酸化第2銅(平均粒径0.8μm、BET比表面積12m/g)を0.5ppm添加し、30mm押出機にて、シリンダー温度260~280℃、ダイス温度300℃、スクリュ回転数30rpmの条件で溶融押出しを行い、含フッ素共重合体組成物1のペレット1を作製した。ペレット1の容量流速は、27g/10分であった。得られたペレット1を300℃でプレス成形して、1mm厚のシート1(含フッ素共重合体組成物1の成形体)を成形した。
 シート1の初期の引張り伸びは535%であった。232℃、60日の耐熱試験後の引張り伸びは399%であった。またストレスクラック温度は198.5℃であった。
 (実施例2)
 実施例1において、造粒物1に対し酸化第2銅を5ppm添加した以外は、実施例1と同様にして溶融押出しを行い、含フッ素共重合体組成物2のペレット2を作製した。ペレット2の容量流速は、27g/10分であった。得られたペレット2を300℃でプレス成形して1mm厚のシート2(含フッ素共重合体組成物2の成形体)を成形した。
 シート2の初期の引張り伸びは540%であった。232℃、60日の耐熱試験後の引張り伸びは307%であった。またストレスクラック温度は、198.5℃であった。
 (実施例3)
 実施例1と同様な方法により、TFEに基づく繰り返し単位/Eに基づく繰り返し単位/PFEEに基づく繰り返し単位のモル比が59.1/39.1/1.8で、融点が245℃、容量流速(メルトフローレート)が28g/10分であるETFE2の造粒物2を得た。
 得られた造粒物2に対し、酸化第2銅(平均粒径0.8μm、BET比表面積12m/g)を1.5ppm添加し、30mm押出機にて、シリンダー温度260~280℃、ダイス温度300℃、スクリュ回転数30rpmの条件で溶融押出しを行い、含フッ素共重合体組成物3のペレット3を作製した。ペレット3の容量流速は、28g/10分であった。得られたペレット3を300℃でプレス成形して、1mm厚のシート3(含フッ素共重合体組成物3の成形体)を成形した。
 シート3の初期の引張り伸びは480%であった。232℃、60日の耐熱試験後の引張り伸びは385%であった。またストレスクラック温度は、197.5℃であった。
 (比較例1)
 実施例1において、造粒物1に対し酸化第2銅の15ppmを添加した以外は、実施例1と同様にして溶融押出しを行い、含フッ素共重合体組成物4のペレット4を作製した。ペレット4の容量流速は、27g/10分であった。得られたペレット4を300℃でプレス成形して1mm厚のシート4(含フッ素共重合体組成物4の成形体)を成形した。
 シート4の初期の引張り伸びは530%であった。232℃、60日の耐熱試験後の引張り伸びは150%であった。またストレスクラック温度は197.5℃であった。
 (比較例2)
 実施例1において、酸化第2銅を添加しなかった以外は、実施例1と同様にして造粒物1を溶融押出し、ペレット5を作製した。得られたペレット5を300℃でプレス成形して1mm厚のシート5(ETFE1の成形体)を成形した。
 シート5の初期の引張り伸びは530%であった。232℃、60日の耐熱試験後の引張り伸びは165%であった。またストレスクラック温度は、194.5℃であった。
 (比較例3)
 内容積が94リットルの撹拌機付き重合槽を脱気して、1-ヒドロトリデカフルオロヘキサンの71.0kg、AK225cbの35.1kg、及びPFBEの0.6kgを仕込み、TFEの13.2kg、及びEの0.8kgを圧入し、重合槽内を66℃に昇温し、重合開始剤溶液としてPBPVの1質量%AK225cb溶液430mLを圧入し、重合を開始させた。
 重合中圧力が一定になるようにTFE/E=54/46のモル比のモノマー混合ガスを連続的に仕込んだ。また、モノマー混合ガスの仕込みに合わせて、TFEとEの合計モル数に対して1.5モル%に相当する量のPFBEを連続的に仕込んだ。重合開始7.0時間後、モノマー混合ガスの7.1kgを仕込んだ時点で、重合槽内温を室温まで降温するとともに重合槽の圧力を常圧までパージした。得られたETFE3のスラリを、水の77kgを仕込んだ220Lの造粒槽に投入し、次いで撹拌しながら105℃まで昇温して溶媒を留出除去しながら造粒した。得られた造粒物を150℃で5時間乾燥することにより、ETFE3の造粒物3の7.0kgが得られた。
 ETFE3の共重合組成は、TFEに基づく繰り返し単位/Eに基づく繰り返し単位/PFBEに基づく繰り返し単位のモル比が53.1/45.3/1.6であり、融点が261℃、容量流速(メルトフローレート)が30g/10分であった。
 得られたETFE3の造粒物3を、比較例2と同様にして溶融押出しを行い、ペレット6を作製した。得られたペレット6を300℃でプレス成形して1mm厚のシート6(ETFE3の成形体)を成形した。
 シート6の初期の引張り伸びは510%であった。232℃、60日の耐熱試験後の引張り伸びは60%であった。またストレスクラック温度は、181.5℃であった。
 (比較例4)
 内容積が94リットルの撹拌機付き重合槽を脱気して、1-ヒドロトリデカフルオロヘキサンの78.1kg、AK225cbの29.0kg、及びPFBEの0.6kgを仕込む以外は比較例3と同様にしてETFE4の造粒物4の7.2kgを得た。
 ETFE4の共重合組成は、TFEに基づく繰り返し単位/Eに基づく繰り返し単位/PFBEに基づく繰り返し単位のモル比で53.2/45.3/1.5であり、融点が262℃、容量流速(メルトフローレート)が12g/10分であった。
 得られたETFE4の造粒物を、比較例2と同様にして溶融押出しを行い、ペレット7を作製した。得られたペレット7を300℃でプレス成形して1mm厚のシート7(ETFE4の成形体)を成形した。
 シート7の初期の引張り伸びは500%であった。232℃で、60日の耐熱試験後の引張り伸びは60%であった。またストレスクラック温度は、192.5℃であった。
 上記結果を表1及び2にまとめて記す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記結果より、実施例1~3は、含フッ素共重合体組成物の容量流速が高く、流動性に優れ、高速成形性に優れるものであった。また、成形体(電線)のストレスクラック温度は、いずれも195℃以上であり、耐ストレスクラック性に優れるものであった。更には、いずれの成形体(シート)においても、232℃に保持したギヤオーブン中に60日間保持した後の引張り伸びが200%以上であり、耐熱性に優れていた。
 これに対し、酸化銅をETFEに対し10ppm超添加した比較例1、酸化銅を添加しなかった比較例2~4は、成形体の耐熱性の劣るものであった。また、比較例3及び4に示されるように、ETFEの共重合組成において、Eに基づく繰り返し単位(A)とTFEに基づく繰り返し単位(B)とのモル比(E/TFE)が38/62~44/56の範囲外であると、耐ストレスクラック性が低かった。同等の耐ストレスクラック性を得るためには、ETFEの分子量を増加させて容量流速を低下させる必要があり、耐ストレスクラック性と成形加工性とを両立させることができなかった。
 本発明の含フッ素共重合体組成物は、高速成形による成形加工性に優れる。また、得られる含フッ素共重合体組成物の成形体は、耐ストレスクラック性に優れ、成形加工性に優れる。そのため、(1)ロボット、電動機、発電機、変圧器等の電気機械、家庭用電気機器の電線被覆材、(2)電話、無線機等の通信用伝送機器の電線被覆材、(3)コンピュータ・データ通信機器・端末機器等の電子機器の電線被覆材、(4)鉄道車両用電線被覆材、(5)自動車用電線被覆材、(6)航空機用電線被覆材、(7)船舶用電線被覆材、(8)ビル・工場幹線、発電所、石油化学・製鉄プラント等のシステム構成用電線被覆材等、各種機器類の電線被覆材の用途に好適に用いることができる。
 なお、2011年7月26日に出願された日本特許出願2011-162683号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (9)

  1.  エチレン/テトラフルオロエチレン共重合体と、酸化銅とを含有する含フッ素共重合体組成物であって、
     前記エチレン/テトラフルオロエチレン共重合体は、エチレンに基づく繰り返し単位(A)と、テトラフルオロエチレンに基づく繰り返し単位(B)と、エチレン及びテトラフルオロエチレンと共重合可能な、エチレン及びテトラフルオロエチレンを除くその他のモノマーに基づく繰り返し単位(C)とを含有し、エチレンに基づく繰り返し単位(A)とテトラフルオロエチレンに基づく繰り返し単位(B)とのモル比が38/62~44/56であり、その他のモノマーに基づく繰り返し単位(C)を前記エチレン/テトラフルオロエチレン共重合体の全繰返し単位中に0.1~2.6モル%含有し、
     前記酸化銅の含有量が、前記エチレン/テトラフルオロエチレン共重合体に対して0.2~10ppmであり、
     前記含フッ素共重合体組成物の297℃における容量流速が15~150g/10分であることを特徴とする含フッ素共重合体組成物。
  2.  前記エチレン/テトラフルオロエチレン共重合体は、エチレンに基づく繰り返し単位(A)とテトラフルオロエチレンに基づく繰り返し単位(B)とのモル比が39/61~42/58である請求項1に記載の含フッ素共重合体組成物。
  3.  前記エチレン/テトラフルオロエチレン共重合体の融点が、235~275℃である請求項1又は2に記載の含フッ素共重合体組成物。
  4.  前記酸化銅の平均粒径が0.1~10μmであり、BET表面積が5~30m/gである請求項1~3のいずれか1項に記載の含フッ素共重合体組成物。
  5.  前記酸化銅が酸化第2銅である請求項1~4のいずれか1項に記載の含フッ素共重合体組成物。
  6.  前記酸化銅の含有量が、前記エチレン/テトラフルオロエチレン共重合体に対して0.5~5ppmである請求項1~5のいずれか1項に記載の含フッ素共重合体組成物。
  7.  前記その他のモノマーが、CH=CX(CFY(式中、X及びYはそれぞれ独立に、水素原子又はフッ素原子であり、nは1~10の整数である。)で表わされる化合物である、請求項1~6のいずれか1項に記載の含フッ素共重合体組成物。
  8.  前記その他のモノマーが、CH=CH(CFF(ここで、nは2~8の整数である。)で表わされる化合物である、請求項7に記載の含フッ素共重合体組成物。
  9.  前記含フッ素共重合体組成物の容量流速が20~60g/10分である請求項1~8のいずれか1項に記載の含フッ素共重合体組成物。
PCT/JP2012/068390 2011-07-26 2012-07-19 含フッ素共重合体組成物 WO2013015202A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013525698A JP5958467B2 (ja) 2011-07-26 2012-07-19 含フッ素共重合体組成物
CN201280036844.0A CN103732681A (zh) 2011-07-26 2012-07-19 含氟共聚物组合物
EP12816984.4A EP2738218B1 (en) 2011-07-26 2012-07-19 Fluorinated copolymer composition
US14/164,413 US9328214B2 (en) 2011-07-26 2014-01-27 Fluorinated copolymer composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011162683 2011-07-26
JP2011-162683 2011-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/164,413 Continuation US9328214B2 (en) 2011-07-26 2014-01-27 Fluorinated copolymer composition

Publications (1)

Publication Number Publication Date
WO2013015202A1 true WO2013015202A1 (ja) 2013-01-31

Family

ID=47601049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068390 WO2013015202A1 (ja) 2011-07-26 2012-07-19 含フッ素共重合体組成物

Country Status (5)

Country Link
US (1) US9328214B2 (ja)
EP (1) EP2738218B1 (ja)
JP (1) JP5958467B2 (ja)
CN (1) CN103732681A (ja)
WO (1) WO2013015202A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140135438A1 (en) * 2011-07-26 2014-05-15 Asahi Glass Company, Limited Fluorinated copolymer composition
WO2017018354A1 (ja) * 2015-07-28 2017-02-02 旭硝子株式会社 含フッ素共重合体組成物および成形体
WO2017018353A1 (ja) * 2015-07-28 2017-02-02 旭硝子株式会社 共重合体、その製造方法、電線被覆用樹脂材料および電線
WO2017082417A1 (ja) * 2015-11-13 2017-05-18 旭硝子株式会社 共重合体およびこれを含む組成物
JP2019025742A (ja) * 2017-07-28 2019-02-21 Agc株式会社 フッ素樹脂ペレットおよびその製造方法、ならびに電線の製造方法
WO2019093433A1 (ja) 2017-11-10 2019-05-16 ダイキン工業株式会社 エチレン/テトラフルオロエチレン共重合体
JP2019529636A (ja) * 2016-09-16 2019-10-17 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. 着色化合物を含むフルオロポリマー化合物
WO2022172953A1 (ja) 2021-02-12 2022-08-18 Agc株式会社 共重合体、組成物、成形体および被覆電線

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104151754B (zh) * 2014-08-15 2016-05-25 上海三爱富新材料股份有限公司 高流动性乙烯-四氟乙烯共聚物组合物及其制备方法
JP6633834B2 (ja) * 2015-04-02 2020-01-22 株式会社イデアルスター 圧電膜、およびその製造方法
US9728298B2 (en) 2015-06-26 2017-08-08 Daikin America, Inc. Radiation crosslinked fluoropolymer compositions containing low level of extractable fluorides
CN109385090A (zh) * 2018-11-20 2019-02-26 浙江歌瑞新材料有限公司 一种涂油辊和集束轮的配方及其制造工艺
WO2021111819A1 (ja) * 2019-12-06 2021-06-10 Nok株式会社 塗布液およびそれを用いたフッ素ゴム金属積層板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225850A (en) * 1975-08-25 1977-02-26 Asahi Glass Co Ltd Ethylene-tetrafluoroethylene copolymer composition with improved heat stability
JPS5433583A (en) * 1977-08-19 1979-03-12 Asahi Glass Co Ltd Ethylene-tetrafluoroethylene copolymer and its preparation
JPH05271508A (ja) * 1992-03-25 1993-10-19 Asahi Glass Co Ltd 回転成形用フッ素樹脂粉末
JP2000212365A (ja) 1999-01-28 2000-08-02 Asahi Glass Co Ltd 含フッ素共重合体組成物
JP2002348302A (ja) 2001-05-23 2002-12-04 Asahi Glass Co Ltd エチレン−テトラフルオロエチレン系共重合体の製造方法
JP2006206637A (ja) * 2005-01-25 2006-08-10 Asahi Glass Co Ltd エチレン/テトラフルオロエチレン系共重合体粉体及びそれを塗装してなる物品
WO2010041542A1 (ja) * 2008-10-09 2010-04-15 旭硝子株式会社 暗色系フッ素樹脂フィルムおよび太陽電池モジュール用バックシート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019324B2 (ja) 1975-10-07 1985-05-15 旭硝子株式会社 新規含フツ素エラストマ−の製法
WO2010111794A1 (de) * 2009-04-03 2010-10-07 Soutec Soudronic Ag Verfahren und vorrichtung zur herstellung von rohrförmigen konischen metallteilen
EP2423237B1 (en) * 2009-04-21 2013-12-11 Daikin Industries, Ltd. Ethylene/tetrafluoroethylene copolymer, electrical wire, and fluorine resin powder for rotational molding
JP5609872B2 (ja) * 2009-07-13 2014-10-22 旭硝子株式会社 エチレン/テトラフルオロエチレン系共重合体
JP2011225677A (ja) * 2010-04-16 2011-11-10 Asahi Glass Co Ltd 含フッ素共重合体粉体の製造方法および多孔性含フッ素共重合体粉体
WO2013015202A1 (ja) * 2011-07-26 2013-01-31 旭硝子株式会社 含フッ素共重合体組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225850A (en) * 1975-08-25 1977-02-26 Asahi Glass Co Ltd Ethylene-tetrafluoroethylene copolymer composition with improved heat stability
JPS5244895B2 (ja) 1975-08-25 1977-11-11
JPS5433583A (en) * 1977-08-19 1979-03-12 Asahi Glass Co Ltd Ethylene-tetrafluoroethylene copolymer and its preparation
JPH05271508A (ja) * 1992-03-25 1993-10-19 Asahi Glass Co Ltd 回転成形用フッ素樹脂粉末
JP2000212365A (ja) 1999-01-28 2000-08-02 Asahi Glass Co Ltd 含フッ素共重合体組成物
JP2002348302A (ja) 2001-05-23 2002-12-04 Asahi Glass Co Ltd エチレン−テトラフルオロエチレン系共重合体の製造方法
JP2006206637A (ja) * 2005-01-25 2006-08-10 Asahi Glass Co Ltd エチレン/テトラフルオロエチレン系共重合体粉体及びそれを塗装してなる物品
WO2010041542A1 (ja) * 2008-10-09 2010-04-15 旭硝子株式会社 暗色系フッ素樹脂フィルムおよび太陽電池モジュール用バックシート

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Fluororesin Handbook", 1990, NIKKAN KOGYO SHIMBUM LTD., pages: 489 - 499
See also references of EP2738218A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9328214B2 (en) * 2011-07-26 2016-05-03 Asahi Glass Company, Limited Fluorinated copolymer composition
US20140135438A1 (en) * 2011-07-26 2014-05-15 Asahi Glass Company, Limited Fluorinated copolymer composition
WO2017018354A1 (ja) * 2015-07-28 2017-02-02 旭硝子株式会社 含フッ素共重合体組成物および成形体
WO2017018353A1 (ja) * 2015-07-28 2017-02-02 旭硝子株式会社 共重合体、その製造方法、電線被覆用樹脂材料および電線
JPWO2017018353A1 (ja) * 2015-07-28 2018-05-17 旭硝子株式会社 共重合体、その製造方法、電線被覆用樹脂材料および電線
US10607749B2 (en) 2015-07-28 2020-03-31 AGC Inc. Copolymer, method for its production, wire coating resin material and electric wire
US10882936B2 (en) 2015-11-13 2021-01-05 AGC Inc. Copolymer and composition containing same
WO2017082417A1 (ja) * 2015-11-13 2017-05-18 旭硝子株式会社 共重合体およびこれを含む組成物
JPWO2017082417A1 (ja) * 2015-11-13 2018-08-30 Agc株式会社 共重合体およびこれを含む組成物
JP2019529636A (ja) * 2016-09-16 2019-10-17 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. 着色化合物を含むフルオロポリマー化合物
JP2019025742A (ja) * 2017-07-28 2019-02-21 Agc株式会社 フッ素樹脂ペレットおよびその製造方法、ならびに電線の製造方法
WO2019093433A1 (ja) 2017-11-10 2019-05-16 ダイキン工業株式会社 エチレン/テトラフルオロエチレン共重合体
US11548960B2 (en) 2017-11-10 2023-01-10 Daikin Industries, Ltd. Ethylene/tetrafluoroethylene copolymer
US11905349B2 (en) 2017-11-10 2024-02-20 Daikin Industries, Ltd. Ethylene/tetrafluoroethylene copolymer
EP4394803A2 (en) 2017-11-10 2024-07-03 Daikin Industries, Ltd. Ethylene/tetrafluoroethylene copolymer
WO2022172953A1 (ja) 2021-02-12 2022-08-18 Agc株式会社 共重合体、組成物、成形体および被覆電線

Also Published As

Publication number Publication date
EP2738218A4 (en) 2015-02-18
JP5958467B2 (ja) 2016-08-02
CN103732681A (zh) 2014-04-16
EP2738218A1 (en) 2014-06-04
JPWO2013015202A1 (ja) 2015-02-23
EP2738218B1 (en) 2017-02-08
US20140135438A1 (en) 2014-05-15
US9328214B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
JP5958467B2 (ja) 含フッ素共重合体組成物
EP1842863B1 (en) Ethylene/tetrafluorethylene copolymer composition
US10347392B2 (en) Fluorinated insulated electric wire
US8470942B2 (en) Method for producing melt-moldable tetrafluoroethylene copolymer
WO2008047759A1 (fr) Copolymère contenant du fluor et article moulé de celui-ci
US8829132B2 (en) Ethylene/tetrafluoroethylene copolymer
US20090301752A1 (en) Ethylene/tetrafluoroethylene copolymer and method for its production
US11905349B2 (en) Ethylene/tetrafluoroethylene copolymer
KR20180121884A (ko) 불소 수지 조성물, 성형 재료 및 성형체
US20130041109A1 (en) Process for producing fluorinated copolymer composition and fluororesin molded product
JP5051517B2 (ja) エチレン/テトラフルオロエチレン共重合体組成物
EP3113193B1 (en) Method for manufacturing electrical wire, method for manufacturing molded article, and method for manufacturing resin material that contains modified fluororesin
JP5429008B2 (ja) 組成物、ペレット、樹脂成形品及び電線、並びに、組成物の製造方法
JP4868272B2 (ja) 耐熱電線
JP2017088815A (ja) フッ素ゴムとフッ素樹脂の相溶化剤、該相溶化剤とフッ素樹脂とフッ素ゴムを含む組成物
WO2024214812A1 (ja) 平角線及びその製造方法
JP4803476B2 (ja) 耐熱電線
WO2024112630A1 (en) Fluoroelastomer compounds
JP2010018816A (ja) 溶融成形材料及び電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12816984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525698

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012816984

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012816984

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE