WO2019093420A1 - ヒートポンプ - Google Patents

ヒートポンプ Download PDF

Info

Publication number
WO2019093420A1
WO2019093420A1 PCT/JP2018/041487 JP2018041487W WO2019093420A1 WO 2019093420 A1 WO2019093420 A1 WO 2019093420A1 JP 2018041487 W JP2018041487 W JP 2018041487W WO 2019093420 A1 WO2019093420 A1 WO 2019093420A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
refrigerant
stage compressor
flow path
low
Prior art date
Application number
PCT/JP2018/041487
Other languages
English (en)
French (fr)
Inventor
小林 隆之
洋平 葛山
中山 浩
康治 徳永
Original Assignee
三菱重工サーマルシステムズ株式会社
中部電力株式会社
関西電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社, 中部電力株式会社, 関西電力株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to CN201880072403.3A priority Critical patent/CN111316047A/zh
Priority to EP18877202.4A priority patent/EP3708924A4/en
Publication of WO2019093420A1 publication Critical patent/WO2019093420A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Definitions

  • the present invention relates to a heat pump provided with a refrigerant circuit.
  • Priority is claimed on Japanese Patent Application No. 2017-215660, filed November 8, 2017, the content of which is incorporated herein by reference.
  • a refrigeration cycle provided with a refrigerant circuit in which a refrigerant circulates by repeating compression and expansion that is, a heat pump.
  • a heat pump for example, as described in Patent Document 1, a low-stage compressor that compresses a refrigerant and a high-stage compressor that further compresses a refrigerant discharged from the low-stage compressor
  • the refrigerant may be compressed in two stages.
  • an evaporator for evaporating the refrigerant on the upstream side of the low-stage compressor.
  • the evaporator is, for example, a heat exchanger that performs heat exchange between a refrigerant and a heat medium such as water or air.
  • the refrigerant from the evaporator is introduced into the low-stage compressor and then introduced into the high-stage compressor.
  • the amount of heat exchange in the evaporator is not always constant, and may vary due to environmental factors and the like. For this reason, the temperature of the refrigerant introduced from the heat exchanger to the low-stage compressor is not constant, and the refrigerant introduced to the low-stage compressor is not in a state optimum for compression in the low-stage compressor. As a result, the heat pump as a whole may not be able to operate efficiently.
  • the present invention provides a heat pump capable of efficient operation by introducing a refrigerant in a state optimum for compression into the low-stage compressor and the high-stage compressor.
  • a heat pump comprises a low-stage compressor, a high-stage compressor connected in series downstream of the low-stage compressor, and a downstream side of the high-stage compressor , An expansion mechanism connected to the downstream side of the condenser, a first evaporator and a second evaporator connected in parallel to the downstream side of the expansion mechanism, and the first evaporator First flow path connecting between the downstream side of the lower stage compressor and the upstream side of the low stage side compressor, a first valve unit for opening and closing the first flow path, and a high stage side compressor downstream of the first evaporator A second flow path connecting the upstream side of the second flow path, a second valve unit for opening and closing the second flow path, and a downstream side of the second evaporator and an upstream side of the low-stage compressor A third flow path to be connected, a third valve portion for opening and closing the third flow path, and a fourth flow path to connect between the downstream side of the second evaporator and the upstream side of the high
  • the heat pump comprises a first evaporator and a second evaporator. That is, the heat pump has a multi-source type refrigerant circuit having a plurality of heat exchangers having different amounts of heat exchange and installation environments.
  • the amount of heat exchange fluctuates and the temperature of the refrigerant changes, so that the state of the refrigerant directed to the low-stage compressor and the high-stage compressor is the low-stage compressor and the high-stage compressor. It may not be in the optimum state for compression in the side compressor.
  • the low-stage compressor can be bypassed to introduce the refrigerant directly into the high-stage compressor. Furthermore, simultaneously with switching of the introduction path of the refrigerant from the first evaporator to the compressor, switching of the introduction path of the refrigerant from the second evaporator to the compressor is also possible.
  • the low-stage compressor can be bypassed to introduce the refrigerant directly into the high-stage compressor. Therefore, according to the state of the refrigerant which flowed out of each evaporator, the introduction path of a refrigerant can be changed to the compressor in which optimal compression is possible.
  • the first valve portion, the second valve portion, the second valve portion, and the second valve portion according to the load on the first evaporator and the second evaporator.
  • control unit By providing such a control unit, it is possible to automatically switch the refrigerant introduction path so as to introduce the refrigerant into the compressor capable of optimal compression according to the state of the refrigerant flowing out from each evaporator. it can.
  • the control unit causes the refrigerant from the first evaporator to be introduced into the low-stage compressor, and the second evaporator First state in which the refrigerant from the first stage is introduced directly into the upper stage compressor, and the refrigerant from the first evaporator is introduced directly into the upper stage compressor, and from the second evaporator Switching operation of the first valve portion, the second valve portion, the third valve portion, and the fourth valve portion so as to be switchable to the second state in which the refrigerant is introduced into the low-stage compressor You may control.
  • the refrigerant flow from the first evaporator and the refrigerant flow from the second evaporator interfere with each other by being able to switch the refrigerant flow between the first state and the second state.
  • the refrigerant can be made to flow so as to cross the flow of the refrigerant from the first evaporator and the flow of the refrigerant from the second evaporator, and the refrigerant can be introduced to the optimum compressor. Therefore, the degree of freedom in driving is enhanced and efficient driving is possible.
  • the refrigerant in a state optimum for compression can be introduced to the low-stage compressor and the high-stage compressor, and efficient operation can be performed.
  • the heat pump 1 of the embodiment of the present invention has a refrigerant circuit 2 that operates in a two-stage compression cycle.
  • the refrigerant circuit 2 includes a low-stage compressor 3, a high-stage compressor 4, a condenser 5, an expansion valve (expansion mechanism) 6, and an evaporator 10. These components are connected by a pipe 15 in this order It is done.
  • a refrigerant R such as carbon dioxide circulates through the refrigerant circuit 2.
  • the refrigerant R is not particularly limited to carbon dioxide.
  • the low pressure side compressor 3 sucks the refrigerant R and compresses the refrigerant R.
  • the high stage side compressor 4 is connected in series to the low stage side compressor 3 and compresses the refrigerant R discharged from the low stage side compressor 3 to a further high pressure.
  • the condenser 5 exchanges heat between the high-temperature and high-pressure refrigerant R discharged from the high-stage compressor 4 and the heat medium R1 such as air or water to cool and condense the refrigerant R.
  • the expansion valve 6 adiabatically expands the refrigerant R from the condenser 5 to decompress the refrigerant R.
  • a plurality of (two in the present embodiment) expansion valves 6 are provided on the upstream side (inlet side) of the evaporator 10 corresponding to a first evaporator 11 and a second evaporator 12 described later.
  • the 1st evaporator 11 and the 2nd evaporator 12 are provided in this embodiment.
  • the first evaporator 11 and the second evaporator 12 are provided in parallel.
  • the first evaporator 11 is an air heat exchanger that performs heat exchange between the refrigerant R having passed through the expansion valve 6 and, for example, air as the heat medium R2.
  • the pipe 15 between the first evaporator 11 and the upstream side (suction side) of the low-stage compressor 3 is a first flow path C1.
  • the first flow passage C1 is provided with a first valve portion 21 that opens and closes the first flow passage C1 so that the refrigerant R can or can not flow in the first flow passage C1.
  • the second flow path C2 is provided with a second valve portion 22 that opens and closes the second flow path C2 so that the refrigerant R can or can not flow in the second flow path C2.
  • the first flow path C1 is provided to branch from the second flow path C2 on the upstream side of the position where the second valve portion 22 is provided, that is, on the side closer to the first evaporator 11. .
  • the second evaporator 12 is a water heat exchanger that performs heat exchange between the refrigerant R having passed through the expansion valve 6 and, for example, water as the heat medium R3.
  • the pipe 15 between the second evaporator 12 and the upstream side (suction side) of the low-stage compressor 3 is a third flow path C3.
  • the third flow path C3 is provided with a third valve portion 23 for opening and closing the third flow path C3 so that the refrigerant R can or can not flow in the third flow path C3.
  • the first flow path C1 is connected to the third flow path C3 at a position downstream of the position where the third valve portion 23 is provided, that is, at a position near the low-stage compressor 3.
  • the pipe 15 between the second evaporator 12 and the upstream side of the high stage side compressor 4 is the fourth It is the flow path C4.
  • the fourth flow path C4 is provided with a fourth valve portion 24 which opens and closes the fourth flow path C4 so that the refrigerant R can flow or can not flow in the fourth flow path C4.
  • the fourth flow path C4 is provided to branch from the third flow path C3 on the upstream side of the position where the third valve portion 23 is provided, that is, on the side closer to the second evaporator 12 There is.
  • a control unit 30 including a micro-processing unit (MPU) or the like for opening and closing the first valve unit 21, the second valve unit 22, the third valve unit 23, and the fourth valve unit 24 is provided. ing.
  • MPU micro-processing unit
  • the control unit 30 controls the first valve unit 21, the second valve unit 22, the third valve unit 23, and the fourth valve according to the load (heat exchange amount) in the first evaporator 11 and the second evaporator 12.
  • the unit 24 is opened and closed.
  • a control method of the opening / closing operation of each valve in the control unit 30 will be described.
  • the temperature of the refrigerant R flowing out of the first evaporator 11 is T1
  • the temperature of the refrigerant R flowing out of the second evaporator 12 is T2.
  • T1 ⁇ T2 is the A mode (first state).
  • the control unit 30 closes the second valve unit 22 so that the refrigerant R from the first evaporator 11 is introduced into the lower stage compressor 3, and The valve 21 is opened. Therefore, the refrigerant R from the first evaporator 11 is compressed by the low pressure side compressor 3 and then compressed by the high pressure side compressor 4.
  • control unit 30 closes the third valve unit 23 so that the refrigerant R from the second evaporator 12 is introduced only to the high-stage compressor 4 without passing through the low-stage compressor 3 And the fourth valve portion 24 is opened. Therefore, the refrigerant R from the second evaporator 12 is compressed only by the high stage compressor 4.
  • [B mode] The case where T1> T2 is the B mode (second state).
  • the control unit 30 is configured such that the refrigerant R from the first evaporator 11 is introduced only to the high stage compressor 4 without passing through the low stage compressor 3.
  • the first valve portion 21 is closed and the second valve portion 22 is opened. Therefore, the refrigerant R from the first evaporator 11 is compressed only by the high-stage compressor 4 without passing through the low-stage compressor 3.
  • control unit 30 closes the fourth valve unit 24 so that the refrigerant R from the second evaporator 12 is introduced to the lower stage compressor 3 and opens the third valve unit 23. . Therefore, the refrigerant R from the second evaporator 12 is compressed by the low pressure side compressor 3 and then compressed by the high pressure side compressor 4.
  • the mode is the D mode.
  • the control unit 30 causes the second valve unit 22 and the second valve unit 22 to introduce the refrigerant R that has flowed out of the first evaporator 11 and the second evaporator 12 into the lower stage compressor 3.
  • the fourth valve portion 24 is closed, and the first valve portion 21 and the third valve portion 23 are opened. Accordingly, the refrigerant R from the first evaporator 11 and the refrigerant R from the second evaporator 12 are both compressed by the low-stage compressor 3 and then compressed by the high-stage compressor 4.
  • the heat pump 1 of the present embodiment described above includes the first evaporator 11 and the second evaporator 12. That is, the heat pump 1 has a multi-source type refrigerant circuit 2 having a plurality of heat exchangers having different amounts of heat exchange and installation environments, that is, a first evaporator 11 and a second evaporator 12.
  • the load fluctuates to change the temperature of the refrigerant R, whereby the state of the refrigerant R toward the low pressure side compressor 3 and the high pressure side compressor 4 is In some cases, the low-stage compressor 3 and the high-stage compressor 4 may not be in the optimum state for compression.
  • the first flow path C1, the second flow path C2, the third flow path C3, and the fourth flow path C4 are divided into the first valve portion 21, the second valve portion 22, and the third valve portion 23 by the control unit 30.
  • the fourth valve portion 24 By opening and closing with the fourth valve portion 24, not only the refrigerant R is introduced from the first evaporator 11 to the low-stage compressor 3, but the low-stage compressor 3 is bypassed directly to the high-stage side.
  • the refrigerant R can be introduced into the compressor 4.
  • the switching of the flow path of the refrigerant R from the second evaporator 12 is also possible. That is, not only the refrigerant R is introduced from the second evaporator 12 to the low stage compressor 3 but also the refrigerant R is introduced directly to the high stage compressor 4 by bypassing the low stage compressor 3. it can.
  • each evaporator 10 According to the state of the refrigerant R having flowed out from 11, 12), the introduction path of the refrigerant R may be switched to the compressor capable of optimum compression among the low-stage compressor 3 or the high-stage compressor 4. it can. Therefore, the refrigerant R in a state optimum for compression can be introduced into the low stage compressor 3 and the high stage compressor 4, and efficient operation can be performed.
  • the low-stage compressor 3 and the high-stage compressor 4 are provided by the control unit 30.
  • the introduction path of the refrigerant R can be automatically switched to a compressor capable of optimal compression.
  • the refrigerant R from the first evaporator 11 can be used as either the low stage compressor 3 or the high stage compressor 4.
  • the flow of the refrigerant R from the first evaporator 11 and the refrigerant from the second evaporator 12 do not cause the refrigerant R from the first evaporator 11 and the flows of the refrigerant R from the second evaporator 12 to interfere with each other. It is possible to cause the refrigerant R to flow so as to cross the flow of R and to flow into the low pressure side compressor 3 and the high pressure side compressor 4. Therefore, the degree of freedom in driving is enhanced.
  • control unit 30 may not necessarily be provided.
  • the first valve 21, the second valve 22, the third valve 23, and the fourth valve 24 may be manually opened and closed.
  • evaporators 10 may be provided, and the number of evaporators 10 is not limited to the above.
  • the refrigerant in a state optimum for compression can be introduced to the low-stage compressor and the high-stage compressor, and efficient operation can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

冷媒回路(2)が、第一蒸発器11の下流側と低段側圧縮機(3)の上流側との間を接続する第一流路(C1)、及び第一流路(C1)を開閉する第一弁部(21)と、第一蒸発器(11)の下流側と高段側圧縮機(4)の上流側との間を接続する第二流路(C2)、及び第二流路(C2)を開閉する第二弁部(22)と、第二蒸発器(12)の下流側と低段側圧縮機(3)の上流側との間を接続する第三流路(C3)、及び第三流路(C3)を開閉する第三弁部(23)と、第二蒸発器(12)の下流側と高段側圧縮機(4)の上流側との間を接続する第四流路(C4)、及び第四流路(C4)を開閉する第四弁部(24)と、を有している。

Description

ヒートポンプ
 本発明は、冷媒回路が設けられたヒートポンプに関する。
 本願は、2017年11月8日に出願された特願2017-215660号に基づき優先権を主張し、その内容をここに援用する。
 従来から、冷媒が圧縮と膨張を繰り返して循環する冷媒回路が設けられた冷凍サイクル、即ちヒートポンプが知られている。このようなヒートポンプでは、例えば特許文献1に記載されているように冷媒を圧縮する低段側圧縮機と、低段側圧縮機から吐出された冷媒をさらに圧縮する高段側圧縮機とによって、冷媒を二段圧縮する場合がある。
 そしてこのようなヒートポンプには、低段側圧縮機の上流側で冷媒を蒸発させる蒸発器が設けられている。蒸発器は、例えば冷媒と、水や空気等の熱媒体との間で熱交換を行なう熱交換器である。
特開2016-90102号公報
 ここで特許文献1のヒートポンプでは、蒸発器からの冷媒は低段側圧縮機へ導入され、その後に高段側圧縮機に導入されるようになっている。
 しかしながら、蒸発器での熱交換量は必ずしも一定ではなく、環境要因等で変動する可能性がある。このため熱交換器から低段側圧縮機に導入される冷媒の温度は一定ではなく、低段側圧縮機に導入される冷媒が、低段側圧縮機での圧縮に最適な状態とはならず、ヒートポンプ全体として効率のよい運転を行うことができない場合がある。
 そこで本発明は、圧縮に最適な状態の冷媒を低段側圧縮機、及び高段側圧縮機に導入し、効率の良い運転が可能なヒートポンプを提供する。
 本発明の第一の態様に係るヒートポンプは、低段側圧縮機と、前記低段側圧縮機の下流側に直列に接続された高段側圧縮機と、前記高段側圧縮機の下流側に接続された凝縮器と、前記凝縮器の下流側に接続された膨張機構と、前記膨張機構の下流側に並列に接続された第一蒸発器及び第二蒸発器と、前記第一蒸発器の下流側と低段側圧縮機の上流側との間を接続する第一流路、及び該第一流路を開閉する第一弁部と、前記第一蒸発器の下流側と高段側圧縮機の上流側との間を接続する第二流路、及び該第二流路を開閉する第二弁部と、前記第二蒸発器の下流側と低段側圧縮機の上流側との間を接続する第三流路、及び該第三流路を開閉する第三弁部と、前記第二蒸発器の下流側と高段側圧縮機の上流側との間を接続する第四流路、及び該第四流路を開閉する第四弁部と、を備えている。
 このように、ヒートポンプは第一蒸発器と第二蒸発器を備えている。即ち、ヒートポンプは、それぞれ熱交換量や設置環境の異なる複数の熱交換器を有するマルチソース型の冷媒回路を有する。
 ここで、各々の蒸発器では熱交換量が変動して冷媒の温度が変化することで、低段側圧縮機及び高段側圧縮機に向かう冷媒の状態がこれら低段側圧縮機及び高段側圧縮機での圧縮に最適な状態ではなくなってしまう場合がある。ここで第一流路、第二流路、第三流路、及び第四流路を第一弁、第二弁、第三弁、及び第四弁でそれぞれ開閉することで、第一蒸発器から低段側圧縮機へ冷媒を導入するだけでなく、低段側圧縮機をバイパスして直接に高段側圧縮機へ冷媒を導入させることができる。さらに、このような第一蒸発器から圧縮機への冷媒の導入経路の切換えと同時に、第二蒸発器から圧縮機への冷媒の導入経路の切換えも可能である。即ち、第二蒸発器から低段側圧縮機へ冷媒を導入するだけでなく、低段側圧縮機をバイパスして直接に高段側圧縮機へ冷媒を導入させることができる。
 よって、各蒸発器から流出した冷媒の状態に応じて、最適な圧縮が可能な圧縮機へ冷媒の導入経路を切換えることができる。
 本発明の第二の態様に係るヒートポンプは、上記第一の態様において、前記第一蒸発器及び前記第二蒸発器での負荷に応じて、前記第一弁部、前記第二弁部、前記第三弁部、及び前記第四弁部の開閉動作を制御する制御部をさらに備えていてもよい。
 このような制御部を備えることで、各蒸発器から流出した冷媒の状態に応じて、最適な圧縮が可能な圧縮機へ冷媒を導入するように、冷媒の導入経路を自動的に切換えることができる。
 本発明の第三の態様に係るヒートポンプは、上記第二の態様において、前記制御部は、前記第一蒸発器からの冷媒を前記低段側圧縮機に導入させ、かつ、前記第二蒸発器からの冷媒を直接に前記高段側圧縮機に導入させる第一状態と、前記第一蒸発器からの前記冷媒を直接に前記高段側圧縮機に導入させ、かつ、前記第二蒸発器からの前記冷媒を前記低段側圧縮機に導入させる第二状態とを切換え可能に、前記第一弁部、前記第二弁部、前記第三弁部、及び前記第四弁部の開閉動作を制御してもよい。
 このようなヒートポンプによると、第一状態と第二状態との間で冷媒の流れを切換えることができることで、第一蒸発器からの冷媒と第二蒸発器からの冷媒の流れが互いに干渉することなく、第一蒸発器からの冷媒の流れと第二蒸発器からの冷媒の流れとをクロスさせるようにして冷媒を流通させ、最適な圧縮機へ冷媒を導入可能である。よって運転の自由度が高まるとともに効率の良い運転が可能となる。
 上記のヒートポンプによれば、圧縮に最適な状態の冷媒を低段側圧縮機、及び高段側圧縮機に導入でき、効率の良い運転が可能となる。
本発明の実施形態のヒートポンプの全体構成図である。 本発明の実施形態のヒートポンプの全体構成図であって、Aモードで冷媒が循環している場合を示す。また、冷媒が流通しない箇所は破線で示す。 本発明の実施形態のヒートポンプの全体構成図であって、Bモードで冷媒が循環している場合を示す。また、冷媒が流通しない箇所は破線で示す。 本発明の実施形態のヒートポンプの全体構成図であって、Cモードで冷媒が循環している場合を示す。また、冷媒が流通しない箇所は破線で示す。 本発明の実施形態のヒートポンプの全体構成図であって、Dモードで冷媒が循環している場合を示す。また、冷媒が流通しない箇所は破線で示す。
 以下、本発明の実施形態のヒートポンプ1について説明する。
 図1に示すように、本実施形態に係るヒートポンプ1は、二段圧縮サイクルで運転を行う冷媒回路2を有する。冷媒回路2は、低段側圧縮機3、高段側圧縮機4、凝縮器5、膨張弁(膨張機構)6、及び蒸発器10を有し、これらの構成要素がこの順に配管15によって接続されている。そして冷媒回路2を例えば二酸化炭素等の冷媒Rが循環する。ここで冷媒Rは特に二酸化炭素に限定されない。
 低段側圧縮機3は冷媒Rを吸込み、冷媒Rを圧縮する。
 高段側圧縮機4は低段側圧縮機3に直列に接続され、低段側圧縮機3から吐出された冷媒Rをさらに高圧に圧縮する。
 凝縮器5は、高段側圧縮機4から吐出された高温高圧の冷媒Rと、空気や水等の熱媒体R1との間で熱交換を行い、冷媒Rを冷却し凝縮させる。
 膨張弁6は、凝縮器5からの冷媒Rを断熱膨張させ、冷媒Rを減圧する。膨張弁6は複数(本実施形態では二つ)が、後述する第一蒸発器11と第二蒸発器12とに対応して、蒸発器10の上流側(入口側)に設けられている。
 蒸発器10としては、本実施形態では第一蒸発器11と第二蒸発器12とが設けられている。第一蒸発器11と第二蒸発器12とは並列に設けられている。
 第一蒸発器11は、膨張弁6を通過した冷媒Rと、熱媒体R2として例えば空気との間で熱交換を行う空気熱交換器である。
 第一蒸発器11と、低段側圧縮機3の上流側(吸い込み側)との間における配管15は、第一流路C1となっている。第一流路C1には、第一流路C1を冷媒Rが流通可能とし、または流通不能とするように第一流路C1を開閉する第一弁部21が設けられている。
 第一蒸発器11と、高段側圧縮機4の上流側(高段側圧縮機4の吸い込み側であって、低段側圧縮機3の吐出側)との間における配管15は、第二流路C2となっている。第二流路C2には、第二流路C2を冷媒Rが流通可能とし、または流通不能とするように第二流路C2を開閉する第二弁部22が設けられている。本実施形態では、第一流路C1は、第二弁部22が設けられた位置よりも上流側、即ち第一蒸発器11に近い側で第二流路C2から分岐するように設けられている。
 第二蒸発器12は、膨張弁6を通過した冷媒Rと、熱媒体R3として例えば水との間で熱交換を行う水熱交換器である。
 第二蒸発器12と、低段側圧縮機3の上流側(吸い込み側)との間における配管15は、第三流路C3となっている。第三流路C3には、第三流路C3を冷媒Rが流通可能とし、または流通不能とするように第三流路C3を開閉する第三弁部23が設けられている。本実施形態では第三流路C3には第三弁部23が設けられた位置よりも下流側で、即ち低段側圧縮機3に近い位置で第一流路C1が接続されている。
 第二蒸発器12と、高段側圧縮機4の上流側(高段側圧縮機4の吸い込み側であって、低段側圧縮機3の吐出側)との間における配管15は、第四流路C4となっている。第四流路C4には、第四流路C4を冷媒Rが流通可能とし、または不能とするように第四流路C4を開閉する第四弁部24が設けられている。本実施形態では、第四流路C4は、第三弁部23が設けられた位置よりも上流側、即ち第二蒸発器12に近い側で第三流路C3から分岐するように設けられている。
 さらに本実施形態では、第一弁部21、第二弁部22、第三弁部23、及び第四弁部24を開閉動作させるMPU(MICRO-PROCESSING UNIT)等からなる制御部30が設けられている。
 制御部30は、第一蒸発器11及び第二蒸発器12での負荷(熱交換量)に応じて、第一弁部21、第二弁部22、第三弁部23、及び第四弁部24を開閉動作させる。
 次に、制御部30での各弁の開閉動作の制御手法について説明する。
 以下、第一蒸発器11から流出する冷媒Rの温度をT1とし、第二蒸発器12から流出する冷媒Rの温度をT2とする。
〔Aモード〕
 T1<T2となっている場合がAモード(第一状態)である。本モードでは、制御部30は、図2に示すように第一蒸発器11からの冷媒Rが低段側圧縮機3に導入されるように第二弁部22を閉塞し、かつ、第一弁部21を開放する。よって第一蒸発器11からの冷媒Rは低段側圧縮機3で圧縮された後に高段側圧縮機4で圧縮される。
 さらに本モードでは、制御部30は第二蒸発器12からの冷媒Rが低段側圧縮機3を経由せずに高段側圧縮機4のみに導入されるように第三弁部23を閉塞し、かつ、第四弁部24を開放する。よって第二蒸発器12からの冷媒Rは高段側圧縮機4のみで圧縮される。
〔Bモード〕
 T1>T2となっている場合がBモード(第二状態)である。本モードでは、制御部30は、図3に示すように第一蒸発器11からの冷媒Rが低段側圧縮機3を経由せずに高段側圧縮機4のみに導入されるように第一弁部21を閉塞し、かつ、第二弁部22を開放する。よって第一蒸発器11からの冷媒Rは低段側圧縮機3を経由せずに高段側圧縮機4のみで圧縮される。
 さらに本モードでは、制御部30は第二蒸発器12からの冷媒Rが低段側圧縮機3に導入されるように第四弁部24を閉塞し、かつ、第三弁部23を開放する。よって第二蒸発器12からの冷媒Rは低段側圧縮機3で圧縮された後に高段側圧縮機4で圧縮される。
〔Cモード〕
 T1≒T2となっているとともに、凝縮器5から流出する冷媒Rの温度と、T1及びT2とが同等である場合がCモードである。本モードでは制御部30は、図4に示すように低段側圧縮機3の運転を停止する。さらに第一蒸発器11及び第二蒸発器12から流出した冷媒Rが低段側圧縮機3を経由せずに高段側圧縮機4のみに導入されるように、第一弁部21及び第三弁部23を閉塞し、かつ、第二弁部22及び第四弁部24を開放する。よって第一蒸発器11からの冷媒R及び第二蒸発器12からの冷媒Rはともに低段側圧縮機3を経由せずに高段側圧縮機4のみで圧縮される。
〔Dモード〕
 T1≒T2となっているとともに、凝縮器5から流出する冷媒Rの温度と、T1及びT2との温度差が大きい場合がDモードである。本モードでは制御部30は、図5に示すように第一蒸発器11及び第二蒸発器12から流出した冷媒Rが低段側圧縮機3に導入されるように、第二弁部22及び第四弁部24を閉塞し、かつ、第一弁部21及び第三弁部23を開放する。よって第一蒸発器11からの冷媒R及び第二蒸発器12からの冷媒Rはともに低段側圧縮機3で圧縮された後に高段側圧縮機4で圧縮される。
 以上説明した本実施形態のヒートポンプ1では、第一蒸発器11と第二蒸発器12を備えている。即ち、ヒートポンプ1は、それぞれ熱交換量や設置環境の異なる複数の熱交換器、即ち第一蒸発器11と第二蒸発器12とを有するマルチソース型の冷媒回路2を有する。
 ここで、各々の蒸発器10では負荷(熱交換量)が変動して冷媒Rの温度が変化することで、低段側圧縮機3及び高段側圧縮機4に向かう冷媒Rの状態が、これら低段側圧縮機3及び高段側圧縮機4での圧縮に最適な状態ではなくなる場合がある。本実施形態では制御部30によって第一流路C1、第二流路C2、第三流路C3、及び第四流路C4を、第一弁部21、第二弁部22、第三弁部23、及び第四弁部24で開閉させることで、第一蒸発器11から低段側圧縮機3へ冷媒Rを導入するだけでなく、低段側圧縮機3をバイパスして直接に高段側圧縮機4へ冷媒Rを導入することができる。
 さらに、このような第一蒸発器11からの冷媒Rの流通経路の切換えと同時に、第二蒸発器12からの冷媒Rの流通経路の切換えも可能である。即ち、第二蒸発器12から低段側圧縮機3へ冷媒Rを導入するだけでなく、低段側圧縮機3をバイパスして直接に高段側圧縮機4へ冷媒Rを導入させることができる。
 具体的には、上記のAモードからDモードのように第一弁部21、第二弁部22、第三弁部23、及び第四弁部24を動作させることで、各蒸発器10(11、12)から流出した冷媒Rの状態に応じて、低段側圧縮機3か、高段側圧縮機4のうち、最適な圧縮が可能な圧縮機へ冷媒Rの導入経路を切換えることができる。よって圧縮に最適な状態の冷媒Rを低段側圧縮機3、及び高段側圧縮機4に導入でき、効率の良い運転が可能となる。
 さらに、制御部30が設けられていることで、第一蒸発器11及び第二蒸発器12の各々から流出した冷媒Rの状態に応じて、低段側圧縮機3及び高段側圧縮機4のうち、最適な圧縮が可能な圧縮機へ、冷媒Rの導入経路を自動的に切換えることができる。
 また、AモードとBモードとの間で冷媒Rの流れを切り替えることができることで、第一蒸発器11からの冷媒Rを低段側圧縮機3と高段側圧縮機4とのいずれにも導入させることが可能になると同時に、第二蒸発器12からの冷媒Rを低段側圧縮機3と高段側圧縮機4とのいずれにも導入させることが可能になる。
 即ち、第一蒸発器11からの冷媒Rと第二蒸発器12からの冷媒Rの流れが互いに干渉することなく、第一蒸発器11からの冷媒Rの流れと第二蒸発器12からの冷媒Rの流れとをクロスさせるようにして冷媒Rを流通させ、低段側圧縮機3、高段側圧縮機4へ流入させることが可能となる。よって運転の自由度が高まる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 例えば、制御部30は必ずしも設けなくともよい。この場合、手動で第一弁部21、第二弁部22、第三弁部23、及び第四弁部24を開閉動作させてもよい。
 また、蒸発器10は三つ以上設けてもよく、蒸発器10の数量は上述の場合に限定されない。
 上記のヒートポンプによれば、圧縮に最適な状態の冷媒を低段側圧縮機、及び高段側圧縮機に導入でき、効率の良い運転が可能となる。
1  ヒートポンプ
2  冷媒回路
3  低段側圧縮機
4  高段側圧縮機
5  凝縮器
6  膨張弁(膨張機構)
10  蒸発器
11  第一蒸発器
12  第二蒸発器
15  配管
21  第一弁部
22  第二弁部
23  第三弁部
24  第四弁部
30  制御部
R  冷媒
R1、R2、R3  熱媒体
C1  第一流路
C2  第二流路
C3  第三流路
C4  第四流路

Claims (3)

  1.  低段側圧縮機と、
     前記低段側圧縮機の下流側に直列に接続された高段側圧縮機と、
     前記高段側圧縮機の下流側に接続された凝縮器と、
     前記凝縮器の下流側に接続された膨張機構と、
     前記膨張機構の下流側に並列に接続された第一蒸発器及び第二蒸発器と、
     前記第一蒸発器の下流側と低段側圧縮機の上流側との間を接続する第一流路、及び該第一流路を開閉する第一弁部と、
     前記第一蒸発器の下流側と高段側圧縮機の上流側との間を接続する第二流路、及び該第二流路を開閉する第二弁部と、
     前記第二蒸発器の下流側と低段側圧縮機の上流側との間を接続する第三流路、及び該第三流路を開閉する第三弁部と、
     前記第二蒸発器の下流側と高段側圧縮機の上流側との間を接続する第四流路、及び該第四流路を開閉する第四弁部と、
     を備えるヒートポンプ。
  2.  前記第一蒸発器及び前記第二蒸発器での負荷に応じて、前記第一弁部、前記第二弁部、前記第三弁部、及び前記第四弁部の開閉動作を制御する制御部をさらに備える請求項1に記載のヒートポンプ。
  3.  前記制御部は、前記第一蒸発器からの冷媒を前記低段側圧縮機に導入させ、かつ、前記第二蒸発器からの冷媒を直接に前記高段側圧縮機に導入させる第一状態と、前記第一蒸発器からの前記冷媒を直接に前記高段側圧縮機に導入させ、かつ、前記第二蒸発器からの前記冷媒を前記低段側圧縮機に導入させる第二状態とを切換え可能に、前記第一弁部、前記第二弁部、前記第三弁部、及び前記第四弁部の開閉動作を制御する請求項2に記載のヒートポンプ。
PCT/JP2018/041487 2017-11-08 2018-11-08 ヒートポンプ WO2019093420A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880072403.3A CN111316047A (zh) 2017-11-08 2018-11-08 热泵
EP18877202.4A EP3708924A4 (en) 2017-11-08 2018-11-08 HEAT PUMP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017215660A JP6373469B1 (ja) 2017-11-08 2017-11-08 ヒートポンプ
JP2017-215660 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019093420A1 true WO2019093420A1 (ja) 2019-05-16

Family

ID=63165908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041487 WO2019093420A1 (ja) 2017-11-08 2018-11-08 ヒートポンプ

Country Status (4)

Country Link
EP (1) EP3708924A4 (ja)
JP (1) JP6373469B1 (ja)
CN (1) CN111316047A (ja)
WO (1) WO2019093420A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3904784A1 (en) * 2020-04-30 2021-11-03 Thermo King Corporation System and method of energy efficient operation of a transport climate control system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143658B (zh) * 2022-07-01 2024-09-17 浙江国祥股份有限公司 一种双工况冷水机组及其控制方法
JP2024079347A (ja) * 2022-11-30 2024-06-11 株式会社豊田自動織機 車両用熱マネジメントシステム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105259A (en) * 1980-01-23 1981-08-21 Hitachi Ltd Multiple temperature refrigerator
JPH0210063A (ja) * 1988-06-29 1990-01-12 Toshiba Corp 冷凍サイクル装置
JPH0611198A (ja) * 1991-02-08 1994-01-21 Mitsubishi Electric Corp 冷凍装置
JPH06257889A (ja) * 1992-08-01 1994-09-16 Mitsubishi Electric Corp 蒸気圧縮式冷凍サイクルによる多温度生成回路
JP2007178120A (ja) * 2007-03-29 2007-07-12 Mitsubishi Electric Corp 冷凍冷蔵庫
JP2009079863A (ja) * 2007-09-27 2009-04-16 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2009210138A (ja) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd 冷凍サイクルシステム
JP2013076541A (ja) * 2011-09-30 2013-04-25 Daikin Industries Ltd ヒートポンプ
JP2016090102A (ja) 2014-10-31 2016-05-23 三菱重工業株式会社 冷凍サイクルの制御装置、冷凍サイクル、及び冷凍サイクルの制御方法
JP2017215660A (ja) 2016-05-30 2017-12-07 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145189A (ja) * 1995-11-27 1997-06-06 Sanyo Electric Co Ltd 冷凍サイクル及びその冷凍サイクルを備えた空気調和機
US7353660B2 (en) * 2004-09-13 2008-04-08 Carrier Corporation Multi-temperature cooling system with unloading

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105259A (en) * 1980-01-23 1981-08-21 Hitachi Ltd Multiple temperature refrigerator
JPH0210063A (ja) * 1988-06-29 1990-01-12 Toshiba Corp 冷凍サイクル装置
JPH0611198A (ja) * 1991-02-08 1994-01-21 Mitsubishi Electric Corp 冷凍装置
JPH06257889A (ja) * 1992-08-01 1994-09-16 Mitsubishi Electric Corp 蒸気圧縮式冷凍サイクルによる多温度生成回路
JP2007178120A (ja) * 2007-03-29 2007-07-12 Mitsubishi Electric Corp 冷凍冷蔵庫
JP2009079863A (ja) * 2007-09-27 2009-04-16 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2009210138A (ja) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd 冷凍サイクルシステム
JP2013076541A (ja) * 2011-09-30 2013-04-25 Daikin Industries Ltd ヒートポンプ
JP2016090102A (ja) 2014-10-31 2016-05-23 三菱重工業株式会社 冷凍サイクルの制御装置、冷凍サイクル、及び冷凍サイクルの制御方法
JP2017215660A (ja) 2016-05-30 2017-12-07 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3708924A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3904784A1 (en) * 2020-04-30 2021-11-03 Thermo King Corporation System and method of energy efficient operation of a transport climate control system
US11273687B2 (en) 2020-04-30 2022-03-15 Thermo King Corporation System and method of energy efficient operation of a transport climate control system
US11794556B2 (en) 2020-04-30 2023-10-24 Thermo King Llc System and method of energy efficient operation of a transport climate control system

Also Published As

Publication number Publication date
CN111316047A (zh) 2020-06-19
EP3708924A1 (en) 2020-09-16
JP6373469B1 (ja) 2018-08-15
JP2019086238A (ja) 2019-06-06
EP3708924A4 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
KR100188860B1 (ko) 냉동장치
WO2019093420A1 (ja) ヒートポンプ
KR100589913B1 (ko) 공기조화장치
EP3534082B1 (en) Air conditioner
JP2010156493A (ja) 冷暖同時運転型空気調和装置
US20110192181A1 (en) Refrigerant system
US11105544B2 (en) Variable orifice for a chiller
JP2011242048A (ja) 冷凍サイクル装置
JP2011214758A (ja) 冷凍装置
US9416993B2 (en) Air conditioner
KR20180093570A (ko) 공기조화기
CN111316048B (zh) 热泵
JP2012017951A (ja) 冷凍サイクル装置
JP7097762B2 (ja) ヒートポンプ、ヒートポンプの制御方法
JP2012127520A (ja) 冷凍サイクル装置
JP2010127504A (ja) 空気調和装置
JP4075072B2 (ja) 空調用ヒートポンプ回路
JP6511376B2 (ja) 空気調和装置
KR20180123270A (ko) 공기조화기
KR20180089750A (ko) 공기조화기의 실외기
CN216204499U (zh) 一种带双级压缩循环切换的制冷系统
WO2023139713A1 (ja) 空気調和装置
US11397015B2 (en) Air conditioning apparatus
JP2024073015A (ja) 冷凍システム
JP2011214757A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018877202

Country of ref document: EP

Effective date: 20200608