WO2019093354A1 - 光受信機及び光受信方法 - Google Patents

光受信機及び光受信方法 Download PDF

Info

Publication number
WO2019093354A1
WO2019093354A1 PCT/JP2018/041286 JP2018041286W WO2019093354A1 WO 2019093354 A1 WO2019093354 A1 WO 2019093354A1 JP 2018041286 W JP2018041286 W JP 2018041286W WO 2019093354 A1 WO2019093354 A1 WO 2019093354A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal
power
wavelength
wavelengths
Prior art date
Application number
PCT/JP2018/041286
Other languages
English (en)
French (fr)
Inventor
正 古賀
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201880068752.8A priority Critical patent/CN111264038B/zh
Priority to EP18876307.2A priority patent/EP3709536B1/en
Priority to JP2019552829A priority patent/JP7006703B2/ja
Priority to US16/753,585 priority patent/US10924190B2/en
Publication of WO2019093354A1 publication Critical patent/WO2019093354A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/615Arrangements affecting the optical part of the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/63Homodyne, i.e. coherent receivers where the local oscillator is locked in frequency and phase to the carrier signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/64Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [IF] is obtained
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/65Intradyne, i.e. coherent receivers with a free running local oscillator having a frequency close but not phase-locked to the carrier signal

Definitions

  • the present invention relates to an optical receiver and an optical receiving method, and more particularly to an optical receiver and an optical receiving method capable of calculating the number of wavelengths of a wavelength multiplexed signal and the power of signal light.
  • phase modulation / demodulation methods such as polarization phase shift modulation, four phase phase modulation, and polarization multiplex four phase modulation with excellent optical frequency utilization efficiency, in particular, from the balance of transmission characteristics, ease of implementation, and cost.
  • Binary phase modulation is also called BPSK (Binary Phase Shift Keying).
  • QPSK Quadrature Phase Shift Keying
  • PM-QPSK Polarization Multiplexing-Quadrature Phase Shift Keying
  • the optical receiver used in the digital coherent transmission method measures parameters such as the number of wavelengths of the wavelength multiplexed signal and the optical power of the signal light included in the wavelength multiplexed signal, and uses the measured parameters to monitor and receive the reception state. It is necessary to optimize the quality.
  • the wavelength multiplexed signal is also referred to as a WDM (Wavelength Division Multiplexing) signal.
  • Patent Document 1 describes a technique for calculating an optical signal to noise ratio (OSNR) of received signal light.
  • OSNR optical signal to noise ratio
  • the problem when an optical receiver receives a WDM signal is that, when the WDM signal is input to the optical receiver, monitoring of the number of wavelengths and the optical power per signal wavelength of the signal light (optical power per carrier) Is difficult.
  • the received signal light is branched, and a measuring instrument having a spectral function such as an optical spectrum analyzer is connected to It was necessary to measure the optical power.
  • a measuring instrument or a special dedicated device is required in addition to the reduction of the optical power of the main signal due to branching. There is.
  • An object of the present invention is to provide a technology capable of easily estimating the number of wavelengths of a WDM signal and the optical power of signal light.
  • the optical receiver of the present invention is The wavelength multiplexed light including the signal light is received, and the signal light is converted into an electrical signal by coherently detecting the signal light using the locally oscillated light, and the power of the locally oscillated light and the bit error rate of the electrical signal And light receiving means for outputting the electrical signal;
  • the power of the locally oscillated light and the bit error rate are monitored, and the signal-to-noise ratio of the signal light is calculated based on the power of the locally oscillated light and the bit error rate, and the signal to noise ratio and the locally oscillated Control means for determining the number of wavelengths of the wavelength-multiplexed light and the power per wavelength of the signal light based on the power of the light; Equipped with
  • the light receiving method of the present invention is Receive wavelength multiplexed light including signal light, Converting the signal light into an electrical signal by coherently detecting the signal light using a locally oscillated light; Outputting the power of the local oscillation light, the bit error rate of the signal light, and the electrical signal; Monitoring the power of the locally oscillated light and the bit error rate; Calculating a signal-to-noise ratio of the signal light based on the power of the locally oscillated light and the bit error rate; The number of wavelengths of the wavelength multiplexed light and the power per one wavelength of the signal light are determined based on the signal-to-noise ratio and the power of the local oscillation light. It is characterized by
  • the optical receiver and the optical reception method of the present invention can easily carry out the estimation of the number of wavelengths of the WDM signal and the estimation of the signal light power.
  • FIG. 2 is a block diagram showing a configuration example of a control unit 120.
  • P LO is an example graph of a calculation result of the SNR when a + 7 dBm.
  • P LO is an example graph of a calculation result of the SNR when a + 9 dBm.
  • P LO is a graph showing the SNR of the case where the + 13 dBm.
  • 5 is a flowchart illustrating an example of an operation procedure of a control unit 120.
  • FIG. 1 is a block diagram showing a configuration example of an optical transmission system 10 according to a first embodiment of the present invention.
  • the optical transmission system 10 includes an optical receiver 100, an optical transmitter 200, and an optical transmission path 210.
  • the optical transmitter 200 performs multi-level phase modulation on a carrier according to transmission data, generates a WDM signal in which multi-level phase modulated signal light is wavelength-multiplexed, and sends it to the optical transmission path 210.
  • the WDM signal propagated through the optical transmission line 210 is received by the optical receiver 100.
  • the optical receiver 100 selects and demodulates the signal light of the wavelength to be received among the carrier waves included in the WDM signal.
  • the optical receiver 100 of the present embodiment has a digital coherent detection function for demodulating signal light that has been subjected to multilevel phase modulation in the optical transmitter 200.
  • FIG. 2 is a block diagram showing a configuration example of the optical receiver 100 according to the first embodiment.
  • the optical receiver 100 includes an optical receiver 110 and a controller 120.
  • the optical receiver 100 receives a WDM signal from the optical transmission line 210, and coherently detects the WDM signal using local oscillation (LO) light. Thereby, the signal light selected from the WDM signal is detected and output as an electric signal.
  • the light receiving unit 110 outputs the power of the LO light and the bit error rate of the electric signal to the control unit 120.
  • the electrical signal is output to the outside of the optical receiver 100.
  • the light receiving unit 110 bears light receiving means having the above-described functions.
  • the control unit 120 monitors the power of the LO light output from the light receiving unit 110 and the bit error rate of the electrical signal, and based on the power of the LO light and the bit error rate, the signal-to-noise ratio of the signal light (Signal Calculate to Noise Ratio, SNR).
  • SNR is a ratio of signal power of signal light to noise power.
  • the control unit 120 estimates the number of wavelengths of the signal light included in the WDM signal and the power per wavelength of the signal light based on the SNR and the power of the LO light.
  • the control unit 120 bears control means for carrying out the above functions.
  • the optical receiver 100 determines the number of wavelengths included in the signal light and the power per wavelength of the signal light based on the SNR and the power of the LO light. As a result, the optical receiver 100 according to the first embodiment has an effect that the estimation of the number of wavelengths of the WDM signal and the estimation of the signal light power can be easily performed.
  • FIG. 3 is a block diagram showing an example of the configuration of an optical receiver 100 according to the second embodiment of the present invention.
  • the second embodiment a more detailed configuration example and an operation example of the optical receiver 100 described in the first embodiment will be described.
  • the optical receiver 100 includes a local oscillation light source (LO) 111, a 90 degree optical hybrid (HYB) 112, a photoelectric conversion unit (HS-PD) 113, an analog digital conversion unit (A / D) 114, A signal processing unit (DSP) 115 is provided.
  • the light receiving unit 110 includes these. Since the general configuration of a digital coherent receiver is known, the detailed description is omitted.
  • the optical receiver 100 receives a WDM signal from the optical transmission line 210.
  • the WDM signal is separated into in-phase signal light and quadrature phase signal light in a 90 degree Optical Hybrid (HYB) 112.
  • Each of the separated signal light interferes with the LO light output from the local oscillation light source 111, and is then converted into a detection signal in the photoelectric conversion unit 113.
  • the photoelectric conversion unit includes a light receiving element such as a high speed photodiode (HS-PD).
  • the LO light power (LO light power) P LO is notified from the local oscillation light source 111 to the control unit 120.
  • the detected signal output from the photoelectric conversion unit 113 is sampled by an analog to digital converter (A / D) 114 and converted into a digital signal.
  • a / D analog to digital converter
  • a signal processing unit (Digital Signal Processor (DSP)) 115 performs digital coherent demodulation processing on the digital signal output from the analog-to-digital converter 114 to generate an electrical signal.
  • An electrical signal is a signal that includes transmission data.
  • the signal processing unit 115 notifies the control unit 120 of a bit error rate (BER) of the electrical signal obtained based on the number of error corrections.
  • BER bit error rate
  • the control unit 120 controls the SNR of the signal light based on the LO light power P LO notified from the local oscillation light source 111 and the BER notified from the signal processing unit 115, the number of wavelengths of the received WDM signal, and the power per wavelength. Ask for Furthermore, the control unit 120 controls the LO light power P LO based on the determined number of wavelengths and the power per wavelength.
  • FIG. 4 is a block diagram showing a configuration example of the control unit 120.
  • the control unit 120 includes an arithmetic unit 121 and a storage unit 122.
  • the storage unit 122 stores a Look Up Table (LUT) 123 and a program 124.
  • the storage unit 122 is a fixed non-temporary storage medium.
  • a semiconductor memory or a fixed magnetic disk drive is used as the storage unit 122, but is not limited thereto.
  • a central processing unit (CPU) can be used as the calculation unit 121.
  • the computing unit 121 implements the function of the control unit 120 by reading the program 124 from the storage unit 122 and executing the program 124.
  • the calculation unit 121 is connected to the local oscillation light source 111 and the signal processing unit 115.
  • the lookup table 123 will be described later with reference to FIG.
  • the calculation procedure of the SNR in the optical receiver 100 will be described. First, the SNR of the signal light included in the WDM light input to the optical receiver 100 is calculated. In this embodiment, in the electric circuit of the optical receiver 100, the SNR of the signal light is calculated.
  • the power of each signal light input to the optical receiver 100 is P sig [W]
  • the LO light power is P LO [W]
  • the light reception sensitivity of the light receiving element of the photoelectric conversion unit 113 is R [A / W].
  • the power [dBm] of the PD current I sig that flows when the signal light is coherently detected by the LO light is expressed by equation (1).
  • the power indicated by [dBm] indicates the power in the reception band of the optical receiver 100. ... (1)
  • Equation (3) The power [dBm] of the beat noise current I ase-ase between ASE noise lights is expressed by Equation (3). ... (3)
  • the power [dBm] of the beat noise current I sig-sig between the signal lights of the wavelength number N ch input to the optical receiver 100 is expressed by Expression (4). ... (4)
  • Shot noise is a temporal fluctuation of noise appearing in a signal.
  • the electron charge is q [C]
  • the power [dBm] of the shot noise current I shot flowing through the light receiving element of the photoelectric conversion unit 113 is expressed by Expression (5). ... (5)
  • the thermal noise current I thermal [dBm] of the circuit of the optical receiver 100 is expressed by the equation (6), where k is the Boltzmann constant, T [K] is the temperature of the amplifier, and R L [ ⁇ ] is the circuit load. Ru. ... (6)
  • the equation (7) is obtained from the equations (1) to (6). ... (7)
  • the relationship between the input power P sig of the signal light per wavelength to the optical receiver 100 and the reception SNR can be obtained by inputting the actual value into the equation (7). Furthermore, SNR and Q value can be converted by using equation (8).
  • FIG. 5 is a look showing an example of SNR calculation results under the conditions of LO light power P LO of +7, +9, +13 and +15 dBm when the number of wavelengths N ch of signal light is 1, 2, 16, 48 and 96, respectively. It is an up table.
  • FIG. 5 shows the results of calculating SNR by changing the LO light power, the number of wavelengths, and the input power of signal light per wavelength.
  • the table as shown in FIG. 5 is stored in the storage unit 122 as a look-up table (LUT) 123.
  • FIG. 6 is a graph of an example of calculation results of SNR in cases where the number of wavelengths N ch is 1, 16, 48, 96 when the LO light power P LO is +7 dBm.
  • the graph of FIG. 6 can be drawn based on a look-up table.
  • the horizontal axis in FIG. 6 is the input power P sig (Signal Input Power / ch) of signal light per wavelength, and the vertical
  • the SNR at different LO light powers can be calculated, and the number of wavelengths and the input power P sig of the signal light per wavelength can be estimated from the results. This estimation can also be performed when the number N ch of wavelengths and the input power P sig of the signal light per wavelength are unknown.
  • the actual SNR can be calculated from Equation (8) and Equation (9) from the value of BER output from the signal processing unit 115 and the LO light power P LO output from the local oscillation light source 111.
  • FIG. 7 is a graph of an example of SNR calculation results when the LO light power P LO is +9 dBm.
  • the SNR calculation result is 16.3 dB.
  • the horizontal axis of SNR 16.3 dB intersects the graph at five points.
  • the number of wavelengths N ch input to the optical receiver 100 and the input power P sig ("Signal Input Power / ch") of signal light are the same as in the case of FIG. Therefore, in FIG. 6 and FIG.
  • the input power P sig of the signal light to be estimated and the number of wavelengths N ch may not exactly match the values on the graph.
  • the input power P sig of the signal light and the number of wavelengths N ch corresponding to a point within a range where the distance to the position of the point on the graph is equal to or less than a predetermined value may be an estimated value. That is, in the case of the LO light power P LO has two or more different, estimates the input power P sig and the number of wavelengths N ch of the signal light input power P sig and the number of wavelengths N ch of the signal light substantially coincides in each case results It may be
  • FIG. 8 is the same look-up table as FIG. 5, showing calculation results of SNR.
  • FIG. 9 is a graph showing the calculation results of SNR when P LO is +13 dBm.
  • the LO light power P LO that optimizes the SNR is approximately It can be seen that it is +13 dBm (within the bold frame in FIG. 8).
  • the SNR of the signal light is improved to about 16.6 dB (FIGS. 8 and 9), and the reception characteristic can be improved. become.
  • FIG. 10 is a flowchart showing an example of the operation procedure of the control unit 120 in the second embodiment.
  • SNR is described as one of the parameters.
  • the SNR and the Q value can be easily converted. Therefore, as shown in FIG. 10, it is possible to estimate the combination of the wavelength number N ch and the signal light power P sig using Q value instead of SNR, and optimize the LO light power P LO .
  • the relationship between the signal light power per wavelength and the Q value (or SNR) is calculated using the number of wavelengths and the LO light power as parameters, and stored as a LUT (step S01 in FIG. 10).
  • the LUT is stored in the storage unit 122.
  • the Q value is calculated from the BER of the received signal light (step S02). Equation (9) can be used to calculate the Q value.
  • a combination of the number of wavelengths and the signal light power per wavelength is extracted from the LUT (step S03). Thereafter, the LO light power is changed, and the Q value of the signal light is recalculated in this state (step S04).
  • the LUT is referred to based on the changed LO light power and the recalculated Q value, and a combination of the number of wavelengths and the signal light power per wavelength is selected (step S05).
  • the same combination as the combination extracted in step S03 is selected, and the number of wavelengths and the signal light power per wavelength are estimated from the combination (step S06).
  • the LUT may be referred to based on the estimated number of wavelengths and the signal light power per wavelength, and the LO light power may be controlled so that the Q value becomes the best (step S07).
  • the optical receiver 100 determines the SNR of the input signal light based on the BER output from the signal processing unit 115 and the LO light power P LO output from the local oscillation light source 111. Or calculate the Q value. As a result, it is possible to calculate the SNR and Q value of signal light without using a dedicated measuring instrument or spectral device, and further, the number N ch of wavelengths of WDM signal and the input power of signal light per wavelength P sig can be estimated.
  • the procedure of the present embodiment does not depend on the bit rate or the modulation scheme of signal light. That is, the above procedure is not affected by the transmission rate regardless of whether the transmission rate is 40 Gbps or 100 Gbps.
  • the modulation method of signal light is not limited to four-level phase modulation.
  • the procedure of the present embodiment is also applicable to WDM signals transmitted by intensity modulation such as binary or octal phase modulation or NRZ (Non-Return-to-Zero) signals or RZ (Return-to-Zero) signals. Applicable
  • the present invention can be applied to a modulation scheme combining phase modulation and intensity modulation such as m-QAM (m-value Quadrature Amplitude Modulation).
  • the first effect is that a measuring device for monitoring the SNR, an optical branching device leading to the characteristic deterioration of the main signal light, and the like are unnecessary.
  • the reason is that the SNR or Q value is calculated by using the BER output from the signal processing unit provided in the digital coherent receiver and the LO light power P LO output from the local oscillation light source 111.
  • the optical receiver 100 uses signal light power P sig per wavelength input to the optical receiver 100, which is difficult to measure using the measurable BER obtained from the signal processing unit 115.
  • the wavelength number N ch can be obtained by calculation.
  • the second effect is that the LO light power P LO can be optimally controlled.
  • the reason is that, with the estimated signal light power P sig per wavelength and the number N ch of wavelengths, the LO light power P LO at which an optimum SNR can be obtained can be determined by calculation or by referring to the look-up table. is there.
  • the wavelength multiplexed light including the signal light is received, and the signal light is converted into an electrical signal by coherently detecting the signal light using the locally oscillated light, and the power of the locally oscillated light and the bit error rate of the electrical signal And light receiving means for outputting the electrical signal;
  • the power of the locally oscillated light and the bit error rate are monitored, and the signal-to-noise ratio of the signal light is calculated based on the power of the locally oscillated light and the bit error rate, and the signal to noise ratio and the locally oscillated Control means for determining the number of wavelengths of the wavelength-multiplexed light and the power per wavelength of the signal light based on the power of the light;
  • An optical receiver comprising:
  • control means makes the number of the wavelengths and the power per one wavelength substantially match in each case, the number of the wavelengths and the one per wavelength
  • the control means stores a look-up table in which the relationship among the number of wavelengths, the power per one wavelength, the signal-to-noise ratio, and the power of the local oscillation light is previously calculated, and using the look-up table
  • the optical receiver according to appendix 1 or 2, wherein the number of the wavelengths and the power per one wavelength are determined.
  • Receive wavelength multiplexed light including signal light, Converting the signal light into an electrical signal by coherently detecting the signal light using a locally oscillated light; Outputting the power of the local oscillation light, the bit error rate of the signal light, and the electrical signal; Monitoring the power of the locally oscillated light and the bit error rate; Calculating a signal-to-noise ratio of the signal light based on the power of the locally oscillated light and the bit error rate; The number of wavelengths of the wavelength multiplexed light and the power per one wavelength of the signal light are determined based on the signal-to-noise ratio and the power of the local oscillation light.
  • Optical reception method Optical reception method.
  • the number of the wavelengths and the power per one wavelength are determined using the relationship among the number of the wavelengths, the power per one wavelength, the signal to noise ratio, and the power of the local oscillation light, as described in Appendix 6 or 7. Light reception method.
  • Appendix 9 The light receiving method according to any one of appendices 6 to 8, wherein the power of the locally oscillated light is controlled to improve the signal-to-noise ratio.
  • a procedure for receiving wavelength multiplexed light including signal light A procedure for converting the signal light into an electrical signal by coherently detecting the signal light using a locally oscillated light; A procedure for outputting the power of the local oscillation light, the bit error rate of the signal light, and the electrical signal; A procedure for monitoring the power of the locally oscillated light and the bit error rate; Calculating a signal-to-noise ratio of the signal light based on the power of the locally oscillated light and the bit error rate; Determining the number of wavelengths of the wavelength-multiplexed light and the power per wavelength of the signal light based on the signal-to-noise ratio and the power of the local oscillation light; Program of the optical receiver to make it run.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

[課題] WDM信号の波長数の推定及び信号光パワーの推定を容易に実施できる技術を提供する。 [解決手段] 光受信機は、信号光を含む波長多重光を受信し、局部発振光を用いて信号光をコヒーレント検波することで信号光を電気信号に変換し、局部発振光のパワー、信号光のビットエラーレート及び電気信号を出力する光受信手段と、局部発振光のパワー及びビットエラーレートをモニタし、局部発振光のパワー及びビットエラーレートに基づいて信号光の信号対雑音比を計算し、信号対雑音比及び局部発振光のパワーに基づいて、波長多重光の波長の数と信号光の1波長当たりのパワーを求める制御手段と、を備える。

Description

光受信機及び光受信方法
 本発明は光受信機及び光受信方法に関し、特に、波長多重信号の波長数及び信号光のパワーを算出可能な光受信機及び光受信方法に関する。
 100Gb/s(Gigabit per second)以上の超高速長距離光伝送システムにおいては、強度変調による一般的な伝送方式に替わって位相変調を採用したデジタルコヒーレント伝送方式が有力視されている。位相変調方式の中でも、特に、伝送特性、実現容易性及びコストのバランスから、2値位相変調、4値位相変調、さらには光周波数利用効率に優れる偏波多重4値位相変調などの変復調方式の研究開発が行われている。2値位相変調は、BPSK(Binary Phase Shift Keying)とも呼ばれる。4値位相変調は、QPSK(Quadrature Phase Shift Keying)とも呼ばれる。偏波多重4値位相変調は、PM-QPSK(Polarization Multiplexing - Quadrature Phase Shift Keying)とも呼ばれる。
 デジタルコヒーレント伝送方式で用いられる光受信機では、波長多重信号の波長数や波長多重信号に含まれる信号光の光パワーなどのパラメータを測定し、測定されたパラメータを用いて受信状態の監視や受信品質の最適化を行う必要がある。波長多重信号は、WDM(Wavelength Division Multiplexing)信号とも呼ばれる。本発明に関連して、特許文献1には、受信した信号光の光信号対雑音比(Optical Signal to Noise Ratio、OSNR)を算出する技術が記載されている。
特開2014-165895号公報
 光受信機がWDM信号を受信する際の課題は、WDM信号が光受信機に入力された場合に、波長数及び信号光の1波長あたりの光パワー(搬送波1個あたりの光パワー)の監視が困難なことである。例えば、受信したWDM信号の波長数及び1波長あたりの光パワーを測定するためには、受信した信号光を分岐して光スペクトラムアナライザのような分光機能を有する測定器を接続して波長数及び光パワーを測定する必要があった。このような構成には、分岐による主信号の光パワーの減少に加えて測定器あるいは特殊な専用デバイスが必要となることで光受信機の性能、コスト及び大きさの改善が困難であるという課題がある。
 (発明の目的)
 本発明は、WDM信号の波長数及び信号光の光パワーを容易に推定できる技術を提供することを目的とする。
 本発明の光受信機は、
 信号光を含む波長多重光を受信し、局部発振光を用いて前記信号光をコヒーレント検波することで前記信号光を電気信号に変換し、前記局部発振光のパワー、前記電気信号のビットエラーレート及び前記電気信号を出力する光受信手段と、
 前記局部発振光のパワー及び前記ビットエラーレートをモニタし、前記局部発振光のパワー及び前記ビットエラーレートに基づいて前記信号光の信号対雑音比を計算し、前記信号対雑音比及び前記局部発振光のパワーに基づいて前記波長多重光の波長の数と前記信号光の1波長当たりのパワーを求める制御手段と、
を備える。
 本発明の光受信方法は、
 信号光を含む波長多重光を受信し、
 局部発振光を用いて前記信号光をコヒーレント検波することで前記信号光を電気信号に変換し、
 前記局部発振光のパワー、前記信号光のビットエラーレート及び前記電気信号を出力し、
 前記局部発振光のパワー及び前記ビットエラーレートをモニタし、
 前記局部発振光のパワー及び前記ビットエラーレートに基づいて前記信号光の信号対雑音比を計算し、
 前記信号対雑音比及び前記局部発振光のパワーに基づいて前記波長多重光の波長の数と前記信号光の1波長当たりのパワーを求める、
ことを特徴とする。
 本発明の光受信機及び光受信方法は、WDM信号の波長数の推定及び信号光パワーの推定を容易に実施できる。
第1の実施形態の光伝送システム10の構成例を示すブロック図である。 第1の実施形態の光受信機100の構成例を示すブロック図である。 第2の実施形態の光受信機100の構成例を示すブロック図である。 制御部120の構成例を示すブロック図である。 SNRの計算結果(LUT)の一例である。 LOが+7dBmである場合のSNRの計算結果の例のグラフである。 LOが+9dBmである場合のSNRの計算結果の例のグラフである。 SNRの計算結果(LUT)の一例である。 LOが+13dBmである場合のSNRを示すグラフである。 制御部120の動作手順の例を示すフローチャートである。
 以下に、本発明の実施形態について説明する。実施形態を説明するブロック図における矢印は、説明のために信号の向きを例示するものであり、信号の向きを限定しない。また、既出の構成要素には同一の参照符号を付して、重複する説明は省略する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態の光伝送システム10の構成例を示すブロック図である。光伝送システム10は、光受信機100、光送信機200及び光伝送路210を備える。光送信機200は、伝送データによって搬送波(キャリア)を多値位相変調し、多値位相変調された信号光を波長多重したWDM信号を生成して光伝送路210へ送出する。光伝送路210を伝搬したWDM信号は光受信機100において受信される。光受信機100は、WDM信号に含まれる搬送波のうち受信の対象となる波長の信号光を選択して復調する。本実施形態の光受信機100は、光送信機200において多値位相変調された信号光を復調するためのデジタルコヒーレント検波機能を備える。
 図2は、第1の実施形態の光受信機100の構成例を示すブロック図である。光受信機100は、光受信部110と制御部120とを備える。光受信機100は、光伝送路210からWDM信号を受信し、局部発振(Local Oscillation、LO)光を用いてWDM信号をコヒーレント検波する。これにより、WDM信号から選択された信号光が検波され、電気信号として出力される。光受信部110は、LO光のパワー及び電気信号のビットエラーレートを制御部120へ出力する。電気信号は、光受信機100の外部へ出力される。光受信部110は、上記の機能を備える光受信手段を担う。
 制御部120は、光受信部110から出力されるLO光のパワー、及び、電気信号のビットエラーレートをモニタし、LO光のパワー及びビットエラーレートに基づいて信号光の信号対雑音比(Signal to Noise Ratio、SNR)を計算する。SNRは、信号光の信号電力の雑音電力に対する比である。そして、制御部120は、SNR及びLO光のパワーに基づいて、WDM信号に含まれる信号光の波長の数と信号光の波長当たりのパワーを推定する。制御部120は、上記の機能を担う制御手段を担う。
 光受信機100は、SNR及びLO光のパワーに基づいて、信号光に含まれる波長の数と信号光の波長当たりのパワーを求める。その結果、第1の実施形態の光受信機100は、WDM信号の波長数の推定及び信号光パワーの推定を容易に実施できるという効果を奏する。
 (第2の実施形態)
 図3は、本発明の第2の実施形態の光受信機100の構成例を示すブロック図である。第2の実施形態では、第1の実施形態で説明した光受信機100のより詳細な構成例及び動作例を説明する。
 第2の実施形態の光受信機100は、局部発振光源(LO)111、90度光ハイブリッド(HYB)112、光電変換部(HS-PD)113、アナログデジタル変換部(A/D)114、信号処理部(DSP)115を備える。光受信部110は、これらを含む。デジタルコヒーレント受信機の一般的な構成は知られているため、細部の説明は省略する。
 光受信機100は、WDM信号を光伝送路210から受信する。WDM信号は、90度光ハイブリッド(90 degree Optical Hybrid、HYB)112において、同相位相(In phase)信号光及び直交位相(Quadrature phase)信号光に分離される。分離された信号光は、それぞれ、局部発振光源111が出力するLO光と干渉した後、光電変換部113において検波信号に変換される。光電変換部は、高速フォトダイオード(High Speed Photodiode、HS-PD)などの受光素子を備える。LO光のパワー(LO光パワー)PLOは、局部発振光源111から制御部120に通知される。光電変換部113から出力された検波信号はアナログデジタル変換部114(Analog to Digital Converter、A/D)114においてサンプリングされてデジタル信号に変換される。
 信号処理部(Digital Signal Processor、DSP)115は、アナログデジタル変換部114から出力されたデジタル信号に対してデジタルコヒーレント復調処理を行い、電気信号を生成する。電気信号は、伝送データを含む信号である。信号処理部115は、誤り訂正数に基づいて求められた電気信号のビットエラーレート(Bit Error Rate、BER)を制御部120に通知する。
 制御部120は、局部発振光源111から通知されるLO光パワーPLO及び信号処理部115から通知されるBERに基づいて信号光のSNR、受信されたWDM信号の波長数及び1波長当たりのパワーを求める。さらに、制御部120は、求められた波長数及び1波長当たりのパワーに基づいて、LO光パワーPLOを制御する。
 図4は、制御部120の構成例を示すブロック図である。制御部120は、演算部121、記憶部122を備える。記憶部122は、ルックアップテーブル(Look Up Table、LUT)123及びプログラム124を記憶する。記憶部122は、固定された、一時的でない記憶媒体である。記憶部122として半導体メモリ又は固定磁気ディスク装置が用いられるが、これらには限定されない。演算部121として中央処理装置(Central Processing Unit、CPU)を用いることができる。演算部121は、プログラム124を記憶部122から読み出して実行することで制御部120の機能を実現する。演算部121は、局部発振光源111及び信号処理部115と接続されている。ルックアップテーブル123については、図5を用いて後述する。
 次に、光受信機100におけるSNRの計算手順について説明する。まず、光受信機100に入力されるWDM光に含まれる信号光のSNRを計算する。本実施形態では、光受信機100の電気回路において、信号光のSNRを計算する。
 光受信機100に入力される各信号光のパワーをPsig[W]、LO光パワーをPLO[W]とし、光電変換部113の受光素子の受光感度をR[A/W]とする。この場合、信号光がLO光によりコヒーレント検波されたときに流れるPD電流Isigの電力[dBm]は、式(1)で表される。なお、以下の式(1)~(7)において、[dBm]で示される電力は光受信機100の受信帯域における電力を示す。

Figure JPOXMLDOC01-appb-I000001
                 ・・・(1)
 光受信機100に入力されるASE(Amplified Spontaneous Emission)雑音光のパワーをPase[W]とすると、ASE雑音光とLO光とのビート雑音電流Iase-LOの電力[dBm]は、式(2)で表される。

Figure JPOXMLDOC01-appb-I000002
                 ・・・(2)
 ASE雑音光同士のビート雑音電流Iase-aseの電力[dBm]は、式(3)で表される。

Figure JPOXMLDOC01-appb-I000003
                 ・・・(3)
 光受信機100に入力される波長数Nchの信号光同士のビート雑音電流Isig-sigの電力[dBm]は、式(4)で表される。

Figure JPOXMLDOC01-appb-I000004
                  ・・・(4)
 次に、光受信機100のショット雑音に関する項を求める。ショット雑音とは、信号に現れる雑音の時間的ゆらぎである。電子電荷をq[C]とすると、光電変換部113の受光素子に流れるショット雑音電流Ishotの電力[dBm]は、式(5)で表される。

Figure JPOXMLDOC01-appb-I000005
                        ・・・(5)
 光受信機100の回路の熱雑音電流Ithermal[dBm]は、ボルツマン定数をk、増幅器の温度をT[K]、回路の負荷をR[Ω]とすると、式(6)で表される。

Figure JPOXMLDOC01-appb-I000006
             ・・・(6)
 光受信機100に入力される信号光のSNRは、入力される信号光のパワーと雑音パワーとの比であるので、式(1)~式(6)から、式(7)が得られる。

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
                                ・・・(7)
 また、4値位相変調信号における受信Q値とSNRとの関係は、式(8)で表される。

Figure JPOXMLDOC01-appb-I000009
             ・・・(8)
 そして、相補誤差関数erfc(complementary error function)を用いたBERとQ値との一般的な関係式は、式(9)で表される。

Figure JPOXMLDOC01-appb-I000010
                     ・・・(9)
と表わされる。
 ここで、式(7)に実際の値を入力することで、光受信機100への1波長当たりの信号光の入力パワーPsigと、受信SNRとの関係を求めることができる。さらに、式(8)を用いることでSNRとQ値とを換算することができる。
 図5は信号光の波長数Nchが1、2、16、48、96のそれぞれの場合においてLO光パワーPLOが+7、+9、+13、+15dBmの条件でSNRの計算結果の一例を示すルックアップテーブルである。図5は、LO光パワー、波長数及び1波長当たりの信号光の入力パワーを変えてSNRを計算した結果である。図5のような表は、ルックアップテーブル(LUT)123として記憶部122に記憶される。図6は、LO光パワーPLOが+7dBmの場合の、波長数Nchが1、16、48、96のそれぞれの場合におけるSNRの計算結果の例のグラフである。図6のグラフは、ルックアップテーブルに基づいて描画することができる。図6の横軸は1波長当たりの信号光の入力パワーPsig(Signal Input Power/ch)であり、縦軸はSNRである。
 実際に光受信機100に信号光が入力された場合に、異なるLO光パワーにおけるSNRを計算し、その結果から波長数及び1波長当たりの信号光の入力パワーPsigを推定することができる。この推定は、波長数Nchと1波長当たりの信号光の入力パワーPsigが不明の場合にも行うことができる。実際のSNRは、信号処理部115が出力するBERの値及び局部発振光源111が出力するLO光パワーPLOから、式(8)及び式(9)を用いて計算できる。
 まず、図6において縦軸のSNRの値を、受信された信号光に基づく計算値に固定すると、波長数Nchと1波長当たりの信号光の入力パワーPsigとの組み合わせが、グラフの何点かの交点に絞られる。ここでは、計算されたSNRが16.0dBであった場合について説明する。図6を参照すると、SNR=16.0dBの横軸は、グラフと5点で交差する。
 図7は、LO光パワーPLOが+9dBmの場合の、SNRの計算結果の例のグラフである。LO光パワーPLOを+9dBmに上昇させると、SNRの計算結果が16.3dBとなったとする。図7においても、SNR=16.3dBの横軸は、グラフと5点で交差する。しかし、光受信機100に入力される波長数Nch及び信号光の入力パワーPsig(「Signal Input Power/ch」)は図6の場合と変わらない。従って、図6と図7とで、SNRのグラフとの交点における信号光の入力パワーPsigと波長数Nchとがいずれの図でも同一である条件が、光受信機100の現在の信号光の状態を示していると推定できる。本実施形態では、図6及び図7から、波長数Nch及び信号光の入力パワーの組み合わせがNch=48、Psig=-8.5dBm/chである場合が、現在入力されている信号光の条件であると推定できる。もし、この時点で波長数Nch及び信号光の入力パワーPsigの組み合わせが2種類以上残っている場合には、LO光パワーPLOをさらに異なる値に変化させて、波長数Nch及び信号光の入力パワーPsigの組み合わせを絞り込んでもよい。
 また、図6及び図7において、推定される信号光の入力パワーPsigと波長数Nchとはグラフ上の値と厳密に一致しなくてもよい。例えば、グラフ上の点の位置との距離が所定の値以下である範囲内にある点に対応する信号光の入力パワーPsig及び波長数Nchを推定値としてもよい。すなわち、LO光パワーPLOが異なる2以上の場合において、信号光の入力パワーPsig及び波長数Nchがそれぞれの場合に略一致する信号光の入力パワーPsig及び波長数Nchを推定結果としてもよい。
 続いて、LO光パワーPLOの最適化について説明する。一般的なデジタルコヒーレント受信機では、受信特性に影響を与える重要なパラメータであるLO光パワーPLOを最適に制御することが困難であった。例えば、受信される波長数が1波から数十波に変化した場合に、WDM信号の波長数Nchと波長毎の信号光の入力パワーPsigとをモニタすることが困難であったため、LO光パワーを最適に制御することも困難であった。
 本実施形態の手順によれば、推定された波長数Nch及び信号光の入力パワーPsigを固定し、ルックアップテーブルを用いてSNRが最良となるLO光パワーPLOを求めることができる。図8は、SNRの計算結果を示す、図5と同一のルックアップテーブルである。図9は、PLOが+13dBmである場合のSNRの計算結果を示すグラフである。図8を参照すると、上記で推定された、「波長数Nch=48及び信号光の入力パワーPsig=-8.5dBm」の場合には、SNRを最良にするLO光パワーPLOが約+13dBmであることがわかる(図8の太枠内)。従って、PLOが+13dBmとなるように制御部120が局部発振光源111を制御することで、信号光のSNRが約16.6dBに向上し(図8及び図9)、受信特性の改善が可能になる。
 図10は、第2の実施形態における、制御部120の動作手順の例を示すフローチャートである。ルックアップテーブルを用いた説明では、SNRをパラメータの1つとして説明した。式(8)に示されるように、SNRとQ値とは容易に換算可能である。従って、図10に示すように、SNRに代えてQ値を用いて波長数Nch及び信号光パワーPsigの組み合わせを推定し、LO光パワーPLOを最適化できる。
 まず、1波長当たりの信号光パワーとQ値(又はSNR)との関係を、波長数及びLO光パワーをパラメータとして計算し、LUTとして保存する(図10のステップS01)。LUTは、記憶部122に保存される。続いて、受信した信号光のBERからQ値を計算する(ステップS02)。Q値の計算には、式(9)を用いることができる。そして、Q値の計算結果及びLO光パワーに基づいて、LUTから波長数と1波長当たりの信号光パワーの組み合わせを抽出する(ステップS03)。その後、LO光パワーを変化させ、その状態で信号光のQ値を再計算する(ステップS04)。変化させたLO光パワー及び再計算したQ値に基づいてLUTを参照し、波長数と1波長当たりの信号光パワーの組み合わせを選択する(ステップS05)。ここで、ステップS03で抽出された組み合わせと同一の組み合わせを選択し、その組み合わせから、波長数及び1波長当たりの信号光パワーを推定する(ステップS06)。
 さらに、推定された波長数及び1波長当たりの信号光パワーに基づいてLUTを参照し、Q値が最良となるようにLO光パワーを制御してもよい(ステップS07)。
 このように、第2の実施形態の光受信機100は、信号処理部115から出力されるBER及び局部発振光源111から出力されるLO光パワーPLOに基づいて、入力された信号光のSNR又はQ値を計算する。その結果、専用の測定器や分光デバイスを用いることなく信号光のSNR及びQ値を計算で求めることが可能であり、さらに、WDM信号の波長数Nch及び1波長あたりの信号光の入力パワーPsigを推定することができる。
 また、本実施形態の手順は、ビットレートや信号光の変調方式に依存しない。すなわち、伝送速度が40Gbpsであっても100Gbpsであっても、上記の手順は伝送速度の影響を受けない。また、信号光の変調方式も、4値位相変調に限定されない。本実施形態の手順は、2値や8値の位相変調、あるいはNRZ(Non-Return-to-Zero)信号やRZ(Return-to-Zero)信号などの強度変調によって伝送されるWDM信号にも適用できる。さらにはm-QAM(m値 Quadrature Amplitude Modulation)などの位相変調と強度変調を組み合わせた変調方式にも適用できる。
 本実施形態の効果について説明する。
 第1の効果は、SNRをモニタするための測定器や、主信号光の特性劣化に繋がる光分岐デバイスなどが不要なことである。その理由は、デジタルコヒーレント受信機に備えられた信号処理部が出力するBER及び局部発振光源111が出力するLO光パワーPLOを用いてSNR又はQ値を計算で求めるからである。また、その結果を用いて、光受信機100に入力する1波長当たりの信号光パワーPsigと波長数Nchと計算によって推定できるからである。
 いいかえれば、本実施形態の光受信機100は、信号処理部115から得られる実測可能なBERを用いて、実測が困難な、光受信機100に入力する1波長当たりの信号光パワーPsigと、波長数Nchを計算で求めることができる。
 第2の効果は、LO光パワーPLOを最適に制御できることである。その理由は、推定された1波長当たりの信号光パワーPsigと波長数Nchにおいて、最適なSNRが得られるLO光パワーPLOを、計算あるいはルックアップテーブルの参照により求めることができるからである。
 なお、本発明の実施形態は以下の付記のようにも記載されうるが、これらには限定されない。
 (付記1)
 信号光を含む波長多重光を受信し、局部発振光を用いて前記信号光をコヒーレント検波することで前記信号光を電気信号に変換し、前記局部発振光のパワー、前記電気信号のビットエラーレート及び前記電気信号を出力する光受信手段と、
 前記局部発振光のパワー及び前記ビットエラーレートをモニタし、前記局部発振光のパワー及び前記ビットエラーレートに基づいて前記信号光の信号対雑音比を計算し、前記信号対雑音比及び前記局部発振光のパワーに基づいて前記波長多重光の波長の数と前記信号光の1波長当たりのパワーを求める制御手段と、
を備える光受信機。
 (付記2)
 前記制御手段は、前記局部発振光のパワーが異なる2以上の場合において、前記波長の数と前記1波長当たりのパワーとがそれぞれの場合に略一致する、前記波長の数と前記1波長当たりのパワーを求める、付記1に記載された光受信機。
 (付記3)
 前記制御手段は、前記波長の数、前記1波長当たりのパワー、前記信号対雑音比及び前記局部発振光のパワーとの関係をあらかじめ計算したルックアップテーブルを記憶し、前記ルックアップテーブルを用いて前記波長の数と前記1波長当たりのパワーを求める、付記1又は2に記載された光受信機。
 (付記4)
 前記制御手段は、計算された前記信号対雑音比が改善するように前記局部発振光のパワーを制御する、付記1乃至3のいずれか1項に記載された光受信機。
 (付記5)
 前記制御手段は、前記信号対雑音比に代えてQ値を用いる、付記1乃至4のいずれか1項に記載された光受信機。
 (付記6)
 信号光を含む波長多重光を受信し、
 局部発振光を用いて前記信号光をコヒーレント検波することで前記信号光を電気信号に変換し、
 前記局部発振光のパワー、前記信号光のビットエラーレート及び前記電気信号を出力し、
 前記局部発振光のパワー及び前記ビットエラーレートをモニタし、
 前記局部発振光のパワー及び前記ビットエラーレートに基づいて前記信号光の信号対雑音比を計算し、
 前記信号対雑音比及び前記局部発振光のパワーに基づいて前記波長多重光の波長の数と前記信号光の1波長当たりのパワーを求める、
光受信方法。
 (付記7)
 前記局部発振光のパワーが異なる2以上の場合において、前記波長の数と前記波長当たりのパワーとがそれぞれの場合に略一致する、前記波長の数と前記1波長当たりのパワーを求める、付記6に記載された光受信方法。
 (付記8)
 前記波長の数、前記1波長当たりのパワー、前記信号対雑音比及び前記局部発振光のパワーとの関係を用いて前記波長の数と前記1波長当たりのパワーを求める、付記6又は7に記載された光受信方法。
 (付記9)
 前記信号対雑音比が改善するように前記局部発振光のパワーを制御する、付記6乃至8のいずれか1項に記載された光受信方法。
 (付記10)
 前記信号対雑音比に代えてQ値を用いる、付記6乃至9のいずれか1項に記載された光受信方法。
 (付記11)
 光受信機のコンピュータに、
 信号光を含む波長多重光を受信する手順、
 局部発振光を用いて前記信号光をコヒーレント検波することで前記信号光を電気信号に変換する手順、
 前記局部発振光のパワー、前記信号光のビットエラーレート及び前記電気信号を出力する手順、
 前記局部発振光のパワー及び前記ビットエラーレートをモニタする手順、
 前記局部発振光のパワー及び前記ビットエラーレートに基づいて前記信号光の信号対雑音比を計算する手順、
 前記信号対雑音比及び前記局部発振光のパワーに基づいて前記波長多重光の波長の数と前記信号光の波長当たりのパワーを求める手順、
を実行させるための光受信機のプログラム。
 以上、実施形態を参照して本発明を説明したが、本発明は上記の実施形態に限定されない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の作用及び効果は、上述の実施形態の全部又は一部を組み合わせた構成によって実現されてもよい。この出願は、2017年11月10日に出願された日本出願特願2017-217027を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 光伝送システム
100 光受信機
110 光受信部
111 局部発振光源(LO)
112 90度光ハイブリッド(HYB)
113 光電変換部(HS-PD)
114 アナログデジタル変換部(A/D)
115 信号処理部(DSP)
120 制御部
121 演算部
122 記憶部
123 ルックアップテーブル(LUT)
124 プログラム
200 光送信機
210 光伝送路

Claims (11)

  1.  信号光を含む波長多重光を受信し、局部発振光を用いて前記信号光をコヒーレント検波することで前記信号光を電気信号に変換し、前記局部発振光のパワー、前記電気信号のビットエラーレート及び前記電気信号を出力する光受信手段と、
     前記局部発振光のパワー及び前記ビットエラーレートをモニタし、前記局部発振光のパワー及び前記ビットエラーレートに基づいて前記信号光の信号対雑音比を計算し、前記信号対雑音比及び前記局部発振光のパワーに基づいて前記波長多重光の波長の数と前記信号光の1波長当たりのパワーを求める制御手段と、
    を備える光受信機。
  2.  前記制御手段は、前記局部発振光のパワーが異なる2以上の場合において、前記波長の数と前記1波長当たりのパワーとがそれぞれの場合に略一致する、前記波長の数と前記1波長当たりのパワーを求める、請求項1に記載された光受信機。
  3.  前記制御手段は、前記波長の数、前記1波長当たりのパワー、前記信号対雑音比及び前記局部発振光のパワーとの関係をあらかじめ計算したルックアップテーブルを記憶し、前記ルックアップテーブルを用いて前記波長の数と前記1波長当たりのパワーを求める、請求項1又は2に記載された光受信機。
  4.  前記制御手段は、計算された前記信号対雑音比が改善するように前記局部発振光のパワーを制御する、請求項1乃至3のいずれか1項に記載された光受信機。
  5.  前記制御手段は、前記信号対雑音比に代えてQ値を用いる、請求項1乃至4のいずれか1項に記載された光受信機。
  6.  信号光を含む波長多重光を受信し、
     局部発振光を用いて前記信号光をコヒーレント検波することで前記信号光を電気信号に変換し、
     前記局部発振光のパワー、前記信号光のビットエラーレート及び前記電気信号を出力し、
     前記局部発振光のパワー及び前記ビットエラーレートをモニタし、
     前記局部発振光のパワー及び前記ビットエラーレートに基づいて前記信号光の信号対雑音比を計算し、
     前記信号対雑音比及び前記局部発振光のパワーに基づいて前記波長多重光の波長の数と前記信号光の1波長当たりのパワーを求める、
    光受信方法。
  7.  前記局部発振光のパワーが異なる2以上の場合において、前記波長の数と前記1波長当たりのパワーとがそれぞれの場合に略一致する、前記波長の数と前記1波長当たりのパワーを求める、請求項6に記載された光受信方法。
  8.  前記波長の数、前記1波長当たりのパワー、前記信号対雑音比及び前記局部発振光のパワーとの関係を用いて前記波長の数と前記1波長当たりのパワーを求める、請求項6又は7に記載された光受信方法。
  9.  前記信号対雑音比が改善するように前記局部発振光のパワーを制御する、請求項6乃至8のいずれか1項に記載された光受信方法。
  10.  前記信号対雑音比に代えてQ値を用いる、請求項6乃至9のいずれか1項に記載された光受信方法。
  11.  光受信機のコンピュータに、
     信号光を含む波長多重光を受信する手順、
     局部発振光を用いて前記信号光をコヒーレント検波することで前記信号光を電気信号に変換する手順、
     前記局部発振光のパワー、前記信号光のビットエラーレート及び前記電気信号を出力する手順、
     前記局部発振光のパワー及び前記ビットエラーレートをモニタする手順、
     前記局部発振光のパワー及び前記ビットエラーレートに基づいて前記信号光の信号対雑音比を計算する手順、
     前記信号対雑音比及び前記局部発振光のパワーに基づいて前記波長多重光の波長の数と前記信号光の波長当たりのパワーを求める手順、
    を実行させるための光受信機のプログラム、
    を記憶した記憶媒体。
PCT/JP2018/041286 2017-11-10 2018-11-07 光受信機及び光受信方法 WO2019093354A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880068752.8A CN111264038B (zh) 2017-11-10 2018-11-07 光学接收器和光学接收方法
EP18876307.2A EP3709536B1 (en) 2017-11-10 2018-11-07 Optical receiver and optical reception method
JP2019552829A JP7006703B2 (ja) 2017-11-10 2018-11-07 光受信機及び光受信方法
US16/753,585 US10924190B2 (en) 2017-11-10 2018-11-07 Optical receiver and optical reception method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-217027 2017-11-10
JP2017217027 2017-11-10

Publications (1)

Publication Number Publication Date
WO2019093354A1 true WO2019093354A1 (ja) 2019-05-16

Family

ID=66438366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041286 WO2019093354A1 (ja) 2017-11-10 2018-11-07 光受信機及び光受信方法

Country Status (5)

Country Link
US (1) US10924190B2 (ja)
EP (1) EP3709536B1 (ja)
JP (1) JP7006703B2 (ja)
CN (1) CN111264038B (ja)
WO (1) WO2019093354A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314486A (ja) * 2001-04-11 2002-10-25 Nec Miyagi Ltd Oadmシステム及びその波長数算出方法
JP2010245772A (ja) * 2009-04-03 2010-10-28 Fujitsu Ltd 光受信機および光受信方法
JP2014143518A (ja) * 2013-01-23 2014-08-07 Fujitsu Telecom Networks Ltd 伝送装置および伝送システム
JP2014165895A (ja) 2013-02-28 2014-09-08 Nec Corp 光受信機、osnr演算方法及びプログラム
JP2015170916A (ja) * 2014-03-05 2015-09-28 三菱電機株式会社 光伝送装置及び光伝送制御方法
JP2017217027A (ja) 2016-06-02 2017-12-14 有限会社ベネテック 車椅子及び車椅子用ブレーキ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361057B (en) * 2000-04-06 2002-06-26 Marconi Comm Ltd Optical signal monitor
US7460793B2 (en) * 2002-12-11 2008-12-02 Michael George Taylor Coherent optical detection and signal processing method and system
JP4727485B2 (ja) * 2006-03-31 2011-07-20 富士通株式会社 光伝送装置
US8073345B2 (en) * 2006-12-22 2011-12-06 Alcatel Lucent Frequency estimation in an intradyne optical receiver
US9203682B2 (en) * 2010-09-07 2015-12-01 Alcatel Lucent Frequency-dependent I/Q-signal imbalance correction coherent optical transceivers
JP5736837B2 (ja) * 2011-02-23 2015-06-17 富士通株式会社 光受信装置
US20120288286A1 (en) * 2011-05-12 2012-11-15 Alcatel-Lucent Usa Inc. Optical receiver for amplitude-modulated signals
US8768178B2 (en) * 2011-09-15 2014-07-01 Opnext Subsystems, Inc. Automatic gain control for high-speed coherent optical receivers
JP6156496B2 (ja) * 2013-07-11 2017-07-05 日本電気株式会社 光通信装置
JP6575303B2 (ja) * 2015-10-30 2019-09-18 富士通株式会社 光伝送装置、光パワーモニタ、及び、光パワーモニタ方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314486A (ja) * 2001-04-11 2002-10-25 Nec Miyagi Ltd Oadmシステム及びその波長数算出方法
JP2010245772A (ja) * 2009-04-03 2010-10-28 Fujitsu Ltd 光受信機および光受信方法
JP2014143518A (ja) * 2013-01-23 2014-08-07 Fujitsu Telecom Networks Ltd 伝送装置および伝送システム
JP2014165895A (ja) 2013-02-28 2014-09-08 Nec Corp 光受信機、osnr演算方法及びプログラム
JP2015170916A (ja) * 2014-03-05 2015-09-28 三菱電機株式会社 光伝送装置及び光伝送制御方法
JP2017217027A (ja) 2016-06-02 2017-12-14 有限会社ベネテック 車椅子及び車椅子用ブレーキ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3709536A4

Also Published As

Publication number Publication date
US20200336215A1 (en) 2020-10-22
JP7006703B2 (ja) 2022-01-24
EP3709536A1 (en) 2020-09-16
JPWO2019093354A1 (ja) 2020-10-22
CN111264038B (zh) 2023-03-24
EP3709536B1 (en) 2023-05-24
EP3709536A4 (en) 2021-01-06
CN111264038A (zh) 2020-06-09
US10924190B2 (en) 2021-02-16

Similar Documents

Publication Publication Date Title
JP5351342B2 (ja) コヒーレント光システムにおける非線形障害監視および緩和のためのキャリア位相推定器
JP5561500B2 (ja) デジタル受信機及びそれを用いた光通信システム
US9882647B2 (en) Optical transmission apparatus, optical transmission system, and polarization dependent loss monitor
JP5163454B2 (ja) デジタルコヒーレント光受信器において使用される周波数オフセット検出装置および検出方法
US20090214201A1 (en) Monitor circuit for monitoring property of optical fiber transmission line and quality of optical signal
JP5287516B2 (ja) デジタルコヒーレント光受信器
WO2013139039A1 (zh) 检测光信噪比的方法、装置、节点设备和网络系统
US20190036616A1 (en) Method for monitoring and correction of adjacent channel penalty in coherent optical transmission
JP6409493B2 (ja) 受信信号処理装置及び受信信号処理方法
JP6115185B2 (ja) 光受信機、osnr演算方法及びプログラム
US9270383B2 (en) Frequency and phase compensation for modulation formats using multiple sub-carriers
JP2018078544A (ja) バイアスドリフト補償装置、受信信号復元装置及び受信機
JP2013145942A (ja) 光送受信装置
JPWO2015004838A1 (ja) 光通信システム、光受信器、光受信器の制御方法及びプログラム
US20180175933A1 (en) Communication device, communication system and communication method for transmitting optical signal
US8755696B2 (en) Method and apparatus for controlling an optical receiver having delay paths
WO2019093354A1 (ja) 光受信機及び光受信方法
JP7156382B2 (ja) 光受信装置、通信システム、および受信方法
US11902014B2 (en) Signal processing device and transmission device
US9276674B2 (en) Estimating phase using test phases and interpolation for modulation formats using multiple sub-carriers
JP6093235B2 (ja) 光通信の品質情報の監視装置
JP5390488B2 (ja) 雑音信号除去装置、雑音信号除去の方法、及び光受信機
Millar et al. Experimental Characterisation of QAM16 at Symbol Rates up to 42Gbaud

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018876307

Country of ref document: EP

Effective date: 20200610