WO2019093306A1 - 撓み噛合い式歯車装置 - Google Patents

撓み噛合い式歯車装置 Download PDF

Info

Publication number
WO2019093306A1
WO2019093306A1 PCT/JP2018/041135 JP2018041135W WO2019093306A1 WO 2019093306 A1 WO2019093306 A1 WO 2019093306A1 JP 2018041135 W JP2018041135 W JP 2018041135W WO 2019093306 A1 WO2019093306 A1 WO 2019093306A1
Authority
WO
WIPO (PCT)
Prior art keywords
exciter
shaft
gear device
flexible
hole
Prior art date
Application number
PCT/JP2018/041135
Other languages
English (en)
French (fr)
Inventor
石塚 正幸
史人 田中
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201880059752.1A priority Critical patent/CN111316015B/zh
Priority to DE112018005346.6T priority patent/DE112018005346B4/de
Publication of WO2019093306A1 publication Critical patent/WO2019093306A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings

Definitions

  • the present invention relates to a flexible meshed gear device.
  • an external gear that is elastically deformed by an exciter an internal gear that meshes with the external gear, and an elastic gear bearing that includes an exciter bearing that is disposed between the exciter and the external gear.
  • an elastic gear bearing that includes an exciter bearing that is disposed between the exciter and the external gear.
  • the exciter bearing does not have a dedicated inner ring, and the outer peripheral surface of the exciter constitutes a rolling surface on which the rolling element of the exciter bearing rolls. (See FIG. 10 of Patent Document 1).
  • the exciter In the conventional flexible meshing gear device in which the outer peripheral surface of the exciter constitutes the rolling contact surface of the rolling element, the exciter generally has high hardness and high wear resistance so as to withstand surface pressure and wear from the rolling element. It is composed of a metal having
  • the exciter In the flexible meshed gear system, the exciter is mainly rotated at high speed, and in comparison with this, the external gear and the internal gear are rotated at very low speed. Therefore, most of the moment of inertia possessed by the flexible meshing gear system is occupied by the moment of inertia of the exciter, and the increase of the moment of inertia of the vibrator similarly sets the overall moment of inertia of the flexible meshing gear system. increase.
  • An object of the present invention is to provide a flexible meshed gear device capable of reducing the moment of inertia of a exciter.
  • a flexible meshed gear device comprising: a exciter bearing to be disposed; The outer circumferential surface of the exciter constitutes a rolling surface on which rolling elements of the exciter bearing roll.
  • the exciter shaft has a shaft portion which is connected to the exciter in an axial direction separately from the exciter.
  • the shaft portion may be a flexible meshed gear device configured of a material having a density smaller than that of the exciter.
  • FIG. 1 is a cross-sectional view showing a flexible meshing gear device of Embodiment 1 according to the present invention.
  • FIG. 2A is a front view of the exciter shaft according to Embodiment 1 as viewed in the axial direction
  • FIG. 2B is a cross-sectional view taken along line AA of FIG. 2A.
  • a direction along the rotation axis O1 of the flexible meshed gear device 1 is defined as an axial direction, a direction orthogonal to the rotation axis O1 as a radial direction, and a rotation direction around the rotation axis O1 as a circumferential direction.
  • the flexible meshed gear device 1 includes an exciter shaft 10 having shaft portions 11 and 12 and an exciter 13, an external gear 21 flexed and deformed by the exciter 13, and an outer gear Two internal gears 22 and 23 meshing with the tooth gear 21 and a exciter bearing 30 are provided.
  • the exciter bearing 30 is, for example, a roller bearing, and a plurality of rolling elements (for example, rollers) 31 and a cage 33 which holds circumferential intervals and axial positions of the plurality of rolling elements 31, external gear
  • An outer race 32 is interposed between the inner circumferential surface of the inner race 21 and the plurality of rolling elements 31.
  • the exciter bearing 30 is disposed between the outer peripheral surface of the exciter 13 and the inner peripheral surface of the external gear 21, and rotatably supports the exciter 13 relative to the external gear 21.
  • the plurality of rolling elements 31 are arranged side by side in the circumferential direction in a row, and further, the rows are provided in two rows in the axial direction.
  • the exciter body bearing may be in another form such as, for example, a ball bearing having a rolling element as a ball.
  • the exciter 13 has a non-circular (elliptical or the like) portion of the outer peripheral line of a cross section perpendicular to the rotation axis O1, and this portion rotates relative to the external gear 21 to make the external gear
  • the gear 21 is bent and deformed.
  • the exciter 13 has a hollow structure, and the hollow portion enables weight reduction. In addition, members such as wiring and piping are inserted into the hollow portion.
  • the outer peripheral surface of the exciter 13 doubles as the inner ring of the exciter bearing 30, and constitutes a rolling surface on which the rolling element 31 of the exciter bearing 30 contacts and rolls.
  • the material of the exciter 13 is an iron-based metal (for example, steel such as SUJ 2 or carburized steel), and has a density and surface hardness that can withstand surface pressure and wear from the rolling element 31.
  • the shaft portions 11 and 12 are members whose outer peripheral lines in a cross section perpendicular to the rotation axis O1 are circular, and are provided on both sides in the axial direction of the exciter 13 separately from the exciter 13.
  • the shaft portions 11 and 12 have a hollow structure, and the hollow portion can reduce the weight.
  • the inner diameter of the shaft portions 11 and 12 is smaller than the inner diameter of the exciter 13.
  • the shaft portions 11 and 12 are made of a material having a density lower than that of the exciter 13, such as aluminum, aluminum alloy, magnesium alloy, or resin such as FRP (Fiber-Reinforced Plastics).
  • the weight reduction of the axial parts 11 and 12 is achieved by being comprised by the low-density material.
  • the surface hardness of the shaft portions 11 and 12 may be lower than that of the outer peripheral surface of the exciter 13.
  • Gears are provided at the end of one shaft 11 (the end opposite to the exciter 13) and the end of the other shaft 12 (the end opposite the exciter 13).
  • a plurality of tap holes 113 and 123 are provided to which the members of the previous stage such as pulleys are connected.
  • the plurality of tap holes 113 and 123 are provided at positions different from the insertion holes 112 and 122 for connection described later in the circumferential direction.
  • the exciter shaft 10 includes a plurality of connecting bodies 101 that connect the exciter 13 and the shaft portions 11 and 12.
  • the connector 101 is a pin (for example, a spring pin) which is press-fitted and fixed to the insertion holes 112, 122, 132.
  • connection in the axial direction means a mode in which the members A and B are connected without any overlapping portion when viewed in the radial direction.
  • connection in the axial direction means a mode in which when viewed in the radial direction, portions partially overlap but the entire range in one axial direction of the member A and the member B is connected without overlapping with the other. .
  • the connector 101 When assembling the exciter shaft 10, the connector 101 is pressed into the insertion hole 132 of the exciter 13, and one end of the connector 101 is exposed to the outside from the insertion hole 132. And the ends of the shanks 11 and 12 are butted.
  • the exposed portion of the connector body 101 is press-fit into the insertion holes 112 and 122 of the shaft portions 11 and 12, and the inlay portion 131 of the exciter 13 and the inlay portions 111 and 121 of the shaft portions 11 and 12 are inlays.
  • the connector 101 connects the exciter 13 and the shafts 11 and 12 with high strength.
  • a sealing material such as liquid packing is provided on a connection surface between the shaft 11 and the exciter 13 and a connection surface between the shaft 12 and the exciter 13.
  • the flexible meshed gear device 1 further includes a first connecting member 41 integrated with the internal gear 22, a second connecting member 42 integrated with the internal gear 23, a casing member 43, and lids 44 and 45. , Main bearing 51 and bearings 52, 53.
  • the first connection member 41 is annular, and one internal gear 23 is provided on a part of the inner peripheral surface.
  • the second connection member 42 is annular, and the other internal gear 22 is provided on a part of the inner peripheral surface.
  • the internal gears 22 and 23 have rigidity and mesh with a part of the external gear 21, and the rotational movement is transmitted by changing the meshing point due to the bending deformation of the external gear 21.
  • the casing member 43 is connected to the first connection member 41 and covers the outer peripheral portion of the second connection member 42.
  • One lid 44 has an annular form and is connected to the first connection member 41 to cover one of the exciter bearing 30 and the external gear 21 in the axial direction. Further, the cover 44 covers the outer peripheral side of the shaft portion 11 of the exciter shaft 10.
  • the other lid 45 has an annular form and is connected to the second connection member 42 to cover the other of the exciter bearing 30 and the external gear 21 in the axial direction. In addition, the lid 45 covers the outer peripheral side of the shaft portion 12 of the exciter shaft 10.
  • the main bearing 51 is disposed between the casing member 43 and the second connection member 42, and rotatably supports the second connection member 42 with respect to the casing member 43.
  • the bearings 52 and 53 are disposed between the lids 44 and 45 and the shafts 11 and 12 of the exciter shaft 10, respectively, and rotatably support the shafts 11 and 12 with respect to the lids 44 and 45. .
  • the exciter shaft 10 is an input shaft
  • the first connecting member 41 having one internal gear 22 is an output shaft
  • the other has an internal gear 23.
  • the connection member 42 is used by being fixed to the external support member of the flexible meshed gear device 1. Furthermore, the number of teeth of one internal gear 22 and the number of teeth of the external gear 21 are set to be the same, and the number of teeth of the other internal gear 23 and the number of teeth of the external gear 21 are set to be different. Ru.
  • the rotation position of the external gear 21 and the internal gear 22 also changes in the rotational direction as the exciter shaft 10 rotates. Since the number of teeth of the internal gear 22 and the number of teeth of the external gear 21 are the same, the external gear 21 and the internal gear 22 do not rotate relative to each other, and the rotational movement of the external gear 21 has a reduction ratio It is transmitted to the internal gear 22 at 1: 1. By these, the rotational movement of the exciter shaft 10 is decelerated and output to the first connection member 41 which is an output shaft.
  • the reduction ratio can be changed by setting the number of teeth of the external gear 21 and the internal gears 23, 22.
  • the components used as the input shaft, the components used as the output shaft, and the components fixed to the support member are not limited to the above examples, and the exciter shaft 10, one internal gear 22 and the other It may be arbitrarily changed between the internal gear 23.
  • the flexible meshing gear device 1 When the flexible meshing gear device 1 rotates, in addition to the input torque according to the load, the friction loss and the resistance according to the grease stirring loss of the flexible meshing gear device 1, and the flexible meshing gear An input torque is required to compensate for the change in inertial energy of the device 1.
  • the exciter shaft 10 rotates at a very high speed with respect to the rotation of the external gear 21 or the internal gears 22, 23. Therefore, the ratio of the moment of inertia of the exciter shaft 10 to the total moment of inertia of the flexible meshed gear device 1 is very large (for example, 80% or more).
  • the exciter shaft 10 is configured such that the exciter 13 and the shaft portions 11 and 12 are axially connected.
  • the exciter 13 is made of a material sufficiently resistant to the surface pressure and friction from the rolling element 31 of the exciter bearing 30, while the shaft portions 11 and 12 are materials having a density lower than that of the exciter 13.
  • the moment of inertia of the exciter shaft 10 is 1/1, compared with the conventional configuration in which the shaft portion and the exciter shaft are integrated, for example. It can be reduced to about three. Therefore, at the start of rotational movement or during acceleration / deceleration, similar rotational movement can be transmitted with a small input torque as compared with the conventional configuration.
  • the inertia moment thereof can be reduced without decreasing the durability of the exciter shaft 10. Therefore, it is possible to reduce the power consumption of the entire system including the flexible meshed gear device 1 and the motor generating the rotational movement or to increase the rotational movement speed while maintaining the durability.
  • the exciter shaft 10 has the hollow shaft-shaped shaft portions 11 and 12 and the hollow shaft exciter 13. If the shaft portion and the exciter are integrally processed, the axially elongated exciter shaft is provided with a hollow portion that is long in the axial direction, which increases the degree of difficulty in processing and increases the processing cost.
  • the hollow portions may be separately processed in the shaft portions 11 and 12 and the exciter 13, and the processing difficulty can be reduced. Therefore, the hollow portion can be processed at low processing cost and with high accuracy, and furthermore, the diameter of the hollow portion can be increased. By increasing the diameter of the hollow portion, the moment of inertia of the exciter shaft 10 can be further reduced.
  • the rotary shaft may be passed through the hollow portion of the exciter shaft, and both may be fitted and used.
  • a conventional exciter shaft in which the shaft portion and the exciter are integrally processed, such processing is difficult and the processing cost is increased.
  • the flexible meshing gear device 1 of the first embodiment by processing the shaft portions 11 and 12 and the exciter 13 separately, the hollow having a large inner diameter in the axial center range as described above The part can be easily formed.
  • FIG. 3 is a cross-sectional view showing a flexible meshing gear device of Embodiment 2 according to the present invention.
  • 4A is a front view of the exciter shaft of the second embodiment viewed from the axial direction
  • FIG. 4B is a cross-sectional view taken along the line BB in FIG. 4A
  • FIG. 4C is a cross-sectional view taken along the line CC in FIG.
  • the flexible meshed gear device 1A of the second embodiment differs from the first embodiment in the connection structure of the exciter shaft 10A.
  • symbol is attached
  • the exciter shaft 10A of the second embodiment includes an exciter 13A, shaft portions 11A and 12A, and a plurality of connecting bodies 101A that connect these.
  • the exciter 13A has a hollow structure, and the outer peripheral line of the cross section perpendicular to the rotation axis O1 has a non-circular (eg, oval) portion, and this portion is disposed inward of the external gear 21. .
  • the outer peripheral surface of the exciter 13A doubles as the inner ring of the exciter bearing 30, and constitutes a rolling surface on which the rolling element 31 contacts and rolls.
  • the material of the exciter 13A is an iron-based metal (for example, steel such as SUJ2), and has a density and surface hardness that can withstand surface pressure and wear from the rolling element 31.
  • small diameter portions W1 and W2 having circular outlines in cross section perpendicular to the axial direction are provided so as to be continuous with the outer peripheral surfaces of the shaft portions 11A and 12A.
  • the small diameter portions W1 and W2 of the exciter 13A and the end portions of the shaft portions 11A and 12A continuous thereto are rotatably supported by bearings 52 and 53.
  • the shaft portions 11A and 12A are hollow members having a circular outer peripheral line in a cross section perpendicular to the rotation axis O1, and are provided separately on both sides in the axial direction of the exciter 13A. Be The inner diameter of the shaft portions 11A and 12A is smaller than the inner diameter of the exciter 13A.
  • the shaft portions 11A and 12A are made of, for example, a material having a density lower than that of the vibrator 13A, such as aluminum, an aluminum alloy, a magnesium alloy, or a resin such as FRP.
  • the weight reduction of axial part 11A, 12A is achieved more by being comprised by the material with a low density.
  • the shaft portions 11A and 12A may have lower surface hardness than the outer peripheral surface of the exciter 13A.
  • a plurality of tap holes 113A are provided at an end of one shaft 11A (an end opposite to the exciter 13A).
  • the tap holes 113A are provided at positions different in the circumferential direction from connection through holes 112A and 122A to be described later.
  • a plurality of tap holes are similarly provided at the end of the other shaft 12A (the end opposite to the exciter 13A).
  • the exciter 13A and the shaft portions 11A and 12A are provided with a plurality of through holes 132A, 112A and 122A for connection, which penetrate these in the axial direction.
  • the through holes 132A, 112A, 122A are provided at the same position in the circumferential direction.
  • the end face where the exciter 13A and the shaft portion 11A face each other, and the end face where the exciter 13A and the shaft portion 12A face each other are planar.
  • the through holes 112A, 122A, 132A correspond to an example of the insertion hole according to the present invention.
  • the connector 101A is a member such as a knock pin that enables highly accurate positioning and high-strength connection.
  • the exciter shaft 10A is configured by axially connecting the shaft portions 11A and 12A and the exciter 13A.
  • the connector 101A is press-fit to both ends of the through hole 132A of the exciter 13A, and one end of the connector 101A is exposed to the outside from the through hole 132A.
  • the end and the end of the shank 11A, 12A are butted.
  • the exposed portions of the connector 101A are press-fit into the through holes 112A and 122A of the shaft portions 11A and 12A.
  • Such connection achieves highly accurate positioning and high strength connection.
  • the exciter 13A is configured to sufficiently withstand the surface pressure and the friction from the rolling elements 31, and The moment of inertia of the vibrator shaft 10A can be reduced. Therefore, the power consumption of the entire system including the flexible meshing gear device 1A and the motor generating the rotational movement is reduced or the rotational movement speed is increased without reducing the durability of the flexible meshing gear device 1A. be able to.
  • the exciter shaft 10A is divided in the axial direction.
  • the hollow portion of the exciter shaft 10A can be provided with high accuracy and low processing cost, and the diameter of the hollow portion is increased to make the moment of inertia of the exciter shaft 10A Can be further reduced.
  • the flexible meshing gear device 1A of the second embodiment since the exciter shaft 10A is divided in the axial direction, it is difficult to process the axial hole in the side wall of the exciter shaft 10A. It can be lowered. Thereby, the location into which the connector 101A is press-fitted can be set as the through holes 112A, 122A, and 132A. Further, the weight of the shaft portions 11A, 12A and the exciter 13A can be further reduced by the portions of the through holes 112A, 122A, 132A not occupied by the connector 101A. Thus, the moment of inertia of the exciter shaft 10A can be further reduced.
  • FIG. 5 is a cross-sectional view showing a flexible meshing gear device according to a third embodiment of the present invention.
  • 6A is a front view of the exciter shaft according to the third embodiment as viewed in the axial direction
  • FIG. 6B is a sectional view taken along the line DD of FIG. 6A
  • FIG. 6C is a sectional view taken along the line EE of FIG.
  • the flexible meshed gear device 1B of the third embodiment is different from that of the first embodiment in the connection structure of the exciter shaft 10B.
  • symbol is attached
  • the exciter shaft 10B of the third embodiment includes an exciter 13B, shaft portions 11B and 12B, and a plurality of connecting bodies 101B that connect these.
  • the exciter 13B has a hollow structure, and the outer peripheral line of the cross section perpendicular to the rotation axis O1 has a non-circular (elliptical or other) portion, and this portion is disposed inward of the external gear 21. .
  • the outer peripheral surface of the exciter 13B doubles as the inner ring of the exciter bearing 30, and constitutes a rolling surface on which the rolling element 31 contacts and rolls.
  • the material of the exciter 13B is an iron-based metal (for example, steel such as SUJ2), and has a density and surface hardness that can withstand surface pressure and wear from the rolling element 31.
  • small diameter portions W1 and W2 having circular outlines in cross section perpendicular to the axial direction are provided so as to be continuous with the outer peripheral surfaces of the shaft portions 11B and 12B.
  • bearings 52 and 53 rotatably support the small diameter portions W1 and W2 of the exciter 13B and the end portions of the shaft portions 11B and 12B continuous with the small diameter portions W1 and W2.
  • the shaft portions 11B and 12B are hollow members having a circular outer peripheral line with a cross section perpendicular to the rotation axis O1, and are provided separately on both sides in the axial direction of the exciter 13B separately from the exciter 13B.
  • the inner diameter of the shaft portions 11B and 12B is smaller than the inner diameter of the exciter 13B.
  • the shaft portions 11B and 12B are made of, for example, a material having a density lower than that of the vibrator 13B, such as aluminum, an aluminum alloy, a magnesium alloy, or a resin such as FRP.
  • the weight reduction of axial part 11B, 12B is achieved more by being comprised by the material with a low density.
  • the surface hardness of the shaft portions 11B and 12B may be lower than that of the outer peripheral surface of the exciter 13B.
  • a plurality of insertion holes 132B, 112B, 122B for coupling are provided at the end where the exciter 13B and one shaft 11B face each other and at the end where the exciter 13B and the other shaft 12B face each other. It is provided in the direction.
  • the end face where the exciter 13B and the shaft 11B face each other, and the end face where the exciter 13B and the shaft 12B face each other are planar.
  • a plurality of tap holes 113B are provided at an end of one shaft 11B (an end opposite to the exciter 13B).
  • the tap holes 113B are provided at positions different from the insertion holes 112B and 122B for connection in the circumferential direction.
  • a plurality of tap holes 123B are provided at the end of the other shaft 12B (the end opposite to the exciter 13B).
  • the through-hole 134 which penetrates in the axial direction and into which another member is not inserted is provided in the side wall part of the exciter 13B.
  • the through hole 134 is provided at a position different from the insertion hole 132B for connection in the circumferential direction, for example, at a position overlapping the tap holes 113B and 123B of the shaft portions 11B and 12B when viewed in the axial direction.
  • the through hole 134 may be replaced by an axial hole which does not penetrate at one end.
  • the through hole 134 corresponds to an example of the “hole into which another member is not inserted” according to the present invention.
  • the connector 101B is a member such as a knock pin that enables highly accurate positioning and high strength connection.
  • the exciter shaft 10B is configured by axially connecting the shaft portions 11B and 12B and the exciter 13B.
  • the exciter 13B is inserted with the connector 101B pressed into the insertion hole 132B for connection of the exciter 13B and one end of the connector 101B is exposed to the outside from the insert hole 132B. And the ends of the shanks 11B and 12B are butted. Then, the exposed portion of the connector 101B is press-fit into the connecting holes 112B and 122B for connecting the shaft portions 11B and 12B.
  • Such connection achieves highly accurate positioning and high strength connection.
  • the exciter 13B is configured to sufficiently withstand the surface pressure and the friction from the rolling elements 31, and The moment of inertia of the vibrator shaft 10B can be reduced. Therefore, the power consumption of the entire system including the flexible meshing gear device 1B and the motor generating the rotational movement is reduced or the rotational movement speeded up without reducing the durability of the flexible meshing gear device 1B. be able to.
  • the exciter shaft 10B is divided in the axial direction.
  • the hollow portion of the exciter shaft 10B can be provided with high accuracy and low processing cost, and the diameter of the hollow portion is increased to make the moment of inertia of the exciter shaft 10B. Can be further reduced.
  • the weight of the exciter 13B is further reduced by thinning the side wall of the exciter 13B by the through hole 134, and the exciter shaft 10B
  • the moment of inertia of can be made smaller.
  • FIG. 7 is a cross-sectional view showing a flexible meshing gear device of Embodiment 4 according to the present invention.
  • 8A is a front view of the exciter shaft of the third embodiment viewed from the axial direction
  • FIG. 8B is a cross-sectional view taken along the line FF of FIG. 8A
  • FIG. 8C is a front view of the exciter shaft viewed from the opposite side of the axial direction FIG.
  • the flexible meshed gear device 1C of the fourth embodiment is different from that of the first embodiment in the connection structure of the exciter shaft 10C.
  • symbol is attached
  • the exciter shaft 10C of the fourth embodiment includes an exciter 13C, shaft portions 11C and 12C, and a plurality of connecting bodies 101C that connect these.
  • the connector 101C corresponds to an example of the first bolt according to the present invention.
  • the exciter 13C has a hollow structure, and the outer peripheral line of the cross section perpendicular to the rotation axis O1 has a non-circular (elliptical or other) portion, and this portion is disposed inward of the external gear 21. .
  • the outer peripheral surface of the exciter 13C doubles as the inner ring of the exciter bearing 30, and constitutes a rolling surface on which the rolling element 31 contacts and rolls.
  • the material of the exciter 13C is an iron-based metal (for example, steel such as SUJ2), and has a density and surface hardness that can withstand contact pressure and wear from the rolling element 31.
  • the shaft portions 11C and 12C are hollow members having a circular outer peripheral line in a cross section perpendicular to the rotation axis O1 and provided separately on both sides in the axial direction of the exciter 13C. Be The inner diameters of the shaft portions 11C and 12C are smaller than the inner diameter of the exciter 13C.
  • the shaft portions 11C and 12C are made of a material having a density lower than that of the vibrator 13C, such as aluminum, an aluminum alloy, a magnesium alloy, or a resin such as FRP.
  • the weight reduction of the shaft parts 11C and 12C is further achieved by being made of a material having a low density.
  • the surface hardness of the shaft portions 11C and 12C may be lower than that of the outer circumferential surface of the exciter 13C.
  • inlay portions 111C and 131C are provided to be inlay-fitted with each other.
  • inlays 121C and 131C are provided to be inlay-fitted with each other.
  • the shaft portions 11C and 12C and the exciter 13C are provided with a plurality of through holes 112C, 122C and 132C for connection, which penetrate in the axial direction and into which the connector 101C is inserted.
  • An accommodation hole 115 for accommodating a bolt head is provided at one end (corresponding to a first end according to the present invention) of the connecting through holes 112C, 122C, 132C, and the opposite side of the accommodation hole 115
  • An internal thread is provided in the range W6.
  • the female screw is provided in the through hole 122C of the shaft 12C.
  • a part of the connecting through-hole 132C of the exciter 13C may be exposed in the hollow portion of the exciter 13C.
  • the connector 101C is exposed to the inside of the exciter 13C through this portion.
  • the through holes 112C, 122C, 132C correspond to an example of the insertion hole according to the present invention.
  • the shaft portions 11C and 12C and the exciter 13C are provided with a plurality of through holes 117, 127 and 137 for lightening.
  • the through holes 117, 127, and 137 are provided at positions different from the through holes 112C, 122C, and 132C for connection in the rotational direction.
  • the connecting body (bolt) 101C has a length such that it can be screwed halfway into the female screw of the shaft portion 12C.
  • the exciter shaft 10C is configured by axially connecting the shaft portions 11C and 12C and the exciter 13C.
  • the exciter 13C and the shaft 11C as well as the exciter 13C and the shaft 12C are butted so that the inlays 111C, 121C, and 131C are inlay-fitted.
  • the connector (bolt) 101C is inserted into the through holes 112C, 122C, 132C, and screwed with the female screw of the through hole 122C.
  • the exciter 13C and the shaft portions 11C and 12C are accurately positioned by in-row fitting, and the exciter 13C and the shaft portions 11C and 12C are connected with high strength by the connector 101C.
  • the flexible meshing gear device 1C of the fourth embodiment As described above, according to the flexible meshing gear device 1C of the fourth embodiment, as in the first embodiment, while the exciter 13C is configured to sufficiently withstand the surface pressure and the friction from the rolling elements 31, The moment of inertia of the vibrator shaft 10C can be reduced. Therefore, the power consumption of the entire system including the flexible meshing gear device 1C and the motor generating the rotational movement is reduced or the rotational movement speeded up without reducing the durability of the flexible meshing gear device 1C. be able to.
  • the exciter shaft 10C is divided in the axial direction.
  • the hollow portion of the exciter shaft 10C can be provided with high accuracy and low processing cost, and the diameter of the hollow portion is increased to make the moment of inertia of the exciter shaft 10C Can be further reduced.
  • the flexible meshing gear device 1C of the fourth embodiment since the exciter shaft 10C is divided in the axial direction, it is difficult to process an axial hole in the side wall of the exciter shaft 10C. It can be lowered. This facilitates the formation of the through holes 112C, 122C, 132C through which the connector 101C passes. Further, the formation of the through holes 117, 127, and 137 for lightening can be facilitated, and the moment of inertia of the exciter shaft 10C can be further reduced.
  • the flexible meshing gear device 1C of the fourth embodiment in a range from the end (corresponding to the second end according to the present invention) of the through hole 122C on the opposite side of the exciter 13C,
  • the part of the female screw is open. And this part can be utilized as a tap hole to which the member of the front
  • FIG. 7 shows an example in which the pulley 61 as a separate member is attached by the second bolt 62 using the through hole 122C.
  • the present invention is not limited to the above embodiment.
  • the exciter shaft has been described as having a structure in which the shaft portion is connected to both sides of the exciter, but in the case of the exciter shaft, the exciter and one shaft portion are axially connected
  • the flat type flexible meshing gear device has been described as an example in the above embodiment
  • the flexible meshing gear device of the present invention is, for example, a cup type, a top hat type, etc. It is applicable to a gear train. Other details described in the embodiment can be appropriately changed without departing from the scope of the invention.
  • the present invention is applicable to a flexible meshed gear device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

慣性モーメントの低い撓み噛合い式歯車装置を提供する。この撓み噛合い式歯車装置(1)は、起振体(13)を有する起振体軸(10)と、起振体(13)により撓み変形される外歯歯車(21)と、外歯歯車(21)と噛合う内歯歯車(22、23)と、起振体(13)と外歯歯車(21)との間に配置される起振体軸受け(30)とを備える。そして、起振体(13)の外周面が、起振体軸受けの転動体(31)が転走する転走面を構成し、起振体軸(10)は、起振体(13)とは別体で起振体(13)に軸方向に連結される軸部(11、12)を有し、軸部(11、12)は起振体(13)よりも密度の小さい素材で構成されている。

Description

撓み噛合い式歯車装置
 本発明は、撓み噛合い式歯車装置に関する。
 以前より、起振体により撓み変形される外歯歯車と、外歯歯車と噛合う内歯歯車と、起振体と外歯歯車との間に配置される起振体軸受けとを備える撓み噛合い式歯車装置がある。また、撓み噛合い式歯車装置の中には、起振体軸受けが専用の内輪を持たず、起振体の外周面が起振体軸受けの転動体が転走する転走面を構成するものがある(特許文献1の図10を参照)。
特開2017-106626号公報
 起振体の外周面が転動体の転走面を構成する従来の撓み噛合い式歯車装置では、転動体からの面圧及び摩耗に耐えるよう、一般に起振体は高い硬度及び高い耐摩耗性を有する金属で構成される。
 しかし、起振体を高い硬度及び高い耐摩耗性を有する金属で構成すると、起振体の重量が増し、起振体の慣性モーメントが増すという課題が生じる。
 撓み噛合い式歯車装置では、主に起振体が高速に回転され、これと比較して外歯歯車及び内歯歯車は非常に低速で回転される。したがって、撓み噛合い式歯車装置が持つ慣性モーメントの大部分は起振体の慣性モーメントにより占められ、起振体の慣性モーメントの増加は、撓み噛合い式歯車装置の全体の慣性モーメントを同様に増加させる。このため、起振体の慣性モーメントが増すと、撓み噛合い式歯車装置へ動力を出力するモータに要求される駆動力、具体的には回転運動の始動時又は加減速時に要求される駆動力が増し、消費電力の増加又は高速駆動を妨げるという課題が生じる。
 本発明は、起振体の慣性モーメントを低減できる撓み噛合い式歯車装置を提供することを目的とする。
 本発明は、
 起振体を有する起振体軸と、前記起振体により撓み変形される外歯歯車と、前記外歯歯車と噛合う内歯歯車と、前記起振体と前記外歯歯車との間に配置される起振体軸受けと、を備える撓み噛合い式歯車装置であって、
 前記起振体の外周面が、前記起振体軸受けの転動体が転走する転走面を構成し、
 前記起振体軸は、前記起振体とは別体で前記起振体に軸方向に連結される軸部を有し、
 前記軸部は、前記起振体よりも密度の小さい素材で構成されている撓み噛合い式歯車装置とした。
 本発明によれば、起振体の慣性モーメントを低減できるという効果が得られる。
本発明に係る実施形態1の撓み噛合い式歯車装置を示す断面図である。 実施形態1の起振体軸を軸方向から見た正面図である。 図2AのA-A線断面図である。 本発明に係る実施形態2の撓み噛合い式歯車装置を示す断面図である。 実施形態2の起振体軸を軸方向から見た正面図である。 図4AのB-B線断面図である。 図4BのC-C線断面図である。 本発明に係る実施形態3の撓み噛合い式歯車装置を示す断面図である。 実施形態3の起振体軸を軸方向から見た正面図である。 図6AのD-D線断面図である。 図6BのE-E線断面図である。 本発明に係る実施形態4の撓み噛合い式歯車装置を示す断面図である。 実施形態3の起振体軸を軸方向から見た正面図である。 図8AのF-F線断面図である。 実施形態3の起振体軸を軸方向の逆側から見た正面図である。
 以下、本発明の各実施の形態について図面を参照して詳細に説明する。
 (実施形態1)
 図1は、本発明に係る実施形態1の撓み噛合い式歯車装置を示す断面図である。図2Aは実施形態1の起振体軸を軸方向から見た正面図、図2Bは図2AのA-A線断面図である。以下、撓み噛合い式歯車装置1の回転軸O1に沿った方向を軸方向、回転軸O1から直交する方向を径方向、回転軸O1を中心とする回転方向を周方向と定義する。
 本発明に係る実施形態1の撓み噛合い式歯車装置1は、軸部11、12及び起振体13を有する起振体軸10、起振体13により撓み変形される外歯歯車21、外歯歯車21と噛合う2つの内歯歯車22、23、及び、起振体軸受け30を備える。
 起振体軸受け30は、例えばコロ軸受けであり、複数の転動体(例えばコロ)31と、複数の転動体31の周方向の間隔及び軸方向の位置を保持する保持器33と、外歯歯車21の内周面と複数の転動体31の間に挟まれる外輪32とを有する。起振体軸受け30は、起振体13の外周面と外歯歯車21の内周面との間に配置され、起振体13を外歯歯車21に対して相対的に回転可能に支持する。複数の転動体31は周方向に並んで列をなし、さらに、この列が軸方向に二列設けられている。なお、起振体軸受けは、例えば転動体を玉とする玉軸受けなど、その他の形態であってもよい。
 起振体13は、回転軸O1に垂直な断面の外周線が非円形(楕円状など)の部分を有し、この部分が外歯歯車21に対して相対的に回転することで、外歯歯車21を撓み変形させる。起振体13は、中空構造を有し、中空部によって軽量化が図られる。また、中空部には、配線や配管等の部材が挿通される。起振体13の外周面は、起振体軸受け30の内輪を兼ねており、起振体軸受け30の転動体31が接触して転走する転走面を構成する。起振体13の素材は、鉄系の金属(例えばSUJ2や浸炭鋼などの鋼材)であり、転動体31からの面圧及び摩耗に耐えうる密度及び表面硬度を有する。
 軸部11、12は、回転軸O1に垂直な断面の外周線が円形の部材であり、起振体13とは別体に起振体13の軸方向の両側に設けられる。軸部11、12は、中空構造を有し、中空部によって軽量化が図られる。軸部11、12の内径は、起振体13の内径よりも小さい。軸部11、12は、例えばアルミ、アルミ合金、マグネシウム合金、FRP(Fiber-Reinforced Plastics)等の樹脂など、起振体13よりも密度の低い素材で構成される。密度の低い素材で構成されることで、軸部11、12の軽量化が図られる。軸部11、12は、起振体13の外周面よりも表面硬度が低くてもよい。
 一方の軸部11の端部(起振体13とは逆側の端部)と、もう一方の軸部12の端部(起振体13とは逆側の端部)とには、歯車、プーリ等の前段の部材が連結される複数のタップ穴113、123が設けられている。複数のタップ穴113、123は、後述する連結用の挿入穴112、122と周方向に異なる位置に設けられている。
 一方の軸部11と起振体13とが向き合う両端部には、互いにインロー嵌合するインロー部111、131と、連結用の複数の挿入穴112、132とが設けられている。同様に、起振体13ともう一方の軸部12とが向き合う両端部には、互いにインロー嵌合するインロー部121、131と、連結用の複数の挿入穴122、132とが設けられている。連結用の挿入穴112、122、132は、端部から軸方向に設けられている。さらに、起振体軸10は、起振体13と軸部11、12とを連結する複数の連結体101を備える。連結体101は、挿入穴112、122、132に圧入されて固定されるピン(例えばスプリングピン)である。
 起振体軸10は、軸部11、12と起振体13とが軸方向に連結されて構成される。ここで、軸方向に連結とは、径方向に見て、部材Aと部材Bとが径方向に見て重なる部分がなく連結されている態様を意味する。あるいは、軸方向に連結とは、径方向に見て一部同士が重なるが部材Aと部材Bとの一方の軸方向の全範囲が他方に重なることなく両者が連結されている態様を意味する。
 起振体軸10の組み立ての際、起振体13の挿入穴132に連結体101が圧入され、連結体101の一端が挿入穴132から外部へ露出した状態で、起振体13の端部と、軸部11、12の端部とが突き合わされる。そして、連結体101の露出した部分が軸部11、12の挿入穴112、122に圧入され、かつ、起振体13のインロー部131と軸部11、12のインロー部111、121とがインロー嵌合する。インロー嵌合により、起振体13と軸部11、12とが正確に位置決めされ、連結体101により起振体13と軸部11、12とが高い強度で連結される。また、軸部11と起振体13との連結面、軸部12と起振体13との連結面には、液状パッキン等のシール材が設けられている。
 撓み噛合い式歯車装置1は、さらに、内歯歯車22と一体化された第1連結部材41、内歯歯車23と一体化された第2連結部材42、ケーシング部材43、蓋体44、45、主軸受け51及び軸受け52、53を備える。
 第1連結部材41は、環状であり、内周面の一部に一方の内歯歯車23が設けられている。第2連結部材42は、環状であり、内周面の一部に他方の内歯歯車22が設けられている。内歯歯車22、23は、剛性を有し、外歯歯車21の一部と噛合い、外歯歯車21の撓み変形により噛合う箇所が変化することで回転運動が伝達される。
 ケーシング部材43は、第1連結部材41に連結されて、第2連結部材42の外周部を覆う。一方の蓋体44は、環状の形態を有し、第1連結部材41に連結されて、起振体軸受け30及び外歯歯車21の軸方向における一方を覆う。また、蓋体44は、起振体軸10の軸部11の外周側を覆う。もう一方の蓋体45は、環状の形態を有し、第2連結部材42に連結されて、起振体軸受け30及び外歯歯車21の軸方向におけるもう一方を覆う。また、蓋体45は、起振体軸10の軸部12の外周側を覆う。
 主軸受け51は、ケーシング部材43と第2連結部材42との間に配置され、ケーシング部材43に対して回転可能に第2連結部材42を支持する。軸受け52、53は、蓋体44、45と起振体軸10の軸部11、12との間にそれぞれ配置され、蓋体44、45に対して回転可能に軸部11、12を支持する。
 <動作説明>
 上記構成において、典型的には、起振体軸10が入力軸とされ、一方の内歯歯車22を有する第1連結部材41が出力軸とされ、もう一方の内歯歯車23を有する第2連結部材42が撓み噛合い式歯車装置1の外部の支持部材に固定されて使用される。さらに、一方の内歯歯車22の歯数と外歯歯車21の歯数とが同数に設定され、他方の内歯歯車23の歯数と外歯歯車21の歯数とが異なるように設定される。
 外部から回転運動が入力されて起振体軸10が回転すると、起振体軸受け30を介して起振体軸10の運動が外歯歯車21に伝わる。このとき、外歯歯車21は、固定された内歯歯車23に一部が噛合っているので、起振体軸10の回転に追従して外歯歯車21が回転することはなく、起振体軸10が外歯歯車21の内側で相対的に回転する。さらに、外歯歯車21は、起振体13の外周面に沿うように規制されているため、起振体軸10の回転に従って撓み変形する。この変形の周期は、起振体軸10の回転周期に比例する。
 起振体軸10の回転により外歯歯車21が変形すると、起振体13の径が大きい部分が回転方向に移動し、これにより外歯歯車21と内歯歯車23との噛合う位置が回転方向に変化する。外歯歯車21と内歯歯車23との歯数に違いがあるため、噛合う位置が一周するごとに、外歯歯車21と内歯歯車23との噛合う歯がずれていき、これにより外歯歯車21が回転(自転)する。例えば、内歯歯車23の歯数が102で、外歯歯車21の歯数が100であれば、起振体軸10の回転運動は減速比100:2で減速されて外歯歯車21に伝達される。
 一方、外歯歯車21は内歯歯車22とも同様に噛合っているため、起振体軸10の回転によって外歯歯車21と内歯歯車22との噛合う位置も回転方向に変化する。内歯歯車22の歯数と外歯歯車21の歯数とは同数であるので、外歯歯車21と内歯歯車22とは相対的に回転せず、外歯歯車21の回転運動が減速比1:1で内歯歯車22へ伝達される。これらによって、起振体軸10の回転運動が減速されて、出力軸である第1連結部材41へ出力される。なお、減速比は、外歯歯車21と内歯歯車23、22との歯数の設定により変えることができる。また、入力軸とされる構成要素、出力軸とされる構成要素、支持部材へ固定される構成要素は、上記の例に限られず、起振体軸10、一方の内歯歯車22及び他方の内歯歯車23の間で任意に変更されてもよい。
 撓み噛合い式歯車装置1が回転運動する際、負荷に応じた入力トルクに加えて、撓み噛合い式歯車装置1の摩擦損失及びグリス撹拌損失に応じた抵抗分、並びに、撓み噛合い式歯車装置1の慣性エネルギーの変化分を補う入力トルクが必要となる。撓み噛合い式歯車装置1においては、外歯歯車21又は内歯歯車22、23の回転に対して起振体軸10が非常に高速に回転する。このため、撓み噛合い式歯車装置1の総合的な慣性モーメントのうち、起振体軸10の慣性モーメントが占める割合が非常に大きい(例えば8割以上)。したがって、起振体軸10の慣性モーメントが増加すると、同様の比率で撓み噛合い式歯車装置1の総合的な慣性モーメントが増加して、撓み噛合い式歯車装置1の回転運動の始動時又は加減速時に、大きな入力トルクが必要となる。
 しかし、実施形態1の撓み噛合い式歯車装置1においては、起振体軸10は起振体13と軸部11、12とが軸方向に連結されて構成される。そして、起振体13は起振体軸受け30の転動体31からの面圧及び摩擦に十分に耐える素材で構成される一方、軸部11、12が起振体13よりも密度の低い素材で構成される。これらにより、起振体軸10の耐久性を低下することなく、起振体軸10の慣性モーメントを、例えば軸部と起振体軸とが一体化された従来構成と比較して、1/3程度に低減することができる。したがって、回転運動の始動時又は加減速時に、従来構成と比較して、小さい入力トルクで同様の回転運動を伝達することができる。
 以上のように、実施形態1の撓み噛合い式歯車装置1によれば、起振体軸10の耐久性を低下させることなく、その慣性モーメントを低減できる。したがって、耐久性を維持しつつ、撓み噛合い式歯車装置1並びに回転運動を発生させるモータを含んだシステム全体の消費電力の低減又は回転運動の高速化を図ることができる。
 また、実施形態1の撓み噛合い式歯車装置1によれば、起振体軸10が、中空軸状の軸部11、12と中空軸状の起振体13とを有する。仮に、軸部と起振体とを一体的に加工する場合、軸方向に長い起振体軸に軸方向に長い中空部を設けることになり、加工の難度が増し、加工コストが高騰する。一方、実施形態1の構成では、軸部11、12及び起振体13に個別に中空部を加工すればよく、加工難度を下げることができる。このため、低い加工コストで高い精度で中空部を加工でき、さらに、中空部の径を大きくすることできる。中空部の径を大きくすることで、起振体軸10の慣性モーメントをより低減することができる。
 また、一般に、起振体軸の中空部に回転軸を通し、両者を嵌合させて使用することがある。このような場合、起振体軸の中空部のうち軸方向における中央の範囲は内径を大きくし、回転軸が中空部をスムーズに通るように構成する必要がある。軸部と起振体とが一体的に加工される従来の起振体軸では、このような加工は難しく、加工コストが高騰する。しかし、実施形態1の撓み噛合い式歯車装置1によれば、軸部11、12及び起振体13を個別に加工することで、上記のように軸方向の中央の範囲で内径が大きい中空部を容易に形成することができる。
 (実施形態2)
 図3は、本発明に係る実施形態2の撓み噛合い式歯車装置を示す断面図である。図4Aは実施形態2の起振体軸を軸方向から見た正面図、図4Bは図4AのB-B線断面図、図4Cは図4BのC-C線断面図である。
 実施形態2の撓み噛合い式歯車装置1Aは、起振体軸10Aの連結構造が実施形態1と異なる。実施形態1と同一の構成要素については、同一符号を付して、詳細な説明を省略する。
 実施形態2の起振体軸10Aは、起振体13Aと、軸部11A、12Aと、これらを連結する複数の連結体101Aとを備える。
 起振体13Aは、中空構造を有し、回転軸O1に垂直な断面の外周線が非円形(楕円状など)の部分を有し、この部分が外歯歯車21の内方に配置される。起振体13Aの外周面は、起振体軸受け30の内輪を兼ねており、転動体31が接触して転走する転走面を構成する。起振体13Aの素材は、鉄系の金属(例えばSUJ2などの鋼材)であり、転動体31からの面圧及び摩耗に耐えうる密度と表面硬度とを有する。
 起振体13Aの軸方向の両端部には、軸部11A、12Aの外周面と連続するように、軸方向に垂直な断面の外形線が円形の小径部W1、W2が設けられている。起振体軸10Aは、起振体13Aの小径部W1、W2とこれに連続する軸部11A、12Aの端部とが軸受け52、53によって回転自在に支持される。
 軸部11A、12Aは、中空構造を有しかつ回転軸O1に垂直な断面の外周線が円形の部材であり、起振体13Aとは別体に起振体13Aの軸方向の両側に設けられる。軸部11A、12Aの内径は、起振体13Aの内径よりも小さい。軸部11A、12Aは、例えばアルミ、アルミ合金、マグネシウム合金、FRP等の樹脂など、起振体13Aよりも密度の低い素材で構成される。密度の低い素材で構成されることで、軸部11A、12Aの軽量化がより図られる。軸部11A、12Aは、起振体13Aの外周面よりも表面硬度が低くてもよい。
 一方の軸部11Aの端部(起振体13Aとは逆側の端部)には、歯車、プーリ等の前段の部材が連結される複数のタップ穴113Aが設けられている。タップ穴113Aは、後述する連結用の貫通孔112A、122Aと周方向に異なる位置に設けられている。図示を省略するが、もう一方の軸部12Aの端部(起振体13Aとは逆側の端部)にも、同様に複数のタップ穴が設けられている。
 起振体13Aと軸部11A、12Aとには、これらを軸方向に貫通する連結用の複数の貫通孔132A、112A、122Aが設けられている。貫通孔132A、112A、122Aは、周方向の同一の位置に設けられている。起振体13Aと軸部11Aとが対向する端面、及び、起振体13Aと軸部12Aとが対向する端面は、平面状である。貫通孔112A、122A、132Aは、本発明に係る挿入穴の一例に相当する。
 連結体101Aは、ノックピンなど、精度の高い位置決めと高強度の連結を可能とする部材である。
 起振体軸10Aは、軸部11A、12Aと起振体13Aとが軸方向に連結されて構成される。起振体軸10Aの組み立ての際、起振体13Aの貫通孔132Aの両端に連結体101Aが圧入され、連結体101Aの一端が貫通孔132Aから外部へ露出した状態で、起振体13Aの端部と、軸部11A、12Aの端部とが突き合わされる。そして、連結体101Aの露出した部分が軸部11A、12Aの貫通孔112A、122Aに圧入される。このような連結により、精度の高い位置決めと高い強度の連結が実現される。
 以上のように、実施形態2の撓み噛合い式歯車装置1Aによれば、実施形態1と同様に、起振体13Aを転動体31からの面圧及び摩擦に十分に耐える構成としつつ、起振体軸10Aの慣性モーメントを低減できる。したがって、撓み噛合い式歯車装置1Aの耐久性を低下させずに、撓み噛合い式歯車装置1A及び回転運動を発生させるモータを含んだシステム全体の消費電力の低減又は回転運動の高速化を図ることができる。
 さらに、実施形態2の撓み噛合い式歯車装置1Aによれば、起振体軸10Aが軸方向において分割されている。これにより、実施形態1と同様に、起振体軸10Aの中空部を高い精度でかつ低い加工コストで設けることができ、また、中空部の径を大きくして起振体軸10Aの慣性モーメントをより低減することができる。加えて、起振体軸10Aの軸方向の中央の範囲で内径が大きくなるような、一体的に加工するには難しい形状の中空部を、低い加工コストで設けることができる。
 さらに、実施形態2の撓み噛合い式歯車装置1Aによれば、起振体軸10Aが軸方向において分割されているので、起振体軸10Aの側壁部に軸方向の孔を通す加工難度を下げることができる。これにより、連結体101Aが圧入される箇所を貫通孔112A、122A、132Aとすることができる。そして、貫通孔112A、122A、132Aのうち連結体101Aが占有しない部分によって、軸部11A、12A及び起振体13Aの重量の更なる低減を図ることができる。これにより、起振体軸10Aの慣性モーメントをより低減できる。
 (実施形態3)
 図5は、本発明に係る実施形態3の撓み噛合い式歯車装置を示す断面図である。図6Aは実施形態3の起振体軸を軸方向から見た正面図、図6Bは図6AのD-D線断面図、図6Cは図6BのE-E線断面図である。
 実施形態3の撓み噛合い式歯車装置1Bは、起振体軸10Bの連結構造が実施形態1と異なる。実施形態1と同一の構成要素については、同一符号を付して、詳細な説明を省略する。
 実施形態3の起振体軸10Bは、起振体13Bと、軸部11B、12Bと、これらを連結する複数の連結体101Bとを備える。
 起振体13Bは、中空構造を有し、回転軸O1に垂直な断面の外周線が非円形(楕円状など)の部分を有し、この部分が外歯歯車21の内方に配置される。起振体13Bの外周面は、起振体軸受け30の内輪を兼ねており、転動体31が接触して転走する転走面を構成する。起振体13Bの素材は、鉄系の金属(例えばSUJ2などの鋼材)であり、転動体31からの面圧及び摩耗に耐えうる密度と表面硬度とを有する。
 起振体13Bの軸方向の両端部には、軸部11B、12Bの外周面と連続するように、軸方向に垂直な断面の外形線が円形の小径部W1、W2が設けられている。起振体軸10Bは、起振体13Bの小径部W1、W2とこれに連続する軸部11B、12Bの端部とが軸受け52、53によって回転自在に支持される。
 軸部11B、12Bは、中空構造を有しかつ回転軸O1に垂直な断面の外周線が円形の部材であり、起振体13Bとは別体に起振体13Bの軸方向の両側に設けられる。軸部11B、12Bの内径は、起振体13Bの内径よりも小さい。軸部11B、12Bは、例えばアルミ、アルミ合金、マグネシウム合金、FRP等の樹脂など、起振体13Bよりも密度の低い素材で構成される。密度の低い素材で構成されることで、軸部11B、12Bの軽量化がより図られる。軸部11B、12Bは、起振体13Bの外周面よりも表面硬度が低くてもよい。
 起振体13Bと一方の軸部11Bとが向き合う端部と、起振体13Bと他方の軸部12Bとが向き合う端部とには、連結用の複数の挿入穴132B、112B、122Bが軸方向に設けられている。起振体13Bと軸部11Bとが対向する端面、及び、起振体13Bと軸部12Bとが対向する端面は、平面状である。
 一方の軸部11Bの端部(起振体13Bとは逆側の端部)には、歯車、プーリ等の前段の部材が連結される複数のタップ穴113Bが設けられている。タップ穴113Bは、連結用の挿入穴112B、122Bと周方向に異なる位置に設けられている。もう一方の軸部12Bの端部(起振体13Bとは逆側の端部)にも、同様に複数のタップ穴123Bが設けられている。
 さらに、起振体13Bの側壁部には、軸方向に貫通して別部材が挿入されない複数の貫通孔134が設けられている。貫通孔134は、連結用の挿入穴132Bと周方向に異なる位置、例えば、軸方向に見て、軸部11B、12Bのタップ穴113B、123Bと重なる位置に設けられている。貫通孔134による肉抜きにより、起振体13Bの重量の低減が図られる。なお、貫通孔134は、一方の端部に貫通しない軸方向の穴に代替されてもよい。貫通孔134は、本発明に係る「別部材が挿入されない穴」の一例に相当する。
 連結体101Bは、ノックピンなど、精度の高い位置決めと高強度の連結を可能とする部材である。
 起振体軸10Bは、軸部11B、12Bと起振体13Bとが軸方向に連結されて構成される。起振体軸10Bの組み立ての際、起振体13Bの連結用の挿入穴132Bに連結体101Bが圧入され、連結体101Bの一端が挿入穴132Bから外部へ露出した状態で、起振体13Bの端部と、軸部11B、12Bの端部とが突き合わされる。そして、連結体101Bの露出した部分が軸部11B、12Bの連結用の挿入穴112B、122Bに圧入される。このような連結により、精度の高い位置決めと高い強度の連結が実現される。
 以上のように、実施形態3の撓み噛合い式歯車装置1Bによれば、実施形態1と同様に、起振体13Bを転動体31からの面圧及び摩擦に十分に耐える構成としつつ、起振体軸10Bの慣性モーメントを低減できる。したがって、撓み噛合い式歯車装置1Bの耐久性を低下させずに、撓み噛合い式歯車装置1B及び回転運動を発生させるモータを含んだシステム全体の消費電力の低減又は回転運動の高速化を図ることができる。
 さらに、実施形態3の撓み噛合い式歯車装置1Bによれば、起振体軸10Bが軸方向において分割されている。これにより、実施形態1と同様に、起振体軸10Bの中空部を高い精度でかつ低い加工コストで設けることができ、また、中空部の径を大きくして起振体軸10Bの慣性モーメントをより低減することができる。加えて、起振体軸10Bの軸方向の中央の範囲で内径が大きくなるような、一体的に加工するには難しい形状の中空部を、低い加工コストで設けることができる。
 さらに、実施形態3の撓み噛合い式歯車装置1Bによれば、貫通孔134による起振体13Bの側壁部の肉抜きにより、起振体13Bの重量を更に低減させて、起振体軸10Bの慣性モーメントをより小さくすることができる。肉抜用の構成を、溝とせずに孔とすることで、起振体13Bの剛性の低下を抑えることができる。
 (実施形態4)
 図7は、本発明に係る実施形態4の撓み噛合い式歯車装置を示す断面図である。図8Aは実施形態3の起振体軸を軸方向から見た正面図、図8Bは図8AのF-F線断面図、図8Cは起振体軸を軸方向の逆側から見た正面図である。
 実施形態4の撓み噛合い式歯車装置1Cは、起振体軸10Cの連結構造が実施形態1と異なる。実施形態1と同一の構成要素については、同一符号を付して、詳細な説明を省略する。
 実施形態4の起振体軸10Cは、起振体13Cと、軸部11C、12Cと、これらを連結する複数の連結体101Cとを備える。連結体101Cは本発明に係る第1ボルトの一例に相当する。
 起振体13Cは、中空構造を有し、回転軸O1に垂直な断面の外周線が非円形(楕円状など)の部分を有し、この部分が外歯歯車21の内方に配置される。起振体13Cの外周面は、起振体軸受け30の内輪を兼ねており、転動体31が接触して転走する転走面を構成する。起振体13Cの素材は、鉄系の金属(例えばSUJ2などの鋼材)であり、転動体31からの面圧及び摩耗に耐えうる密度と表面硬度とを有する。
 軸部11C、12Cは、中空構造を有しかつ回転軸O1に垂直な断面の外周線が円形の部材であり、起振体13Cとは別体に起振体13Cの軸方向の両側に設けられる。軸部11C、12Cの内径は、起振体13Cの内径よりも小さい。軸部11C、12Cは、例えばアルミ、アルミ合金、マグネシウム合金、FRP等の樹脂など、起振体13Cよりも密度の低い素材で構成される。密度の低い素材で構成されることで、軸部11C、12Cの軽量化がより図られる。軸部11C、12Cは、起振体13Cの外周面よりも表面硬度が低くてもよい。
 一方の軸部11Cと起振体13Cとが向き合う端部には、互いにインロー嵌合するインロー部111C、131Cが設けられている。同様に、起振体13Cともう一方の軸部12Cとが向き合う端部には、互いにインロー嵌合するインロー部121C、131Cが設けられている。
 さらに、軸部11C、12Cと起振体13Cとには、軸方向に貫通し、連結体101Cが挿入される連結用の複数の貫通孔112C、122C、132Cが設けられている。連結用の貫通孔112C、122C、132Cのうち、一方の端部(本発明に係る第1端部に相当)にはボルト頭部を収容する収容穴115が設けられ、収容穴115の反対側の範囲W6には雌ネジが設けられている。雌ネジは軸部12Cの貫通孔122Cに設けられている。起振体13Cの連結用の貫通孔132Cの一部は、起振体13Cの中空部に一部が露出する構成としてもよい。露出する構成の場合、この部分を介して連結体101Cが、起振体13Cの内側に露出することになる。このような構成により、連結の強度を維持したまま、起振体軸10Cの重量をより低減して、起振体軸10Cの慣性モーメントをより低減できる。貫通孔112C、122C、132Cは、本発明に係る挿入穴の一例に相当する。
 加えて、軸部11C、12C及び起振体13Cには、肉抜き用の複数の貫通孔117、127、137が設けられている。貫通孔117、127、137は、連結用の貫通孔112C、122C、132Cと回転方向に異なる位置に設けられている。肉抜き用の構成を、溝とせずに、貫通孔とすることで、肉抜き用の構成により起振体軸10Cの剛性の低下を抑えることができる。貫通孔117、127、137は、本発明に係る「別部材が挿入されない穴」の一例に相当する。
 連結体(ボルト)101Cは、軸部12Cの雌ネジの途中まで螺合される長さを有する。
 起振体軸10Cは、軸部11C、12Cと起振体13Cとが軸方向に連結されて構成される。起振体軸10Cの組み立ての際、インロー部111C、121C、131Cがインロー嵌合するように、起振体13Cと軸部11C並びに起振体13Cと軸部12Cがつき合わされる。そして、連結体(ボルト)101Cが、貫通孔112C、122C、132Cに挿入されて、貫通孔122Cの雌ネジと螺合される。インロー嵌合により起振体13Cと軸部11C、12Cとが正確に位置決めされ、連結体101Cにより起振体13Cと軸部11C、12Cとが高い強度で連結される。
 以上のように、実施形態4の撓み噛合い式歯車装置1Cによれば、実施形態1と同様に、起振体13Cを転動体31からの面圧及び摩擦に十分に耐える構成としつつ、起振体軸10Cの慣性モーメントを低減できる。したがって、撓み噛合い式歯車装置1Cの耐久性を低下させずに、撓み噛合い式歯車装置1C及び回転運動を発生させるモータを含んだシステム全体の消費電力の低減又は回転運動の高速化を図ることができる。
 さらに、実施形態4の撓み噛合い式歯車装置1Cによれば、起振体軸10Cが軸方向において分割されている。これにより、実施形態1と同様に、起振体軸10Cの中空部を高い精度でかつ低い加工コストで設けることができ、また、中空部の径を大きくして起振体軸10Cの慣性モーメントをより低減することができる。加えて、起振体軸10Cの軸方向の中央の範囲で内径が大きくなるような、一体的に加工するには難しい形状の中空部を、低い加工コストで設けることができる。
 さらに、実施形態4の撓み噛合い式歯車装置1Cによれば、起振体軸10Cが軸方向において分割されているので、起振体軸10Cの側壁部に軸方向の孔を通す加工難度を下げることができる。これにより、連結体101Cを通す貫通孔112C、122C、132Cの形成が容易になる。また、肉抜き用の貫通孔117、127、137の形成も容易になり、起振体軸10Cの慣性モーメントをより低減できる。
 さらに、実施形態4の撓み噛合い式歯車装置1Cによれば、貫通孔122Cの起振体13Cの反対側の端部(本発明に係る第2端部に相当)から一部の範囲において、雌ネジの部分が開放されている。そして、この部分を、歯車、プーリ等の前段の部材が連結されるタップ穴として利用できる。図7には、貫通孔122Cを利用して、別部材としてのプーリ61が第2ボルト62により取り付けられている例を示している。
 以上、本発明の各実施形態について説明した。しかし、本発明は上記の実施形態に限られない。例えば、上記実施形態では、起振体軸は、起振体の両側に軸部が連結される構成として説明したが、起振体軸は起振体と一つの軸部とが軸方向に連結される構成としてもよい。また、上記実施形態では、フラット型の撓み噛合い式歯車装置を例にとって説明したが、本発明の撓み噛合い式歯車装置は、例えばカップ型、シルクハット型など、様々な形式の撓み噛合い式歯車装置に適用可能である。その他、実施の形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。
 本発明は、撓み噛合い式歯車装置に利用できる。
 1、1A、1B、1C 撓み噛合い式歯車装置
 10、10A、10B、10C 起振体軸
 11、11A、11B、11C、12、12A、12B、12C 軸部
 13、13A、13B、13C 起振体
 21 外歯歯車
 22、23 内歯歯車
 30 起振体軸受け
 31 転動体
 52、53 軸受け
 61 プーリ
 62 第2ボルト
 101、101A、101B 連結体
 101C 連結体(第1ボルト)
 111、121、131 インロー部
 112、122、132、112B、122B、132B 挿入穴
 112A、122A、132A、112C、122C、132C 貫通孔
 W6 雌ネジが形成された範囲
 117、127、137、134 貫通孔(別部材が挿入されない穴)

Claims (7)

  1.  起振体を有する起振体軸と、前記起振体により撓み変形される外歯歯車と、前記外歯歯車と噛合う内歯歯車と、前記起振体と前記外歯歯車との間に配置される起振体軸受けと、を備える撓み噛合い式歯車装置であって、
     前記起振体の外周面が、前記起振体軸受けの転動体が転走する転走面を構成し、
     前記起振体軸は、前記起振体とは別体で前記起振体に軸方向に連結される軸部を有し、
     前記軸部は、前記起振体よりも密度の小さい素材で構成されている、
     撓み噛合い式歯車装置。
  2.  前記起振体は、前記軸部よりも表面硬度が高い、
     請求項1記載の撓み噛合い式歯車装置。
  3.  前記起振体と前記軸部には互いにインロー嵌合するインロー部が設けられている、
     請求項1又は請求項2に記載の撓み噛合い式歯車装置。
  4.  前記起振体及び前記軸部の両方に設けられた挿入穴に挿入される連結体を有し、
     前記連結体は、前記起振体及び前記軸部の一方の内側に露出する、
     請求項1から請求項3のいずれか一項に記載の撓み噛合い式歯車装置。
  5.  前記起振体及び前記軸部は中空構造を有し、
     前記起振体の内径が前記軸部の内径よりも大きい、
     請求項1から請求項4のいずれか一項に記載の撓み噛合い式歯車装置。
  6.  前記起振体及び前記軸部を軸方向に貫通する貫通孔と、
     前記起振体の前記貫通孔及び前記軸部の前記貫通孔の少なくとも一方に設けられた雌ネジと、
     を更に備え、
     前記起振体及び前記軸部の前記貫通孔における前記雌ネジが設けられた方とは逆側の第1端部から挿入された第1ボルトにより前記起振体と前記軸部とが連結され、前記貫通孔の前記第1端部とは逆側の第2端部から挿入された第2ボルトにより前記起振体軸に別部材が固定される、
     請求項1から請求項5のいずれか一項に記載の撓み噛合い式歯車装置。
  7.  前記起振体及び前記軸部の少なくとも一方は、別部材が挿入されない穴を有する、
     請求項1から請求項6のいずれか一項に記載の撓み噛合い式歯車装置。
PCT/JP2018/041135 2017-11-08 2018-11-06 撓み噛合い式歯車装置 WO2019093306A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880059752.1A CN111316015B (zh) 2017-11-08 2018-11-06 挠曲啮合式齿轮装置
DE112018005346.6T DE112018005346B4 (de) 2017-11-08 2018-11-06 Zahnradvorrichtung des Biegeeingriffstyps

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-215182 2017-11-08
JP2017215182A JP6858690B2 (ja) 2017-11-08 2017-11-08 撓み噛合い式歯車装置

Publications (1)

Publication Number Publication Date
WO2019093306A1 true WO2019093306A1 (ja) 2019-05-16

Family

ID=66437735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041135 WO2019093306A1 (ja) 2017-11-08 2018-11-06 撓み噛合い式歯車装置

Country Status (4)

Country Link
JP (1) JP6858690B2 (ja)
CN (1) CN111316015B (ja)
DE (1) DE112018005346B4 (ja)
WO (1) WO2019093306A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168459A (ja) * 1989-11-10 1991-07-22 Renk Ag 軸受け装置
JP2001241517A (ja) * 2000-02-25 2001-09-07 Sumitomo Heavy Ind Ltd ケーシング組込式の内歯歯車構造、及び内接噛合遊星歯車構造
JP2005188740A (ja) * 2003-12-05 2005-07-14 Mitsubishi Heavy Ind Ltd 減速機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312364B2 (ja) * 2010-02-03 2013-10-09 住友重機械工業株式会社 撓み噛合い式歯車装置
JP6018512B2 (ja) * 2013-02-04 2016-11-02 住友重機械工業株式会社 撓み噛合い式歯車装置及びその製造方法
CN106461028B (zh) 2014-05-08 2019-08-27 谐波传动系统有限公司 波动齿轮装置的波动发生器及波动发生器的制造方法
DE102014218234B4 (de) 2014-09-11 2023-05-11 Schaeffler Technologies AG & Co. KG Oldhamkupplung und Verfahren zur Herstellung einer Oldhamkupplung
JP6779116B2 (ja) 2015-12-08 2020-11-04 住友重機械工業株式会社 撓み噛合い式歯車装置
JP6910904B2 (ja) 2017-09-25 2021-07-28 住友重機械工業株式会社 撓み噛合い式歯車装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168459A (ja) * 1989-11-10 1991-07-22 Renk Ag 軸受け装置
JP2001241517A (ja) * 2000-02-25 2001-09-07 Sumitomo Heavy Ind Ltd ケーシング組込式の内歯歯車構造、及び内接噛合遊星歯車構造
JP2005188740A (ja) * 2003-12-05 2005-07-14 Mitsubishi Heavy Ind Ltd 減速機

Also Published As

Publication number Publication date
JP2019086095A (ja) 2019-06-06
CN111316015B (zh) 2023-08-22
JP6858690B2 (ja) 2021-04-14
DE112018005346B4 (de) 2023-12-21
DE112018005346T5 (de) 2020-06-18
CN111316015A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
JP5603717B2 (ja) 揺動内接噛合型の遊星歯車装置およびその製造方法
US8020470B2 (en) Harmonic gear drive
EP1712814B1 (en) Eccentric oscillating-type planetary gear device
JP6031397B2 (ja) 撓み噛合い式歯車装置
JP3186812U (ja) 変速伝動ベアリング
JP2010101454A (ja) 減速装置
JP2005054981A (ja) ハーモニックドライブ減速機、該減速機付きモータおよび駆動システム
EP3702642A1 (en) Wave generator and wave gear device
JP2017044287A (ja) 波動歯車伝達装置
JP2011052788A (ja) 単純遊星歯車減速機のシリーズ
JP2023133538A (ja) 撓み噛合い式歯車装置及びその製造方法
JP2018115693A (ja) 波動歯車装置
JP5552359B2 (ja) 減速装置
WO2018025297A1 (ja) 波動発生器および波動歯車装置
JP2017223246A (ja) 波動歯車伝達装置
JP2008025687A (ja) 波動歯車装置用軸受
JP2020029914A (ja) ハイポサイクロイド減速機
JP2016200275A (ja) 減速機
WO2010004843A1 (ja) 減速装置
WO2019093306A1 (ja) 撓み噛合い式歯車装置
CN107664176A (zh) 齿轮装置
JP2009108964A (ja) 二重カップ式減速機
JP2005321071A (ja) 内接噛合式遊星歯車機構
JP7221077B2 (ja) 撓み噛合い式歯車装置及びその製造方法
CN205371555U (zh) 精密减速机及其偏心轴传动机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876171

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18876171

Country of ref document: EP

Kind code of ref document: A1