WO2019092923A1 - 主型と中子の嵌合装置、及び、主型と中子の嵌合方法 - Google Patents

主型と中子の嵌合装置、及び、主型と中子の嵌合方法 Download PDF

Info

Publication number
WO2019092923A1
WO2019092923A1 PCT/JP2018/026431 JP2018026431W WO2019092923A1 WO 2019092923 A1 WO2019092923 A1 WO 2019092923A1 JP 2018026431 W JP2018026431 W JP 2018026431W WO 2019092923 A1 WO2019092923 A1 WO 2019092923A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
main mold
fitting
orientation
detecting
Prior art date
Application number
PCT/JP2018/026431
Other languages
English (en)
French (fr)
Inventor
政彦 長坂
泰育 牧野
岳久見 小林
伊藤 康二
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to CN201880072477.7A priority Critical patent/CN111344086B/zh
Priority to US16/638,736 priority patent/US11298832B2/en
Priority to DE112018005783.6T priority patent/DE112018005783T5/de
Publication of WO2019092923A1 publication Critical patent/WO2019092923A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C23/00Tools; Devices not mentioned before for moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/108Installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems

Definitions

  • the present invention relates to a fitting device for a main mold and a core, and a method for fitting a main mold and a core.
  • a force sensor is attached to the arm of the industrial robot so that external force applied to the tip of the robot ahead of the force sensor can be detected.
  • a method of operating an industrial robot on the basis and mounting a core on a main mold see, for example, Patent Document 2.
  • An object of the present invention is to provide a fitting device and a fitting method of a main mold and a core.
  • the fitting device for the main mold and the core in the present invention comprises a core gripping and moving means for gripping and moving a core, and the core gripping and moving means
  • a core movement amount detection means for detecting a movement amount
  • a holding core position and posture detection means for detecting the position, orientation and inclination of the core held by the core holding movement means, and a position of the main mold
  • Main position / posture detecting means for detecting the orientation and inclination
  • a sensor for detecting the physical quantity applied to the core and constantly calculating the relationship between the relative position, orientation and inclination of the main type and the core
  • control means for controlling the core gripping and moving means so that the main mold and the core are fitted from the relationship between them and the physical quantity applied to the core detected by the sensor.
  • the physical quantity applied to the core is an external force and a moment.
  • control means is an external force applied to the core in two axial directions orthogonal to the fitting direction, a moment applied in a rotational direction around the fitting axis, and
  • the core gripping and moving means is moved so that the external force and the moment disappear, and the sensor is applied to the core
  • the core gripping and moving means is moved in the direction of the main mold until it is detected that the external force in the fitting direction becomes a predetermined value.
  • the fitting of the main mold and the core is performed by fitting the fitting part provided in the core to the fitting part provided in the main mold.
  • the fitting portion provided in the main mold and the fitting portion provided in the core have a tapered shape.
  • one embodiment of the present invention is characterized by further comprising a pre-core position and orientation detection means for detecting the position, the orientation, and the inclination of the core.
  • the senor is a six-axis force sensor.
  • the core gripping and moving means is an industrial robot.
  • the pre-core position and orientation detection unit is a vision sensor.
  • the grasping core position and orientation detection means and / or the main type position and orientation detection means is a vision sensor.
  • the core movement amount detection means is an encoder.
  • control means is a robot controller.
  • the fitting method of the main mold and the core in the present invention holding and moving the core, detecting the position, direction, and inclination of the gripped core, and the core Detecting the amount of movement of the main mold, detecting the position, orientation, and inclination of the main mold, and constantly calculating the relationship between the relative position, orientation, and inclination of the main mold and the core;
  • the relationship between the relative position of the main mold and the core, the direction, and the inclination is constantly calculated by detecting the physical quantity to be added to the core, and from the relationship and the physical quantity to be added to the core, the main And controlling the movement of the core so as to fit the mold and the core.
  • the physical quantity applied to the core is an external force and a moment.
  • the controlling includes: applying an external force in two axial directions orthogonal to the fitting direction to be applied to the core; a moment applied in a rotational direction around the fitting axis; When the moment applied in the rotational direction about two axes orthogonal to the direction is detected, the core is moved so that the external force and the moment disappear, and the external force in the fitting direction applied to the core is predetermined. It is characterized in that the core is moved in the direction of the main mold until it becomes a value.
  • the method further comprises resetting a physical quantity applied to the core after gripping the core.
  • the method further comprises storing a physical quantity in the core after gripping the core.
  • the efficiency of the core placement work and the core placement work can be improved. It is effective in the ability to reduce the defect of the cast product caused by the placing operation.
  • FIG. 1 is a view schematically showing the overall structure of a fitting device for a main die and a core according to the present embodiment.
  • the fitting device 1 fits the main mold 2 and the core 3.
  • the fitting device 1 fits the concave portion 2A, which is a fitting portion provided in the main mold 2, and the convex portion 3A, which is a fitting portion provided in the core 3.
  • the concave portion 2A and the convex portion 3A have a tapered shape.
  • the tapered portion of the convex portion 3A has a circular cross-sectional shape in the horizontal direction.
  • the fitting device 1 includes an advance core position and attitude detection unit 4, a core gripping and moving unit 5, a core movement amount detection unit 6, a grip core position and attitude detection unit 7, a main mold position and attitude detection unit 8, and a sensor 9. And, the control means 10 is provided.
  • the pre-core position / posture detection unit 4 detects the position, orientation, and inclination of the three-dimensional space of the core 3 placed at a predetermined position.
  • inclination means the inclination of the core 3 with respect to the "reference plane”
  • reference plane means the installation surface on which the core gripping and moving means 5 is installed.
  • the ground is not referred to as the "reference surface” because a foundry is often an old facility and the floor is not necessarily an accurate plane, so that the ground may be distorted.
  • the pre-core position / posture detection unit 4 is configured of a vision sensor.
  • the core gripping and moving means 5 grips and moves the core 3.
  • the core gripping and moving means 5 includes a core gripping portion 11 and a core moving portion 12.
  • the core gripping portion 11 grips the core 3.
  • the core moving unit 12 moves the core gripping portion 11 holding the core 3 to the position of the main mold 2.
  • the core gripping and moving means 5 is an industrial robot, and more specifically, is constituted by a vertical articulated robot.
  • the core moving unit 12 corresponds to an arm of the vertical articulated robot, and the core holding unit 11 corresponds to a robot hand attached to the tip of the arm portion.
  • the core movement amount detection means 6 detects the movement amount of the core gripping movement means 5 (moving distance in three-dimensional space). Specifically, the core movement amount detection means 6 constantly detects the drive amount of each drive shaft of the vertical articulated robot corresponding to the core movement unit 12. And the control means 10 mentioned later calculates always the position after the movement of the core holding part 11 holding the core 3 from this detection result.
  • the core movement amount detecting means 6 is incorporated in the core gripping and moving means 5.
  • the core movement amount detection means 6 is constituted by an encoder.
  • the grasping core position and posture detecting means 7 the position, orientation, and position of the three-dimensional space of the core 3 grasped by the core grasping and moving means 5 after the core grasping and moving means 5 is moved close to the main mold. Detect inclination.
  • inclination means the inclination of the core 3 with respect to the "reference plane”
  • reference plane means the installation surface on which the core gripping and moving means 5 is installed.
  • the ground is not referred to as the "reference surface” because a foundry is often an old facility and the floor is not necessarily an accurate plane, so that the ground may be distorted.
  • the gripping core position / posture detecting unit 7 detects the position, the direction, and the inclination of the convex portion 3A provided on the core 3.
  • the grip core position / posture detection unit 7 is configured of a vision sensor.
  • the main mold position and orientation detection means 8 detects the position, orientation, and tilt of the three-dimensional space of the main mold 2 placed at a predetermined position.
  • “inclination” means the inclination of the main mold 2 with respect to the “reference plane”
  • the “reference plane” means the installation plane on which the core gripping and moving means 5 is installed.
  • the ground is not referred to as the "reference surface” because a foundry is often an old facility and the floor is not necessarily an accurate plane, so that the ground may be distorted.
  • the main mold position and orientation detection unit 8 detects the position, the direction, and the inclination of the recess 2A provided in the main mold 2.
  • the main type position and orientation detection means 8 is constituted by a vision sensor.
  • the sensor 9 detects an external force and a moment which are physical quantities applied to the core 3 when the core gripping and moving means 5 is moving by gripping the core 3.
  • the sensor 9 is composed of a six-axis force sensor. Therefore, the sensor 9 can detect external forces and moments in three directions.
  • the control means 10 controls the core gripping and moving means 5.
  • the control means 10 constantly calculates the relative position, orientation, and inclination of the main mold 2 and the core 3 as one of its functions. Specifically, the relative position, the direction, and the inclination of the concave portion 2A provided in the main mold 2 and the convex portion 3A provided in the core 3 are constantly calculated.
  • control unit 10 detects information on the position, orientation, and inclination of the core 3 (convex portion 3A) gripped by the core gripping movement unit 5 detected by the gripping core position and posture detection unit 7 And information on the movement amount of the core gripping and moving means 5 detected by the core movement amount detecting means 6 and the position, orientation, and position of the main mold 2 (concave portion 2A) detected by the main mold position and orientation detecting means 8 Based on the information on the inclination, the relationship between the relative position, orientation, and inclination of the main mold 2 (concave portion 2A) and the core 3 (convex portion 3A) is calculated.
  • control means 10 uses the relationship between the calculated relative position, orientation, and inclination of the main mold 2 and the core 3 and the external force and moment applied to the core 3 detected by the sensor 9 to the main mold 2.
  • the movement of the core gripping and moving means 5 is controlled so that the core 3 and the core 3 are fitted.
  • the control means 10 includes information detected by the core movement amount detection means 6, information detected by the grasping core position and attitude detection means 7, information detected by the main pattern position and attitude detection means 8, and the sensor 9. It is configured by a robot controller, PLC, FA personal computer, microcomputer or the like that can carry out integrated computer processing of detected information.
  • FIG.2 and FIG.3 is a flowchart which shows the fitting method of the main type
  • FIG. 3 is a flow chart for explaining the details of the main mold / core fitting step (step S12).
  • the pre-core position / posture detection unit 4 detects the position, orientation, and tilt of the core 3 placed at a predetermined position (step S1).
  • the core moving unit 12 (the arm of the vertical articulated robot) of the core gripping and moving means 5 moves at high speed to near the core 3 (step S2).
  • the core gripping portion 11 (robot hand of the vertical articulated robot) of the core gripping movement means 5 is based on the position, orientation, and inclination of the core 3 detected by the core position / posture detecting means 4 in advance. And hold the core 3 (step S3). In this way, even when the core 3 before being gripped by the core gripping portion 11 is placed in a complicated manner such as stacking, gripping of the core 3 can be realized smoothly. .
  • the core moving unit 12 moves the core gripping portion 11 gripping the core 3 to the detection range of the gripping core position and orientation detection means 7 (vision sensor), and then stops (step S4). ).
  • the grasping core position and orientation detection means 7 determines the position, the direction, and the inclination of the core 3 grasped by the core grasping portion 11, specifically, the convex portion 3A provided on the core 3 The position, orientation, and tilt are detected (step S5).
  • the main mold position and orientation detection means 8 is the position, orientation, and inclination of the main mold 2 placed at a predetermined position, and more specifically, a recess 2A provided in the main mold 2 Position, orientation, and tilt of the object are detected (step S6).
  • control means 10 holds the core grasped by the core grasping portion 11, the position, the direction, and the inclination, and the core grasp detected by the core movement amount detecting means 6 (encoder)
  • the relative position, orientation, and inclination of the main mold 2 and the core 3 are provided based on the amount of movement of the moving means 5 and the position, orientation, and inclination of the main mold 2.
  • the relative position, the direction, and the inclination of the concave portion 2A and the convex portion 3A provided on the core 3 are calculated (step S7).
  • control means 10 resets the external force and the moment applied to the core 3 which has been detected by the sensor 9 (force sensor) up to now, in a state where the core gripping portion 11 grips the core 3 (Step S8).
  • the core moving unit 12 moves the core 3 gripped by the core gripping portion 11 to near the main mold 2 at high speed (step S9).
  • the relative position, direction, and tilt information of the main mold 2 (concave portion 2A) and the core 3 (convex portion 3A) calculated in step S7, and the information of the movement amount of the core moving portion 12 Based on the relative position, orientation, and inclination information of the main mold 2 (concave portion 2A) and the core 3 (convex portion 3A), the control means 10 constantly updates information.
  • the core moving portion 12 brings the core 3 gripped by the core gripping portion 11 closer to the recess 2A where the convex portion 3A which is the fitting portion of the core 3 is the fitting portion of the main mold 2 To move at a low speed (step S10).
  • the recess 2A and the protrusion 3A are Information on relative position, orientation, and tilt is constantly updated by the control means 10.
  • FIG. 4 is a view showing the positional relationship between the convex portion 3A of the core 3 gripped by the core gripping portion 11 and the concave portion 2A of the main mold 2 in step S10.
  • Z is an axial direction in which the core 3 and the main mold 2 (the convex portion 3A of the core 3 and the concave portion 2A of the main mold 2) fit
  • X and Y are axes orthogonal to the fitting axis Z Represents a direction.
  • the control means 10 detects the external force Fz in the fitting axis direction Z, the external force Fx in the X axis direction orthogonal to the axis Z, and / or the external force Fy in the Y axis direction orthogonal to the axis Z It is confirmed whether it is done (step S11).
  • the control means 10 continues the core 3 gripped by the core gripping portion 11, The core moving portion 12 is moved at a low speed so that the convex portion 3A which is the fitting portion of the core 3 approaches the concave portion 2A which is the fitting portion of the main mold 2.
  • step S11 when the sensor 9 confirms the detection of the external force Fz, the external force Fx, and / or the external force Fy (step S11: Yes), the control means 10 stops the movement of the core moving unit 12. Thereafter, the process proceeds to the main mold / core fitting process (step S12).
  • step S11 the external force Fz, the external force Fx, and the external force Fy can be detected because the sensor 9 is a six-axis force sensor. This is an advantage not possible with load cells.
  • step S12 the control means 10 determines whether the convex portion 3A of the core 3 is in the process of being fitted in the concave portion 2A of the main mold 2 (step S121). ). Specifically, the control means 10 calculates the height (the distance from the reference plane in the fitting axial direction Z) of the calculated tip of the convex portion 3A and the height of the upper surface peripheral edge of the calculated recess 2A of the main mold 2 It judges from the relationship of (the distance from the reference plane of the fitting axial direction Z).
  • control means 10 determines that the projection 3A of the core 3 is not in the middle of being fitted in the recess 2A of the main mold 2 (step S121: No), it determines that an abnormality has occurred and the fitting device Emergency stop 1 This is because the control means 10 makes the tip end of the convex portion 3A in the core 3 contact the upper surface peripheral edge in the concave portion 2A of the main mold 2, and so on. In this case, it is determined that the sensor 9 detects the external force Fz, the external force Fx, and / or the external force Fy due to the contact.
  • control means 10 determines that the convex portion 3A of the core 3 is in the process of being fitted in the concave portion 2A of the main mold 2 (step S121: Yes)
  • the control means 10 has the sensor 9 External force Fx in the X-axis direction, external force Fy in the Y-axis direction, moment Mz applied in the rotational direction about the Z-axis, moment Mx applied in the rotational direction about the X-axis, and / or rotational direction about the Y-axis It is checked whether the applied moment My is detected (step S122).
  • the control means 10 detects the external force Fx detected by the sensor 9;
  • the core moving part 12 (convex part 3A of the core 3) is moved at low speed in the XY plane in the direction in which the external force Fy, the moment Mz, the moment Mx and / or the moment My decreases (step S123).
  • the control means 10 sets the convex portion 3A of the core 3 so that the positions of the concave portion 2A of the main mold 2 and the convex portion 3A of the core 3 coincide with each other to be fitted most without resistance. Move it.
  • FIG. 5 is a view showing the positional relationship between the convex portion 3A of the core 3 gripped by the core gripping portion 11 and the concave portion 2A of the main mold 2 in step S123.
  • the sensor 9 detects the moment My
  • the control means 10 moves the core moving part 12 (the convex part 3A of the core 3) in the direction in which the moment My decreases in the XY plane.
  • steps S122 and S123 are repeated until the external force Fx, external force Fy, moment Mz, moment Mx, and / or moment My detected by the sensor 9 become zero.
  • step S122 when the sensor 9 does not detect the external force Fx, the external force Fy, the moment Mz, the moment Mx, and / or the moment My (step S122: No), that is, the external force Fx, the external force Fy, the moment Mz
  • the core moving unit 12 is slowly moved in the Z-axis direction. That is, the convex portion 3A of the core 3 is moved at low speed to the concave portion 2A of the main mold 2 (step S124). Thereby, fitting of convex part 3A of core 3 and crevice 2A of main model 2 is started.
  • the control means 10 determines whether the external force Fz in the fitting axial direction Z detected by the sensor 9 has reached a predetermined fitting completion external force Fza (step S125).
  • the control means 10 determines that the external force Fz in the fitting axial direction Z detected by the sensor 9 has reached the fitting completion external force Fza (step S125: Yes)
  • the main mold 2 refcess 2A
  • the core 3 core 3
  • the fitting completion external force Fza changes depending on the constituent material, compression strength, size, and / or shape of the main die 2 and the core 3, but the recess 2A of the main die 2 viewed from the fitting axis Z direction,
  • the projected area of the convex portion 3A of the core 3 is defined as a pressure receiving area
  • the applied pressure exceeds 4.0 MPa, the fitting portion between the recess 2A of the main mold 2 and the protrusion 3A of the core 3 may be broken.
  • step S125: No when the control means 10 determines that the external force Fz in the fitting axial direction Z detected by the sensor 9 has not reached the fitting completion external force Fza (step S125: No), the process returns to step S122.
  • step S127 the core gripping portion 11 of the core gripping moving means 5 releases the gripping of the core 3 (step S127). This completes the core placement on the main mold.
  • step S12 the core moving unit 12 of the core gripping and moving means 5 moves to the initial position at high speed.
  • step S12 the main mold / core fitting step
  • step S12 When the main mold / core fitting step (step S12) is finished, the work of fitting the main mold and the core is finished. Next, when the main die 2 and core 3 to be fitted are placed at predetermined positions, the fitting operation of the main die and core is continuously performed.
  • the order of steps can be changed.
  • the order of each step may be changed.
  • step S1 can be omitted.
  • the process in the middle may be omitted.
  • step S8 it is possible to change the operation of resetting the external force and moment applied to the core 3 detected by the sensor 9.
  • the control means 10 stores the external force and moment detected by the sensor 9 and uses it as a reference value, and the external force and moment in the initial state and the external force and moment in steps S11, S122, S123 and S125. You may make it discriminate
  • the moving speed of the core moving unit 12 of the core gripping and moving means 5 is changed, and the purpose of mounting and fitting the core 3 in the main mold 2 is achieved. You can move at any speed if you can.
  • the reference numeral 3B represents the remaining portion of the projection 3A of the core 3 which is not a portion (a tapered portion) which is actually fitted in the recess 2A provided in the main mold 2. .
  • the taper angle of the fitting part is often around 2 °. This is derived as an experience value and is also included in the technical book on casting.
  • the fitting is performed by the combination of the convex portion 3 of the core 3 and the concave portion 2A of the main mold 2 according to the first to third examples.
  • the clearance of the fitting portion of the convex portion 3A was able to be 0.3 mm or less.
  • the apparatus for placing (fitting) the core on the main mold which can completely reproduce the core placing operation which has been carried out by the core placing worker with subtle hand feeling by automation is: It did not exist.
  • the fitting connection between the main mold and the core is formed into a tapered shape to be fitted to each other, but in order to manufacture a casting product of higher quality, the core placement craftsman places the core on the main mold As the work being carried out, when setting the core in this taper-shaped fitting joint, the core is pushed into the fitting portion with a delicate hand feeling that the core is not broken at the end of the fitting. ing.
  • the fitting device 1 in the fitting device 1 according to the present embodiment, the high quality casting that the core placement crafter realized by the trick can be realized by automation by a robot, and further, until now, it can be manually operated. It is possible to narrow the clearance of the fitting portion between the concave portion 2A of the main mold 2 and the convex portion 3A of the core 3 which can only be realized by recourse to the limit of 0.3 mm or less.
  • the adhesion between the main mold 2 and the core 3 can be increased. It is possible to obtain the effect of
  • the first problem is the improvement in the accuracy of the cast product due to the improvement in the relative position accuracy between the main mold and the core.
  • the second factor is the reduction of burrs in cast products due to the elimination of the gap between the main mold and the core.
  • the third one is improvement in the adhesion between the main mold and the core by the slurry-like mold paste applied to the fitting portion.
  • the fourth is the improvement in the accuracy of the cast product by thinning of the slurry-like mold paste applied to the fitting portion.
  • defects caused by core mounting e.g., rolling, squeezing, uneven thickness, mold loss, etc.
  • FIG. 9 is a view schematically showing the entire structure of a fitting device for a main die and a core according to a modification.
  • the core position and orientation detection means 4 (vision sensor), the grasping core position and orientation detection means 7 (vision sensor), and the main type position and orientation detection means 8
  • the vision sensors are respectively fixed, but as shown in FIG.
  • the pre-core position and orientation detection means 4 (vision sensor), the grasping core position and orientation detection means 7 (vision sensor), and the main position and orientation
  • the function of the detection means 8 may be integrated into one vision sensor, and may be attached to and moved by the core gripping movement means 5 (the arm of the vertical articulated robot).
  • the core gripping portion As long as it is a means that can detect the position, the orientation, and the inclination of the core 3 gripped by 11, any means may be used in its arrangement.
  • the concave portion 2A which is the fitting portion provided in the main mold 2 and the convex portion 3A which is the fitting portion provided in the core 3 are fitted.
  • a convex portion may be provided at 2 and a concave portion may be provided at the core 3.
  • the main mold 2 and the core 3 are fitted by fitting the convex portion which is the fitting portion provided in the main mold 2 and the recess which is the fitting portion provided in the core 3 Be done.
  • the core gripping and moving means 5 is constituted by a vertical articulated robot, but other means can be used.
  • any means capable of freely driving and conveying three-dimensional space such as a horizontal articulated robot, a parallel link robot, a cooperative robot, and a drive actuator capable of linearly moving along three axes of XYZ can be used.
  • the power is not limited to electric power, and oil pressure or air pressure may be used.
  • the core gripping portion 11 of the core gripping movement means 5 is configured by a robot hand, but other means can be used.
  • a means that can handle the core such as a hand that is inserted into a hole or a recess provided in the core 3 and opens outward, a hand with a shape that holds the core, a hand with a shape that pierces the core, Any means may be used.
  • the pre-core position / posture detecting means 4, the grasping core position / posture detecting means 7, and the main pattern position / posture detecting means 8 are constituted by vision sensors, but other means It is possible to use.
  • any means such as a laser sensor, a linear encoder, a proximity sensor, an infrared sensor, a millimeter wave sensor, and a microwave sensor may be used as long as the means can confirm the distance and the position.
  • the senor 9 is configured by a six-axis force sensor, but other means can be used.
  • an external force Fz in the fitting axis Z direction, a moment Mz centered on the Z axis, an external force Fx in the X and Y axial directions orthogonal to the axis Z such as an acceleration sensor or a load detector composed of a plurality of strain gauges.
  • Any means can be used as long as it can detect Fy and moments Mx and My centered on each of the XY axes orthogonal to the Z axis.
  • the core movement amount detection means 6 is configured by an encoder, but other means can be used.
  • the moving direction and distance of the core 3 gripped by the core gripping portion 11 of the core gripping moving means 5 such as a laser sensor, linear encoder, proximity sensor, infrared sensor, millimeter wave sensor, microwave sensor, etc. can be confirmed Any means may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Robotics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manipulator (AREA)

Abstract

【課題】中子載置職人が微妙な手感覚で実施してきた中子載置作業を自動化により完全に再現することができる主型と中子の嵌合装置、及び、主型と中子の嵌合方法を提供すること。 【解決手段】中子を把持して移動する中子把持移動手段と、前記中子把持移動手段の移動量を検出する中子移動量検出手段と、前記中子把持移動手段に把持された前記中子の位置、向き、及び、傾きを検出する把持中子位置姿勢検出手段と、主型の位置、向き、及び、傾きを検出する主型位置姿勢検出手段と、前記中子に加わる物理量を検出するセンサと、前記主型と前記中子の相対位置、向き、及び、傾きの関係を常時算出し、これらの関係と、前記センサが検出した前記中子に加わる物理量とから前記主型と前記中子を嵌合させるように前記中子把持移動手段を制御する制御手段と、を備えた。

Description

主型と中子の嵌合装置、及び、主型と中子の嵌合方法
 本発明は、主型と中子の嵌合装置、及び、主型と中子の嵌合方法に関する。
 従来から、鋳造時に中子を主型に載置する装置において、CCDカメラと画像処理装置の組み合わせにより、主型と中子の傾斜および垂直位置を検出し、そのデータを基に産業用ロボットを動作させて中子を主型に載置する方法が知られている(例えば、特許文献1参照)。
 また、鋳造時に中子を主型に載置する装置において、産業用ロボットのアーム部に力覚センサを取り付け、力覚センサより先のロボット先端部に加わる外力を検出できるようにし、そのデータを基に産業用ロボットを動作させて中子を主型に載置する方法が知られている(例えば、特許文献2参照)。
特許3223033号明細書 特開平6-277799号公報
 しかしながら、中子載置職人が微妙な手感覚で実施してきた中子載置作業を自動化により完全に再現することができる方法は、存在していなかった。
 本発明は、上記に鑑みてなされたものであって、中子載置職人が微妙な手感覚で実施してきた中子載置作業を自動化により完全に再現することができる主型と中子の嵌合装置、及び、主型と中子の嵌合方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明における主型と中子の嵌合装置は、中子を把持して移動する中子把持移動手段と、前記中子把持移動手段の移動量を検出する中子移動量検出手段と、前記中子把持移動手段に把持された前記中子の位置、向き、及び、傾きを検出する把持中子位置姿勢検出手段と、主型の位置、向き、及び、傾きを検出する主型位置姿勢検出手段と、前記中子に加わる物理量を検出するセンサと、前記主型と前記中子の相対位置、向き、及び、傾きの関係を常時算出し、これらの関係と、前記センサが検出した前記中子に加わる物理量とから前記主型と前記中子を嵌合させるように前記中子把持移動手段を制御する制御手段と、を備えたこと、を特徴とする。
 また、本発明の一実施態様では、前記中子に加わる物理量は、外力及びモーメントであること、を特徴とする。
 また、本発明の一実施態様では、前記制御手段は、前記センサが、前記中子に加わる、嵌合方向と直交する2軸方向の外力、嵌合軸を中心として回転方向に加わるモーメント、及び、嵌合方向と直交する2軸を中心として回転方向に加わるモーメントを検出した時に、これらの外力及びモーメントがなくなるように前記中子把持移動手段を移動させ、前記センサが、前記中子に加わる嵌合方向の外力が所定の値になるのを検出するまで、前記中子把持移動手段を前記主型の方向に移動させること、を特徴とする。
 また、本発明の一実施態様では、前記主型と前記中子の嵌合は、前記主型に設けられた嵌合部に前記中子に設けられた嵌合部を嵌合することにより行われ、前記主型に設けられた嵌合部と前記中子に設けられた嵌合部は互いにテーパー形状をしていること、を特徴とする。
 また、本発明の一実施態様では、前記中子の位置、向き、及び、傾きを検出する事前中子位置姿勢検出手段をさらに備えたこと、を特徴とする。
 また、本発明の一実施態様では、前記センサは、6軸の力覚センサであること、を特徴とする。
 また、本発明の一実施態様では、前記中子把持移動手段は産業用ロボットであること、を特徴とする。
 また、本発明の一実施態様では、前記事前中子位置姿勢検出手段は、ビジョンセンサであること、を特徴とする。
 また、本発明の一実施態様では、前記把持中子位置姿勢検出手段、及び/又は、前記主型位置姿勢検出手段は、ビジョンセンサであること、を特徴とする。
 また、本発明の一実施態様では、前記中子移動量検出手段は、エンコーダであること、を特徴とする。
 また、本発明の一実施態様では、前記制御手段は、ロボットコントローラであること、を特徴とする。
 また、本発明における主型と中子の嵌合方法は、中子を把持して移動することと、把持された前記中子の位置、向き、及び、傾きを検出することと、前記中子の移動量を検出することと、主型の位置、向き、及び、傾きを検出することと、前記主型と前記中子の相対位置、向き、及び、傾きの関係を常時算出することと、前記中子に加わる物理量を検出することと、前記主型と前記中子の相対位置、向き、及び、傾きの関係を常時算出し、これらの関係と、前記中子に加わる物理量とから前記主型と前記中子を嵌合させるように前記中子の移動を制御することと、を含むこと、を特徴とする。
 また、本発明の一実施態様では、前記中子に加わる物理量は、外力及びモーメントであること、を特徴とする。
 また、本発明の一実施態様では、前記制御することは、前記中子に加わる、嵌合方向と直交する2軸方向の外力、嵌合軸を中心として回転方向に加わるモーメント、及び、嵌合方向と直交する2軸を中心として回転方向に加わるモーメントを検出した時に、これらの外力及びモーメントがなくなるように前記中子を移動させることと、前記中子に加わる嵌合方向の外力が所定の値になるまで、前記中子を前記主型の方向に移動させることであること、を特徴とする。
 また、本発明の一実施態様では、前記中子を把持した後に、前記中子に加わる物理量をリセットすること、をさらに含むこと、を特徴とする。
 また、本発明の一実施態様では、前記中子を把持した後に、前記中子に物理量を記憶すること、をさらに含むこと、を特徴とする。
 本発明によれば、中子載置職人が微妙な手感覚で実施してきた中子載置作業を自動化により完全に再現することができるので、中子載置作業の効率化と、中子載置作業によって引き起こされる鋳物製品の不良の削減をすることができるという効果を奏する。
本実施の形態に係る主型と中子の嵌合装置の全体構造の概略を表す図である。 本実施の形態に係る嵌合装置を用いた主型と中子の嵌合方法を示すフローチャートである。 本実施の形態に係る嵌合装置を用いた主型と中子の嵌合方法を示すフローチャートである。 ステップS10における中子把持部に把持された中子の凸部と主型の凹部の位置関係を示す図である。 ステップS123における中子把持部に把持された中子の凸部と主型の凹部の位置関係を示す図である。 主型に設けられた凹部の形状と中子に設けられた凸部の形状の一例を示す図である。 主型に設けられた凹部の形状と中子に設けられた凸部の形状の一例を示す図である。 主型に設けられた凹部の形状と中子に設けられた凸部の形状の一例を示す図である。 変形例に係る主型と中子の嵌合装置の全体構造の概略を表す図である。
 以下、添付図面を参照して、本発明による主型と中子の嵌合装置、及び、主型と中子の嵌合方法を実施するための形態について、図面に基づいて説明する。
 図1は、本実施の形態に係る主型と中子の嵌合装置の全体構造の概略を表す図である。嵌合装置1は、主型2と中子3を嵌合する。具体的には、嵌合装置1は、主型2に設けられた嵌合部である凹部2Aと、中子3に設けられた嵌合部である凸部3Aを嵌合する。そして、前記凹部2Aと前記凸部3Aは互いにテーパー形状をしている。また、前記凸部3Aのテーパー形状の部分は、水平方向の断面形状が円形をしている。
 嵌合装置1は、事前中子位置姿勢検出手段4、中子把持移動手段5、中子移動量検出手段6、把持中子位置姿勢検出手段7、主型位置姿勢検出手段8、センサ9、及び、制御手段10を備えている。
 事前中子位置姿勢検出手段4は、所定の位置に置かれている中子3の三次元空間の位置、向き、及び、傾きを検出する。ここで、「傾き」とは中子3の「基準面」に対する傾きを意味し、「基準面」とは、中子把持移動手段5が設置されている設置面を意味する。なお、地面を「基準面」としないのは、鋳物工場は古い施設であることが多く床が正確な平面とは限らないため地面を基準にすると狂いが生じるためである。事前中子位置姿勢検出手段4は、ビジョンセンサで構成される。
 中子把持移動手段5は、中子3を把持して移動する。中子把持移動手段5は、中子把持部11、及び、中子移動部12を備えている。中子把持部11は、中子3を把持する。中子移動部12は、中子3を把持した中子把持部11を、主型2の位置まで移動させる。中子把持移動手段5は、産業用ロボットであり、より具体的には、垂直多関節ロボットで構成される。そして、中子移動部12は、垂直多関節ロボットのアームに相当し、中子把持部11は、アーム部分の先端に取り付けられたロボットハンドに相当する。
 中子移動量検出手段6は、中子把持移動手段5の移動量(3次元空間の移動距離)を検出する。具体的には、中子移動量検出手段6は、中子移動部12に相当する垂直多関節ロボットの各駆動軸の駆動量を常時検出する。そして、後述する制御手段10が、この検出結果から中子3を把持している中子把持部11の移動後の位置を常時算出する。本実施の形態では、中子移動量検出手段6は、中子把持移動手段5に組み込まれている。中子移動量検出手段6は、エンコーダで構成される。
 把持中子位置姿勢検出手段7は、中子把持移動手段5が主型の近くに移動した後、中子把持移動手段5に把持された中子3の三次元空間の位置、向き、及び、傾きを検出する。ここで、「傾き」とは中子3の「基準面」に対する傾きを意味し、「基準面」とは、中子把持移動手段5が設置されている設置面を意味する。なお、地面を「基準面」としないのは、鋳物工場は古い施設であることが多く床が正確な平面とは限らないため地面を基準にすると狂いが生じるためである。具体的には、把持中子位置姿勢検出手段7は、中子3に設けられた凸部3Aの位置、向き、及び、傾きを検出する。把持中子位置姿勢検出手段7は、ビジョンセンサで構成される。
 主型位置姿勢検出手段8は、所定の位置に置かれている主型2の三次元空間の位置、向き、及び、傾きを検出する。ここで、「傾き」とは主型2の「基準面」に対する傾きを意味し、「基準面」とは、中子把持移動手段5が設置されている設置面を意味する。なお、地面を「基準面」としないのは、鋳物工場は古い施設であることが多く床が正確な平面とは限らないため地面を基準にすると狂いが生じるためである。具体的には、主型位置姿勢検出手段8は、主型2に設けられた凹部2Aの位置、向き、及び、傾きを検出する。主型位置姿勢検出手段8は、ビジョンセンサで構成される。
 センサ9は、中子把持移動手段5が中子3を把持して移動している時に、中子3に加わる物理量である外力及びモーメントを検出する。センサ9は、6軸の力覚センサで構成される。従って、センサ9は、3方向の外力、及び、モーメントを検出することが可能である。
 制御手段10は、中子把持移動手段5を制御する。制御手段10は、その機能の一つとして、主型2と中子3の相対位置、向き、及び、傾きを常時算出する。具体的には、主型2に設けられた凹部2Aと、中子3に設けられた凸部3Aの相対位置、向き、及び、傾きを常時算出する。
 より詳細には、制御手段10は、把持中子位置姿勢検出手段7が検出した、中子把持移動手段5に把持された中子3(凸部3A)の位置、向き、及び、傾きに関する情報と、中子移動量検出手段6が検出した、中子把持移動手段5の移動量に関する情報と、主型位置姿勢検出手段8が検出した、主型2(凹部2A)の位置、向き、及び、傾きに関する情報とを基に、主型2(凹部2A)と中子3(凸部3A)の相対位置、向き、及び、傾きの関係を算出する。その後、中子把持移動手段5が移動した場合には、中子移動量検出手段6の情報を基に、主型2(凹部2A)と中子3(凸部3A)の相対位置、向き、及び、傾きの関係を算出し続ける。
 制御手段10は、もう一つの機能として、算出した主型2と中子3の相対位置、向き、及び、傾きの関係と、センサ9が検出した中子3に加わる外力及びモーメントから主型2と中子3を嵌合させるように中子把持移動手段5の移動を制御する。制御手段10は、中子移動量検出手段6によって検出される情報、把持中子位置姿勢検出手段7によって検出される情報、主型位置姿勢検出手段8によって検出される情報、及び、センサ9によって検出される情報を一体的に電算処理することができるロボットコントローラ、PLC、FAパソコン、又は、マイコン等で構成される。
(主型と中子の嵌合方法)
 次に、本実施の形態に係る嵌合装置1を用いた主型と中子の嵌合方法を説明する。図2及び図3は、本実施の形態に係る嵌合装置1を用いた主型と中子の嵌合方法を示すフローチャートである。なお、図3は、主型・中子嵌合工程(ステップS12)の詳細を説明するフローチャートである。
 初めに、事前中子位置姿勢検出手段4(ビジョンセンサ)は、所定の位置に置かれている中子3の位置、向き、及び、傾きを検出する(ステップS1)。
 次に、中子把持移動手段5の中子移動部12(垂直多関節ロボットのアーム)は、中子3の近くまで高速で移動する(ステップS2)。
 次に、中子把持移動手段5の中子把持部11(垂直多関節ロボットのロボットハンド)は、事前中子位置姿勢検出手段4が検出した中子3の位置、向き、及び、傾きを基に、中子3を把持する(ステップS3)。このようにすることで、中子把持部11に把持される前の中子3が段積みなど複雑な置き方をされている場合においても、スムーズに中子3の把持を実現することができる。
 次に、中子移動部12は、中子3を把持している中子把持部11を把持中子位置姿勢検出手段7(ビジョンセンサ)の検出範囲まで移動させた後、停止する(ステップS4)。
 次に、把持中子位置姿勢検出手段7は、中子把持部11に把持された中子3の位置、向き、及び、傾き、具体的には、中子3に設けられた凸部3Aの位置、向き、及び、傾きを検出する(ステップS5)。
 次に、主型位置姿勢検出手段8(ビジョンセンサ)は、所定の位置に置かれている主型2の位置、向き、及び、傾き、具体的には、主型2に設けられた凹部2Aの位置、向き、及び、傾きを検出する(ステップS6)。
 次に、制御手段10(ロボットコントローラ)は、中子把持部11に把持された中子3の位置、向き、及び、傾きと、中子移動量検出手段6(エンコーダ)が検出した中子把持移動手段5の移動量と、主型2の位置、向き、及び、傾きとから、主型2と中子3の相対位置、向き、及び、傾き、具体的には、主型2に設けられた凹部2Aと、中子3に設けられた凸部3Aの相対位置、向き、及び、傾きを算出する(ステップS7)。
 次に、制御手段10は、中子把持部11が中子3を把持している状態で、今までセンサ9(力覚センサ)に検出されていた中子3に加わる外力及びモーメントをリセットする(ステップS8)。
 次に、中子移動部12は、中子把持部11に把持された中子3を主型2の近くまで高速で移動する(ステップS9)。この時、ステップS7で算出された主型2(凹部2A)と中子3(凸部3A)の相対位置、向き、及び、傾きの情報、及び、中子移動部12の移動量の情報を基に、主型2(凹部2A)と中子3(凸部3A)の相対位置、向き、及び、傾きの情報が制御手段10により、常に更新される。
 次に、中子移動部12は、中子把持部11に把持された中子3を、中子3の嵌合部である凸部3Aが主型2の嵌合部である凹部2Aの近付くように低速で移動する(ステップS10)。この時、ステップS7で算出された凹部2Aと凸部3Aの相対位置、向き、及び、傾きの情報、及び、中子移動部12の移動量の情報を基に、凹部2Aと凸部3Aの相対位置、向き、及び、傾きの情報が制御手段10により、常に更新される。
 図4は、ステップS10における中子把持部11に把持された中子3の凸部3Aと主型2の凹部2Aの位置関係を示す図である。図において、Zは、中子3と主型2(中子3の凸部3Aと主型2の凹部2A)が嵌合する軸方向、X及びYは、嵌合軸Zに直交する各軸方向を表す。
 次に、制御手段10は、センサ9が、嵌合軸方向Zの外力Fz、軸Zに直交するX軸方向の外力Fx、及び/又は、軸Zに直交するY軸方向の外力Fyを検出しているかを確認する(ステップS11)。制御手段10は、センサ9が、外力Fz、外力Fx、及び/又は、外力Fyの検出を確認しない場合(ステップS11:No)、引き続き、中子把持部11に把持された中子3を、中子3の嵌合部である凸部3Aが主型2の嵌合部である凹部2Aの近付くように低速で中子移動部12を移動させる。
 一方、制御手段10は、センサ9が、外力Fz、外力Fx、及び/又は、外力Fyの検出を確認した場合(ステップS11:Yes)、中子移動部12の移動を停止する。以後、主型・中子嵌合工程(ステップS12)へ進む。なお、ステップS11において、外力Fz、外力Fx、及び、外力Fyを検出できるのは、センサ9が6軸の力覚センサで構成されているためである。これは、ロードセルではできない利点である。
(主型・中子嵌合工程)
 主型・中子嵌合工程(ステップS12)では、初めに、制御手段10は、中子3の凸部3Aが主型2の凹部2Aに嵌合されている途中かを判断する(ステップS121)。具体的には、制御手段10は、算出した凸部3Aの先端部の高さ(嵌合軸方向Zの基準面からの距離)と、算出した主型2の凹部2Aにおける上面周縁の高さ(嵌合軸方向Zの基準面からの距離)の関係から判断する。
 制御手段10は、中子3の凸部3Aが主型2の凹部2Aに嵌合されている途中ではないと判断した場合(ステップS121:No)、異常が発生したと判断し、嵌合装置1を非常停止する。これは、制御手段10が、中子3における凸部3Aの先端部が主型2の凹部2Aにおける上面周縁に接触する等、中子3の凸部3Aと主型2の凹部2A同士以外が接触したことにより、センサ9が外力Fz、外力Fx、及び/又は、外力Fyを検出したと判断した場合である。
 一方、制御手段10は、中子3の凸部3Aが主型2の凹部2Aに嵌合されている途中であると判断した場合(ステップS121:Yes)、制御手段10は、センサ9が、X軸方向の外力Fx、Y軸方向の外力Fy、Z軸を中心として回転方向に加わるモーメントMz、X軸を中心として回転方向に加わるモーメントMx、及び/又は、Y軸を中心として回転方向に加わるモーメントMyを検出しているかを確認する(ステップS122)。
 制御手段10は、センサ9が、外力Fx、外力Fy、モーメントMz、モーメントMx、及び/又は、モーメントMyを検出している場合(ステップS122:Yes)、センサ9が検出している外力Fx、外力Fy、モーメントMz、モーメントMx、及び/又は、モーメントMyが減少する方向に中子移動部12(中子3の凸部3A)をXY平面で低速移動させる(ステップS123)。言い換えると、制御手段10は、主型2の凹部2Aと中子3の凸部3Aの位置が互いに一致して、もっとも抵抗なく嵌合される位置になるように中子3の凸部3Aを移動させる。
 図5は、ステップS123における中子把持部11に把持された中子3の凸部3Aと主型2の凹部2Aの位置関係を示す図である。本図では、センサ9が、モーメントMyを検出しており、制御手段10は、中子移動部12(中子3の凸部3A)をモーメントMyが減少する方向にXY平面で移動させる。
 その後、センサ9が検出している外力Fx、外力Fy、モーメントMz、モーメントMx、及び/又は、モーメントMyがゼロになるまで、ステップS122とステップS123を繰り返す。
 一方、制御手段10は、センサ9が、外力Fx、外力Fy、モーメントMz、モーメントMx、及び/又は、モーメントMyを検出しない場合(ステップS122:No)、すなわち、外力Fx、外力Fy、モーメントMz、モーメントMx、及び/又は、モーメントMyがゼロになると、中子移動部12を軸Z方向に低速移動させる。すなわち、中子3の凸部3Aを主型2の凹部2Aに低速移動させる(ステップS124)。これにより、中子3の凸部3Aと主型2の凹部2Aの嵌合が開始される。
 次に、制御手段10は、センサ9が検出した嵌合軸方向Zの外力Fzがあらかじめ規定された嵌合完了外力Fzaに達したかを判断する(ステップS125)。制御手段10は、センサ9が検出した嵌合軸方向Zの外力Fzが嵌合完了外力Fzaに達したと判断した場合(ステップS125:Yes)、主型2(凹部2A)と中子3(凸部3A)の嵌合は終了したと判断し、中子移動部12の移動を停止する(ステップS126)。なお嵌合完了外力Fzaは、主型2及び中子3の構成材質、圧縮強度、寸法、及び/又は、形状によって変化するが、嵌合軸Z方向から見た主型2の凹部2A、及び/又は、中子3の凸部3Aの投影面積を受圧面積と定義した時に0.005~4.0MPaとなる加圧力に設定するのが好ましい。加圧力が0.005MPaより小さいと、主型2の凹部2Aと中子3の凸部3Aの嵌合部に発生する摩擦のため嵌合することはできない。反対に、加圧力が4.0MPaを超えると、主型2の凹部2Aと中子3の凸部3Aの嵌合部が壊れるおそれがある。
 一方、制御手段10は、センサ9が検出した嵌合軸方向Zの外力Fzが嵌合完了外力Fzaに達していないと判断した場合(ステップS125:No)、ステップS122へ戻る。
 次に、中子把持移動手段5の中子把持部11は、中子3の把持を解除する(ステップS127)。これにより、主型への中子載置が終了する。
 次に、中子把持移動手段5の中子移動部12は、初期位置へ高速で移動する(ステップS128)。これにより、主型・中子嵌合工程(ステップS12)が終了する。
 主型・中子嵌合工程(ステップS12)が終了すると、主型と中子の嵌合作業が終了する。なお、次に、嵌合する予定の主型2と中子3が所定の位置に置かれている場合、主型と中子の嵌合作業が引き続き行われる。
 なお、本実施の形態に係る嵌合方法において、工程の順序を変更することが可能である。例えば、ステップS7とステップS8の順序を逆にするなど、主型2内に中子3を載置嵌合することができるのであれば、各工程の順序を変更してもよい。
 また、本実施の形態に係る嵌合方法において、一部の工程を削除することも可能である。例えば、中子把持移動手段5の中子把持部11で把持される前の中子3があらかじめ決められた位置姿勢で載置されている場合、ステップS1を省略することできる。このように、主型2内に中子3を載置嵌合する目的を果たすことができれば途中の工程を省略してもよい。
 また、ステップS8において、センサ9が検出した中子3に加わる外力及びモーメントをリセットする作業を変更することが可能である。例えば、制御手段10がセンサ9で検出される外力及びモーメントを記憶して、それを基準値として用いるなど、初期状態の外力及びモーメントと、ステップS11、S122、S123、及び、S125における外力及びモーメントとの差分を判別するようにしてもよい。
 さらに、中子把持移動手段5の中子移動部12の移動速度を変更することが可能である。例えば、ステップS2、S9、及び、S128における中子把持移動手段5の中子移動部12の移動速度を低速にするなど、主型2内に中子3を載置嵌合する目的を果たすことができればどのような速度で移動させてもよい。
(中子と主型の寸法の例)
 次に、中子3の凸部3Aと主型2の凹部2Aの寸法の組み合わせとして3つの例を説明する。図6~図8は、主型2に設けられた凹部2Aの形状と中子3に設けられた凸部3Aの形状の一例を示す図である。なお、本発明が適用される中子3の凸部3Aと主型2の凹部2Aの組み合わせはこの事例に限定されるものではない。図6は事例1を示し、D11=40mm、L11=30mm、D12=40mm、L12=25mm、θ=2°である。図7は事例2を示し、D21=15mm、L21=40mm、D22=35mm、L22=20mm、θ=2°である。図8は事例3を示し、D31=40mm、L31=80mm、D32=80mm、L32=30mm、θ=2°である。なお、各図中の符号3Bは、中子3の凸部3Aにおいて、主型2に設けられた凹部2Aに実際に嵌合する部分(テーパー形状の部分)ではない残りの部分を表している。
 一般に、縦方向に互いに嵌合される中子3の凸部3Aと主型2の凹部2Aの組み合わせでは、嵌合部のテーパー角度は2°前後であることが多い。これは経験値として導き出されており、鋳物に関する技術書にも掲載されている。なお、本発明を利用して事例1ないし3の中子3の凸部3と主型2の凹部2Aの組み合わせで嵌合を行ったが、いずれも主型2の凹部2Aと中子3の凸部3Aの嵌合部のクリアランスを0.3mm以下にすることができた。
 前述した様に、中子載置職人が微妙な手感覚で実施してきた中子載置作業を自動化により完全に再現することができる中子を主型に載置(嵌合)する装置は、存在していなかった。一般に主型と中子の嵌合結合部は互いに嵌合するテーパー形状に成型されているが、より良質な鋳物製品を製造するために中子載置職人が主型に中子載置するにあたり実施している作業として、このテーパー形状の嵌合結合部に中子をセットするにあたり嵌合の最後に中子が壊れない微妙な手感覚により中子を嵌合部に押し込むといった作業を実施している。
 これに対して、本実施の形態に係る嵌合装置1では、中子載置職人が勘コツで実現してきた良質な鋳物づくりをロボットによる自動化で実現することができ、さらに、今まで人手に頼ることでしか実現不可能であった主型2の凹部2Aと中子3の凸部3Aの嵌合部のクリアランスを0.3mm以下の極限にまで狭めることが可能となる。
 そして、主型2の凹部2Aと中子3の凸部3Aの嵌合部のクリアランスを0.3mm以下にできることで、主型2と中子3の密着性を増加させることができ、いくつかの効果を得ることが可能である。1つ目に主型と中子の相対位置精度が向上することによる鋳物製品の精度向上が挙げられる。2つ目に主型と中子の間の隙間がなくなることによる鋳物製品のバリ減少が挙げられる。3つ目に嵌合部に塗布するスラリー状のモールドペーストによる主型と中子の密着性向上が挙げられる。4つ目に嵌合部に塗布するスラリー状のモールドペーストの薄層化による鋳物製品の精度向上が挙げられる。さらに、中子載置によって引き起こされる不良(例えば、はぐみ、グイチ、偏肉、型落ちなど)を削減することができる。
(変形例)
 事前中子位置姿勢検出手段4(ビジョンセンサ)、把持中子位置姿勢検出手段7(ビジョンセンサ)、及び、主型位置姿勢検出手段8(ビジョンセンサ)は、いずれもその配置を変更することができる。図9は、変形例に係る主型と中子の嵌合装置の全体構造の概略を表す図である。図1の主型と中子の嵌合装置では、事前中子位置姿勢検出手段4(ビジョンセンサ)、把持中子位置姿勢検出手段7(ビジョンセンサ)、及び、主型位置姿勢検出手段8(ビジョンセンサ)は、それぞれ固定されているが、図9の様に、事前中子位置姿勢検出手段4(ビジョンセンサ)、把持中子位置姿勢検出手段7(ビジョンセンサ)、及び、主型位置姿勢検出手段8(ビジョンセンサ)の機能が1つのビジョンセンサに統合され、中子把持移動手段5(垂直多関節ロボットのアーム)に取り付けられ移動するようにしてもよい。
 このように、所定の位置に置かれている中子3の位置、向き、及び、傾きと、所定の位置に置かれている主型2の位置、向き、及び、傾きと、中子把持部11に把持された中子3の位置、向き、及び、傾きとを検出できる手段であれば、その配置においてどのような手段を用いてもよい。
 また、本実施の形態では、主型2に設けられた嵌合部である凹部2Aと、中子3に設けられた嵌合部である凸部3Aとを嵌合しているが、主型2に凸部が設けられ、中子3に凹部が設けられもよい。その場合、主型2に設けられた嵌合部である凸部と、中子3に設けられた嵌合部である凹部とを嵌合することにより、主型2と中子3が嵌合される。
 また、本実施の形態では、中子把持移動手段5は垂直多関節ロボットで構成されているが、他の手段を用いることが可能である。例えば、水平多関節ロボット、パラレルリンクロボット、協働ロボット、XYZ各3軸に直動駆動可能な駆動アクチュエータなど、3次元空間を自在に駆動搬送できる手段であればどのような手段を用いてもよい。また動力も電動に限らず、油圧や空圧を用いてもよい。
 また、本実施の形態では、中子把持移動手段5の中子把持部11はロボットハンドで構成されているが、他の手段を用いることが可能である。例えば、中子3に設けられた孔空き部や凹部に差し込んで外側に開くようなハンド、中子を掬う形状のハンド、中子を刺す形状のハンドなど、中子をハンドリングできる手段であればどのような手段を用いてもよい。
 また、本実施の形態では、事前中子位置姿勢検出手段4、把持中子位置姿勢検出手段7、及び、主型位置姿勢検出手段8は、ビジョンセンサで構成されているが、他の手段を用いることが可能である。例えば、レーザーセンサ、リニアエンコーダ、近接センサ、赤外線センサ、ミリ波センサ、マイクロ波センサなど、距離や位置が確認できる手段であればどのような手段を用いてもよい。
 また、本実施の形態では、センサ9は、6軸の力覚センサで構成されているが、他の手段を用いることが可能である。例えば、加速度センサや複数個のひずみゲージからなる荷重検出器など、嵌合軸Z方向の外力Fz、Z軸を中心とするモーメントMz、軸Zに直交するX、Y各軸方向の外力Fx、Fyと、Z軸に直交するXY各軸を中心とするモーメントMxおよびMyが検出できる手段であればどのような手段を用いてもよい。
 また、本実施の形態では、中子移動量検出手段6は、エンコーダで構成されているが、他の手段を用いることが可能である。例えば、レーザーセンサ、リニアエンコーダ、近接センサ、赤外線センサ、ミリ波センサ、マイクロ波センサなど、中子把持移動手段5の中子把持部11で把持された中子3の移動方向と距離が確認できる手段であればどのような手段を用いてもよい。
 以上、本発明の様々な実施形態を説明したが、上記の説明は本発明を限定するものではなく、本発明の技術的範囲において、構成要素の削除、追加、置換を含む様々な変形例が考えられる。
1 嵌合装置
2 主型
2A 凹部
3 中子
3A 凸部
4 事前中子位置姿勢検出手段
5 中子把持移動手段
6 中子移動量検出手段
7 把持中子位置姿勢検出手段
8 主型位置姿勢検出手段
9 センサ
10 制御手段
11 中子把持部
12 中子移動部
X、Y 軸
Z 嵌合軸
Fx、Fy、Fz 外力
Mx、My モーメント
Fza 嵌合完了外力

Claims (16)

  1.  中子を把持して移動する中子把持移動手段と、
     前記中子把持移動手段の移動量を検出する中子移動量検出手段と、
     前記中子把持移動手段に把持された前記中子の位置、向き、及び、傾きを検出する把持中子位置姿勢検出手段と、
     主型の位置、向き、及び、傾きを検出する主型位置姿勢検出手段と、
     前記中子に加わる物理量を検出するセンサと、
     前記主型と前記中子の相対位置、向き、及び、傾きの関係を常時算出し、これらの関係と、前記センサが検出した前記中子に加わる物理量とから前記主型と前記中子を嵌合させるように前記中子把持移動手段を制御する制御手段と、を備えたこと、
    を特徴とする主型と中子の嵌合装置。
  2.  前記中子に加わる物理量は、外力及びモーメントであること、を特徴とする請求項1に記載の主型と中子の嵌合装置。
  3.  前記制御手段は、
     前記センサが、前記中子に加わる、嵌合方向と直交する2軸方向の外力、嵌合軸を中心として回転方向に加わるモーメント、及び、嵌合方向と直交する2軸を中心として回転方向に加わるモーメントを検出した時に、これらの外力及びモーメントがなくなるように前記中子把持移動手段を移動させ、
     前記センサが、前記中子に加わる嵌合方向の外力が所定の値になるのを検出するまで、前記中子把持移動手段を前記主型の方向に移動させること、を特徴とする請求項2に記載の主型と中子の嵌合装置。
  4.  前記主型と前記中子の嵌合は、前記主型に設けられた嵌合部に前記中子に設けられた嵌合部を嵌合することにより行われ、前記主型に設けられた嵌合部と前記中子に設けられた嵌合部は互いにテーパー形状をしていること、を特徴とする請求項1から3のいずれか一項に記載の主型と中子の嵌合装置。
  5.  前記中子の位置、向き、及び、傾きを検出する事前中子位置姿勢検出手段をさらに備えたこと、を特徴とする請求項1から4のいずれか一項に記載の主型と中子の嵌合装置。
  6.  前記センサは、6軸の力覚センサであること、を特徴とする請求項1から5のいずれか一項に記載の主型と中子の嵌合装置。
  7.  前記中子把持移動手段は産業用ロボットであること、を特徴とする請求項1から6のいずれか一項に記載の主型と中子の嵌合装置。
  8.  前記事前中子位置姿勢検出手段は、ビジョンセンサであること、を特徴とする請求項5から7のいずれか一項に記載の主型と中子の嵌合装置。
  9.  前記把持中子位置姿勢検出手段、及び/又は、前記主型位置姿勢検出手段は、ビジョンセンサであること、を特徴とする請求項1から8のいずれか一項に記載の主型と中子の嵌合装置。
  10.  前記中子移動量検出手段は、エンコーダであること、を特徴とする請求項1から9のいずれか一項に記載の主型と中子の嵌合装置。
  11.  前記制御手段は、ロボットコントローラであること、を特徴とする請求項1から10のいずれか一項に記載の主型と中子の嵌合装置。
  12.  中子を把持して移動することと、
     把持された前記中子の位置、向き、及び、傾きを検出することと、
     前記中子の移動量を検出することと、
     主型の位置、向き、及び、傾きを検出することと、
     前記主型と前記中子の相対位置、向き、及び、傾きの関係を常時算出することと、
     前記中子に加わる物理量を検出することと、
     前記主型と前記中子の相対位置、向き、及び、傾きの関係を常時算出し、これらの関係と、前記中子に加わる物理量とから前記主型と前記中子を嵌合させるように前記中子の移動を制御することと、を含むこと、
    を特徴とする主型と中子の嵌合方法。
  13.  前記中子に加わる物理量は、外力及びモーメントであること、を特徴とする請求項12に記載の主型と中子の嵌合方法。
  14.  前記制御することは、
     前記中子に加わる、嵌合方向と直交する2軸方向の外力、嵌合軸を中心として回転方向に加わるモーメント、及び、嵌合方向と直交する2軸を中心として回転方向に加わるモーメントを検出した時に、これらの外力及びモーメントがなくなるように前記中子を移動させることと、
     前記中子に加わる嵌合方向の外力が所定の値になるまで、前記中子を前記主型の方向に移動させることであること、
    を特徴とする請求項13に記載の主型と中子の嵌合方法。
  15.  前記中子を把持した後に、前記中子に加わる物理量をリセットすること、をさらに含むこと、を特徴とする請求項12から14のいずれか一項に記載の主型と中子の嵌合方法。
  16.  前記中子を把持した後に、前記中子に加わる物理量を記憶すること、をさらに含むこと、を特徴とする請求項12から14のいずれか一項に記載の主型と中子の嵌合方法。
PCT/JP2018/026431 2017-11-08 2018-07-13 主型と中子の嵌合装置、及び、主型と中子の嵌合方法 WO2019092923A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880072477.7A CN111344086B (zh) 2017-11-08 2018-07-13 主模和芯子的嵌合装置、及主模和芯子的嵌合方法
US16/638,736 US11298832B2 (en) 2017-11-08 2018-07-13 Main mold and core joining device and main mold and core joining method
DE112018005783.6T DE112018005783T5 (de) 2017-11-08 2018-07-13 Hauptform- und Kernverbindungsvorrichtung und Hauptform- und Kernverbindungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017215529A JP6806036B2 (ja) 2017-11-08 2017-11-08 主型と中子の嵌合装置、及び、主型と中子の嵌合方法
JP2017-215529 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019092923A1 true WO2019092923A1 (ja) 2019-05-16

Family

ID=66437625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026431 WO2019092923A1 (ja) 2017-11-08 2018-07-13 主型と中子の嵌合装置、及び、主型と中子の嵌合方法

Country Status (6)

Country Link
US (1) US11298832B2 (ja)
JP (1) JP6806036B2 (ja)
CN (1) CN111344086B (ja)
DE (1) DE112018005783T5 (ja)
TW (1) TWI766075B (ja)
WO (1) WO2019092923A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220011206A1 (en) * 2020-07-09 2022-01-13 Sintokogio, Ltd. Strength measuring apparatus and strength measuring method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11148295B2 (en) * 2018-06-17 2021-10-19 Robotics Materials, Inc. Systems, devices, components, and methods for a compact robotic gripper with palm-mounted sensing, grasping, and computing devices and components
JP7343323B2 (ja) * 2019-07-25 2023-09-12 ファナック株式会社 故障予測システム
JP7306937B2 (ja) * 2019-09-25 2023-07-11 ファナック株式会社 ロボットに支持された部材の位置を調整するロボット装置の制御装置
JP7057401B2 (ja) 2020-08-24 2022-04-19 本田技研工業株式会社 入子装着装置
US11644375B2 (en) * 2020-09-03 2023-05-09 GM Global Technology Operations LLC Insertion force measurement system
JP7559474B2 (ja) 2020-09-30 2024-10-02 新東工業株式会社 充電システムおよび情報処理装置
KR102670337B1 (ko) * 2022-12-21 2024-05-29 팔미금속공업주식회사 중자를 갖는 용탕 충진 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491414U (ja) * 1977-12-09 1979-06-28
JPH04220139A (ja) * 1990-08-08 1992-08-11 Hitachi Metals Ltd 鋳型および中子ならびに中子取
JPH05212496A (ja) * 1992-02-07 1993-08-24 Toyota Motor Corp 中子納め装置
JPH06277799A (ja) * 1993-03-29 1994-10-04 Mazda Motor Corp 中子組立搬送装置
JPH1085898A (ja) * 1996-09-11 1998-04-07 Ishikawajima Shibaura Mach Co Ltd 中子の位置姿勢検出装置
JP2008023590A (ja) * 2006-07-25 2008-02-07 Isuzu Seisakusho:Kk 中子セッティング装置および中子セッティング方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261266A (en) * 1990-01-24 1993-11-16 Wisconsin Alumni Research Foundation Sensor tip for a robotic gripper and method of manufacture
WO1991014560A1 (fr) * 1990-03-22 1991-10-03 Fanuc Ltd Machine a moulage a injection du type a echange de moule automatique
JP3192180B2 (ja) * 1991-10-08 2001-07-23 株式会社日立製作所 成形部品の生産システム
EP0647175B1 (de) * 1993-04-05 1998-10-14 ProControl AG Spritzgiessmaschine mit elektrischem antrieb sowie verfahren zur führung derselben
US5792483A (en) * 1993-04-05 1998-08-11 Vickers, Inc. Injection molding machine with an electric drive
JPH07223044A (ja) * 1994-02-17 1995-08-22 Ishikawajima Shibaura Mach Co Ltd 中子納め確認装置
JP3223033B2 (ja) * 1994-02-23 2001-10-29 石川島芝浦機械株式会社 鋳物中子組付装置
US5753280A (en) * 1996-06-28 1998-05-19 Husky Injection Molding Systems Ltd. Compact and torque free side entry trolley robot
US6416706B1 (en) * 2000-02-15 2002-07-09 Sas Automation Ltd. Molding apparatus and method using a robot to introduce and insert into a mold
JP3881940B2 (ja) * 2002-08-07 2007-02-14 ファナック株式会社 干渉回避制御装置
AU2003270696A1 (en) * 2002-09-12 2004-05-04 David Groppe Precision feed end-effector composite fabric tape-laying apparatus and method
US20040084809A1 (en) * 2002-11-05 2004-05-06 Vanderploeg James A. Side shuttle apparatus and method for an injection molding machine
KR20070107080A (ko) * 2005-03-16 2007-11-06 스미도모쥬기가이고교 가부시키가이샤 성형조건 설정방법 및 사출성형기의 제어방법
DE112006001826T5 (de) * 2005-07-15 2008-05-08 Sumitomo Heavy Industries, Ltd. Steuervorrichtung für eine Formmaschine, Steuerverfahren für eine Formmaschine und eine Formmaschine
JP4271249B2 (ja) * 2007-06-14 2009-06-03 ファナック株式会社 嵌合装置
JP4837113B2 (ja) * 2010-03-18 2011-12-14 ファナック株式会社 ロボットを用いた嵌合装置
US8603382B2 (en) * 2010-03-23 2013-12-10 Canon Kasbushiki Kaisha Plastics molding system and optical element formed by the same
JP5852364B2 (ja) * 2011-08-26 2016-02-03 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、およびプログラム
JP5916494B2 (ja) * 2012-04-18 2016-05-11 日立オートモティブシステムズ株式会社 内燃機関用ピストンの製造方法
JP6020826B2 (ja) * 2013-07-12 2016-11-02 パナソニックIpマネジメント株式会社 繊維強化複合材の成形方法および繊維強化複合材の成形装置
CN103753526B (zh) * 2013-12-30 2015-09-30 重庆交通大学 可定位补偿的精密重载机械手
JP6426651B2 (ja) * 2016-04-14 2018-11-21 ファナック株式会社 金型内にて組立作業を行う射出成形システム
CN106141645B (zh) * 2016-06-15 2019-05-03 上海发那科机器人有限公司 一种自动装配系统及方法
CN106272416B (zh) * 2016-08-29 2020-12-29 上海交通大学 基于力觉和视觉的机器人细长轴精密装配系统及方法
JP6802690B2 (ja) * 2016-11-15 2020-12-16 芝浦機械株式会社 成形機
JP6502994B2 (ja) * 2017-04-07 2019-04-17 ファナック株式会社 射出成形システムおよび射出成形方法
JP6453935B2 (ja) * 2017-04-07 2019-01-16 ファナック株式会社 成形システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491414U (ja) * 1977-12-09 1979-06-28
JPH04220139A (ja) * 1990-08-08 1992-08-11 Hitachi Metals Ltd 鋳型および中子ならびに中子取
JPH05212496A (ja) * 1992-02-07 1993-08-24 Toyota Motor Corp 中子納め装置
JPH06277799A (ja) * 1993-03-29 1994-10-04 Mazda Motor Corp 中子組立搬送装置
JPH1085898A (ja) * 1996-09-11 1998-04-07 Ishikawajima Shibaura Mach Co Ltd 中子の位置姿勢検出装置
JP2008023590A (ja) * 2006-07-25 2008-02-07 Isuzu Seisakusho:Kk 中子セッティング装置および中子セッティング方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220011206A1 (en) * 2020-07-09 2022-01-13 Sintokogio, Ltd. Strength measuring apparatus and strength measuring method

Also Published As

Publication number Publication date
CN111344086A (zh) 2020-06-26
CN111344086B (zh) 2022-09-16
JP6806036B2 (ja) 2021-01-06
US20210129346A1 (en) 2021-05-06
DE112018005783T5 (de) 2020-08-20
US11298832B2 (en) 2022-04-12
TWI766075B (zh) 2022-06-01
TW201918351A (zh) 2019-05-16
JP2019084637A (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2019092923A1 (ja) 主型と中子の嵌合装置、及び、主型と中子の嵌合方法
TWI673150B (zh) 機器人教示方法及機器臂控制裝置
JP6351293B2 (ja) ロボットシステム、および物品の製造方法
CN110997249B (zh) 作业机器人和作业机器人的控制方法
US10864632B2 (en) Direct teaching method of robot
JP4598849B2 (ja) 嵌合の詰まり状態を修正する嵌合装置
WO2016163481A1 (ja) 摩擦かく拌接合装置、及び、摩擦かく拌接合方法
US20150367510A1 (en) Multi-joint robot having function for repositioning arm
WO2010104157A1 (ja) 作業装置及び作業方法
JPWO2017033391A1 (ja) ロボットシステム及びその運転方法
JP2014176943A (ja) ロボットシステム、校正方法及び被加工物の製造方法
US20200030992A1 (en) Robot System
JP2017019042A (ja) 機械加工装置及び機械加工方法
WO2018043563A1 (ja) 位置決め制御装置の制御方法及び位置決め制御装置
JP6592053B2 (ja) 作業ツールの移動方向を監視する制御装置
JP2010231575A (ja) ロボットのオフライン教示装置、ロボットのオフライン教示方法、及びロボットシステム
JP2021030364A (ja) ロボット制御装置
WO2018139574A1 (ja) 搬送システム及びその運転方法
JP6550985B2 (ja) ロボット接合システム
JP2016007609A (ja) ワーク操作用ロボットにおけるワーククランプ装置及びその方法
JP2017127932A (ja) ロボット装置、ロボット制御方法、部品の製造方法、プログラム及び記録媒体
KR101503304B1 (ko) 레이저 포인터를 이용하는 러그 용접 로봇의 위치 및 자세 세팅방법
WO2018088199A1 (ja) ロボット制御装置、ロボット、ロボットシステム、及び、ロボット制御方法
JP2000176872A (ja) マニピュレータ
JPH05212496A (ja) 中子納め装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876276

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18876276

Country of ref document: EP

Kind code of ref document: A1