WO2019090887A1 - 一种高循环次数的铅炭电池负极材料及制备方法 - Google Patents

一种高循环次数的铅炭电池负极材料及制备方法 Download PDF

Info

Publication number
WO2019090887A1
WO2019090887A1 PCT/CN2017/115923 CN2017115923W WO2019090887A1 WO 2019090887 A1 WO2019090887 A1 WO 2019090887A1 CN 2017115923 W CN2017115923 W CN 2017115923W WO 2019090887 A1 WO2019090887 A1 WO 2019090887A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
lead
graphene
modified
negative electrode
Prior art date
Application number
PCT/CN2017/115923
Other languages
English (en)
French (fr)
Inventor
周寿斌
汪的华
彭创
毛旭辉
刘畅
王雅琼
肖巍
钱帮芬
姜庆海
Original Assignee
江苏华富储能新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华富储能新技术股份有限公司 filed Critical 江苏华富储能新技术股份有限公司
Publication of WO2019090887A1 publication Critical patent/WO2019090887A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lead carbon battery anode material with high cycle number and a preparation method thereof, and belongs to the technical field of battery manufacturing.
  • the lead-acid battery technology is very mature, with large capacity, good safety, low cost, and recyclability. It will still be the mainstream technology of weak mixing technology in the future, but the long-current charge and discharge life of traditional lead-acid batteries is short. The problem constrains the promotion of this technology, and the new battery technology of lead carbon batteries can solve this deficiency.
  • the lead carbon battery mixes the carbon material with the lead of the conventional anode material to form a composite anode. After the carbon material is introduced into the anode, the sulfation phenomenon under PSoC can be effectively improved, and the charging acceptance and rate performance can be improved.
  • the charging time of the product is one-eighth of that of the lead-acid battery, and the cycle life is more than four times that of the lead-acid battery.
  • the lithium battery Compared with the lithium battery, it also has the advantages of low temperature performance, low cost, mature production and recycling process.
  • CN104577058A discloses a preparation method of a negative electrode active material for a lead carbon battery, which belongs to the technical field of lead acid battery production. Using special lead carbon battery and paste equipment, through the optimized ratio of each component and controlling the dry mixing, wet mixing and acid mixing time of each stage, the production quality is good (the carbon material dispersibility is good), the process is controllable and the battery is satisfied. Performance requirements for lead-carbon battery negative lead paste.
  • CN105140466A discloses a lead carbon negative electrode plate, which is coated with a common negative electrode paste on a lead calcium grid alloy, and then coated with a high carbon content negative electrode lead paste on both sides of the electrode plate, and a lead carbon negative electrode plate is obtained by curing and drying, wherein
  • the high-carbon content of the negative lead paste component is: lead powder 100 parts; carbon material A 0.5-1 part; carbon material B 5-20 parts; barium sulfate 0.1-1.5 parts; sodium lignosulfonate 0.1-0.5 parts; 0.1 to 0.5 parts of the acid; 0.1 to 0.5 parts of short fibers; 10 to 20 parts of water; 4 to 8 parts of sulfuric acid of 1.0 to 1.4 g/cm 3 .
  • the lead carbon battery obtained by the above negative electrode material still has the disadvantage of low current intensity and long life.
  • An object of the present invention is to provide a negative electrode material for use in a lead carbon battery having a low number of discharge cycles and a short life, and a lead carbon battery including the negative electrode material.
  • a negative electrode material for a lead carbon battery comprising the following components as a raw material by weight: 5-10 parts of sulfuric acid, 0.5-2 parts of barium sulfate, 0.5-2 parts of silicon carbide powder, 0.1 ⁇ of white carbon black 0.15 parts, 0.2 to 0.4 parts of graphene-modified polyacrylic acid fiber, 0.05 to 0.1 part of a titanate coupling agent, 0.1 to 0.15 parts of a nonionic surfactant, 7 to 12 parts of pure water, and 50 to 60 parts of a lead powder.
  • the white carbon black has an average particle diameter ranging from 50 to 100 ⁇ m.
  • the silicon carbide powder has an average particle diameter ranging from 50 to 100 ⁇ m.
  • the preparation method of the graphene modified polyacrylic fiber comprises the following steps:
  • the first step 50 to 60 parts of the hydroxy silicone oil, 10 to 15 parts of the silane coupling agent KH-570, 3 to 5 parts of KOH, and 6 to 10 parts of ethyl acetate are uniformly mixed, and under a nitrogen atmosphere, After heating to 90 ° C, the reaction was maintained for 3 h to obtain a modified polysiloxane prepolymer;
  • Step 2 according to parts by weight, take 12-15 parts of butyl acrylate, 5-10 parts of methyl acrylate, 1-2 parts of emulsifier and 20-30 parts of deionized water, stir at high speed for 0.5 ⁇ 1h, then add 2 to 4 parts of the agent, reacted at 70 to 80 ° C for 0.5 to 2 hours, and then add 6 to 10 parts of modified polysiloxane prepolymer and initiator 1 to 2 parts, and react at 70 to 80 ° C 2 ⁇ 3h, and then adjust the pH to 7 with ammonia water to obtain an acrylic emulsion;
  • the third step 5 to 15 parts of titanium oxide and 2 to 4 parts of an anionic surfactant are added to the acrylic emulsion, and the dispersion is uniform, and a modified acrylic emulsion is obtained;
  • the cationically modified graphene and the modified acrylic emulsion are uniformly mixed according to a weight ratio of 1:4 to 7, and then the liquid is sprayed into a fiber through a spinning nozzle, and then dried to obtain a graphene.
  • Polyacrylic fiber
  • the spinneret has a diameter of 0.1 to 0.5 mm.
  • the azo initiator is selected from the group consisting of dimethyl azobisisobutyrate, azobisisobutyl hydrazine hydrochloride, azodicarbonamide, azodiisopropylimidazoline hydrochloride, azo Butyryanamide, azobiscyclohexylcarbonitrile, azobiscyanovaleric acid, azodiisopropylimidazoline, azobisisobutyronitrile, azobisisovaleronitrile and azobisisoheptane One or more of the nitriles.
  • the preparation method of the anode material used in the lead carbon battery comprises the following steps:
  • S2 The lead paste obtained in S1 is applied to a negative electrode grid and dried at a temperature of 55 to 65 ° C for 20 to 40 hours to obtain a negative electrode material.
  • the lead carbon battery made of the negative electrode material used in the lead carbon battery provided by the present invention has the advantages of large electric capacity and small electric power loss after cyclic discharge.
  • the raw material for preparing the negative electrode material provided by the invention comprises 5-10 parts by weight of sulfuric acid, 0.5-2 parts of barium sulfate, 0.5-2 parts of silicon carbide powder, 0.1-0.15 parts of white carbon black, and graphene modification.
  • the polyacrylic acid fiber is 0.2 to 0.4 parts
  • the titanate coupling agent is 0.05 to 0.1 part
  • the nonionic surfactant is 0.1 to 0.15 part
  • the pure water is 7 to 12 parts
  • the lead powder is 50 to 60 parts.
  • the first step 50 to 60 parts of the hydroxy silicone oil, 10 to 15 parts of the silane coupling agent KH-570, 3 to 5 parts of KOH, and 6 to 10 parts of ethyl acetate are uniformly mixed, and under a nitrogen atmosphere, After heating to 90 ° C, the reaction was maintained for 3 h to obtain a modified polysiloxane prepolymer;
  • Step 2 according to parts by weight, take 12-15 parts of butyl acrylate, 5-10 parts of methyl acrylate, 1-2 parts of emulsifier and 20-30 parts of deionized water, stir at high speed for 0.5 ⁇ 1h, then add 2 to 4 parts of the agent, reacted at 70 to 80 ° C for 0.5 to 2 hours, and then add 6 to 10 parts of modified polysiloxane prepolymer and initiator 1 to 2 parts, and react at 70 to 80 ° C 2 ⁇ 3h, and then adjust the pH to 7 with ammonia water to obtain an acrylic emulsion;
  • the third step 5 to 15 parts of titanium oxide and 2 to 4 parts of an anionic surfactant are added to the acrylic emulsion, and the dispersion is uniform, and a modified acrylic emulsion is obtained;
  • the cationically modified graphene and the modified acrylic emulsion are uniformly mixed according to the weight ratio of 1:4 to 7, and then the liquid is sprayed into the fiber through the spinneret of the spinneret, and then dried to obtain Graphene modified polyacrylic fiber.
  • This method will pass the modified acrylic emulsion with an anionic surfactant, while the graphene has a cationic surface active
  • the particles in the particles are charged with opposite charges due to the action of static electricity, and then the modified graphene can be coated on the fibers after mixing the two, thereby improving the electrochemical performance of the negative electrode.
  • the surfactant is not particularly limited and is selected from nonionic, anionic, cationic and surfactants known to those skilled in the art. One or a combination of these surfactants can be used.
  • Nonionic surfactants include, for example, linear polyoxyalkylene alkyl ethers such as polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene decyl ether, polyoxyethylene lauryl ether and polyethylene oxide.
  • Cetyl ether branched polyoxyalkylene primary alkyl ethers such as polyethylene oxide 2-ethylhexyl ether, polyoxyethylene isohexadecyl ether and polyethylene oxide isostearyl ether; branched Polyalkylene oxide secondary alkyl ethers such as polyoxyethylene 1-hexylhexyl ether, polyoxyethylene 1-octylhexyl ether, polyoxyethylene 1-hexyloctyl ether, polyoxyethylene 1-pentylheptyl ether and Polyoxyethylene 1-heptylpentyl ether; polyoxyalkylene alkenyl ethers, such as polyoxyethylene oleyl ether; polyoxyalkylene alkylphenyl ethers, such as polyoxyethylene octyl phenyl ether, poly Ethylene oxide nonylphenyl ether, and polyoxyethylene dodecyl phenyl ether; polyoxyalkylene alkyl ary
  • the anionic surfactants include, for example, fatty acids and salts thereof such as oleic acid, palmitic acid, sodium oleate, potassium palmitate, and triethanolamine oleate; hydroxyl group-containing acids and salts thereof, such as glycolic acid, Potassium glycolate, lactic acid and potassium lactate; polyoxyalkylene alkyl ether acetates and their salts, such as polyoxyalkylene tridecyl ether acetic acid and its sodium salt; salts of carboxyl-polysubstituted aromatic compounds, such as phenylene Potassium triacetate and potassium pyromelliate; alkylbenzenesulfonic acids and salts thereof, such as dodecylbenzenesulfonic acid and sodium salts thereof; polyoxyalkylene alkyl ethersulfonic acids and their salts, such as poly Ethylene oxide 2-ethylhexyl ether sulfonic acid and its potassium salt; higher fatty acid
  • Cationic surfactants include, for example, quaternary ammonium salts such as cetyltrimethylammonium chloride, lauryl trimethylammonium chloride, and oleyl methylethylammonium ethyl sulfate; and (polyoxyalkylene) Alkylaminoether salts such as (polyoxyethylene) lauryl aminoether lactate, stearyl aminoether lactate, and (polyoxyethylene) lauryl amino ether trimethyl phosphate.
  • quaternary ammonium salts such as cetyltrimethylammonium chloride, lauryl trimethylammonium chloride, and oleyl methylethylammonium ethyl sulfate
  • (polyoxyalkylene) Alkylaminoether salts such as (polyoxyethylene) lauryl aminoether lactate, stearyl aminoether lactate, and (polyoxyethylene) lauryl amino ether trimethyl phosphate.
  • the anode material used in the lead carbon battery includes the following components as a raw material by weight: 5 parts of sulfuric acid, 0.5 parts of barium sulfate, silicon carbide powder (average particle size range of 50 to 100 ⁇ m) 0.5 parts, white carbon black (average particle size range is 50 to 100 ⁇ m) 0.1 part, graphene-modified polyacrylic acid fiber 0.2 part, titanate coupling agent 0.05 part, 0.1 part of nonionic surfactant, 7 parts of pure water, and 50 parts of lead powder.
  • the preparation method of the graphene modified polyacrylic fiber comprises the following steps:
  • the first step 50 parts of hydroxy silicone oil, 10 parts of silane coupling agent KH-570, 3 parts of KOH, and 6 parts of ethyl acetate are uniformly mixed, and the temperature is raised to 90 ° C in a nitrogen atmosphere, and the reaction is maintained for 3 hours. , obtaining a modified polysiloxane prepolymer;
  • Step 2 in parts by weight, take 12 parts of butyl acrylate, 5 parts of methyl acrylate, 1 part of emulsifier and 20 parts of deionized water, stir at high speed for 0.5 h, then add 2 parts of initiator, react at 70 ° C 0.5h, 6 parts of modified polysiloxane prepolymer and 1 part of azodicarbonamide initiator were added dropwise, reacted at 70 ° C for 2 h, and then adjusted to pH 7 with aqueous ammonia to obtain an acrylic emulsion;
  • the cationically modified graphene and the modified acrylic emulsion are uniformly mixed according to a weight ratio of 1:4, and then the liquid is sprayed into fibers through a spinning nozzle having a diameter of 0.1 mm, and then dried to obtain graphite.
  • Ane modified polyacrylic fiber Ane modified polyacrylic fiber.
  • the anode material used in the lead carbon battery includes the following components as a raw material by weight: 10 parts of sulfuric acid, 2 parts of barium sulfate, 2 parts of silicon carbide powder (average particle size range of 50 to 100 ⁇ m), white carbon black (average particle size range: 50 to 100 ⁇ m) 0.15 parts, graphene-modified polyacrylic acid fiber 0.4 parts, titanate coupling agent 0.1 part, nonionic surfactant 0.15 parts, pure water 12 parts, and lead powder 60 parts.
  • the preparation method of the graphene modified polyacrylic fiber comprises the following steps:
  • the first step 60 parts of hydroxy silicone oil, 15 parts of silane coupling agent KH-570, 5 parts of KOH, and 10 parts of ethyl acetate are uniformly mixed, and the temperature is raised to 90 ° C in a nitrogen atmosphere, and the reaction is maintained for 3 hours. , obtaining a modified polysiloxane prepolymer;
  • Step 2 by weight, 15 parts of butyl acrylate, 10 parts of methyl acrylate, 2 parts of emulsifier and 30 parts of deionized water, stir at high speed for 1 h, then add 4 parts of initiator, react at 80 ° C for 2 h. And further adding 10 parts of modified polysiloxane prepolymer and 2 parts of azodicarbonamide initiator, reacting at 80 ° C for 3 h, and then adjusting the pH to 7 with ammonia water to obtain an acrylic emulsion;
  • the cationically modified graphene and the modified acrylic emulsion are uniformly mixed according to a weight ratio of 1:7, and then the liquid is sprayed into fibers through a spinning nozzle having a diameter of 0.5 mm, and then dried to obtain graphite.
  • Ane modified polyacrylic fiber Ane modified polyacrylic fiber.
  • the anode material used for the lead carbon battery includes the following components as a raw material by weight: 8 parts of sulfuric acid, 0.8 parts of barium sulfate, silicon carbide powder (average particle size range of 50 to 100 ⁇ m), 0.9 parts, white carbon black (average particle size range: 50 to 100 ⁇ m) 0.12 parts, graphene-modified polyacrylic acid fiber 0.3 parts, titanate coupling agent 0.08 parts, nonionic surfactant 0.12 parts, pure water 9 parts, and lead powder 55 parts.
  • the preparation method of the graphene modified polyacrylic fiber comprises the following steps:
  • Step 2 in parts by weight, take 13 parts of butyl acrylate, 8 parts of methyl acrylate, 2 parts of emulsifier and 25 parts of deionized water, stir at high speed for 0.8h, then add 3 parts of initiator, react at 75 ° C 1h, 8 parts of modified polysiloxane prepolymer and 2 parts of azodicarbonamide initiator were added dropwise, reacted at 75 ° C for 3 h, and then adjusted to pH 7 with aqueous ammonia to obtain an acrylic emulsion;
  • Step 4 in terms of parts by weight, 42 parts of graphene, 4 parts of cationic surfactant, silane coupling agent KH-5503 parts, 10 parts of organic solvent are uniformly mixed to obtain cationically modified graphene;
  • the cationically modified graphene and the modified acrylic emulsion are uniformly mixed according to a weight ratio of 1:5, and then the liquid is sprayed into fibers through a spinning nozzle having a diameter of 0.2 mm, and then dried to obtain graphite.
  • Ane modified polyacrylic fiber Ane modified polyacrylic fiber.
  • Example 3 The difference from Example 3 is that the addition of the cationic surfactant and the anionic surfactant in the preparation of the modified acrylic emulsion is reversed.
  • the anode material used for the lead carbon battery includes the following components as a raw material by weight: 8 parts of sulfuric acid, 0.8 parts of barium sulfate, silicon carbide powder (average particle size range of 50 to 100 ⁇ m), 0.9 parts, white carbon black (average particle size range: 50 to 100 ⁇ m) 0.12 parts, graphene-modified polyacrylic acid fiber 0.3 parts, titanate coupling agent 0.08 parts, nonionic surfactant 0.12 parts, pure water 9 parts, and lead powder 55 parts.
  • the preparation method of the graphene modified polyacrylic fiber comprises the following steps:
  • Step 2 in parts by weight, take 13 parts of butyl acrylate, 8 parts of methyl acrylate, 2 parts of emulsifier and 25 parts of deionized water, stir at high speed for 0.8h, then add 3 parts of initiator, react at 75 ° C 1h, 8 parts of modified polysiloxane prepolymer and 2 parts of azodicarbonamide initiator were added dropwise, reacted at 75 ° C for 3 h, and then adjusted to pH 7 with aqueous ammonia to obtain an acrylic emulsion;
  • the anion-modified graphene and the modified acrylic emulsion are uniformly mixed according to a weight ratio of 1:5, and then the liquid is sprayed into fibers through a spinning nozzle having a diameter of 0.2 mm, and then dried to obtain graphite.
  • Ane modified polyacrylic fiber Ane modified polyacrylic fiber.
  • Example 3 The difference from Example 3 is that no titanium oxide is added in the third step in the preparation of the modified acrylic emulsion.
  • the anode material used for the lead carbon battery includes the following components as a raw material by weight: 8 parts of sulfuric acid, 0.8 parts of barium sulfate, silicon carbide powder (average particle size range of 50 to 100 ⁇ m), 0.9 parts, white carbon black (The average particle size range is 50 ⁇ 100 ⁇ m) 0.12 parts, graphene-modified polyacrylic acid fiber 0.3 parts, titanate coupling agent 0.08 parts, nonionic surfactant 0.12 parts, pure water 9 parts, and lead powder 55 parts.
  • the preparation method of the graphene modified polyacrylic fiber comprises the following steps:
  • Step 2 in parts by weight, take 13 parts of butyl acrylate, 8 parts of methyl acrylate, 2 parts of emulsifier and 25 parts of deionized water, stir at high speed for 0.8h, then add 3 parts of initiator, react at 75 ° C 1h, 8 parts of modified polysiloxane prepolymer and 2 parts of azodicarbonamide initiator were added dropwise, reacted at 75 ° C for 3 h, and then adjusted to pH 7 with aqueous ammonia to obtain an acrylic emulsion;
  • Step 4 in terms of parts by weight, 42 parts of graphene, 4 parts of cationic surfactant, silane coupling agent KH-5503 parts, 10 parts of organic solvent are uniformly mixed to obtain cationically modified graphene;
  • the cationically modified graphene and the modified acrylic emulsion are uniformly mixed according to a weight ratio of 1:5, and then the liquid is sprayed into fibers through a spinning nozzle having a diameter of 0.2 mm, and then dried to obtain graphite.
  • Ane modified polyacrylic fiber Ane modified polyacrylic fiber.
  • test method for dynamic charging acceptance of lead carbon batteries is:
  • the high-rate cycle life (HRPSOC) test method for partially charged state of lead carbon battery is:
  • the performance test results of the prepared lead carbon battery are as follows:
  • the lead carbon battery anode material provided in the present invention has the advantages of large current and high capacity during use, in particular, the number of times of charge and discharge is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种高循环次数的铅炭电池负极材料及制备方法,包括有按重量份计的如下组分作为原料:硫酸5~10份、硫酸钡0.5~2份、碳化硅粉体0.5~2份、白炭黑0.1~0.15份、石墨烯改性聚丙烯酸纤维0.2~0.4份、钛酸酯偶联剂0.05~0.1份、非离子表面活性剂0.1~0.15份、纯水7~12份、铅粉50~60份。该铅炭电池所用的负极材料制成的铅炭电池具有电容量大、循环放电后损失电量小的优点。

Description

一种高循环次数的铅炭电池负极材料及制备方法 技术领域
本发明涉及一种高循环次数的铅炭电池负极材料及制备方法,属于电池制造技术领域。
背景技术
目前,铅酸蓄电池技术工艺已经十分成熟,具有容量大、安全性好、成本低、可回收等特点,未来仍将是弱混技术的主流技术,但传统铅酸电池大电流充放电寿命短等问题制约了该技术的推广,铅炭电池的新型电池技术可解决这一不足。铅炭电池将炭材料与传统负极材料铅混合形成复合负极,在负极引入炭材料后,可有效改善PSoC下的硫酸盐化现象,提高充电接受能力和倍率性能。改进后,产品充电时间为铅酸电池的八分之一,循环寿命为铅酸电池的四倍以上,与锂电池相比,也具有低温性能好、成本低、生产及回收工艺成熟等优势。
CN104577058A公开了一种铅炭电池负极活性物质制备方法,属于铅酸蓄电池制作技术领域。采用专用的铅炭电池和膏设备,通过各成分的优化配比和控制各阶段干混、湿混、酸混时间,进而达到生产质量良好(碳材料分散性好)、过程可控且满足电池性能要求的铅炭电池负极铅膏。CN105140466A公开了一种铅炭负极板,将普通负极铅膏涂覆于铅钙板栅合金上,然后在极板两面涂覆高炭含量的负极铅膏,通过固化干燥得到铅炭负极板,其中高炭含量的负极铅膏成分为:铅粉100份;炭材料A0.5~1份;炭材料B 5~20份;硫酸钡0.1~1.5份;木素磺酸钠0.1~0.5份;腐殖酸0.1~0.5份;短纤维0.1~0.5份;水10~20份;1.0~1.4g/cm3的硫酸4~8份。
但是上述的负极材料得到的铅炭电池仍然存在着电流强度低、寿命不长的缺点。
发明内容
本发明的目的是:针对铅炭电池存在的放电循环次数低、寿命短的问题,提出了一种其使用的负极材料,以及包含有该负极材料的铅炭电池。
技术方案是:
一种铅炭电池所用的负极材料,包括有按重量份计的如下组分作为原料:硫酸5~10份、硫酸钡0.5~2份、碳化硅粉体0.5~2份、白炭黑0.1~0.15份、石墨烯改性聚丙烯酸纤维0.2~0.4份、钛酸酯偶联剂0.05~0.1份、非离子表面活性剂0.1~0.15份、纯水7~12份、铅粉50~60份。
所述的白炭黑的平均粒径范围是50~100μm。
所述的碳化硅粉体的平均粒径范围是50~100μm。
所述的石墨烯改性聚丙烯酸纤维的制备方法,包括如下步骤:
第1步,按重量份计,将50~60份羟基硅油、10~15份硅烷偶联剂KH-570、3~5份KOH、乙酸乙酯6~10份混合均匀,在氮气气氛下,升温至90℃后保持反应3h,得到改性聚硅氧烷预聚体;
第2步,按重量份计,取丙烯酸丁酯12~15份、丙烯酸甲酯5~10份、乳化剂1~2份和去离子水20~30份,高速搅拌0.5~1h,再加入引发剂2~4份,在70~80℃下反应0.5~2h,再滴加6~10份改性聚硅氧烷预聚体和引发剂1~2份,在70~80℃下反应2~3h,再用氨水调节pH至7,得到丙烯酸乳液;
第3步,将在丙烯酸乳液中加入氧化钛5~15份和阴离子表面活性剂2~4份,分散均匀后,得到改性丙烯酸乳液;
第4步,按重量份计,将石墨烯40~45份、阳离子表面活性剂3~5份、硅烷偶联剂KH-5502~4份、有机溶剂5~15份混合均匀,得到阳离子改性石墨烯;
第6步,将阳离子改性石墨烯与改性丙烯酸乳液按照重量比1:4~7混合均匀,再将料液通过纺丝喷丝头喷成纤维,再经过烘干后,得到石墨烯改性聚丙烯酸纤维。
喷丝头的直径为0.1~0.5mm。
所述偶氮类引发剂选自偶氮二异丁酸二甲酯、偶氮二异丁脒盐酸盐、偶氮二甲酰胺、偶氮二异丙基咪唑啉盐酸盐、偶氮异丁氰基甲酰胺、偶氮二环己基甲腈、偶氮二氰基戊酸、偶氮二异丙基咪唑啉、偶氮二异丁腈、偶氮二异戊腈和偶氮二异庚腈中的一种或多种。
所述的铅炭电池所用的负极材料的制备方法,包括如下步骤:
S1:将硫酸钡、碳化硅粉体、白炭黑、石墨烯改性聚丙烯酸纤维、钛酸酯偶联剂、非离子表面活性剂、纯水混合均匀,再缓慢加入铅粉,搅拌均匀,再加入缓慢加入硫酸,并控制温度不超过55℃;
S2:将S1中得到的铅膏涂到负极栅板上,在温度55~65℃下干燥20~40h,得到负极材料。
有益效果
本发明提供的铅炭电池所用的负极材料制成的铅炭电池具有电容量大、循环放电后损失电量小的优点。
具体实施方式
下面通过具体实施方式对本发明作进一步详细说明。但本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
本文使用的词语“包括”、“包含”、“具有”或其任何其他变体意欲涵盖非排它性的包括。例如,包括列出要素的工艺、方法、物品或设备不必受限于那些要素,而是可以包括其他没有明确列出或属于这种工艺、方法、物品或设备固有的要素。
以范围形式表达的值应当以灵活的方式理解为不仅包括明确列举出的作为范围限值的数值,而且还包括涵盖在该范围内的所有单个数值或子区间,犹如每个数值和子区间被明确列举出。例如,“大约0.1%至约5%”的浓度范围应当理解为不仅包括明确列举出的约0.1%至约5%的浓度,还包括有所指范围内的单个浓度(如,1%、2%、3%和4%)和子区间(例如,0.1%至0.5%、1%至2.2%、3.3%至4.4%)。本发明中的百分比在无特殊说明情况下是指重量百分比。
本发明提供的负极材料的制备原料中包括有按重量份计的硫酸5~10份、硫酸钡0.5~2份、碳化硅粉体0.5~2份、白炭黑0.1~0.15份、石墨烯改性聚丙烯酸纤维0.2~0.4份、钛酸酯偶联剂0.05~0.1份、非离子表面活性剂0.1~0.15份、纯水7~12份、铅粉50~60份。
其中,石墨烯改性聚丙烯酸纤维的制备方法步骤是:
第1步,按重量份计,将50~60份羟基硅油、10~15份硅烷偶联剂KH-570、3~5份KOH、乙酸乙酯6~10份混合均匀,在氮气气氛下,升温至90℃后保持反应3h,得到改性聚硅氧烷预聚体;
第2步,按重量份计,取丙烯酸丁酯12~15份、丙烯酸甲酯5~10份、乳化剂1~2份和去离子水20~30份,高速搅拌0.5~1h,再加入引发剂2~4份,在70~80℃下反应0.5~2h,再滴加6~10份改性聚硅氧烷预聚体和引发剂1~2份,在70~80℃下反应2~3h,再用氨水调节pH至7,得到丙烯酸乳液;
第3步,将在丙烯酸乳液中加入氧化钛5~15份和阴离子表面活性剂2~4份,分散均匀后,得到改性丙烯酸乳液;
第4步,按重量份计,将石墨烯40~45份、阳离子表面活性剂3~5份、硅烷偶联剂KH-5502~4份、有机溶剂5~15份混合均匀,得到阳离子改性石墨烯;
第6步,将阳离子改性石墨烯与改性丙烯酸乳液按照重量比1:4~7混合均匀,再将料液通过喷丝头纺丝喷丝头喷成纤维,再经过烘干后,得到石墨烯改性聚丙烯酸纤维。
这种方法将通过改性丙烯酸乳液带上阴离子表面活性剂,而石墨烯带上阳离子表面活性 剂,经过搅拌后,由于静电作用使其中的微粒带上相反的电荷,再将两者混合之后可以将改性石墨烯包覆于纤维上,可以提高负极的电化学性能。
表面活性剂不受具体限制,并且选自本领域技术人员已知的非离子、阴离子、阳离子和表面活性剂。可以使用这些表面活性剂中的一种或组合。
非离子表面活性剂包括,例如,线型聚氧化烯烷基醚类,如聚氧化乙烯己基醚,聚氧化乙烯辛基醚,聚氧化乙烯癸基醚,聚氧化乙烯月桂基醚和聚氧化乙烯十六烷基醚;支化聚氧化烯基伯烷基醚类,如聚氧化乙烯2-乙基己基醚,聚氧化乙烯异十六烷基醚和聚氧化乙烯异硬脂基醚;支化聚氧化烯仲烷基醚类,如聚氧化乙烯1-己基己基醚,聚氧化乙烯1-辛基己基醚,聚氧化乙烯1-己基辛基醚,聚氧化乙烯1-戊基庚基醚和聚氧化乙烯1-庚基戊基醚;聚氧化烯链烯基醚类,如聚氧化乙烯油烯基醚;聚氧化烯烷基苯基醚类,如聚氧化乙烯辛基苯基醚,聚氧化乙烯壬基苯基醚,和聚氧化乙烯十二烷基苯基醚;聚氧化烯烷基芳基苯基醚类,如聚氧化乙烯三苯乙烯基苯基醚,聚氧化乙烯二苯乙烯基苯基醚,聚氧化乙烯苯乙烯基苯基醚,聚氧化乙烯三苄基苯基,聚氧化乙烯二苄基苯基醚,以及聚氧化乙烯苄基苯基醚;聚氧化烯脂肪酸酯类,如聚氧化乙烯单月桂酸酯,聚氧化乙烯单油酸酯,聚氧化乙烯单硬脂酸酯,聚氧化乙烯单肉豆蔻酸酯,聚氧化乙烯二月桂酸酯,聚氧化乙烯二油酸酯,聚氧化乙烯二肉豆蔻酸酯,以及聚氧化乙烯二硬脂酸酯;脱水山梨糖醇酯类,如脱水山梨糖醇单棕榈酸酯和脱水山梨糖醇单油酸酯;聚氧化烯脱水山梨糖醇脂肪酸酯类,如聚氧化乙烯脱水山梨糖醇单硬脂酸酯和聚氧化乙烯脱水山梨糖醇单油酸酯;甘油脂肪酸酯类,如甘油单硬脂酸酯,甘油单月桂酸酯和甘油单棕榈酸酯;聚氧化烯山梨糖醇脂肪酸酯类;蔗糖脂肪酸酯类;聚氧化烯蓖麻油醚类,如聚氧化乙烯蓖麻油醚;聚氧化烯氢化蓖麻油醚类,如聚氧化乙烯氢化蓖麻油醚;聚氧化烯烷基氨基醚类,如聚氧化乙烯月桂基氨基醚和聚氧化乙烯硬脂基氨基醚;氧化乙烯-氧化丙烯嵌段或无规共聚物;末端烷基醚化的氧化乙烯基-氧化丙烯基嵌段或无规共聚物;和末端蔗糖-醚化的氧化乙烯-氧化丙烯嵌段或无规共聚物。
阴离子表面活性剂包括,例如,脂肪酸类和它们的盐,如油酸,棕榈酸,油酸钠,棕榈酸钾,和油酸三乙醇胺;含羟基所酸类和它们的盐,如羟基乙酸,羟基乙酸钾,乳酸和乳酸钾;聚氧化烯烷基醚乙酸类和它们的盐,如聚氧化烯三癸基醚乙酸及其钠盐;羧基-多取代的芳族化合物的盐,如偏苯三酸钾和均苯四酸钾;烷基苯磺酸类和它们的盐,如十二烷基苯磺酸及其钠盐;聚氧化烯基烷基醚磺酸和它们的盐,如聚氧化乙烯2-乙基己基醚磺酸及其钾盐;高级脂肪酸酰胺磺酸和它们的盐,如硬脂酰甲基牛磺酸及其钠盐,月桂酰甲基牛磺酸及其钠盐,肉豆蔻酰甲基牛磺酸及其钠盐和棕榈酰甲基牛磺酸及其钠盐;N-酰基肌氨酸类和它们的 盐,如月桂酰肌氨酸及其钠盐;烷基膦酸和它们的盐,如辛基膦酸酯及其钾盐;芳族膦酸和它们的盐,如苯基膦酸酯及其钾盐;烷基膦酸烷基膦酸酯和它们的盐,如2-乙基己基膦酸单-2-乙基己酯及其钾盐;含氮烷基膦酸和它们的盐,如氨基乙基膦酸及其二乙醇胺盐;烷基硫酸酯和它们的盐,如2-乙基己硫酸酯及其钠盐;聚氧化烯硫酸酯类和它们的盐,如聚氧化乙烯2-乙基己基醚硫酸酯及其钠盐;烷基磷酸酯类和它们的盐,如基丁二酸盐类,如二-2-乙基己基磺基丁二酸钠和二辛基磺基丁二酸钠;以及长链N-酰基谷氨酸盐,如N-月桂酰谷氨酸一钠和N-硬脂酰-L-谷氨酸二钠。
阳离子表面活性剂包括,例如,季铵盐,如十六烷基三甲基氯化铵、氯化月桂基三甲基铵和乙基硫酸油烯基甲基乙基铵;以及(聚氧化烯基)烷基氨基醚盐,如(聚氧化乙烯基)月桂基氨基醚乳酸盐,硬脂基氨基醚乳酸盐,和(聚氧化乙烯基)月桂基氨基醚三甲基磷酸盐。
实施例1
铅炭电池所用的负极材料,包括有按重量份计的如下组分作为原料:硫酸5份、硫酸钡0.5份、碳化硅粉体(平均粒径范围是50~100μm)0.5份、白炭黑(平均粒径范围是50~100μm)0.1份、石墨烯改性聚丙烯酸纤维0.2份、钛酸酯偶联剂0.05份、非离子表面活性剂0.1份、纯水7份、铅粉50份。
所述的石墨烯改性聚丙烯酸纤维的制备方法,包括如下步骤:
第1步,按重量份计,将50份羟基硅油、10份硅烷偶联剂KH-570、3份KOH、乙酸乙酯6份混合均匀,在氮气气氛下,升温至90℃后保持反应3h,得到改性聚硅氧烷预聚体;
第2步,按重量份计,取丙烯酸丁酯12份、丙烯酸甲酯5份、乳化剂1份和去离子水20份,高速搅拌0.5h,再加入引发剂2份,在70℃下反应0.5h,再滴加6份改性聚硅氧烷预聚体和偶氮二甲酰胺引发剂1份,在70℃下反应2h,再用氨水调节pH至7,得到丙烯酸乳液;
第3步,将在丙烯酸乳液中加入氧化钛5份和阴离子表面活性剂2份,分散均匀后,得到改性丙烯酸乳液;
第4步,按重量份计,将石墨烯40份、阳离子表面活性剂3份、硅烷偶联剂KH-5502份、有机溶剂5份混合均匀,得到阳离子改性石墨烯;
第6步,将阳离子改性石墨烯与改性丙烯酸乳液按照重量比1:4混合均匀,再将料液通过直径为0.1mm纺丝喷丝头喷成纤维,再经过烘干后,得到石墨烯改性聚丙烯酸纤维。
实施例2
铅炭电池所用的负极材料,包括有按重量份计的如下组分作为原料:硫酸10份、硫酸钡2份、碳化硅粉体(平均粒径范围是50~100μm)2份、白炭黑(平均粒径范围是50~100μm)0.15份、石墨烯改性聚丙烯酸纤维0.4份、钛酸酯偶联剂0.1份、非离子表面活性剂0.15份、纯水12份、铅粉60份。
所述的石墨烯改性聚丙烯酸纤维的制备方法,包括如下步骤:
第1步,按重量份计,将60份羟基硅油、15份硅烷偶联剂KH-570、5份KOH、乙酸乙酯10份混合均匀,在氮气气氛下,升温至90℃后保持反应3h,得到改性聚硅氧烷预聚体;
第2步,按重量份计,取丙烯酸丁酯15份、丙烯酸甲酯10份、乳化剂2份和去离子水30份,高速搅拌1h,再加入引发剂4份,在80℃下反应2h,再滴加10份改性聚硅氧烷预聚体和偶氮二甲酰胺引发剂2份,在80℃下反应3h,再用氨水调节pH至7,得到丙烯酸乳液;
第3步,将在丙烯酸乳液中加入氧化钛15份和阴离子表面活性剂4份,分散均匀后,得到改性丙烯酸乳液;
第4步,按重量份计,将石墨烯45份、阳离子表面活性剂5份、硅烷偶联剂KH-5504份、有机溶剂15份混合均匀,得到阳离子改性石墨烯;
第6步,将阳离子改性石墨烯与改性丙烯酸乳液按照重量比1:7混合均匀,再将料液通过直径为0.5mm纺丝喷丝头喷成纤维,再经过烘干后,得到石墨烯改性聚丙烯酸纤维。
实施例3
铅炭电池所用的负极材料,包括有按重量份计的如下组分作为原料:硫酸8份、硫酸钡0.8份、碳化硅粉体(平均粒径范围是50~100μm)0.9份、白炭黑(平均粒径范围是50~100μm)0.12份、石墨烯改性聚丙烯酸纤维0.3份、钛酸酯偶联剂0.08份、非离子表面活性剂0.12份、纯水9份、铅粉55份。
所述的石墨烯改性聚丙烯酸纤维的制备方法,包括如下步骤:
第1步,按重量份计,将55份羟基硅油、12份硅烷偶联剂KH-570、4份KOH、乙酸乙酯8份混合均匀,在氮气气氛下,升温至90℃后保持反应3h,得到改性聚硅氧烷预聚体;
第2步,按重量份计,取丙烯酸丁酯13份、丙烯酸甲酯8份、乳化剂2份和去离子水25份,高速搅拌0.8h,再加入引发剂3份,在75℃下反应1h,再滴加8份改性聚硅氧烷预聚体和偶氮二甲酰胺引发剂2份,在75℃下反应3h,再用氨水调节pH至7,得到丙烯酸乳液;
第3步,将在丙烯酸乳液中加入氧化钛10份和阴离子表面活性剂3份,分散均匀后,得 到改性丙烯酸乳液;
第4步,按重量份计,将石墨烯42份、阳离子表面活性剂4份、硅烷偶联剂KH-5503份、有机溶剂10份混合均匀,得到阳离子改性石墨烯;
第6步,将阳离子改性石墨烯与改性丙烯酸乳液按照重量比1:5混合均匀,再将料液通过直径为0.2mm纺丝喷丝头喷成纤维,再经过烘干后,得到石墨烯改性聚丙烯酸纤维。
对照例1
与实施例3的区别在于:改性丙烯酸乳液制备过程中的阳离子表面活性剂和阴离子表面活性剂的加入顺序相反。
铅炭电池所用的负极材料,包括有按重量份计的如下组分作为原料:硫酸8份、硫酸钡0.8份、碳化硅粉体(平均粒径范围是50~100μm)0.9份、白炭黑(平均粒径范围是50~100μm)0.12份、石墨烯改性聚丙烯酸纤维0.3份、钛酸酯偶联剂0.08份、非离子表面活性剂0.12份、纯水9份、铅粉55份。
所述的石墨烯改性聚丙烯酸纤维的制备方法,包括如下步骤:
第1步,按重量份计,将55份羟基硅油、12份硅烷偶联剂KH-570、4份KOH、乙酸乙酯8份混合均匀,在氮气气氛下,升温至90℃后保持反应3h,得到改性聚硅氧烷预聚体;
第2步,按重量份计,取丙烯酸丁酯13份、丙烯酸甲酯8份、乳化剂2份和去离子水25份,高速搅拌0.8h,再加入引发剂3份,在75℃下反应1h,再滴加8份改性聚硅氧烷预聚体和偶氮二甲酰胺引发剂2份,在75℃下反应3h,再用氨水调节pH至7,得到丙烯酸乳液;
第3步,将在丙烯酸乳液中加入氧化钛10份和阳离子表面活性剂3份,分散均匀后,得到改性丙烯酸乳液;
第4步,按重量份计,将石墨烯42份、阴离子表面活性剂4份、硅烷偶联剂KH-5503份、有机溶剂10份混合均匀,得到阴离子改性石墨烯;
第6步,将阴离子改性石墨烯与改性丙烯酸乳液按照重量比1:5混合均匀,再将料液通过直径为0.2mm纺丝喷丝头喷成纤维,再经过烘干后,得到石墨烯改性聚丙烯酸纤维。
对照例2
与实施例3的区别在于:改性丙烯酸乳液制备过程中的第3步中未加入氧化钛。
铅炭电池所用的负极材料,包括有按重量份计的如下组分作为原料:硫酸8份、硫酸钡0.8份、碳化硅粉体(平均粒径范围是50~100μm)0.9份、白炭黑(平均粒径范围是50~ 100μm)0.12份、石墨烯改性聚丙烯酸纤维0.3份、钛酸酯偶联剂0.08份、非离子表面活性剂0.12份、纯水9份、铅粉55份。
所述的石墨烯改性聚丙烯酸纤维的制备方法,包括如下步骤:
第1步,按重量份计,将55份羟基硅油、12份硅烷偶联剂KH-570、4份KOH、乙酸乙酯8份混合均匀,在氮气气氛下,升温至90℃后保持反应3h,得到改性聚硅氧烷预聚体;
第2步,按重量份计,取丙烯酸丁酯13份、丙烯酸甲酯8份、乳化剂2份和去离子水25份,高速搅拌0.8h,再加入引发剂3份,在75℃下反应1h,再滴加8份改性聚硅氧烷预聚体和偶氮二甲酰胺引发剂2份,在75℃下反应3h,再用氨水调节pH至7,得到丙烯酸乳液;
第3步,将在丙烯酸乳液中加入阴离子表面活性剂3份,分散均匀后,得到改性丙烯酸乳液;
第4步,按重量份计,将石墨烯42份、阳离子表面活性剂4份、硅烷偶联剂KH-5503份、有机溶剂10份混合均匀,得到阳离子改性石墨烯;
第6步,将阳离子改性石墨烯与改性丙烯酸乳液按照重量比1:5混合均匀,再将料液通过直径为0.2mm纺丝喷丝头喷成纤维,再经过烘干后,得到石墨烯改性聚丙烯酸纤维。
对上述实施例和对照例制备的铅炭电池及同型号的普通电池的性能进行测试
其中,铅炭电池动态充电接受能力的测试方法为:
电池充满电后,在25℃水浴中浸泡6h。在同样的温度下,以I=0.1Ce将电池逐步放电至90%、80%、70%、60%的荷电状态(SOC),每次放电结束后,以14.8V、200A充电60s,记录电流随时间的变化。
铅炭电池部分荷电状态下高倍率循环寿命(HRPSOC)测试方法为:
蓄电池充满电后1~2h内以I=2×I20恒流放电5h至50%荷电状态,终止条件为10.5V,然后做如下a~d循环:(a)以I=2×C20恒流充电1min;(b)静置10s;(c)以I=2×C20恒流放电1min;(d)静置10s;其中循环过程中,充电电压高于17V或放电电压低于10.5V即达到寿命终止条件。
所制备的铅炭电池的性能测试结果如下:
Figure PCTCN2017115923-appb-000001
Figure PCTCN2017115923-appb-000002
从上表中可以看出,本发明中提供的铅炭电池负极材料在使用过程中具有电流大、电容量高的优点,特别是其充放电次数高。实施例3相对于对照例1可以看出,通过改变阳离子和阴离子表面活性剂对于聚丙烯酸乳液和石墨烯的改性顺序,可以有效改变石墨烯在聚丙烯乳液中的包覆效果,从而可以提高烘干后得到的纤维材料的形貌,提高电池的循环寿命;而实施例3相对于对照例2可以看出,通过在聚丙烯酸乳液中加入二氧化钛,可以利用其在混合过程中的颗粒表面静电性使更多的石墨烯进行包覆,进而提高电流强度。

Claims (6)

  1. 一种铅炭电池所用的负极材料,其特征在于,包括有按重量份计的如下组分作为原料:硫酸5~10份、硫酸钡0.5~2份、碳化硅粉体0.5~2份、白炭黑0.1~0.15份、石墨烯改性聚丙烯酸纤维0.2~0.4份、钛酸酯偶联剂0.05~0.1份、非离子表面活性剂0.1~0.15份、纯水7~12份、铅粉50~60份。
  2. 根据权利要求1所述的铅炭电池所用的负极材料,其特征在于,所述的白炭黑的平均粒径范围是50~100μm;所述的碳化硅粉体的平均粒径范围是50~100μm。
  3. 根据权利要求1所述的铅炭电池所用的负极材料,其特征在于,所述的石墨烯改性聚丙烯酸纤维的制备方法,包括如下步骤:第1步,按重量份计,将50~60份羟基硅油、10~15份硅烷偶联剂KH-570、3~5份KOH、乙酸乙酯6~10份混合均匀,在氮气气氛下,升温至90℃后保持反应3h,得到改性聚硅氧烷预聚体;第2步,按重量份计,取丙烯酸丁酯12~15份、丙烯酸甲酯5~10份、乳化剂1~2份和去离子水20~30份,高速搅拌0.5~1h,再加入引发剂2~4份,在70~80℃下反应0.5~2h,再滴加6~10份改性聚硅氧烷预聚体和引发剂1~2份,在70~80℃下反应2~3h,再用氨水调节pH至7,得到丙烯酸乳液;第3步,将在丙烯酸乳液中加入氧化钛5~15份和阴离子表面活性剂2~4份,分散均匀后,得到改性丙烯酸乳液;第4步,按重量份计,将石墨烯40~45份、阳离子表面活性剂3~5份、硅烷偶联剂KH-5502~4份、有机溶剂5~15份混合均匀,得到阳离子改性石墨烯;第6步,将阳离子改性石墨烯与改性丙烯酸乳液按照重量比1:4~7混合均匀,再将料液通过纺丝喷丝头喷成纤维,再经过烘干后,得到石墨烯改性聚丙烯酸纤维。
  4. 根据权利要求3所述的铅炭电池所用的负极材料,其特征在于,喷丝头的直径为0.1~0.5mm。
  5. 根据权利要求3所述的铅炭电池所用的负极材料,其特征在于,所述偶氮类引发剂选自偶氮二异丁酸二甲酯、偶氮二异丁脒盐酸盐、偶氮二甲酰胺、偶氮二异丙基咪唑啉盐酸盐、偶氮异丁氰基甲酰胺、偶氮二环己基甲腈、偶氮二氰基戊酸、偶氮二异丙基咪唑啉、偶氮二异丁腈、偶氮二异戊腈和偶氮二异庚腈中的一种或多种。
  6. 权利要求1~5任一项所述的铅炭电池所用的负极材料的制备方法,其特征在于,包括如下步骤:S1:将硫酸钡、碳化硅粉体、白炭黑、石墨烯改性聚丙烯酸纤维、钛酸酯偶联剂、非离子表面活性剂、纯水混合均匀,再缓慢加入铅粉,搅拌均匀,再加入缓慢加入硫酸,并控制温度不超过55℃;S2:将S1中得到的铅膏涂到负极栅板上,在温度55~65℃下干燥20~40h,得到负极材料。
PCT/CN2017/115923 2017-11-10 2017-12-13 一种高循环次数的铅炭电池负极材料及制备方法 WO2019090887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711107204.5 2017-11-10
CN201711107204.5A CN107732162B (zh) 2017-11-10 2017-11-10 一种高循环次数的铅炭电池负极材料及制备方法

Publications (1)

Publication Number Publication Date
WO2019090887A1 true WO2019090887A1 (zh) 2019-05-16

Family

ID=61214315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115923 WO2019090887A1 (zh) 2017-11-10 2017-12-13 一种高循环次数的铅炭电池负极材料及制备方法

Country Status (2)

Country Link
CN (1) CN107732162B (zh)
WO (1) WO2019090887A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599787A (zh) * 2020-12-31 2021-04-02 国网河南省电力公司南阳供电公司 一种铅酸蓄电池的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058046A (ja) * 1998-08-10 2000-02-25 Yuasa Corp 鉛蓄電池用負極板
CN103367753A (zh) * 2013-07-25 2013-10-23 山东大学 一种石墨烯分散液改性的铅酸电池负极铅膏及其制备方法
CN106953098A (zh) * 2017-04-06 2017-07-14 重庆大学 一种高容量长寿命铅碳电池负极及制作方法
CN107331834A (zh) * 2017-05-25 2017-11-07 天能电池集团有限公司 一种铅蓄电池负极铅膏及其制备方法
CN107994269A (zh) * 2017-11-10 2018-05-04 江苏华富储能新技术股份有限公司 一种高循环次数的铅炭电池及制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074693A (zh) * 2010-12-13 2011-05-25 华南师范大学 一种高炭铅酸蓄电池极板添加剂
JP2013080610A (ja) * 2011-10-04 2013-05-02 Yoshiaki Nagaura ゼオライト混合のシリコン化合物電極及び電解質の二次電池モジュール、及び製造方法
CN102828267B (zh) * 2012-09-10 2014-05-07 浙江大学 一种导电的高强度的石墨烯增强的聚合物纤维的制备方法
CN103337622A (zh) * 2013-06-26 2013-10-02 双登集团股份有限公司 铅炭电池负极铅膏及其制作方法
CN105322180A (zh) * 2014-08-04 2016-02-10 赵坚强 一种新型、环保纯铅铅酸蓄电池
MX2014014287A (es) * 2014-11-24 2015-06-25 Inst Politécnico Nac Proceso para obtencion de plomo metalico a partir de las pastas de las baterias de acido-plomo recicladas.
CN104900851B (zh) * 2015-06-24 2016-05-25 骆驼集团蓄电池研究院有限公司 一种铅碳电池负极及其制备方法和所制成的电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058046A (ja) * 1998-08-10 2000-02-25 Yuasa Corp 鉛蓄電池用負極板
CN103367753A (zh) * 2013-07-25 2013-10-23 山东大学 一种石墨烯分散液改性的铅酸电池负极铅膏及其制备方法
CN106953098A (zh) * 2017-04-06 2017-07-14 重庆大学 一种高容量长寿命铅碳电池负极及制作方法
CN107331834A (zh) * 2017-05-25 2017-11-07 天能电池集团有限公司 一种铅蓄电池负极铅膏及其制备方法
CN107994269A (zh) * 2017-11-10 2018-05-04 江苏华富储能新技术股份有限公司 一种高循环次数的铅炭电池及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599787A (zh) * 2020-12-31 2021-04-02 国网河南省电力公司南阳供电公司 一种铅酸蓄电池的制备方法

Also Published As

Publication number Publication date
CN107732162A (zh) 2018-02-23
CN107732162B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN105226260B (zh) 一种锂离子电池用硅基负极材料的制备方法
CN103474666B (zh) 锂离子电池负极活性材料的制备方法
CN104900851B (zh) 一种铅碳电池负极及其制备方法和所制成的电池
CN106848202B (zh) 一种锂离子电池负极片的制备方法
CN108832077B (zh) 一种铜掺杂核壳结构硅碳复合材料的制备方法
CN109616629A (zh) 一种补锂正极活性材料、正极材料、锂离子电池及其制备和应用
CN107919463B (zh) 一种铅炭电池负极材料、铅炭电池和制备方法
CN109103440B (zh) 一种锂离子电池负极材料、制备方法以及锂离子电池
CN105226253B (zh) 一种纳米硅颗粒-石墨片-碳纳米管复合材料及其制备方法与应用
CN107221651A (zh) 铅晶电池正极板加工工艺及铅晶电池
CN105870451A (zh) 一种铅酸蓄电池用石墨烯分散液及其制备工艺
TWI622213B (zh) 鋰離子電池正極漿料的製備方法
CN104577058A (zh) 一种铅炭电池负极活性物质制备方法
CN109728305A (zh) 一种用于硅碳负极材料的复合型粘结剂及其制备方法
CN108123136B (zh) 铅碳电池复合负极添加剂和铅碳电池负极及制备与应用
CN110511377A (zh) 电极粘接剂及其制备方法和锂离子电池负极及锂离子电池
CN112928383A (zh) 一种锂电池隔膜及其制备方法
WO2019090887A1 (zh) 一种高循环次数的铅炭电池负极材料及制备方法
CN107994269B (zh) 一种高循环次数的铅炭电池及制备方法
CN110581271A (zh) 一种锂离子电池用改性硅负极材料及其制备方法和应用
CN113224294B (zh) 一种双离子电池正极配方及应用
CN112436147B (zh) 一种铅酸蓄电池铅膏的高温和膏工艺
CN109755528A (zh) 一种硒化锰/碳纤维储能材料的制备方法及其应用
CN106340647B (zh) 一种自支撑、高负载磷酸钒锂正极材料及其制备方法
CN113964309B (zh) 一种负极浆料及其制备方法、负极片以及二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931284

Country of ref document: EP

Kind code of ref document: A1