WO2019088269A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2019088269A1
WO2019088269A1 PCT/JP2018/040912 JP2018040912W WO2019088269A1 WO 2019088269 A1 WO2019088269 A1 WO 2019088269A1 JP 2018040912 W JP2018040912 W JP 2018040912W WO 2019088269 A1 WO2019088269 A1 WO 2019088269A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
retardation
layer
retardation layer
polarizer
Prior art date
Application number
PCT/JP2018/040912
Other languages
English (en)
French (fr)
Inventor
守田 正人
伊吹 俊太郎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019550506A priority Critical patent/JP6961710B2/ja
Publication of WO2019088269A1 publication Critical patent/WO2019088269A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a VA (Vertically Aligned) liquid crystal display device.
  • the two retardation films share the retardation necessary for optical compensation.
  • Optical compensation has been achieved (see, for example, US Pat.
  • the VA type liquid crystal display device has an advantage that the contrast in the normal direction (hereinafter referred to as “front CR”) is higher than liquid crystal display devices in other modes.
  • the aperture ratio of the pixel can be increased by using the above-described COA structure, the transmittance in white display can be increased. This is preferable from the viewpoint of environmental protection because it leads to reduction of power consumption.
  • the front CR is determined by the ratio of the two luminance values at the time of white display and black display (the luminance value at the time of white display / the luminance value at the time of black display). In order to improve, it is not enough to increase the luminance at the time of white display.
  • the present inventors view angle when viewing a large panel in a passage so as to be seen by passersby, etc., when a large panel is observed side by side.
  • the observation direction is slightly shifted vertically from the horizontal direction. The observer noticed the light leakage, and it was found that there was a limit to the widening of the viewing angle in the left and right direction.
  • One aspect of the present invention is a VA type liquid crystal display device including a liquid crystal cell having a COA structure, which has an object to provide a VA type liquid crystal display device having improved front CR and black display performance in the lateral direction. Do.
  • One aspect of the present invention is Including a liquid crystal panel and a backlight unit, Let the front be a polar angle of 0 °, the right direction be an azimuth angle of 0 °, the left direction be an azimuth angle of 180 °, and L (x, y) be the light leakage amount at an azimuth angle x and a polar angle y when displaying black.
  • L 1 is the light leakage at an azimuth angle ⁇ and a polar angle of 60 °
  • is in the range of ⁇ 30 to 30 ° and in the range of 150 to 210 °
  • the liquid crystal panel is Front side polarizer, Rear side polarizer, A VA type liquid crystal cell positioned between the front side polarizer and the rear side polarizer, A front retardation layer positioned between the front polarizer and the VA liquid crystal cell; a rear retardation layer positioned between the rear polarizer and the VA liquid crystal cell;
  • the VA type liquid crystal cell includes a color filter on array substrate on the rear side
  • the front-side retardation layer includes at least a retardation layer 1;
  • the in-plane retardation Re (550) measured at a wavelength of 550 nm of the retardation layer 1 is less than 20 nm,
  • the in-plane direction retardation Re (550) of the retardation layer 2 can be 135 nm or more and 150 nm or less, and the thickness direction retardation Rth (550) of the retardation layer 2 is 57 nm or more and 87 nm or less Can be.
  • the optically anisotropic layer can be a liquid crystal layer having a thickness of 5.0 ⁇ m or less.
  • the liquid crystal layer can be a cured layer of a polymerizable composition containing a polymerizable liquid crystal compound.
  • the half width at half maximum of the emission angle distribution in the vertical direction of the backlight unit can be within 30 °.
  • the liquid crystal display device can include a diffusion layer on the front surface of the liquid crystal panel.
  • a VA liquid crystal display device including a liquid crystal cell having a COA structure, wherein the front CR and the black display performance in the lateral direction are improved. it can.
  • in-plane retardations Re ( ⁇ ) and Rth ( ⁇ ) respectively represent in-plane retardation (nm) and thickness-direction retardation (nm) at wavelength ⁇ .
  • Re ( ⁇ ) is measured by causing light of wavelength ⁇ nm to be incident in the normal direction of the sample to be measured in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.).
  • the wavelength selection filter can be replaced manually, or the measured value can be converted by a program or the like for measurement.
  • Rth ( ⁇ ) is the in-plane plane of the sample when the in-plane slow axis (as determined by KOBRA 21ADH or WR) is the inclined axis (rotational axis) (where there is no slow axis) Of any direction from the normal direction of the sample) to one side 50 ° from one side to the normal direction of the sample, and light of wavelength ⁇ nm is made incident from the inclined direction in each 10 ° step, and a total of 6 points measurement Then, KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the inputted film thickness value.
  • the retardation at the inclination angle larger than that inclination angle KOBRA 21ADH or WR calculates the value after changing its sign to negative.
  • the retardation value is measured from two inclined directions with the slow axis as the tilt axis (rotation axis) (if there is no slow axis, any direction in the plane of the sample is the rotation axis)
  • Rth can also be calculated from the following equation (X) and equation (XI) based on the value, the assumed value of the average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents the retardation value in the direction inclined at an angle ⁇ from the normal direction.
  • nx represents the refractive index in the in-plane slow axis direction
  • ny represents the refractive index in the in-plane direction orthogonal to nx
  • nz represents the refractive index in the direction orthogonal to nx and ny .
  • d represents a film thickness.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is the above Re ( ⁇ ), and the in-plane slow axis (as determined by KOBRA 21 ADH or WR) is the tilt axis (rotation axis) relative to the normal direction of the sample from -50 ° to + 50 °
  • light of wavelength ⁇ nm is made incident from each inclined direction and measured at 11 points, KOBRA 21ADH based on the measured retardation value, the assumed value of average refractive index and the input film thickness value Or calculated by WR.
  • JOHN WILEY & SONS, INC hypothetical values of average refractive index.
  • the value of the average refractive index is not known, it can be measured by an Abbe refractometer.
  • the values of average refractive index of main optical films are exemplified below: Cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), It is polystyrene (1.59).
  • the values of Re ( ⁇ ) and Rth ( ⁇ ), that is, Re (450), Re (550), Re (650), Rth (550), and Rth (550) differ by 3 or more depending on the measuring device.
  • the measurement wavelength is 550 nm, unless otherwise specified.
  • Liquid crystal display devices and numerical values, numerical ranges, and qualitative expressions for example, expressions such as “equivalent”, “equal”, etc.
  • optical characteristics of respective members such as “retardation layer” and “liquid crystal layer”
  • angle e.g. an angle such as "90 °”
  • relationship e.g., "orthogonal", “parallel”, etc.
  • Including the range of the above-mentioned allowable error means, for example, within the range of the strict angle ⁇ 10 ° or less, and the error from the strict angle is preferably 5 ° or less, 3 It is more preferable that it is less than or equal to °.
  • the error from the strict angle is preferably 5 ° or less, 3 It is more preferable that it is less than or equal to °.
  • it can be in the range of 90 ° ⁇ 10 ° (80 to 100 °).
  • Front side means the display surface side
  • rear side means the backlight unit side
  • front means the normal direction to the display surface
  • front contrast (CR) means the contrast calculated from the white luminance and the black luminance measured in the normal direction of the display surface.
  • the “retardation layer” means a region (retardation region) located between the liquid crystal cell and the polarizer, and the magnitude of retardation does not matter.
  • a pressure-sensitive adhesive layer is used to bond the retardation layer and the liquid crystal cell or the polarizer, the pressure-sensitive adhesive layer is not a part of the retardation layer.
  • the “retardation layer” can be an A plate or a C plate. "A plate” and "C plate” are defined as follows.
  • a plate positive A plate
  • negative A plate negative A plate
  • the slow axis direction in the plane of the retardation layer retardation index in the plane is Assuming that the refractive index of the maximum direction is nx, the refractive index of the direction orthogonal to the in-plane slow axis with the in-plane slow axis is ny, and the refractive index in the thickness direction is nz, the positive A plate has formula (A1)
  • the negative A plate satisfies the relationship of formula (A2).
  • the positive A plate shows a positive Rth value
  • the negative A plate shows a negative Rth value.
  • “ ⁇ ” in the above formulas (A1) and (A2) includes not only the case where both are completely the same but also the case where both are substantially the same.
  • (ny ⁇ nz) ⁇ d (where d is the thickness of the retardation layer) is ⁇ 10 to 10 nm, preferably ⁇ 5 to 5 nm.
  • (nx ⁇ nz) ⁇ d is also included in “nx ⁇ nz” in the case of ⁇ 10 to 10 nm, preferably ⁇ 5 to 5 nm.
  • (nx-ny) x d (where d is the thickness of the retardation layer) is 0 to 10 nm, preferably 0 to 5 nm, "nx ny ny" include.
  • liquid crystal display device according to one aspect of the present invention will be described in more detail.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a liquid crystal display device.
  • the liquid crystal display device shown in FIG. 1 includes a liquid crystal panel including a rear side polarizing plate PL1, a liquid crystal cell LC, and a front side polarizing plate PL2, and a backlight unit. More specifically, the liquid crystal display device shown in FIG.
  • the 1 includes a front side polarizer 26, a rear side polarizer 24, a liquid crystal cell LC located between the front side polarizer 26 and the rear side polarizer 24, a liquid crystal cell LC and a front A liquid crystal panel having a front-side retardation layer 22 located between the side polarizer 26 and a rear-side retardation layer 20 located between the liquid crystal cell LC and the rear-side polarizer 20; including.
  • a member (for example, an adhesive layer or the like) not shown in FIG. 1 may be included at one or more optional positions.
  • the front-side retardation layer 22 and the rear-side retardation layer 20 have retardations that contribute to viewing angle compensation.
  • the front-side retardation layer 22 and the rear-side retardation layer 20 can include one or more optically anisotropic layers, and can also include two or more optically anisotropic layers.
  • the liquid crystal cell LC is a VA type liquid crystal cell, and has a liquid crystal layer 10 and a pair of substrates sandwiching the liquid crystal layer 10, that is, a front side substrate 18 and a rear side substrate 16.
  • the rear side substrate 16 and the liquid crystal layer 10 And an array member 14 having a color filter layer 12 and a black matrix for partitioning the pixels.
  • the rear side substrate 16, the array member 14 and the color filter layer 12 constitute a COA (color filter on array) substrate.
  • the structure in which the color filter is thus located on the active matrix substrate is called a COA (color filter on array) structure.
  • a COA substrate is disposed between the liquid crystal layer 10 and the rear-side retardation layer 20. That is, the liquid crystal cell LC has the COA substrate on the rear side.
  • Known techniques can be applied to the mode of the VA liquid crystal display device and the details of the COA substrate.
  • the liquid crystal display device has a polar angle of 0 ° in the front, an azimuth angle of 0 ° in the right direction, an azimuth angle of 180 ° in the left direction, and an azimuth angle x and a polar angle y at L (x, y) display.
  • L1 is the light leakage amount at the azimuth angle ⁇ and the polar angle of 60 °
  • is in the range of -30 to 30 ° and in the range of 150 to 210 °.
  • the azimuth as shown in FIGS.
  • the azimuth 0 ° is rightward and the azimuth 180 ° at any polar angle (eg 60 °).
  • the direction indicates the left direction
  • the azimuth angle of 90 ° indicates the upward direction
  • the azimuth angle of 270 ° indicates the downward direction.
  • the satisfaction of the above equation 1 means that the reduction of light leakage in the range of -30 to 30 ° and the azimuth in the range of 150 to 210 ° at the polar angle of 60 ° at the time of black display is rightward (azimuth 0 °).
  • the light leakage in the left direction (azimuth angle 180 °).
  • the light leakage may be larger in the obliquely upward direction, but the liquid crystal with less light leakage in the preferred azimuth (the azimuth of the above range) You can get a display.
  • the present inventors are concerned with viewing angle performance at the time of black display of a VA type liquid crystal display device provided with a liquid crystal cell having a COA structure, and when a large panel is observed side by side with a large panel, the large panel Assuming applications where the viewing angle is limited to a certain extent, such as when displaying in a passage so as to be visible, it is mainly adopted at present to answer the request to prioritize the horizontal viewing angle over the vertical direction. We tried to improve the left and right viewing angle performance in the method of arranging the same retardation film on the front side and the rear side.
  • the present inventors examined combining the phase difference layer 1 and the phase difference layer 2 which mention later for details as a phase difference layer, and improving a viewing angle.
  • the phase difference condition is not a phase difference condition capable of reducing light leakage in all directions as much as possible during black display, but a phase difference condition in which light leakage is reduced by giving priority to left and right viewing azimuth angles.
  • a retardation condition in which light leakage at azimuth angles of ⁇ 30 ° to 30 ° and 150 ° to 210 ° is preferentially reduced is selected, and equation 1 is satisfied.
  • the liquid crystal display device includes a retardation layer 1 and a retardation layer 2.
  • the retardation layer 1 is contained at least in the front retardation layer, preferably in the front retardation layer, and not in the rear retardation layer.
  • the retardation layer 2 is contained in the front retardation layer and / or the rear retardation layer, preferably in the rear retardation layer and not in the front retardation layer.
  • the retardation layer 1 preferably has an in-plane retardation Re (550) measured at a wavelength of 550 nm of less than 20 nm (Re (550) ⁇ 20 nm), and Re (550) ⁇ 10 nm.
  • the retardation layer 1 is preferably a C plate.
  • the C plate can play a role of optically compensating the phase difference when the liquid crystal cell is viewed obliquely from the black state.
  • the thickness direction retardation Rth of the C plate is the thickness direction retardation ⁇ nd ( ⁇ ) (d [nm] of the liquid crystal cell is the thickness of the liquid crystal layer constituting the liquid crystal cell, and ⁇ n ( ⁇ ) is the wavelength ( ⁇ of this liquid crystal layer It is preferable to determine ⁇ nd ( ⁇ ) according to the product of ⁇ n ( ⁇ ) and d), and ⁇ nd (550) is usually set to about 280 to 350 nm. Ru. From this point, the thickness direction retardation Rth (550) measured at a wavelength of 550 nm of the retardation layer 1 is 200 nm or more and 270 nm or less (200 ⁇ Rth (550) ⁇ 270 nm).
  • the wavelength dependency of the retardation of the C plate is also in the order because the wavelength dependency of the retardation of the liquid crystal cell is often forward dispersion in which the retardation becomes smaller as the wavelength becomes longer. It is preferable to be dispersible. However, it is not limited to this.
  • the retardation layer 2 has an in-plane retardation Re (550) measured at a wavelength of 550 nm of 130 nm or more and 155 nm or less, and a thickness direction retardation Rth (550) measured at a wavelength of 550 nm of 55 nm or more and 90 nm or less.
  • the in-plane retardation Re (450) measured by the in-plane retardation Re (550) measured at a wavelength of 550 nm and the in-plane retardation Re (650) measured at a wavelength of 650 nm ) ⁇ Re (650) is satisfied.
  • the Re (550) of the retardation layer 2 is preferably 135 nm or more and 150 nm or less, and the thickness direction retardation Rth (550) of the retardation layer 2 is preferably 57 nm or more and 87 nm or less.
  • the retardation layer 2 is preferably an A plate.
  • the A plate optically compensates that the absorption axes of the rear side polarizing plate and the front side polarizing plate are not orthogonal when viewed obliquely and cause light leakage so that the light leakage at the time of black display of the liquid crystal display device It can play a role in reducing.
  • the wavelength dependency of the retardation of the A plate preferably has inverse dispersion such that the retardation [nm] increases as the wavelength becomes longer.
  • the front CR can be further improved by arranging the A plate on the front side as well as the C plate (provided that it is arranged closer to the front polarizer than the C plate).
  • the retardation layer 1 and the retardation layer 2 include an optically anisotropic layer containing a polymerizable liquid crystal compound.
  • the retardation layer 1 and the retardation layer 2 can include a support, an alignment film and an optically anisotropic layer in this order.
  • the thickness of a general retardation film is several tens of ⁇ m, but by using a polymerizable liquid crystal compound, for example, an optically anisotropic layer with a thickness of several ⁇ m can be obtained. It is preferable that the thickness of the optically anisotropic layer is thin from the viewpoint of thinning of the retardation layer, that is, thinning of the liquid crystal panel and thinning of the liquid crystal display device.
  • the optically anisotropic layer may be prepared by coating a liquid containing a polymerizable liquid crystal compound after forming an alignment film on a support, or further by peeling off the optically anisotropic layer from the support to polarize light. It may be pasted to a child or a liquid crystal cell through an adhesive layer. Moreover, after forming an alignment film as needed on a polarizer, the liquid containing a polymeric liquid crystal compound may be apply
  • the optically anisotropic layer produced using a polymerizable liquid crystal compound can be a cured layer of a polymerizable composition containing a polymerizable liquid crystal compound.
  • a polymerizable liquid crystal compound obtained by forming a low molecular weight liquid crystal compound in a nematic state in a liquid crystal state and then immobilizing it by photocrosslinking or thermal crosslinking; forming a polymer liquid crystal compound in a nematic phase in a liquid crystal state Then, an optically anisotropic layer obtained by fixing the orientation by cooling may be mentioned.
  • the optically anisotropic layer is, for example, a layer formed by fixing a liquid crystal compound by polymerization or the like, and usually does not exhibit liquid crystallinity after becoming a layer.
  • the “optically anisotropic layer containing a polymerizable liquid crystal compound” is an optically anisotropic layer formed using a polymerizable liquid crystal compound, and in the layer formed, the polymerizable liquid crystal compound is In general, it is usual that some or all of the polymerizable groups contained in this compound are subjected to a polymerization reaction and show little or no polymerizability.
  • liquid crystal compounds can be classified into rod-like types (rod-like liquid crystal compounds) and disk-like types (discotic liquid crystal compounds and disc-like liquid crystal compounds) according to their shapes. Furthermore, there are low molecular weight and high molecular weight types, respectively.
  • a polymer refers to one having a degree of polymerization of 100 or more (Polymer physics / phase transition dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992). Any liquid crystal compound can be used to form the optically anisotropic layer, and in one aspect, a discotic liquid crystal compound is preferable.
  • rod-like liquid crystal compounds for example, those described in claim 1 of JP-A-11-513019, paragraphs [0026] to [0098] of JP-A-2005-289980, etc. can be used
  • disc-like As the liquid crystal compound for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 and paragraphs [0013] to [0108] of JP-A-2010-244038 can be used. .
  • the optically anisotropic layer is preferably a liquid crystal layer having a thickness of 5.0 ⁇ m or less (eg, 1.0 to 5.0 ⁇ m).
  • the “liquid crystal layer” is a layer formed using a liquid crystal compound, and as described above, it usually does not exhibit liquid crystallinity after it becomes a layer.
  • the liquid crystal compound used to form the optically anisotropic layer may be a mixture of two or more kinds, in which case at least one polymer of two or more functional groups having two or more polymerizable groups in one molecule. Liquid crystalline compounds are preferred.
  • the type of the polymerizable group is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and specifically, a polymerizable ethylenically unsaturated group or a ring polymerizable group is preferable. More specifically, (meth) acryloyl group, vinyl group, styryl group, allyl group and the like are preferably mentioned, and (meth) acryloyl group is more preferable.
  • the (meth) acryloyl group is a concept including both a methacryloyl group and an acryloyl group.
  • the front retardation layer and the rear retardation layer have no scattering function.
  • “No scattering function” can mean, for example, that the haze value of the polarizing plate including this retardation layer is 0.2% or less, preferably 0.1% or less. it can. It is preferable from the viewpoint of the further improvement of front CR of a liquid crystal display device to use the polarizing plate in which a phase difference layer does not have a scattering function. In one aspect, by applying such a polarizing plate, in the liquid crystal display device, it is possible to improve a front CR ratio described later to, for example, more than 110%, preferably 115% or more.
  • the retardation layer 1 and the retardation layer 2 may not include a support and / or an alignment film.
  • the retardation layer which does not include the support and / or the alignment film includes, for example, the support, the alignment film, and the optically anisotropic layer after forming the optically anisotropic layer on the alignment film provided on the support. It can be produced by peeling the support from the laminate or by peeling the support and the alignment film.
  • by providing an alignment film on a polarizer and forming an optically anisotropic layer on the alignment film it is possible to obtain a retardation layer not including a support.
  • a support a polymer film is usually used. That the retardation layer does not include a support can contribute to further improvement of the front contrast.
  • a diffusion layer can be provided on the front surface of the liquid crystal panel, for example, the surface of the front polarizing plate.
  • a condensing backlight unit in which the light emission in the front and the left and right viewing directions is enhanced.
  • a prism sheet, a louver film (for example, PF12.1 WS (manufactured by 3M)), or the like is used as the condensing type backlight unit, and the brightness of light in the vertical direction is suppressed to suppress A backlight unit with enhanced brightness can be used.
  • a backlight unit which emits light intensively in the front direction while suppressing light emission in an oblique direction regardless of whether it is vertically or horizontally.
  • the light can be scattered by the diffusion layer on the surface of the front side polarizing plate, so the horizontal viewing angle is further expanded.
  • the diffusion layer known layers and films having a function of diffusing light can be used.
  • a backlight unit in which the half width at half maximum of the light emission angle distribution in the vertical direction is within 30 ° can be used, and it is preferable to use a backlight unit within 25 °, and a backlight within 20 ° It is more preferable to use a unit.
  • the light emission angle distribution of the backlight unit means one half of the difference between the two tilt angles at which the luminance value of the backlight unit reaches a maximum value, which is half of the maximum value.
  • the half width at half maximum of the light emission angle distribution in the vertical direction of the backlight unit can be determined by the following method.
  • An azimuth angle of 90 ° that is, a polar angle of 80 ° to 0 ° in the upper direction
  • an azimuth angle of 270 ° that is, a polar angle of 0 ° to the front of the backlight unit (direction in which the polar angle is 0 °)
  • the polar angle at which the brightness value is maximized and the polar angle at which the brightness value is 1 ⁇ 2 of the maximum brightness value are examined. For example, for both 90 ° azimuth and 270 ° azimuth, if the polar value is 25 ° and the luminance value is half of the maximum value, the half width half width is 25 °.
  • a commercially available cellulose acylate film "TD80UL" (Fujifilm Co., Ltd.) is prepared and immersed in an aqueous solution of sodium hydroxide having a concentration of 1.5 mol / liter of sodium hydroxide and a liquid temperature of 55 ° C. The sodium hydroxide was washed away. Then, after immersing in a dilute sulfuric acid aqueous solution with a sulfuric acid concentration of 0.005 mol / l and a liquid temperature of 35 ° C. for 1 minute, it was immersed in water to wash away the dilute sulfuric acid solution sufficiently. Finally, the cellulose acylate film was sufficiently dried (atmosphere temperature: 120 ° C.) to prepare a polarizer protective film A.
  • the polarizing plate A with a single-sided protective film in which the polarizer protective film A and the polarizer are laminated by laminating the polarizer protective film A prepared above with a polyvinyl alcohol adhesive on one side of the polarizer prepared above was produced.
  • a commercially available cellulose acylate film "CVLX" manufactured by Fujifilm Corporation
  • the diffusion layer light scattering function layer
  • a polarizer protective film B was prepared.
  • the polarizing plate B with a single-sided protective film in which the polarizer protective film B and the polarizer are laminated by laminating the polarizer protective film B prepared above with a polyvinyl alcohol-based adhesive on one side of the polarizer prepared above was produced.
  • composition of coating liquid for discotic liquid crystal layer The following discotic liquid crystal compound (B) 26.2 mass% 6.6 mass% of the following discotic liquid crystal compound (C) Compound I-6 0.15 mass% Ethylene oxide modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 3.2 mass% Sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 0.4% by mass Photopolymerization initiator (IRGACURE 907, manufactured by Ciba Geigy) 1.1% by mass Methyl ethyl ketone 62.0 mass%
  • the coating solution was applied, it was subsequently dried by heating for 2 minutes in a drying zone at an ambient temperature of 130 ° C. to align the discotic liquid crystal compound.
  • the discotic liquid crystal compound was polymerized by UV irradiation for 4 seconds using a 120 W / cm high pressure mercury lamp at 80 ° C. in a UV irradiation zone. Thereafter, it was allowed to cool to room temperature and wound up.
  • the discotic liquid crystal compound of the optically anisotropic layer C1 was horizontally aligned within a range of ⁇ 1 °.
  • the thickness of the optically anisotropic layer C1 was 2.0 ⁇ m.
  • optically anisotropic layer C side of the laminate of the support (alkali saponified ZRF 25), the alignment film and the optically anisotropic layer C prepared as described above is treated with an adhesive (1) It bonded together so that the polarizer side of the produced polarizing plate A with a single-sided protective film might be faced.
  • a polarizing plate 1 was produced in which the polarizer protective film, the polarizer, the adhesive, the optically anisotropic layer C, the alignment film, and the support were laminated in this order.
  • the alignment film and the optically anisotropic layer C prepared as described above. It bonded together so that the polarizer side of the polarizing plate B with a single-sided protective film produced by (1) might be faced.
  • a polarizing plate 5 was produced in which the polarizer protective film (with the diffusion layer), the polarizer, the adhesive, the optically anisotropic layer C, the alignment film, and the support were laminated in this order.
  • the composition of the coating liquid for the discotic liquid crystal layer is the same as the method of preparing the polarizing plate 1 except that the amount of methyl ethyl ketone is changed between 60 to 65% by mass.
  • optically anisotropic layers C14 to C17 are a laminate of an optically anisotropic layer, an alignment film, and a support.
  • the Rth (550) of the retardation layer C14 having the optical anisotropic layer C14 is 222 nm
  • the Rth (550) of the retardation layer C15 having the optical anisotropic layer C15 is 227 nm
  • the retardation having the optical anisotropic layer C16 The Rth (550) of the layer C16 was 227 nm
  • the Rth (550) of the retardation layer C17 having the optically anisotropic layer C17 was 242 nm.
  • the thickness of each optically anisotropic layer is 2 .0 ⁇ m.
  • Each retardation layer was bonded to the optically anisotropic layer using the adhesive so as to face the polarizer side of the polarizing plate A with a single-sided protective film prepared in (1).
  • polarizing plates 14 to 17 were produced in which the polarizer protective film, the polarizer, the pressure-sensitive adhesive, the optically anisotropic layer, the alignment film and the support were laminated in this order.
  • the illuminance of the ultraviolet light used at this time was 5 mJ / cm 2 in the UV-A region (ultraviolet light A wave, integration of wavelength 380 nm to 320 nm).
  • the discotic liquid crystal compound is subsequently dried by heating for 2 minutes in a drying zone at an atmosphere temperature of 130 ° C. Was oriented.
  • the discotic liquid crystal compound was polymerized by UV irradiation for 4 seconds in a UV irradiation zone using a high pressure mercury lamp at 120 ° C./cm at an atmosphere temperature of 80 ° C.
  • a laminate of the optically anisotropic layer C2, the alignment film, and the support was produced.
  • the laminated body produced as mentioned above was bonded together using the adhesive so that the optically anisotropic layer C2 side faced the polarizer side of the polarizer A with a single-sided protective film produced by (1). Thereafter, the support and the alignment film were peeled off.
  • a polarizing plate 2 was produced in which the polarizer protective film, the polarizer, the pressure-sensitive adhesive and the optically anisotropic layer C2 (retardation layer C2) were laminated in this order.
  • the discotic liquid crystal compound of the optically anisotropic layer C2 was horizontally aligned within a range of ⁇ 1 °.
  • a wire grid polarizer (ProFlux PPL02, manufactured by Moxtek Co., Ltd.) was set parallel to the surface of the photo alignment film, exposed, and subjected to photo alignment processing.
  • the illuminance of the ultraviolet light used at this time was 10 mJ / cm 2 in the UV-A region (ultraviolet light A wave, integration of wavelength 380 nm to 320 nm).
  • the following coating solution for forming an optically anisotropic layer A was produced.
  • the coating liquid for forming an optically anisotropic layer A was applied onto the photoalignment treated surface using a bar coater.
  • the film is aged by heating at a film surface temperature of 100 ° C for 20 seconds, cooled to 55 ° C, and then irradiated with ultraviolet light of 300 mJ / cm 2 using an air-cooled metal halide lamp (manufactured by I-Graphics Co., Ltd.) under air to align its orientation
  • ZRF 25 with the optically anisotropic layer A was formed. It bonded together using the adhesive so that this optically anisotropic layer A surface faced the light polarizer side of the polarizing plate A with a single-sided protective film produced by (1).
  • a polarizing plate 3 was produced in which the polarizer protective film, the polarizer, the optically anisotropic layer A, the alignment film, and the support were disposed in this order.
  • the slow axis direction was perpendicular to the absorption axis of the polarizing plate (that is, the liquid crystal compound was aligned perpendicularly to the absorption axis of the polarizing plate).
  • the polarizing plate 3 has a retardation layer A which is a laminate of an optically anisotropic layer A, an alignment film and a support.
  • the light incident angle dependency of Re and the tilt angle of the optical axis were measured using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments Co., Ltd.) before bonding to the polarizer.
  • Re (550) is 143 nm
  • Rth (550) is 72 nm
  • Re (550) / Re (450) is 1.12
  • Re (650) / Re (550) is 1.01
  • Re (450) is 128 nm
  • Re (650) is 144 nm
  • the tilt angle of the optical axis is 0 °
  • the liquid crystal compound is homogeneous alignment.
  • the retardation layer A satisfies “Re (450) ⁇ Re (550) ⁇ Re (650)”.
  • the thickness of the optically anisotropic layer A was 2.5 ⁇ m.
  • Retardation layer A31 in which Re (550) is 133 nm and Rth (550) is 67 nm
  • Retardation layer A32 in which Re (550) is 138 nm and Rth (550) is 69 nm
  • Retardation layer A33 in which Re (550) is 148 nm and Rth (550) is 74 nm
  • Retardation layer A34 in which Re (550) is 153 nm and Rth (550) is 77 nm, Formed.
  • the polarizing plate 31 having the retardation layer A31, the polarizing plate 32 having the retardation layer A32, the polarizing plate 33 having the retardation layer A33, and the retardation layer A34 are the same as the manufacturing method of the polarizing plate 3 except the above points.
  • the retardation layers A31 to A34 are a laminate of an optically anisotropic layer, an alignment film, and a support, and are positive A plates exhibiting optically positive anisotropy.
  • the Re (650) / Re (550) was 1.01, the tilt angle of the optical axis was 0 °, and the liquid crystal compound was homogeneously aligned.
  • Re (450) and Re (650) of the retardation layers A31 to A34 are as follows, and both satisfy “Re (450) ⁇ Re (550) ⁇ Re (650)”.
  • the thicknesses of the optically anisotropic layers included in the retardation layers A31 to A34 were as follows.
  • Optical anisotropic layer included in the retardation layer A31 2.3 ⁇ m
  • Optical anisotropic layer included in retardation layer A32 2.4 ⁇ m
  • Optical anisotropic layer included in retardation layer A33 2.7 ⁇ m
  • Optical anisotropic layer included in retardation layer A34 2.9 ⁇ m
  • the adhesive side is adhered so that the surface on the optical anisotropic layer side faces the polarizer side of the polarizing plate A with single-sided protective film prepared in (1). It stuck together using the agent.
  • polarizing plates 31 to 34 in which the polarizer protective film, the polarizer, the optically anisotropic layer, the photoalignment film, and the support were disposed in this order were produced.
  • a wire grid polarizer (ProFlux PPL02, manufactured by Moxtek Co., Ltd.) was set parallel to the surface of the photo alignment film, exposed, and subjected to photo alignment processing.
  • the illuminance of the ultraviolet light used at this time was 10 mJ / cm 2 in the UV-A region (ultraviolet light A wave, integration of wavelength 380 nm to 320 nm).
  • a liquid having the same composition as the coating liquid for forming the optically anisotropic layer A used in the preparation of the polarizing plate 3 was applied onto the photoalignment treated surface using a bar coater.
  • the film is aged by heating at a film surface temperature of 100 ° C for 20 seconds, cooled to 55 ° C, and then irradiated with ultraviolet light of 300 mJ / cm 2 using an air-cooled metal halide lamp (manufactured by I-Graphics Co., Ltd.) under air to align its orientation
  • the polarizing plate 4 was formed by fixing the state.
  • the obtained polarizing plate 4 is obtained by arranging a polarizer protective film, a polarizer, an alignment film, and an optically anisotropic layer A4 in this order.
  • the polarizing plate 4 includes a retardation layer A4 which is a laminate of an alignment film and an optically anisotropic layer A4.
  • the retardation layer A4 has 143 nm of Re (550), 72 nm of Rth (550), 1.12 of Re (550) / Re (450), 1.01 of Re (650) / Re (550), Re (550).
  • a positive A plate exhibiting an optically positive anisotropy, having a wavelength of 128 nm, Re (650) of 144 nm, an optical axis tilt angle of 0 °, a thickness of 2.5 ⁇ m, a liquid crystal compound It is homogeneous orientation.
  • the polarizing plate 6 includes a retardation layer formed of an optically anisotropic layer C1, and a retardation layer which is a laminate of an alignment film and an optically anisotropic layer A4.
  • the discotic liquid crystal compound of the optically anisotropic layer C1 was horizontally aligned within a range of ⁇ 1 °.
  • the thickness of the optically anisotropic layer C1 was 2.0 ⁇ m.
  • the retardation layer which is a laminate of the alignment film and the optically anisotropic layer A4, has Re (550) of 143 nm, Rth (550) of 72 nm, Re (550) / Re (450) of 1.12, Re (550). 650) / Re (550) is 1.01, the tilt angle of the optical axis is 0 °, it is a positive A plate showing optically positive anisotropy, the thickness is 2.5 ⁇ m, the liquid crystal compound is It is homogeneous orientation.
  • this cellulose acylate (cellulose acetate) was removed by washing with acetone to obtain a cellulose acylate having an average degree of acyl substitution of 2.43 and a cellulose acylate having an average degree of acyl substitution of 2.81.
  • the backside temperature of the band and the temperature of the drying air were controlled as follows.
  • the back surface temperature of the band was controlled by setting the temperature of the temperature control device of the back surface of the band to 15 ° C. at 9 ° C.
  • the drying air temperature was controlled by setting the temperature of the drying device on the band at 30 ° C. .
  • the respective film temperatures of 300% volatile component, 300 to 150% volatile component and 150 to 100% volatile component from the die were controlled to 9 to 12 ° C., 12 to 18 ° C. and 18 to 22 ° C. After that, it was further dried and peeled off from the band at a solvent amount of about 20%.
  • Re and Rth at a wavelength of 550 nm of the obtained film 8 were measured using the automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.) according to the method described above.
  • Re (550) 50 nm
  • Rth (550) ) 125 nm.
  • Cellulose acylate solution for high substitution degree layer The following composition was charged into a mixing tank and stirred to dissolve each component to prepare a cellulose acylate solution for high substitution degree layer.
  • the composition of the retardation developer (2) is shown in the following table.
  • EG indicates ethylene glycol
  • PG indicates propylene glycol
  • TPA indicates terephthalic acid
  • SA indicates succinic acid.
  • the retardation developer (2) is a non-phosphate ester compound. The end of the retardation developer (2) is sealed with an acetyl group.
  • the cellulose acylate solution for low substitution degree layer is a core layer having a thickness of 114 ⁇ m
  • the cellulose acylate solution for high substitution degree layer is a layer of skin A and skin B layer having a thickness of 2 ⁇ m.
  • the obtained film was peeled from the band, clipped, and tentered at a temperature of 170 ° C. when the amount of residual solvent relative to the mass of the entire film was 20%. Thereafter, the clip was removed from the film and dried at an atmosphere temperature of 130 ° C. for 20 minutes, and then the film was further transversely stretched at a stretching temperature of 180 ° C. in the width direction by 23% using a tenter to produce a film.
  • This film was used as film 9.
  • Re (550) at a wavelength of 550 nm of the film 9 was 61 nm
  • Rth (550) was 208 nm.
  • Re and Rth at wavelengths 450 nm, 550 nm, and 650 nm were determined using the same method as described above, Re and Rth of film 9 both showed inverse dispersion such that the wavelength became longer as the wavelength became longer. .
  • Polarizing Plate 10 A commercially available cellulose acylate film (Fujitack TD80UL, manufactured by Fujifilm Corporation) was prepared using a pressure-sensitive adhesive and MD (machine direction) manufactured by (1) in Example 1. It bonded to the side which faces the polarizer of the polarizer A with a single-sided protective film so that the absorption axis of the child A might be corresponded, and the polarizing plate 10 was produced.
  • the above-mentioned cellulose acylate film was a retardation layer, and its Re (550) was 3 nm, and Rth (550) was 43 nm.
  • the film A is a retardation layer.
  • the produced film C is a polarizer of the polarizer A with a single-sided protective film so that the MD (machine direction) matches the absorption axis of the polarizer A with a single-sided protective film prepared in (1) using an adhesive. It bonded to the side which faces and produced the polarizing plate 12.
  • the film C is a retardation layer.
  • an adhesive is used on the side of the single-sided protective film-attached polarizer A facing the polarizer so that the slow axis of the film A is orthogonal to the absorption axis of the single-sided protective film-coated polarizer A prepared in (1)
  • the film C was bonded using the same pressure-sensitive adhesive and the polarizing plate 13 was produced.
  • the film A and the film C are each a retardation layer.
  • a TFT (Thin Film Field Effect Transistor) device is fabricated on a glass substrate according to Example 20 of JP-A-2009-141341, and further protected on the TFT device. A film was formed. Subsequently, using the composition prepared as described in Examples 17, 18 and 19 of JP-A-2009-144126 for the colored photosensitive composition on the above-mentioned protective film, respectively, and JP-A-2008-516262. A color filter on array (COA) substrate was prepared according to the process described in Example 9a.
  • the concentration of the pigment in the colored photosensitive resin composition of each pixel is halved, the application amount is adjusted, and the black pixel is 4.2 ⁇ m, and the red element, green element and blue pixel are all 3.5 ⁇ m. I did it. Furthermore, after forming contact holes in the color filter, a transparent pixel electrode of ITO (Indium Tin Oxide) electrically connected to the TFT element was formed on the color filter. Then, according to Example 1 of JP-A-2006-64921, a spacer was formed on a portion corresponding to the upper part of the partition (black matrix) on the ITO film.
  • ITO Indium Tin Oxide
  • a glass substrate on which an ITO transparent electrode is formed is prepared as an opposing substrate, and the transparent electrodes of the COA substrate and the opposing substrate are respectively patterned for PVA (Patterned Vertical Alignment) mode, and further made of vertical polyimide thereon.
  • An alignment film was provided.
  • a sealing agent of an ultraviolet curable resin is applied by a dispenser method to a position corresponding to a black matrix outer frame provided around the RGB (Red Green Blue) pixel group of the color filter, and a liquid crystal for PVA mode is dropped.
  • the bonded substrate was irradiated with UV, and then heat treated to cure the sealing agent.
  • a liquid crystal cell was produced.
  • ⁇ nd (590) of the manufactured liquid crystal cell is measured using AXOSCAN manufactured by AXOMETRICS, Inc. and the attached software, and those having ⁇ nd (590) of 316 nm are selected, and the liquid crystal cell of the example and comparative example It was used as (VA type liquid crystal cell having a COA structure).
  • ⁇ nd (590) is the product of the thickness d (nm) of the liquid crystal layer of the liquid crystal cell and the refractive index anisotropy ⁇ n at a wavelength of 590 nm of the liquid crystal layer.
  • the liquid crystal display device of Example 1 was produced as follows.
  • the polarizing plate 1 is bonded to the surface on the opposite substrate side of the liquid crystal cell using a pressure-sensitive adhesive on the side opposite to the protective film of the polarizing plate A with a single-sided protective film, and then the polarizing plate 3 is attached with a single-sided protective film
  • the surface of the polarizing plate A opposite to the protective film was bonded to the surface of the liquid crystal cell on the COA substrate side using an adhesive.
  • the absorption axis of the polarizing plate bonded to the surface of the liquid crystal cell on the opposite substrate side and the absorption axis of the polarizing plate bonded to the surface of the liquid crystal cell on the COA substrate side are orthogonal to each other. Furthermore, the liquid crystal cell with the polarizing plates attached was superposed such that the COA substrate side of the liquid crystal cell faced the backlight unit BL1 side, and the liquid crystal display device was completed. At the time of evaluation of this liquid crystal display device, the surface of the liquid crystal display device was perpendicular to the ground, and the absorption axis of the polarizing plate bonded to the opposite substrate side of the liquid crystal cell was horizontal.
  • the polarizing plates 1 to 17 and the polarizing plates 31 to 34 are bonded to a liquid crystal cell using an adhesive in the configuration described in Table 4 and back
  • the liquid crystal display device of Example 1 was completed except that it was placed on the light unit BL1 or BL2.
  • the distance between the measuring instrument and the liquid crystal panel was set to 700 mm.
  • the maximum value of the measured light leakage amount L1 ( ⁇ , 60) and the value of L (0, 60) + L (180, 60) are shown in Table 4 for each liquid crystal display device of the example and the comparative example.
  • the fact that the maximum value of the light leakage amount L1 ( ⁇ , 60) is smaller than the value of L (0, 60) + L (180, 60) means that the equation 1 is satisfied.
  • the luminance I ( ⁇ ) ( ⁇ : ⁇ : ⁇ : black: at 5 ° intervals from azimuth 45 ° to + 45 °) Azimuth angle was measured.
  • the luminance value at an azimuth angle of 0 ° (viewing angle from the right) at a polar angle of 60 ° is I (0 °)
  • the rightward direction of the luminance value I ( ⁇ ) at each azimuth angle ⁇ An azimuth angle range AR in which the ratio I ( ⁇ ) / I (0 °) to the luminance value I (0 °) in the visual field was 2.0 or less was determined.
  • the luminance I ( ⁇ ) at the time of black display is measured at intervals of 5 ° from 135 ° to 225 ° in the polar angle direction 60 ° from the front of the liquid crystal display device.
  • An azimuth angle range AL in which ⁇ ) / I (180 °) is 2.0 or less was determined.
  • the left and right visual field azimuth angle range index was calculated by the following equation.
  • Viewing azimuth indicator (AR + AL) / 2
  • A excellent: 35 ° ⁇ absolute value of left-right viewing azimuth range index
  • B permisible: 30 ° ⁇ absolute value of left-right viewing azimuth range index ⁇ 35 °
  • C not acceptable: absolute value of left and right viewing azimuth angle range index ⁇ 30 °
  • liquid crystal layer 12 color filter layer 14
  • array member 16 rear side substrate 18 front side substrate 20
  • rear side polarizer 26 front side polarizer 28 back light unit LC having a COA structure Liquid crystal cell PL1 Rear side polarizing plate PL2 Front side polarizing plate

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

L1(φ,60)<L(0,60)+L(180,60)を満足し(L1は方位角φ、極角60°のときの光漏れ量、φは-30~30°の範囲および150~210°の範囲)、VA型液晶セルはカラーフィルタ・オン・アレイ基板をリア側に含み、フロント側位相差層は少なくとも位相差層1を含み、位相差層1のRe(550)は20nm未満、Rth(550)は200nm以上270nm以下、フロント側位相差層またはリア側位相差層は少なくとも位相差層2を含み、位相差層2のRe(550)は130nm以上155nm以下、Rth(550)は55nm以上90nm以下、位相差層2のRe(450)、Re(550)およびRe(650)はRe(450)≦Re(550)≦Re(650)を満足し、かつ位相差層1および位相差層2は重合性液晶化合物を含有する光学異方性層を含むVA型液晶表示装置。

Description

液晶表示装置
 本発明は、VA(Vertically Aligned)型液晶表示装置に関する。
 VA型液晶表示装置では、通常、液晶セルを中心としてフロント側とリア側にそれぞれ位相差フィルムを配置することにより、光学補償に必要な位相差を2枚の位相差フィルムのそれぞれに分担させて光学補償が達成されている(例えば特許文献1、5および6参照)。
 液晶表示装置の液晶セルについては、液晶セルにカラーフィルタ・オン・アレイ(COA)構造を設けることが提案されている(例えば、特許文献2、3および4参照)。
特開2006-184640号公報 特開2005-99499号公報 特開2005-258004号公報 特開2005-3733号公報 特許第5529512号 特許第5479179号
 VA型液晶表示装置には、他のモードの液晶表示装置と比較して法線方向のコントラスト(以下、「正面CR」という)が高いという長所がある。また、上記のCOA構造を用いれば画素の開口率を大きくすることができるため、白表示時の透過率を上げることができる。このことは、消費電力の軽減につながるため、環境保護の観点で好ましい。しかし正面CRは、白表示時および黒表示時の2つの輝度値の比(白表示時の輝度値/黒表示時の輝度値)によって決定されるため、VA型液晶表示装置において正面CRを更に向上させるためには、白表示時の輝度を上昇させるだけでは十分ではない。
 一方、VA型液晶表示装置においてフロント側とリア側に配置される位相差フィルムの組み合わせについては、同一の位相差を持つ位相差フィルムを液晶セルのフロント側とリア側に配置する方式が現在主に採用されている。また他には、液晶セルの片側に配置される位相差フィルムにより大きな位相差を分担させる方式がある(例えば、特許文献5、6参照)。この方式には、もう一方の片側に低位相差で安価な汎用の位相差フィルムを使用できることからコスト的なメリットがある。また、その他の方式として、AプレートとCプレートを組み合わせる方式の光学補償もある。
 ところで本発明者らは、VA型液晶表示装置の黒表示性能に関し、大型パネルを複数人数が横に並んで観察する場合、大型パネルを通行人から見えるように通路に掲示する場合等の視野角がある程度限定される用途を想定し、上下方向よりも左右方向の視野角を優先して拡大したいとの要請に応えることを検討した。しかし検討の結果、現在主に採用されているフロント側とリア側とに同一位相差フィルムを配置する方式での左右視野方位角性能の改善では、観察方位を左右方向から上下に少しずらした場合に観察者が光漏れに気付いてしまい、左右方向の視野角の拡大には限界があることが判明した。
 本発明の一態様は、COA構造を有する液晶セルを備えたVA型液晶表示装置であって、正面CRおよび左右方向の黒表示性能が改善されたVA型液晶表示装置を提供することを目的とする。
 本発明の一態様は、
 液晶パネルとバックライトユニットとを含み、
 正面を極角0°、右方向を方位角0°、左方向を方位角180°、L(x,y)を黒表示時の方位角x、極角yのときの光漏れ量としたときに下記式1:
 L1(φ,60)<L(0,60)+ L(180,60) 
 を満足し、ここで、L1は方位角φ、極角60°のときの光漏れ量であり、φは-30~30°の範囲および150~210°の範囲であり、
 上記液晶パネルは、
 フロント側偏光子、
 リア側偏光子、
 上記フロント側偏光子と上記リア側偏光子との間に位置するVA型液晶セル、
 上記フロント側偏光子と上記VA型液晶セルとの間に位置するフロント側位相差層、および
 上記リア側偏光子と上記VA型液晶セルとの間に位置するリア側位相差層、
を有し、
 上記VA型液晶セルは、カラーフィルタ・オン・アレイ基板をリア側に含み、
 上記フロント側位相差層は、少なくとも位相差層1を含み、
 上記位相差層1の波長550nmで測定した面内位相差Re(550)は、20nm未満であり、
 上記位相差層1の波長550nmで測定した厚み方向位相差Rth(550)は、200nm以上270nm以下であり、
 上記フロント側位相差層または上記リア側位相差層は、少なくとも位相差層2を含み、
 上記位相差層2の波長550nmで測定した面内位相差Re(550)は130nm以上155nm以下であり、
 上記位相差層2の波長550nmで測定した厚み方向位相差Rth(550)は55nm以上90nm以下であり、
 上記位相差層2の波長450nmで測定した面内位相差Re(450)、波長550nmで測定した面内位相差Re(550)および波長650nmで測定した面内位相差Re(650)は、
 Re(450)≦Re(550)≦Re(650)
 を満足し、かつ
 上記位相差層1および上記位相差層2は、重合性液晶化合物を含有する光学異方性層を含む、VA型液晶表示装置、
 に関する。
 一態様では、上記位相差層2の面内方向位相差Re(550)は135nm以上150nm以下であることができ、上記位相差層2の厚み方向位相差Rth(550)は57nm以上87nm以下であることができる。
 一態様では、上記光学異方性層は、厚み5.0μm以下の液晶層であることができる。
 一態様では、上記液晶層は、重合性液晶化合物を含む重合性組成物の硬化層であることができる。
 一態様では、上記バックライトユニットの上下方向の発光角度分布の半値半幅は、30°以内であることができる。
 一態様では、上記液晶表示装置は、上記液晶パネルのフロント側の表面に拡散層を備えることができる。
 本発明の一態様によれば、COA構造を有する液晶セルを備えたVA型液晶表示装置であって、正面CRおよび左右方向の黒表示性能が改善されたVA型液晶表示装置を提供することができる。
液晶表示装置の構成の一例を示す断面模式図である。 方位角の説明図である。 方位角の説明図である。 方位角の説明図である。
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 まず、本発明および本明細書における各種用語について、説明する。
 位相差(retardation;レターデーション)に関して、面内位相差Re(λ)およびRth(λ)は、各々、波長λにおける面内位相差(nm)および厚み方向位相差(nm)を表す。Re(λ)はKOBRA 21ADHまたはWR(王子計測機器株式会社製)において波長λnmの光を測定対象のサンプルの法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルターをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。測定されるサンプル(フィルム、層等)が1軸または2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
 Rth(λ)は、上記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはサンプルの面内の任意の方向を回転軸とする)のサンプルの法線方向に対して法線方向から片側50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基に、KOBRA 21ADHまたはWRが算出する。
 上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつサンプルの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRが算出する。
 尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはサンプルの面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値および入力された膜厚値を基に、以下の式(X)および式(XI)よりRthを算出することもできる。
Figure JPOXMLDOC01-appb-M000001
 上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。また、式中、nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnxおよびnyに直交する方向の屈折率を表す。dは膜厚を表す。
 測定対象のサンプルが1軸または2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないサンプルの場合には、以下の方法によりRth(λ)は算出される。
 Rth(λ)は上記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてサンプルの法線方向に対して-50°から+50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
 上記の測定において、平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。
 これら平均屈折率の仮定値と膜厚を入力することにより、KOBRA 21ADHまたはWRはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx-nz)/(nx-ny)が更に算出される。
 また、Re(λ)およびRth(λ)の値、即ちRe(450)、Re(550)、Re(650)、Rth(550)、およびRth(550)は、測定装置により、3以上の異なる波長(例としてλ=479.2、546.3、632.8、745.3nm)についてReおよびRthをそれぞれ測定し、それらの値から算出するものとする。具体的には、それらの測定値をコーシーの式(第3項まで、Re=A+B/λ2+C/λ4)にて近似して、値A、BおよびCをそれぞれ求める。以上より波長λにおけるRe、Rthをプロットし直し、そこから各波長λのRe(λ)およびRth(λ)をそれぞれ求めることができる。
 測定波長について特に付記がない場合、測定波長は550nmである。
 「位相差層」、「液晶層」等の各部材の光学特性を示す数値、数値範囲、および定性的な表現(例えば、「同等」、「等しい」等の表現)については、液晶表示装置および/またはそれに用いられる部材について一般的に許容される誤差を含む数値、数値範囲および性質を示していると解釈されるものとする。例えば、角度(例えば「90°」等の角度)、およびその関係(例えば「直交」、「平行」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。上記の許容される誤差の範囲を含むことは、例えば、厳密な角度±10°以下の範囲内であることを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。例えば、直交の場合、90°±10°の範囲(80~100°)であることができる。
 「フロント側」とは表示面側を意味し、「リア側」とはバックライトユニット側を意味する。また、「正面」とは、表示面に対する法線方向を意味し、「正面コントラスト(CR)」は、表示面の法線方向において測定される白輝度および黒輝度から算出されるコントラストを意味する。
 「位相差層」とは、液晶セルと偏光子の間に位置する領域(位相差領域)を意味し、レターデーションの大小は関係ない。位相差層と液晶セルまたは偏光子とを貼り合わせるために粘着剤層が使用された場合、この粘着剤層は位相差層の一部ではない。
 「位相差層」は、AプレートまたはCプレートであることができる。「Aプレート」および「Cプレート」は、以下のように定義される。
 Aプレートには、ポジティブAプレート(正のAプレート)とネガティブAプレート(負のAプレート)との2種があり、位相差層の面内の遅相軸方向(面内での屈折率が最大となる方向)の屈折率をnx、面内の遅相軸と面内で直交する方向の屈折率をny、厚さ方向の屈折率をnzとしたとき、ポジティブAプレートは式(A1)の関係を満たすものであり、ネガティブAプレートは式(A2)の関係を満たすものである。なお、ポジティブAプレートはRthが正の値を示し、ネガティブAプレートはRthが負の値を示す。
 式(A1)  nx>ny≒nz
 式(A2)  ny<nx≒nz
 なお、上記式(A1)および式(A2)中の「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」に関して、例えば、(ny-nz)×d(ここで、dは位相差層の膜厚である)が、-10~10nm、好ましくは-5~5nmの場合も「ny≒nz」に含まれ、(nx-nz)×dが、-10~10nm、好ましくは-5~5nmの場合も「nx≒nz」に含まれる。
 Cプレートには、ポジティブCプレート(正のCプレート)とネガティブCプレート(負のCプレート)との2種があり、ポジティブCプレートは式(C1)の関係を満たすものであり、ネガティブCプレートは式(C2)の関係を満たすものである。なお、ポジティブCプレートはRthが負の値を示し、ネガティブCプレートはRthが正の値を示す。
 式(C1)  nz>nx≒ny
 式(C2)  nz<nx≒ny
 なお、上記式(C1)および式(C2)中の「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」に関して、例えば、(nx-ny)×d(ここで、dは位相差層の厚みである)が、0~10nm、好ましくは0~5nmの場合も「nx≒ny」に含まれる。
 次に、本発明の一態様にかかる液晶表示装置について、更に詳細に説明する。
<液晶表示装置の構成>
 図1は、液晶表示装置の構成の一例を示す断面模式図である。図1に示す液晶表示装置は、リア側偏光板PL1と液晶セルLCとフロント側偏光板PL2とを含む液晶パネルと、バックライトユニット28とを含む。詳しくは、図1に示す液晶表示装置は、フロント側偏光子26、リア側偏光子24、フロント側偏光子26とリア側偏光子24との間に位置する液晶セルLC、液晶セルLCとフロント側偏光子26との間に位置するフロント側位相差層22、および液晶セルLCとリア側偏光子20との間に位置するリア側位相差層20を有する液晶パネルと、バックライトユニット28とを含む。図1に図示されていない部材(例えば粘着剤層等)が1つ以上任意の位置に含まれていてもよい。フロント側位相差層22およびリア側位相差層20は、視野角補償に寄与する位相差を有する。フロント側位相差層22およびリア側位相差層20は、光学異方性層を一層以上含むことができ、二層以上含むこともできる。
 液晶セルLCは、VA型液晶セルであり、液晶層10と、液晶層10を挟持する一対の基板、即ちフロント側基板18とリア側基板16とを有し、リア側基板16と液晶層10との間に、カラーフィルタ層12および画素を区画するブラックマトリクスを有するアレイ部材14を有する。リア側基板16、アレイ部材14およびカラーフィルタ層12により、COA(カラーフィルタ・オン・アレイ)基板が構成される。このようにアクティブマトリクス基板上にカラーフィルタが位置する構造は、COA(カラーフィルタ・オン・アレイ)構造と呼ばれる。図1に示す液晶表示装置では、液晶層10とリア側位相差層20との間にCOA基板が配置されている。即ち液晶セルLCは、上記COA基板をリア側に有する。VA型液晶表示装置のモードおよびCOA基板の詳細については、公知技術を適用できる。
<式1>
 上記液晶表示装置は、正面を極角0°、右方向を方位角0°、左方向を方位角180°、L(x,y)を黒表示時の方位角x、極角yのときの光漏れ量としたときに下記式1:
L1(φ,60)<L(0,60)+ L(180,60) 
を満足する。ここで、L1は方位角φ、極角60°のときの光漏れ量であり、φは-30~30°の範囲および150~210°の範囲である。
 方位角について、図2A~2Cに示すように、ディスプレイ画面と垂直な方向を極角0°としたとき、任意の極角(例えば60°)において、方位角0°は右方向、方位角180°方向は左方向、方位角90°は上方向、方位角270°は下方向、を意味する。
 上記式1を満たすことは、黒表示時に極角60°において、-30~30°の範囲および150~210°の範囲の方位角での光漏れの低減が、右方向(方位角0°)および左方向(方位角180°)での光漏れの低減よりも優先されていることを意味する。これにより、黒表示時に全方位の光漏れをできるだけ低減する場合と比べて、例えば斜め上方向で光漏れが大きくなり得るものの、優先する方位角(上記範囲の方位角)では光漏れが少ない液晶表示を得ることができる。
 本発明者らは、COA構造を有する液晶セルを備えたVA型液晶表示装置の黒表示時の視野角性能に関し、大型パネルで複数人数が横に並んで観察する場合、大型パネルを通行人から見えるように通路に掲示する場合等の視野角がある程度限定される用途を想定し、上下方向よりも左右方向の視野角を優先して拡大したいとの要請に答えるため、現在主に採用されているフロント側とリア側とに同一位相差フィルムを配置する方式での左右視野方位角性能の改善を試みた。しかし、この方式により斜め方向の光漏れを低減することは可能であったものの、極角60°近傍において、方位角45°、135°、225°、315°方向を中心として僅かに光漏れが残り、位相差を調整しても光漏れを十分に低減できないことから、観察方位を左右方向から上下に少しずらした場合に観察者が光漏れに気づく場合があり、左右視野方位角の拡大には限界があることが判明した。
 そこで本発明者らは更に検討を重ね、リア側とフロント側とで異なる位相差を持つ位相差層を使用して位相差を適切に調整すれば、光漏れが生じる方位角を移動させることができ、方位角45°、135°方向に生じていた光漏れについては90°方向(上方向)、方位角225°、315°方向に生じていた光漏れついては270°方向(下方向)に寄せることができ、これにより左右視野方位角を拡大することが可能になることを見出した。
 リア側とフロント側とで異なる位相差を持つ位相差層を配置する方式には、片側に配置される位相差層により大きな位相差を分担させ、もう一方の片側の位相差層として低位相差で安価な汎用差フィルムを使用する方式がある。しかしこの場合、フロント側に大きな位相差を持つ位相差層を配置し、リア側には低位相差の位相差層を配置することにより正面CRを高くすることは可能であったものの、依然として左右方向の視野方位角の拡大には限界があった。そこで本発明者らは、位相差層として、詳細を後述する位相差層1と位相差層2とを組み合わせて視野角を改善することを検討した。そしてこのとき、位相差条件は、黒表示時に全方位の光漏れをできるだけ低減できる位相差条件ではなく、左右視野方位角を優先して光漏れを低減する位相差条件、つまり極角60°において方位角-30°~30°および150°~210°での光漏れが優先して低減される位相差条件を選び、式1を満足させた。その結果、COA構造を有する液晶セルを備えたVA型液晶表示装置において、正面CRの改善および左右方向の黒表示性能の改善(具体的には左右の視野方位角の拡大)が可能となった。
<位相差層>
 上記液晶表示装置は、位相差層1および位相差層2を含む。位相差層1は、少なくともフロント側位相差層に含まれ、好ましくはフロント側位相差層に含まれ、リア側位相差層には含まれない。位相差層2は、フロント側位相差層および/またはリア側位相差層に含まれ、好ましくはリア側位相差層に含まれ、フロント側位相差層には含まれない。
 位相差層1は、波長550nmで測定した面内位相差Re(550)が20nm未満(Re(550)<20nm)であり、Re(550)<10nmであることが好ましい。位相差層1は、Cプレートであることが好ましい。Cプレートは黒表示時に液晶セルを斜めから見たときの位相差を光学補償する役割を果たすことができる。Cプレートの厚み方向位相差Rthは、液晶セルの厚み方向位相差Δnd(λ)(d[nm]は液晶セルを構成する液晶層の厚さ、Δn(λ)はこの液晶層の波長(λ)での屈折率異方性であり、Δnd(λ)はΔn(λ)とdの積のことである)に応じて決めることが好ましく、Δnd(550)は通常280~350nm程度に設定される。この点から、位相差層1の波長550nmで測定した厚み方向位相差Rth(550)は、200nm以上270nm以下(200≦Rth(550)≦270nm)である。また、液晶セルの位相差の波長依存性は、波長が長波長になる程位相差が小さくなる順分散性であることが多いことから、Cプレートの位相差[nm]の波長依存性も順分散性であることが好ましい。ただし、これに限定されない。
 位相差層2は、波長550nmで測定した面内位相差Re(550)が130nm以上155nm以下であり、波長550nmで測定した厚み方向位相差Rth(550)が55nm以上90nm以下であり、波長450nmで測定した面内位相差Re(450)、波長550nmで測定した面内位相差Re(550)および波長650nmで測定した面内位相差Re(650)が、「Re(450)≦Re(550)≦Re(650)」を満足する。位相差層2のRe(550)は135nm以上150nm以下であることが好ましく、位相差層2の厚み方向位相差Rth(550)は57nm以上87nm以下であることが好ましい。位相差層2は、Aプレートであることが好ましい。Aプレートは、リア側偏光板およびフロント側偏光板の吸収軸が斜めから見たときに直交せず光漏れを生じる原因となることを光学補償して液晶表示装置の黒表示時の光漏れを低減する役割を果たすことができる。Aプレートの位相差の波長依存性は、波長が長波長になるほど位相差[nm]が大きくなる逆分散性を持つことが好ましい。ただし、これに限定されない。液晶セルを挟んでCプレートをフロント側に配置し、Aプレートをリア側に配置することは、正面CRの更なる改善および左右方向の黒表示性能の更なる改善の観点から好ましい。なお、AプレートもCプレートと同様にフロント側に配置(ただしCプレートよりもフロント側偏光子に近い側に配置)することにより正面CRを更に改善することができる。他方、液晶セルを介してCプレートをフロント側に配置し、Aプレートをリア側に配置するほうが、左右方向の黒表示性能の更なる改善の観点からは好ましい。
 位相差層1および位相差層2は、重合性液晶化合物を含有する光学異方性層を含む。例えば、位相差層1および位相差層2は、支持体、配向膜および光学異方性層をこの順に含むことができる。一般的な位相差フィルムの厚みは数十μmであるのに対し、重合性液晶化合物を使用することにより、例えば厚みが数μmの光学異方性層を得ることができる。光学異方性層の厚みが薄いことは、位相差層の薄型化、ひいては液晶パネルの薄型化および液晶表示装置の薄型化の観点から好ましい。光学異方性層は、支持体上に配向膜を形成した後、重合性液晶化合物を含む液を塗布して作製してもよいし、更に支持体から光学異方性層を剥離して偏光子または液晶セルに接着層を介して貼り合せてもよい。また、偏光子の上に必要に応じて配向膜を形成した後、重合性液晶化合物を含む液を塗布して光学異方性層を作製してもよい。後者の方が、より薄い光学異方性層が得られる傾向がある。
 重合性液晶化合物を使用して作製される光学異方性層は、重合性液晶化合物を含む重合性組成物の硬化層であることができる。具体的には、例えば、低分子液晶化合物を液晶状態においてネマチック配向に形成後、光架橋や熱架橋によって固定化して得られる光学異方性層、高分子液晶化合物を液晶状態においてネマチック配向に形成後、冷却することによって配向を固定化して得られる光学異方性層等が挙げられる。光学異方性層は、例えば、液晶化合物が重合等によって固定されて形成された層であり、層となった後は液晶性を示さないことが通常である。また、「重合性液晶化合物を含有する光学異方性層」とは、重合性液晶化合物を使用して形成された光学異方性層であって、形成された層では、重合性液晶化合物は、この化合物に含まれる重合性基の一部または全部が重合反応に供された後であって重合性を示さないか殆ど示さないことが通常である。
 一般的に、液晶化合物はその形状から、棒状タイプ(棒状液晶化合物)と円盤状タイプ(ディスコティック液晶化合物、円盤状液晶化合物)に分類できる。更に、それぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992参照)。光学異方性層を形成するためには、いずれの液晶化合物を用いることもでき、一態様ではディスコティック液晶化合物が好ましい。また、2種以上の棒状液晶化合物、2種以上のディスコティック液晶化合物、または、棒状液晶化合物とディスコティック液晶化合物との混合物を用いてもよい。
 棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1、特開2005-289980号公報の段落[0026]~[0098]に記載のもの等を用いることができ、円盤状液晶化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]、特開2010-244038号公報の段落[0013]~[0108]に記載のもの等を用いることができる。ただし、これらに限定されない。
 光学異方性層を重合性基を有する液晶化合物(重合性液晶化合物)を使用して形成することは、光学特性の温度変化および/または湿度変化を小さくできることから好ましい。また、先に記載したように、重合性液晶化合物を使用することは、位相差層の薄型化の観点からも好ましい。一態様では、光学異方性層は、厚み5.0μm以下(例えば1.0~5.0μm)の液晶層であることが好ましい。ここで「液晶層」とは、液晶化合物を使用して形成された層であって、上記の通り、層となった後は液晶性を示さないことが通常である。光学異方性層を形成するために使用される液晶化合物は2種類以上の混合物でもよく、その場合少なくとも1つが1分子中に2つ以上の重合性基を有している二官能以上の重合性液晶化合物であることが好ましい。重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、具体的には重合性エチレン性不飽和基または環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが好ましく挙げられ、(メタ)アクリロイル基がより好ましい。(メタ)アクリロイル基とは、メタアクリロイル基およびアクリロイル基の両者を包含する概念である。
 一態様では、フロント側位相差層およびリア側位相差層は、散乱機能を持たないことが好ましい。「散乱機能がない」とは、例えばこの位相差層を含む偏光板のヘイズ値が0.2%以下であることをいうことができ、好ましくは0.1%以下であることをいうことができる。位相差層が散乱機能を持たない偏光板を用いることは、液晶表示装置の正面CRの更なる改善の観点から好ましい。一態様では、そのような偏光板を適用することにより、液晶表示装置において、後述の正面CR比を、例えば110%超、好ましくは115%以上に向上させることが可能となる。
 また、一態様では、位相差層1および位相差層2は、支持体および/または配向膜を含まないこともできる。支持体および/または配向膜を含まない位相差層は、例えば、支持体上に設けた配向膜上に光学異方性層を形成した後、支持体、配向膜および光学異方性層を含む積層体から支持体を剥離するか、または支持体と配向膜を剥離することにより、作製することができる。または、偏光子上に配向膜を設け、この配向膜上に光学異方性層を形成することにより、支持体を含まない位相差層を得ることができる。支持体としては、通常、ポリマーフィルムが使用される。位相差層が支持体を含まないことは、正面コントラストの更なる向上に寄与し得る。
 一態様では、液晶パネルのフロント側表面、例えば詳しくはフロント側偏光板の表面に拡散層を設けることができる。更に、左右視野方位角を更に拡大するために、バックライトユニットそのものの上下視野方向の発光を抑える代わりに正面と左右視野方向への発光を強めた集光型バックライトユニットを併用してもよい。集光型バックライトユニットとしては、プリズムシート、ルーバーフィルム(Louver Film)(例えばPF12.1WS(3M社製))等を使用し、上下方向への光の輝度を抑えて正面および左右視野方向の輝度を高めたバックライトユニットを用いることができる。上下左右問わず斜め方向への発光を抑えて正面方向へ集中的に発光するバックライトユニットを用いてもよい。これら集光型バックライトユニットを使用する場合には輝度の小さい視野方向が発生するものの、フロント側偏光板の表面の拡散層により光を散乱させることができるため、左右視野方位角を更に広げることができる。拡散層としては、光を拡散させる機能を有する公知の層およびフィルムを用いることができる。また、バックライトユニットとしては、上下方向の発光角度分布の半値半幅が30°以内のバックライトユニットを用いることができ、25°以内のバックライトユニットを用いることが好ましく、20°以内のバックライトユニットを用いることがより好ましい。バックライトユニットの発光角度分布は、バックライトユニットの輝度値が最大値となる傾斜角度を挟み、最大値の半分になる2つの傾斜角度の差の1/2を意味する。バックライトユニットの上下方向の発光角度分布の半値半幅は、以下の方法により求めることができる。バックライトユニットの正面(極角が0°となる方向)に対し、方位角90°、つまり上方向における極角80°から0°までと、更に方位角270°、つまり下方向における極角0°から80°まで、5°間隔でバックライトユニットの中央の輝値度を測定する。次に、輝度値が最大となった極角と、輝度値の最大値に対し1/2の輝度値となる極角を調べる。例えば、方位角90°および方位角270°の両方において、極角が25°の時に輝度値が最大値の半分になる場合、半値半幅は25°である。
 以下、本発明を実施例に基づき説明する。ただし本発明は実施例に示す態様に限定されるものではない。以下に記載の粘着剤としては、綜研化学株式会社製SK-2057を使用した。
(1)片面保護フィルム付き偏光子A、Bの作製
 厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液(液温30℃)中に60秒浸漬して染色し、次いでホウ酸濃度4質量%のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、4分間乾燥させて(雰囲気温度50℃)、厚さ20μmの偏光子を得た。
 市販のセルロースアシレート系フィルム「TD80UL」(富士フイルム株式会社製)を準備し、水酸化ナトリウム濃度1.5モル/リットルで液温55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、硫酸濃度0.005モル/リットルで液温35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に上記セルロースアシレート系フィルムを十分に乾燥させ(雰囲気温度120℃)、偏光子保護フィルムAを作製した。
 上記で作製した偏光子の片面に、上記で作製した偏光子保護フィルムAをポリビニルアルコール系接着剤で貼り合わせて、偏光子保護フィルムAと偏光子が積層された、片面保護フィルム付き偏光板Aを作製した。
 次に、表面に拡散層(光散乱機能層)を持つ市販のセルロースアシレート系フィルム「CVLX」(富士フイルム株式会社製)を準備し、水酸化ナトリウム濃度1.5モル/リットルで液温55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、硫酸濃度0.005モル/リットルで液温35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に上記セルロースアシレート系フィルムを十分に乾燥させ(雰囲気温度120℃)、偏光子保護フィルムBを作製した。
 上記で作製した偏光子の片面に、上記で作製した偏光子保護フィルムBをポリビニルアルコール系接着剤で貼り合わせて、偏光子保護フィルムBと偏光子が積層された、片面保護フィルム付き偏光板Bを作製した。
(2)偏光板1、5の作製
(アルカリ鹸化処理)
 市販のセルロースアシレート系フィルムZRF25(富士フイルム株式会社製)を、温度60℃の誘電式加熱ロールに通過させ、フィルム表面温度を40℃に昇温した後に、フィルムのバンド面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/mで塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を塗布量3ml/mで塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、雰囲気温度70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したZRF25を作製した。
 アルカリ溶液組成
──────────────────────────────────
・水酸化カリウム                    4.7質量部
・水                         15.8質量部
・イソプロパノール                  63.7質量部
・界面活性剤SF-1:C1429O(CHCHO)20
                            1.0質量部
・プロピレングリコール                14.8質量部
──────────────────────────────────
(配向膜の形成)
 上記のアルカリ鹸化処理を施したZRF25(支持体)上に、下記の組成の塗布液を#14のワイヤーバーコーターで塗布量24ml/mで塗布した。60℃の温風で60秒、更に90℃の温風で150秒乾燥した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-C000003
(ディスコティック液晶化合物(重合性液晶化合物)を含有する光学異方性層C1の形成)
 上記のアルカリ鹸化処理を施したZRF25上に形成した配向膜上に、#3のワイヤーバーで下記の組成のディスコティック液晶(ディスコティック液晶化合物)を含む塗布液を50m連続塗布した。
(ディスコティック液晶層の塗布液の組成)
下記のディスコティック液晶化合物(B)        26.2質量%
下記のディスコティック液晶化合物(C)         6.6質量%
化合物I-6                     0.15質量%
エチレンオキサイド変成トリメチロールプロパントリアクリレート
(V#360、大阪有機化学株式会社製)         3.2質量%
増感剤(カヤキュアーDETX、日本化薬株式会社製)   0.4質量%
光重合開始剤(イルガキュアー907、チバガイギー社製) 1.1質量%
メチルエチルケトン                  62.0質量%
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 上記塗布液が塗布された後、続いて雰囲気温度130℃の乾燥ゾーンで2分間加熱乾燥させ、ディスコティック液晶化合物を配向させた。次に、UV照射ゾーンにて80℃で120W/cm高圧水銀灯を用いて、4秒間UV照射しディスコティック液晶化合物を重合させた。その後、室温まで放冷し、巻き取りを行った。作製した光学異方性層C1を有する位相差層C1(光学異方性層C1、配向膜および支持体の積層体)について、偏光子と貼り合わせる前に、自動複屈折計(KOBRA-21ADH、王子計測機器株式会社製)を用いて測定を行ったところ、光学的に負の屈折率異方性を示すネガティブCプレートであり、Re(550)=0nm、Rth(550)=232nmであった。光学異方性層C1のディスコティック液晶化合物は±1°の範囲で水平配向していた。光学異方性層C1の厚みは2.0μmであった。
 上記のように作製した、支持体(アルカリ鹸化処理を施したZRF25)、配向膜および光学異方性層Cの積層体の光学異方性層C側を、粘着剤を用いて(1)で作製した片面保護フィルム付き偏光板Aの偏光子側に面するように貼り合わせた。このようにして、偏光子保護フィルム、偏光子、粘着剤、光学異方性層C、配向膜および支持体がこの順に積層した、偏光板1を作製した。
 また、上記のように作製した、支持体、配向膜および光学異方性層Cの積層体の光学異方性層C側を、粘着剤(SK-2057、綜研化学株式会社製)を用いて(1)で作製した片面保護フィルム付き偏光板Bの偏光子側に面するように貼り合わせた。このようにして、偏光子保護フィルム(拡散層付き)、偏光子、粘着剤、光学異方性層C、配向膜および支持体がこの順に積層した、偏光板5を作製した。
(3)偏光板14~17の作製
 ディスコティック液晶層の塗布液の組成のうち、メチルエチルケトンの量を60~65質量%の間で変更した点以外、偏光板1の作製方法と同じ方法にて、光学異方性層C14~C17を作製した。位相差層C14~C17は、光学異方性層、配向膜および支持体の積層体である。光学異方性層C14を有する位相差層C14のRth(550)は222nm、光学異方性層C15を有する位相差層C15のRth(550)は227nm、光学異方性層C16を有する位相差層C16のRth(550)は227nm、光学異方性層C17を有する位相差層C17のRth(550)は242nmであった。ここで作製された位相差層C14~C17は、光学的に負の屈折率異方性を示すネガティブCプレートであり、Re(550)=0nmであり、各光学異方性層の厚みは2.0μmであった。各位相差層を光学異方性層を粘着剤を用いて(1)で作製した片面保護フィルム付き偏光板Aの偏光子側に面するように貼り合わせた。このようにして、偏光子保護フィルム、偏光子、粘着剤、光学異方性層、配向膜および支持体がこの順に積層した、偏光板14~17を作製した。
(4)偏光板2の作製
 偏光板1と同様にZRF25(富士フイルム株式会社製)のバンド面にアルカリ鹸化処理を行った後、特開2012-155308号公報の実施例3の記載を参考に、光配向膜用塗布液を調製し、ZRF25のアルカリ鹸化処理を行ったバンド面にワイヤーバーで塗布した。60℃の温風で60秒乾燥し、光配向膜付きZRF25を作製した。
 作製した光配向膜付きZRF25に、大気下にて超高圧水銀ランプを用いて紫外線を照射した。この際用いる紫外線の照度は、UV-A領域(紫外線A波、波長380nm~320nmの積算)において5mJ/cmとした。
 偏光板1の作製に使用したものと同じディスコティック液晶(円盤状液晶性化合物)を含む塗布液を塗布した後、続いて雰囲気温度130℃の乾燥ゾーンで2分間加熱乾燥させ、ディスコティック液晶化合物を配向させた。次に、UV照射ゾーンにて雰囲気温度80℃で120W/cmの高圧水銀灯を用いて、4秒間UV照射してディスコティック液晶化合物を重合させた。その後、室温まで放冷し、巻き取りを行った。こうして光学異方性層C2、配向膜および支持体の積層体を作製した。
 上記のように作製した積層体を、光学異方性層C2側が(1)で作製した片面保護フィルム付き偏光子Aの偏光子側に面するように粘着剤を用いて貼り合わせた。その後、支持体と配向膜を剥がした。
 このようにして、偏光子保護フィルム、偏光子、粘着剤および光学異方性層C2(位相差層C2)がこの順に積層した、偏光板2を作製した。位相差層C2は、光学的に負の屈折率異方性を示すネガティブCプレートであり、Re(550)=0nm、Rth(550)=232nm、光学異方性層C2の厚みは2.0μmであった。光学異方性層C2のディスコティック液晶化合物は±1°の範囲で水平配向していた。
(5)偏光板3の作製
 偏光板1と同様にZRF25(富士フイルム株式会社製)のバンド面にアルカリ鹸化処理を行った後、特開2012ー155308号公報の実施例3の記載を参考に、光配向膜用塗布液を調製し、ZRF25のアルカリ鹸化処理を行ったバンド面にワイヤーバーで塗布した。60℃の温風で60秒乾燥し、光配向膜付きZRF25を作製した。
 作製した光配向膜付きZRF25に、大気下にて超高圧水銀ランプを用いて紫外線を照射した。このとき、ワイヤーグリッド偏光子(ProFlux PPL02、Moxtek社製)を光配向膜の面と平行になるようにセットして露光し、光配向処理を行った。この際用いる紫外線の照度は、UV-A領域(紫外線A波、波長380nm~320nmの積算)において10mJ/cm2とした。
 続いて、下記の光学異方性層A形成用塗布液を作製した。
――――――――――――――――――――――――――――――――――
光学異方性層A形成用塗布液の組成
――――――――――――――――――――――――――――――――――
下記重合性化合物X-1               20.00質量部
下記液晶化合物L-1                40.00質量部
下記液晶化合物L-2                40.00質量部
下記重合開始剤S-1                 3.00質量部
下記化合物A-1                   0.10質量部
レベリング剤(下記化合物T-1)           0.10質量部
メチルエチルケトン(溶媒)            200.00質量部
シクロペンタノン(溶媒)             200.00質量部
――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 次いで、光配向処理面上に光学異方性層A形成用塗布液を、バーコーターを用いて塗布した。膜面温度100℃で20秒間加熱熟成し、55℃まで冷却した後に、空気下にて空冷メタルハライドランプ(アイグラフィックス株式会社製)を用いて300mJ/cmの紫外線を照射して、その配向状態を固定化することにより、光学異方性層A付きのZRF25を形成した。この光学異方性層A面が(1)で作製した片面保護フィルム付き偏光板Aの偏光子側に面するように、粘着剤を用いて貼り合わせた。このようにして、偏光子保護フィルム、偏光子、光学異方性層A、配向膜、および支持体がこの順に配置された偏光板3を作製した。形成された光学異方性層Aは、偏光板の吸収軸に対し遅相軸方向が垂直であった(すなわち、液晶化合物が偏光板の吸収軸に対して垂直に配向していた)。
偏光板3は、光学異方性層A、配向膜および支持体の積層体である位相差層Aを有する。位相差層Aについて、偏光子と貼り合わせる前に、自動複屈折計(KOBRA-21ADH、王子計測機器株式会社製)を用いて、Reの光入射角度依存性および光軸のチルト角を測定したところ、Re(550)が143nm、Rth(550)が72nm、Re(550)/Re(450)が1.12、Re(650)/Re(550)が1.01、Re(450)が128nm、Re(650)が144nm、光軸のチルト角は0°であり、光学的に正の異方性を示すポジティブAプレートであり、液晶化合物はホモジニアス配向であった。上記の通り、位相差層Aは、「Re(450)≦Re(550)≦Re(650)」を満足する。光学異方性層Aの厚みは、2.5μmであった。
(6)偏光板31~34の作製
 光学異方性層A形成用塗布液の塗布量を変更した点以外は光学異方性層Aの形成方法と同じ方法で、
 Re(550)が133nm、Rth(550)が67nmである位相差層A31、
 Re(550)が138nm、Rth(550)が69nmである位相差層A32、
 Re(550)が148nm、Rth(550)が74nmである位相差層A33、
 Re(550)が153nm、Rth(550)が77nmである位相差層A34、
を形成した。上記の点以外は偏光板3の作製方法と同じ方法で位相差層A31を有する偏光板31、位相差層A32を有する偏光板32、位相差層A33を有する偏光板33、および位相差層A34を有する偏光板34をそれぞれ作製した。位相差層A31~A34は、光学異方性層、配向膜および支持体の積層体であり、光学的に正の異方性を示すポジティブAプレートであり、Re(550)/Re(450)は1.12、Re(650)/Re(550)は1.01、光軸のチルト角は0°であり、液晶化合物はホモジニアス配向であった。位相差層A31~A34は、Re(450)およびRe(650)が以下の通りであり、いずれも「Re(450)≦Re(550)≦Re(650)」を満足する。 
  位相差層A31:Re(450)=119nm、Re(550)=133nm、Re(650)=134nm
  位相差層A32:Re(450)=123nm、Re(550)=138nm、Re(650)=139nm
  位相差層A33:Re(450)=132nm、Re(550)=148nm、Re(650)=149nm
  位相差層A34:Re(450)=137nm、Re(550)=153nm、Re(650)=155nm
 また、位相差層A31~A34に含まれる光学異方性層の厚みは、以下の通りであった。
  位相差層A31に含まれる光学異方性層:2.3μm
  位相差層A32に含まれる光学異方性層:2.4μm
  位相差層A33に含まれる光学異方性層:2.7μm
  位相差層A34に含まれる光学異方性層:2.9μm
 偏光板31~34の作製では、偏光板3の作製と同様に光学異方性層側の面が(1)で作製した片面保護フィルム付き偏光板Aの偏光子側に面するように、粘着剤を用いて貼り合わせた。このようにして、偏光子保護フィルム、偏光子、光学異方性層、光配向膜および支持体がこの順に配置された偏光板31~34を作製した。
(7)偏光板4の作製
(光配向膜付き偏光子の作製)
 特開2012-155308号公報の実施例3の記載を参考に、光配向膜用塗布液を調製し、上記(1)で作製した片面保護フィルム付き偏光板Aの偏光子側の面にワイヤーバーで塗布した。60℃の温風で60秒乾燥し、光配向膜付き偏光子を作製した。
 作製した光配向膜付き偏光子に、大気下にて超高圧水銀ランプを用いて紫外線を照射した。このとき、ワイヤーグリッド偏光子(ProFlux PPL02、Moxtek社製)を光配向膜の面と平行になるようにセットして露光し、光配向処理を行った。この際用いる紫外線の照度は、UV-A領域(紫外線A波、波長380nm~320nmの積算)において10mJ/cmとした。
 次いで、偏光板3の作製時に使用した光学異方性層A形成用塗布液と同一組成の液を、バーコーターを用いて光配向処理面上に塗布した。膜面温度100℃で20秒間加熱熟成し、55℃まで冷却した後に、空気下にて空冷メタルハライドランプ(アイグラフィックス株式会社製)を用いて300mJ/cmの紫外線を照射して、その配向状態を固定化することにより偏光板4を形成した。得られた偏光板4は、偏光子保護フィルム、偏光子、配向膜および光学異方性層A4がこの順に配置されたものである。偏光板4は、配向膜と光学異方性層A4との積層体である位相差層A4を含む。位相差層A4は、Re(550)が143nm、Rth(550)が72nm、Re(550)/Re(450)が1.12、Re(650)/Re(550)が1.01、Re(450)が128nm、Re(650)が144nm、光軸のチルト角は0°であり、光学的に正の異方性を示すポジティブAプレートであり、厚みは2.5μmであり、液晶化合物はホモジニアス配向である。
(8)偏光板6の作製
 上記(2)の途中過程で作製した、ZRF25、配向膜、光学異方性層C1の光学異方性層C1側を、上記(7)で作製した偏光板4の光学異方性層A4側に粘着剤を用いて貼り合わせた。その後、ZRF25と配向膜を剥がすことにより、偏光子保護フィルム、偏光子、配向膜、光学異方性層A4、粘着剤および光学異方性層C1がこの順で積層された偏光板6を作製した。偏光板6は、光学異方性層C1からなる位相差層と、配向膜と光学異方性層A4との積層体である位相差層とを含む。光学異方性層C1からなる位相差層は、光学的に負の屈折率異方性を示すネガティブCプレートであり、Re(550)=0nm、Rth(550)=232nmであった。光学異方性層C1のディスコティック液晶化合物は±1°の範囲で水平配向していた。光学異方性層C1の厚みは2.0μmであった。
配向膜と光学異方性層A4との積層体である位相差層は、Re(550)が143nm、Rth(550)が72nm、Re(550)/Re(450)が1.12、Re(650)/Re(550)が1.01、光軸のチルト角は0°であり、光学的に正の異方性を示すポジティブAプレートであり、厚みは2.5μmであり、液晶化合物はホモジニアス配向である。
(9)偏光板7の作製
 市販のセルロースアシレート系フィルムZRF25(富士フイルム株式会社製)を、(1)で作製した片面保護フィルム付き偏光板Aの偏光子に面する側に粘着剤を用いて貼り合わせ、偏光板7を作製した。このとき、ZRF25のMD(マシン・ディレクション)が片面保護フィルム付き偏光板Aの偏光子の吸収軸と一致するようにした。
 偏光板7では、ZRF25が位相差層であり、そのRe(550)は1nm、Rth(550)は0nmであった。
(10)偏光板8の作製
(セルロースアシレートの調製)
 特開平10-45804号公報および特開平08-231761号公報に記載の方法により、セルロースアシレートを合成し、その置換度を測定した。具体的には、触媒として硫酸(セルロース100質量部に対し7.8質量部)を添加し、アシル置換基の原料となるカルボン酸を添加し40℃でアシル化反応を行った。このとき、カルボン酸の種類および量を調整することにより、アシル基の種類および置換度を調整した。またアシル化後に40℃で熟成を行った。更にこのセルロースアシレート(セルロースアセテート)の低分子量成分をアセトンで洗浄し除去し、平均アシル置換度が2.43のセルロースアシレートおよび平均アシル置換度が2.81のセルロースアシレートを得た。
(コア層形成用ドープの調製)
 下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、セルロースアセテート溶液(以下、ドープとも言う)を調製した。得られたドープをコア層形成用ドープA1とした。
 ・上記で調製したセルロースアセテート(平均アシル置換度2.43)
                            122質量部
 ・下記化合物-1                   4.9質量部
 ・下記化合物-2                   2.8質量部
 ・メチレンクロライド                 548質量部
 ・メタノール                      82質量部
 固形分濃度は17質量%、セルロースアセテート濃度は16.2質量%とした。
化合物-1
 下記ジカルボン酸とジオールからなるエステルオリゴマー
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-C000009
(スキン層形成用ドープの調製)
 下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、スキン層用ドープを調製した。
 ・上記で調製したセルロースアセテート(平均アシル置換度2.81)
                             87質量部
 ・上記化合物-1                   3.5質量部
 ・上記化合物-2                   2.0質量部
 ・メチレンクロライド                 455質量部
 ・メタノール                      70質量部
 固形分濃度は15質量%、セルロースアセテート濃度は14.1質量%とした。
(セルロースアシレートフィルムの製膜)
 (流延)
 上記で調製したコア層形成用ドープおよびスキン層形成用ドープを用いて、バンド流延機を用いて流延した。ドープを流延する際には、走行するエンドレスバンドの上に流延ダイから流延した。バンド上のフィルムの残留溶媒量は、任意の時点での非接触式膜厚計によって測定した膜厚をd1とし、d1を測定したウェブを110℃で3時間乾燥させ、完全に乾燥された後に同方法で測定した膜厚をd2として、d1およびd2を用いて次式に基づき計算した。
 残留溶媒量={(乾燥途中のフィルム膜厚d1-完全に乾燥されたフィルムの膜厚d2)/完全に乾燥されたフィルムの膜厚d2}×100%
(バンド上の乾燥方法)
 ダイから両ドープを吐出した後の温度を制御するために、バンド裏面温度および乾燥風温度を次のように制御した。バンド裏面温度は、回転ロールを9℃、バンド裏面の温度制御装置の温度を15℃とすることにより制御し、乾燥風温度はバンド上の乾燥装置の温度を30℃に設定することで制御した。その結果、ダイから揮発分300%、揮発分300~150%、揮発分150~100%のそれぞれの膜温を、9~12℃、12~18℃、18~22℃に制御した。その後、更に乾燥し、溶剤量が20%程度でバンドから剥ぎ取った。その後、給気温度197℃のテンターゾーンで、50N/mのテンションを加えながら、幅方向に1.34倍延伸してセルロースアシレートフィルムを製造した。このとき、延伸後の膜厚が40μmになるように流延膜厚を調整した。このフィルムをフィルム8として用いた。
(レターデーション)
 得られたフィルム8について、波長550nmにおけるReおよびRthを前述の方法により自動複屈折計KOBRA-21ADH(王子計測機器株式会社製)を用いて計測したところ、Re(550)=50nm、Rth(550)=125nmであった。
 上記と同様の方法を用いて、波長450nm、550nm、650nmにおけるReおよびRthを求めたところ、フィルムのReおよびRthは、ともに波長が長波長になる程大きくなるという、逆分散性を示した。
(偏光板の作製)
 上記で作製したフィルム8のMD(マシン・ディレクション)が(1)で作製した片面保護フィルム付き偏光子Aの吸収軸と一致するよう片面保護フィルム付き偏光子Aの偏光子に面する側に粘着剤を用いて貼り合わせ、偏光板8を作製した。
(11)偏光板9の作製
(低置換度層用セルロースアシレート溶液)
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して各成分を溶解し、低置換度層用セルロースアシレート溶液を調製した。
 置換度2.43のセルロースアセテート         100質量部
 レターデーション発現剤(2)            17.0質量部
 メチレンクロライド                361.8質量部
 メタノール                     54.1質量部
(高置換度層用セルロースアシレート溶液)
 下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、高置換度層用セルロースアシレート溶液を調製した。
 置換度2.79のセルロースアセテート       100.0質量部
 レターデーション発現剤(2)            11.0質量部
 平均粒径16nmのシリカ粒子
 (aerosil R972 日本アエロジル株式会社製)
                           0.15質量部
 メチレンクロライド                395.0質量部
 メタノール                     59.0質量部
 レターデーション発現剤(2)の組成を、下記表に示す。下記表中、EGはエチレングリコールを、PGはプロピレングリコールを、TPAはテレフタル酸を、SAはコハク酸をそれぞれ示している。レターデーション発現剤(2)は、非リン酸系エステル系化合物である。レターデーション発現剤(2)の末端はアセチル基で封止されている。
Figure JPOXMLDOC01-appb-T000010
(セルロースアシレート試料の作製)
 上記低置換度層用セルロースアシレート溶液を、膜厚114μmのコア層になるように、上記高置換度層用セルロースアシレート溶液を膜厚2μmのスキンA層およびスキンB層になるように、それぞれ流延した。得られたフィルムをバンドから剥離し、クリップに挟み、フィルム全体の質量に対する残留溶媒量が20%の状態の時に、温度170℃でテンター搬送した。その後フィルムからクリップを外して雰囲気温度130℃で20分間乾燥させた後、延伸温度180℃で幅方向に23%、テンターを用いて更に横延伸し、フィルムを作製した。このフィルムをフィルム9として用いた。自動複屈折計(KOBRA-21ADH、王子計測機器株式会社製)を用いて測定したところ、フィルム9の波長550nmにおけるRe(550)は61nm、Rth(550)は208nmであった。
 上記と同様の方法を用いて、波長450nm、550nm、650nmにおけるReおよびRthを求めたところ、フィルム9のReおよびRthは、ともに波長が長波長になる程大きくなるという、逆分散性を示した。
 上記のように作製したフィルム9を、遅相軸が(1)で作製した片面保護フィルム付き偏光子Aの吸収軸と直交するように片面保護フィルム付き偏光板Aの偏光子に面する側に粘着剤を用いて貼り合わせ、偏光板9を作製した。
(12)偏光板10の作製
 市販のセルロースアシレート系フィルム(フジタック TD80UL、富士フイルム株式会社製)を、粘着剤を用い、MD(マシン・ディレクション)が(1)で作製した片面保護フィルム付き偏光子Aの吸収軸と一致するよう片面保護フィルム付き偏光子Aの偏光子に面する側に貼り合わせ、偏光板10を作製した。偏光板10では、上記セルロースアシレート系フィルムが位相差層であり、そのRe(550)は3nm、Rth(550)は43nmであった。
(13)偏光板11、12、13の作製
 特許第3648240号明細書の実施例1に記載の方法により、Re(550)=143nm、Rth(550)=72nm、厚み85.5μmのフィルムAと、Re(550)=0nm、Rth(550)=232nm、厚み158μmのフィルムCを得た。 
 作製したフィルムAは、粘着剤を用い、遅相軸が(1)で作製した片面保護フィルム付き偏光子Aの吸収軸と直交するように、片面保護フィルム付き偏光板Aの偏光子に面する側に貼合し、偏光板11を作製した。偏光板11では、フィルムAが位相差層である。
 作製したフィルムCは、粘着剤を用い、MD(マシン・ディレクション)が(1)で作製した片面保護フィルム付き偏光子Aの吸収軸と一致するように、片面保護フィルム付き偏光子Aの偏光子に面する側に貼合し、偏光板12を作製した。偏光板12では、フィルムCが位相差層である。
 更に、フィルムAの遅相軸が(1)で作製した片面保護フィルム付き偏光子Aの吸収軸と直交するように、片面保護フィルム付き偏光子Aの偏光子に面する側に粘着剤を使用して貼り合わせた後、更に同じ粘着剤を使用してフィルムCを貼り合わせることにより、偏光板13を作製した。偏光板13では、フィルムAおよびフィルムCが、それぞれ位相差層である。
(14)COA構造を有するVA型液晶セルの準備
 ガラス基板上に、特開2009-141341号公報の実施例20に従い、TFT(Thin  Film  Field  Effect  Transistor)素子を作製し、更にTFT素子上に保護膜を形成した。
 続いて、上記保護膜上に、着色感光性組成物に特開2009-144126号公報の実施例17、18および19に記載の通り調製した組成物をそれぞれ用い、かつ特表2008-516262号公報の実施例9aに記載のプロセスに従い、カラーフィルタ・オン・アレイ(COA)基板を作製した。ただし、各画素の着色感光性樹脂組成物における顔料の濃度は半分にし、更に塗布量を調整し、ブラック画素が4.2μmに、レッド素子、グリーン素子およびブルー画素がいずれも3.5μmになるようにした。更に、カラーフィルタにコンタクトホールを形成した後、上記カラーフィルタ上に、TFT素子と電気的に接続したITO(Indium Tin Oxide)の透明画素電極を形成した。次いで、特開2006-64921号公報の実施例1に従い、このITO膜上の隔壁(ブラックマトリックス)上部に相当する部分にスペーサを形成した。
 別途、対向基板として、ITOの透明電極を形成したガラス基板を用意し、COA基板および対向基板の透明電極にそれぞれPVA(Patterned Vertical Alignment)モード用にパターニングを施し、その上に更に垂直ポリイミドよりなる配向膜を設けた。
 その後、カラーフィルタのRGB(Red Green Blue)画素群を取り囲むように周囲に設けられたブラックマトリクス外枠に相当する位置に紫外線硬化樹脂のシール剤をディスペンサ方式により塗布し、PVAモード用液晶を滴下し、対向基板と貼り合わせた後、貼り合わされた基板をUV照射した後、熱処理してシール剤を硬化させた。このようにして液晶セルを作製した。
 続いて、作製した液晶セルのΔnd(590)をAXOMETRICS社製のAXOSCANと付属のソフトを使用して測定し、Δnd(590)が316nmであるものを選別し、実施例および比較例の液晶セル(COA構造を有するVA型液晶セル)として使用した。Δnd(590)は、液晶セルの液晶層の厚さd(nm)と液晶層の波長590nmにおける屈折率異方性Δnとの積である。
(15)バックライトユニットBL1の準備
 BenQ社55RW6600に使用されていたバックライトユニットをBL1として使用した。BL1を含む液晶表示装置において、液晶セルは、COA基板側をバックライトユニット側に向けて設置した。BL1の上下方向の発光角度分布の半値半幅は、25°であった。
(16)バックライトユニットBL2の準備
 ルーバーフィルムPF12.1WS(3M社)を、液晶表示装置の上下方向の光をカットするようバックライトユニットBL1の上に設置し、BL2として使用した。BL2の上下方向の発光角度分布の半値半幅は、25°であった。
(17)実施例1~12、比較例1~7の液晶表示装置の作製
 実施例1の液晶表示装置を、以下のように作製した。
 偏光板1を、片面保護フィルム付き偏光板Aの保護フィルムとは反対側の面を粘着剤を使用して液晶セルの対向基板側の表面に貼り合わせ、次に偏光板3を片面保護フィルム付き偏光板Aの保護フィルムとは反対側の面を粘着剤を使用して液晶セルのCOA基板側の表面に貼り合わせた。このとき、液晶セルの対向基板側の表面に貼り合わせた偏光板の吸収軸と、液晶セルのCOA基板側の表面に貼り合わせた偏光板の吸収軸が直交するように配置した。更に、偏光板を貼り合わせた液晶セルを、液晶セルのCOA基板側がバックライトユニットBL1側に面するように重ね合わせ、液晶表示装置を完成させた。この液晶表示装置の評価時には、液晶表示装置の表面が地面に対して垂直になり、かつ液晶セルの対向基板側に貼り合わせた偏光板の吸収軸が、水平方向となるように設置した。
 実施例2~12、比較例1~7の液晶表示装置は、偏光板1~17、偏光板31~34を、表4に記載の構成で粘着剤を使用して液晶セルに貼り合わせてバックライトユニットBL1またはBL2に載せた点以外は実施例1の液晶表示装置と同様に完成させた。
(18)光漏れ量L1(φ,60)、L(0,60)、 L(180,60)の測定 
 実施例および比較例の各液晶表示装置について、測定器(BM5A、TOPCON社製)を用いて、暗室において液晶パネルの法線方向から所定の極角のときに測定された白表示の輝度値として、光漏れ量L1(φ,60)、L(0,60)およびL(180,60)をそれぞれ測定した。光漏れ量L1(φ,60)については、-30~30°の範囲および150~210°の範囲で5°間隔で方位角φを変更して光漏れ量を求めた。測定時、測定器と液晶パネルとの間の距離は700mmに設定した。
 実施例および比較例の各液晶表示装置について、測定された光漏れ量L1(φ,60)の最大値およびL(0,60)+L(180,60)の値を表4に示す。光漏れ量L1(φ,60)の最大値がL(0,60)+L(180,60)の値より小さいことは、式1を満足することを意味する。
(19)偏光板のヘイズの測定
 先に記載した方法と同じ方法により上記の各偏光板を作製し、作製した偏光板から偏光板試料(40mm×80mm)を切り出した。こうして得られた偏光板試料のヘイズを、雰囲気温度25℃で相対湿度60%の環境下でヘイズメーター(HGM-2DP、スガ試験機)を用いて、JIS K-6714に従って測定した。
(20)VA型液晶表示装置の評価
(20-1)正面コントラスト(CR)
 実施例および比較例の各液晶表示装置について、測定器(BM5A、TOPCON社製)を用いて、暗室において液晶パネルの法線方向の黒表示時の輝度値および白表示時の輝度値を測定し、正面コントラスト(白輝度時の輝度値/黒輝度時の輝度値)を算出した。測定時、測定器と液晶パネルと間の距離は700mmに設定した。比較例3について算出された正面コントラストを100%とする相対比として算出された正面コントラスト比を表4に示す。算出された正面コントラスト比により、下記の判定をした。
 A(優良)  : 110% < 正面コントラスト比
 B(良)   :100%< 正面コントラスト比 ≦ 110%
 C(改善なし):正面コントラスト比 ≦ 100%
(20-2)視野方位角の評価
 液晶表示装置の左、右方向それぞれを中心として、光漏れ量が小さい方位角範囲が広いほど、左右視野方位角が広いと言える。これを指標化するために、実施例および比較例の各液晶表示装置について、暗室において、測定器(BM5A、TOPCON社製)を用いて、次の手順で、右方向の視野方位角と左方向の視野方位角を別々に測定し、この平均値を視野方位角指標とした。
 まず右方向の視野方位角の測定のため、液晶表示装置正面からの極角方向60°において、方位角-45°から+45°まで5°間隔で黒表示時の輝度I(α)(α:方位角)を測定した。
 次に、極角60°における方位角0°(右向からの視野角)での輝度値をI(0°)とした時、各方位角αでの輝度値I(α)の、右方向視野での輝度値I(0°)に対する比I(α)/I(0°)が2.0倍以下である方位角範囲ARを求めた。例えば、方位角-30°から30°までがI(α)/I(0°)≦2.0であった場合、AR=30-(-30)=60°となる。
 左方向の視野方位角についても同様に、液晶表示装置正面からの極角方向60°において方位角135°から225°まで5°間隔で黒表示時の輝度I(α)を測定し、I(α)/I(180°)が2.0倍以下となる方位角範囲ALを求めた。
 次に、左右視野方位角範囲指標を下記式により算出した。
  視野方位角指標 =(AR+AL)/2
 算出された左右視野方位角範囲の値により、下記の判定をした。
A(優良) :35°≦ 左右視野方位角範囲指標の絶対値
B(許容) :30° ≦ 左右視野方位角範囲指標の絶対値 < 35°
C(許容不可):左右視野方位角範囲指標の絶対値 <30°
 以上の結果を、表4(表4-1および表4-2)に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
10 液晶層
12 カラーフィルタ層
14 アレイ部材
16 リア側基板
18 フロント側基板
20 リア側位相差層
22 フロント側位相差層
24 リア側偏光子
26 フロント側偏光子
28 バックライトユニット
LC COA構造を有するVA型液晶セル
PL1 リア側偏光板
PL2 フロント側偏光板

Claims (6)

  1. 液晶パネルとバックライトユニットとを含み、
    正面を極角0°、右方向を方位角0°、左方向を方位角180°、L(x,y)を黒表示時の方位角x、極角yのときの光漏れ量としたときに下記式1:
    L1(φ,60)<L(0,60)+ L(180,60) 
    を満足し、ここで、L1は方位角φ、極角60°のときの光漏れ量であり、φは-30~30°の範囲および150~210°の範囲であり、
    前記液晶パネルは、
    フロント側偏光子、
    リア側偏光子、
    前記フロント側偏光子と前記リア側偏光子との間に位置するVA型液晶セル、
    前記フロント側偏光子と前記VA型液晶セルとの間に位置するフロント側位相差層、および
    前記リア側偏光子と前記VA型液晶セルとの間に位置するリア側位相差層、
    を含み、
    前記VA型液晶セルは、カラーフィルタ・オン・アレイ基板をリア側に含み、
    前記フロント側位相差層は、少なくとも位相差層1を含み、
    前記位相差層1の波長550nmで測定した面内位相差Re(550)は、20nm未満であり、
    前記位相差層1の波長550nmで測定した厚み方向位相差Rth(550)は、200nm以上270nm以下であり、
    前記フロント側位相差層または前記リア側位相差層は、少なくとも位相差層2を含み、
    前記位相差層2の波長550nmで測定した面内位相差Re(550)は130nm以上155nm以下であり、
    前記位相差層2の波長550nmで測定した厚み方向位相差Rth(550)は55nm以上90nm以下であり、
    前記位相差層2の波長450nmで測定した面内位相差Re(450)、波長550nmで測定した面内位相差Re(550)および波長650nmで測定した面内位相差Re(650)は、
    Re(450)≦Re(550)≦Re(650)
    を満足し、かつ
    前記位相差層1および前記位相差層2は、重合性液晶化合物を含有する光学異方性層を含む、VA型液晶表示装置。
  2. 前記位相差層2の面内方向位相差Re(550)は135nm以上150nm以下であり、かつ前記位相差層2の厚み方向位相差Rth(550)は57nm以上87nm以下である、請求項1に記載の液晶表示装置。
  3. 前記光学異方性層は、厚み5.0μm以下の液晶層である、請求項1または2に記載の液晶表示装置。
  4. 前記液晶層は、重合性液晶化合物を含む重合性組成物の硬化層である、請求項3に記載の液晶表示装置。
  5. 前記バックライトユニットの上下方向の発光角度分布の半値半幅は30°以内である、請求項1~4のいずれか1項に記載の液晶表示装置。
  6. 前記液晶パネルのフロント側の表面に拡散層を備える、請求項1~5のいずれか1項に記載の液晶表示装置。
PCT/JP2018/040912 2017-11-02 2018-11-02 液晶表示装置 WO2019088269A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019550506A JP6961710B2 (ja) 2017-11-02 2018-11-02 液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017212462 2017-11-02
JP2017-212462 2017-11-02

Publications (1)

Publication Number Publication Date
WO2019088269A1 true WO2019088269A1 (ja) 2019-05-09

Family

ID=66333190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040912 WO2019088269A1 (ja) 2017-11-02 2018-11-02 液晶表示装置

Country Status (2)

Country Link
JP (1) JP6961710B2 (ja)
WO (1) WO2019088269A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474722A (zh) * 2020-01-23 2021-10-01 日东电工株式会社 液晶显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515080A (ja) * 2003-01-28 2006-05-18 エルジー・ケム・リミテッド ポジティブ補償フィルムを有する垂直配向液晶表示装置
JP2008176295A (ja) * 2006-12-22 2008-07-31 Nitto Denko Corp 液晶パネルおよびそれを用いた液晶表示装置
JP2012088692A (ja) * 2010-09-17 2012-05-10 Nitto Denko Corp 光拡散素子、光拡散素子付偏光板、偏光素子、およびこれらを用いた液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515080A (ja) * 2003-01-28 2006-05-18 エルジー・ケム・リミテッド ポジティブ補償フィルムを有する垂直配向液晶表示装置
JP2008176295A (ja) * 2006-12-22 2008-07-31 Nitto Denko Corp 液晶パネルおよびそれを用いた液晶表示装置
JP2012088692A (ja) * 2010-09-17 2012-05-10 Nitto Denko Corp 光拡散素子、光拡散素子付偏光板、偏光素子、およびこれらを用いた液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474722A (zh) * 2020-01-23 2021-10-01 日东电工株式会社 液晶显示装置
CN113474722B (zh) * 2020-01-23 2024-02-20 日东电工株式会社 液晶显示装置

Also Published As

Publication number Publication date
JP6961710B2 (ja) 2021-11-05
JPWO2019088269A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
US7586562B2 (en) Liquid crystal display of OCB or VA mode
US7505099B2 (en) Optical resin film and polarizing plate and liquid crystal display using same
JP5184803B2 (ja) 液晶表示装置、及びカラーフィルタ
US20130342793A1 (en) Liquid crystal display device
JP4928985B2 (ja) 液晶表示装置
JP2015025830A (ja) 液晶表示装置
WO2019017483A1 (ja) 液晶表示装置
KR20080091340A (ko) 액정 표시 장치
TW201348823A (zh) 液晶顯示裝置
JP3408930B2 (ja) 広視野角偏光板
WO2019088269A1 (ja) 液晶表示装置
US20090244454A1 (en) Liquid-crystal display device
JP2003043261A (ja) 光散乱型偏光素子、偏光板および液晶表示装置
TWI417579B (zh) 具有光學補償膜之偏光板及使用它之液晶顯示裝置
JP5036209B2 (ja) 液晶表示装置
JP4363005B2 (ja) 液晶表示装置、光学補償シート、偏光板
JP2008020905A (ja) 液晶表示装置
JP2009230050A (ja) 液晶パネルおよび液晶表示装置
JP2003260715A (ja) セルロースアシレートフイルムの製造方法
JP2001290025A (ja) 偏光板及びその製造方法と液晶表示装置
TW201326990A (zh) 液晶顯示裝置
WO2015129706A1 (ja) 偏光板および画像表示装置
JP2008020780A (ja) 液晶表示装置
JPH0895032A (ja) 楕円偏光板及びカラー液晶表示装置
JP2013186210A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873634

Country of ref document: EP

Kind code of ref document: A1