WO2019087677A1 - ダンパ - Google Patents

ダンパ Download PDF

Info

Publication number
WO2019087677A1
WO2019087677A1 PCT/JP2018/037290 JP2018037290W WO2019087677A1 WO 2019087677 A1 WO2019087677 A1 WO 2019087677A1 JP 2018037290 W JP2018037290 W JP 2018037290W WO 2019087677 A1 WO2019087677 A1 WO 2019087677A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating element
plate
rotation
torque
sliding
Prior art date
Application number
PCT/JP2018/037290
Other languages
English (en)
French (fr)
Inventor
悟史 久保田
林 大介
剛志 奈須
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to DE112018004984.1T priority Critical patent/DE112018004984T5/de
Priority to JP2019550926A priority patent/JP7143856B2/ja
Publication of WO2019087677A1 publication Critical patent/WO2019087677A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • F16D13/644Hub construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/1238Wound springs with pre-damper, i.e. additional set of springs between flange of main damper and hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/129Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon characterised by friction-damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs

Definitions

  • the present invention relates to a damper.
  • a gap for permitting relative movement in the circumferential direction is provided between two rotating members, and in a relatively small relative rotation range of the two rotating members in the state where the gap is present, one of the two rotating members
  • a damper is known which is configured to obtain a relatively small resistance torque by sliding with a sliding member, and is configured to obtain a relatively large resistance torque when the gap is clogged.
  • one of the problems of the present invention is a damper capable of switching the resistance torque due to the sliding between the rotating member and the sliding member, for example, less inconvenient such that a desired resistance torque can be obtained more reliably.
  • a damper of a novel configuration To obtain a damper of a novel configuration.
  • the damper according to the present invention comprises a first rotating element rotatable around a rotation center, a second rotating element rotatable around the rotation center, a third rotating element rotatable around the rotation center, and A first elastic element which is elastically extended and contracted in the circumferential direction of the rotation center and is interposed between the rotation element and the third rotation element, and is interposed between the second rotation element and the third rotation element A second elastic element which elastically extends and contracts in the circumferential direction of the rotation center, and the first and third rotation elements interposed between the first and third rotation elements; A first sliding element that slides on at least one of the first rotating element and the third rotating element by torsion and generates a first resistance torque between the first rotating element and the third rotating element; The second rotating member is interposed between the second rotating element and the third rotating element.
  • the first resistance torque by the first sliding element and the second resistance torque by the second sliding element are made different. Therefore, of the first sliding element and the second sliding element, the variation (increment or decrement) of the twisting torque does not exceed the maximum static friction torque of the sliding element that produces a larger resistance torque. It is possible to obtain a configuration in which the sliding element that generates a large resistance torque does not slide. Therefore, according to such a configuration, for example, a relatively small resistance can be obtained without causing a disadvantage such as a configuration in which a gap is provided between the first rotating element and the second rotating element to change the resistance torque. The state of torque can be obtained more reliably.
  • the first rotating element has a first front plate and a first rear plate integrally coupled
  • the third rotating element is a second front plate integrally coupled.
  • a second rear plate wherein the second front plate is positioned between the first front plate and the second rotation element, and the second rear plate includes the first rear plate and the second rear plate.
  • the first sliding element is both between the first front plate and the second front plate and between the first rear plate and the second rear plate
  • the second sliding element is interposed between the second front plate and the second rotating element and between the second rear plate and the second rotating element.
  • the maximum static friction torque of the sliding element that produces a larger resistance torque due to the variation (increment or decrement) of the torsion torque In the range not exceeding, it is possible to obtain a configuration in which the sliding element that produces the larger resistance torque does not slide.
  • the damper is positioned between the first sliding element and the first rotating element, or between the first sliding element and the third rotating element, and the first sliding element Between the second sliding element and the second rotary element, or the second sliding element and the second rotary element, and And a second pressing element positioned between the third rotating element and elastically pressing the second sliding element against the second rotating element or the third rotating element.
  • the first pressing element is located between the first sliding element and the first rotating element, or between the first sliding element and the third rotating element.
  • the first resistance torque can be generated between the first and third rotating elements, and the second pressing element is between the second sliding element and the second rotating element, or the second By being located between the sliding element and the third rotating element, a second resistance torque can be generated between the second rotating element and the third rotating element.
  • the first rotating element has a first arm
  • the second rotating element has a second arm
  • the third rotating element has a third arm.
  • the first elastic element is positioned in one of the circumferential directions with respect to the first arm and the second arm and is positioned in the other of the circumferential directions with respect to the third arm
  • the second elastic element Is positioned in one of the circumferential directions with respect to the third arm and is positioned in the other of the circumferential directions with respect to the first arm and the second arm
  • the first rotating element is in the circumferential direction.
  • the first arm, the first elastic element, the third arm, the second elastic element, and the second arm are sequentially pressed, and the first rotating element is in the circumferential direction.
  • the above The second elastic element, the third arm, the first elastic element, and the second arm, and the first change rate of the elastic torque per expansion angle of the first elastic element and the second elastic The second change rate of elastic torque per expansion and contraction angle of the element is made different from each other, and the first resistance torque and the second resistance torque are made different, and the first rotating element is directed to the second rotating element
  • the first torsion state in which the first rotary element is twisted in the reverse direction relative to the second rotation element with respect to the second rotation element is in the positive twist state relatively twisted in the forward rotation direction from the neutral position.
  • the resistance torque between the rotating element and the second rotating element is made different. Therefore, according to such a configuration, for example, the magnitude of the resistance torque between the first rotating element and the second rotating element can be switched between the acceleration state and the decelerating state, whereby the desired value by the damper can be obtained. Damping characteristics can be easily obtained.
  • the first resistance in the positive torsion state is set by making the first resistance torque smaller than the second resistance torque and making the first change rate larger than the second change rate.
  • the resistance torque between the rotation element and the second rotation element is larger than the resistance torque between the first rotation element and the second rotation element in the reverse torsion state.
  • the magnitude of the resistance torque between the first rotating element and the second rotating element in the accelerated state can be reduced to the resistance between the first rotating element and the second rotating element in the reduced state. It can be larger than the magnitude of the torque, and more suitable damping characteristics can be easily obtained in both the acceleration state and the deceleration state.
  • the first resistance in the positive twist state is set by making the first resistance torque larger than the second resistance torque and making the first change rate smaller than the second change rate.
  • the resistance torque between the rotation element and the second rotation element is larger than the resistance torque between the first rotation element and the second rotation element in the reverse torsion state.
  • the magnitude of the resistance torque between the first rotating element and the second rotating element in the accelerated state can be reduced to the resistance between the first rotating element and the second rotating element in the reduced state. It can be larger than the magnitude of the torque, and more suitable damping characteristics can be easily obtained in both the acceleration state and the deceleration state.
  • FIG. 1 is a schematic and exemplary cross-sectional view of the damper of the embodiment.
  • FIG. 2 is a schematic and exemplary front view of the damper of the embodiment viewed from the axial direction.
  • FIG. 3 is a schematic and exemplary cross-sectional view of the damper of the embodiment at a position different from that of FIG.
  • FIG. 4 is a schematic and exemplary explanatory view showing an initial state of the damper of the first embodiment and a torsion state in a plurality of operating states of the damper.
  • FIG. 5 is a schematic and exemplary graph showing the correlation between the torsion angle and the torque between the first rotation element and the second rotation element in each operating state of the damper of the first embodiment.
  • FIG. 6 is a schematic and exemplary explanatory view showing an initial state of the damper of the second embodiment and a torsion state in an acceleration state and a deceleration state of the damper.
  • FIG. 7 is a schematic and exemplary graph showing the correlation between the torsion angle and the torque between the first rotation element and the second rotation element of the damper of the second embodiment.
  • the side closer to the engine (not shown) (left side in FIG. 1) is referred to as the front, and the side farther from the engine (right side in FIG. 1) is referred to as the rear.
  • the front and rear in the following description do not necessarily coincide with the front and rear in the on-vehicle state.
  • the axial direction of the rotation center Ax is simply referred to as the axial direction
  • the radial direction of the rotation center Ax is simply referred to as the radial direction
  • the circumferential direction of the rotation center Ax is simply referred to as the circumferential direction.
  • FIG. 1 is a cross-sectional view of the damper 1.
  • the damper 1 includes a drive plate 10, a driven plate 20, and an intermediate plate 30.
  • the drive plate 10, the driven plate 20, and the intermediate plate 30 are independently provided to be rotatable around the rotation center Ax. In other words, the drive plate 10, the driven plate 20, and the intermediate plate 30 can rotate relative to one another.
  • the drive plate 10, the driven plate 20, and the intermediate plate 30 are made of, for example, a metal material such as an iron-based material.
  • the drive plate 10 is an example of a first rotation element
  • the driven plate 20 is an example of a second rotation element
  • the intermediate plate 30 is an example of a third rotation element.
  • the drive plate 10 may also be referred to as an outer plate
  • the driven plate 20 may also be referred to as an inner plate.
  • the drive plate 10 has a front plate 11 and a rear plate 12.
  • the front plate 11 and the rear plate 12 are integrally coupled by a connecting member 13 shown in the lower part of FIG.
  • the connecting member 13 is, for example, a rivet, but may be another connector such as a bolt and a nut, or may be a shaft or the like.
  • the front plate 11 and the rear plate 12 may be directly coupled without using a connecting member, such as welding, welding, or adhesion.
  • the front plate 11 is an example of a first front plate
  • the rear plate 12 is an example of a second rear plate.
  • the front plate 11 is located between the engine and the rear plate 12.
  • the rear plate 12 is located on the opposite side of the engine to the front plate 11.
  • the shape of the front plate 11 and the rear plate 12 is a plate shape intersecting (orthogonal) with the rotation center Ax.
  • the outermost edge of the front plate 11 is provided with a limiter 60 for blocking the transmission of excessive torque.
  • the driven plate 20 has a hub 21, a center plate 22 and a coil spring 23.
  • the hub 21 has a cylindrical portion 21a centered on the rotation center Ax, and a flange 21b projecting radially outward from the cylindrical portion 21a.
  • the center plate 22 is located radially outward of the flange 21b.
  • the center plate 22 is located between the front plate 11 and the rear plate 12 of the drive plate 10.
  • the shape of the center plate 22 is a plate shape intersecting (orthogonal) with the rotation center Ax.
  • the coil spring 23 is provided in a posture in which the winding center extends along the circumferential direction (tangential direction).
  • the coil spring 23 is sandwiched between the flange 21 b and the center plate 22 and elastically compressed in response to relative rotation between the flange 21 b and the center plate 22.
  • the flange 21 b and the center plate 22 rotate relative to each other at a relatively small twist angle, and elastically compress the coil spring 23 in the circumferential direction.
  • the flange 21 b and the center plate 22 rotate integrally in the circumferential direction at a relatively large twist angle.
  • the intermediate plate 30 has a front plate 31 and a rear plate 32.
  • the front plate 31 and the rear plate 32 are integrally coupled by a connecting member 33.
  • the connecting member 33 is, for example, a rivet, but may be another connector such as a bolt and a nut, or may be a shaft or the like. Further, the front plate 31 and the rear plate 32 may be directly coupled without using the connecting member, such as welding, welding, and adhesion.
  • the front plate 31 is an example of a second front plate
  • the rear plate 32 is an example of a second rear plate.
  • the front plate 31 is located between the front plate 11 of the drive plate 10 and the center plate 22 of the driven plate 20.
  • the rear plate 32 is located between the rear plate 12 of the drive plate 10 and the center plate 22.
  • the shape of the front plate 31 and the rear plate 32 is a plate shape intersecting (orthogonal) with the rotation center Ax.
  • a cylindrical slide bush 50 is provided on the outer periphery of the hub 21 of the driven plate 20.
  • the inner circumferential surface 50 a of the slide bush 50 and the outer circumferential surface 21 c of the hub 21 slide in the circumferential direction.
  • the slide bush 50 rotates integrally with the drive plate 10.
  • the slide bush 50 can be said to be a component of the drive plate 10.
  • the slide bush 50 is made of, for example, a synthetic resin material.
  • the slide bush 50 may also be referred to as a bearing member.
  • Damper 1 may be replaced with slide bush 50, and may be provided with bearings, such as a ball bearing and a roller bearing, for example.
  • a first sliding element 51 or a second sliding element 52 is interposed between the rear plate 32 and the rear plate 12 of the drive plate 10, respectively.
  • the first sliding element 51 or the second sliding element 52 will be described later.
  • FIG. 2 is a front view of the damper 1.
  • the drive plate 10 has a central portion 10a, a drive arm 10b, and a peripheral portion 10c.
  • the central portion 10a is located on the inner side in the radial direction of the drive plate 10, and the shape of the central portion 10a is an annular shape centered on the rotation center Ax.
  • the drive arm 10b protrudes radially outward from the central portion 10a, and is bridged between the central portion 10a and the peripheral portion 10c.
  • the drive plate 10 has a drive arm 10b extending in the lower left direction in FIG. 2 from the central portion 10a and a drive arm 10b extending in the upper right direction in FIG. 2 from the central portion 10a.
  • the drive plate 10 has two drive arms 10b radially extending in opposite directions from the rotation center Ax.
  • the two drive arms 10b are arranged at an interval of approximately 180 ° in the circumferential direction.
  • the peripheral edge portion 10c is located on the outer side in the radial direction of the drive plate 10, and is configured in an annular shape.
  • the center plate 22 of the driven plate 20 has a central portion 20a and a driven arm 20b.
  • the central portion 20a is located radially inward of the driven plate 20, and the shape of the central portion 20a is an annular shape centered on the rotation center Ax.
  • the driven arm 20b protrudes radially outward from the central portion 20a.
  • the driven plate 20 has a driven arm 20b extending from the central portion 20a in the lower left direction in FIG. 2 and a driven arm 20b extending from the central portion 20a in the upper right direction in FIG. That is, the driven plate 20 has two driven arms 20b extending in opposite directions in the radial direction from the rotation center Ax. In other words, the two driven arms 20b are arranged at intervals of approximately 180 ° in the circumferential direction. Further, as is apparent from the lower portion of FIG. 1, the drive arm 10b and the driven arm 20b overlap in the axial direction.
  • the intermediate plate 30 has a central portion 30a and an intermediate arm 30b.
  • the central portion 30a is located radially inward of the intermediate plate 30, and the shape of the central portion 30a is an annular shape centered on the rotation center Ax.
  • the intermediate arm 30b protrudes radially outward from the central portion 30a.
  • the intermediate plate 30 has an intermediate arm 30b extending from the central portion 30a in the upper left direction in FIG. 2 and an intermediate arm 30b extending from the central portion 30a in the lower right direction in FIG. . That is, the intermediate plate 30 has two intermediate arms 30 b extending in opposite directions in the radial direction from the rotation center Ax. In other words, the two intermediate arms 30b are arranged at intervals of approximately 180 ° in the circumferential direction.
  • a first coil spring 41 and a second coil spring 42 intervene between the drive arm 10b and the driven arm 20b and the intermediate arm 30b.
  • the first coil spring 41 and the second coil spring 42 extend substantially along the circumferential direction (tangential direction), respectively.
  • the first coil spring 41 is positioned adjacent to the drive arm 10b and the driven arm 20b in the clockwise direction of FIG. 2, and adjacent to the intermediate arm 30b in the counterclockwise direction of FIG. Is located.
  • the second coil spring 42 is positioned adjacent to the drive arm 10b and the driven arm 20b in the counterclockwise direction of FIG. 2 and to the intermediate arm 30b in the clockwise direction of FIG. It is located adjacent to.
  • the first coil springs 41 are positioned on opposite sides of the rotation center Ax.
  • the damper 1 has two first coil springs 41 positioned on opposite sides of the rotation center Ax. In other words, the two first coil springs 41 are arranged at an interval of approximately 180 ° in the circumferential direction.
  • the damper 1 has two second coil springs 42 positioned on opposite sides of the rotation center Ax. In other words, the two second coil springs 42 are arranged at intervals of approximately 180 ° in the circumferential direction.
  • the first coil springs 41 and the second coil springs 42 are alternately arranged at intervals of 90 ° in the circumferential direction.
  • the first coil spring 41 is an example of a first elastic element
  • the second coil spring 42 is an example of a second elastic element.
  • the first elastic element and the second elastic element are not limited to the coil spring, but may be other elastic elements such as an elastomer.
  • the number of first elastic elements and the number of second elastic elements are two, but the number of first elastic elements and the number of second elastic elements are not limited thereto. , 1 or 3 or more.
  • the torsion state at the time of acceleration is a state in which the drive plate 10 is relatively twisted in the forward rotation direction from the neutral position (non-twist position, position where the twist angle is 0) with respect to the driven plate 20. This state is referred to as a positive torsion state of the damper 1.
  • the torsion state at the time of deceleration is a state in which the drive plate 10 is relatively twisted from the neutral position relative to the driven plate 20 in the reverse rotation direction (opposite to the normal rotation direction). It is in the reverse twist state of 1.
  • a sheet member 43 intervenes.
  • the seat member 43 may also be referred to as a retainer.
  • FIG. 3 is a cross-sectional view of the damper 1 at a position different from that of FIG.
  • a sliding member 51F is sandwiched between the front plate 11 of the drive plate 10 and the front plate 31 of the intermediate plate 30 in the axial direction.
  • the shape of the sliding member 51F is ring-like and plate-like.
  • the protrusion 51Fa provided on the sliding member 51F is inserted into the opening 11a provided on the front plate 11. Therefore, the sliding member 51F rotates integrally with the drive plate 10, and slides with the front plate 31 of the intermediate plate 30 when the drive plate 10 and the intermediate plate 30 are relatively twisted.
  • the sliding member 51F is made of, for example, a synthetic resin material.
  • a sliding member 51R is axially interposed between the rear plate 12 of the drive plate 10 and the rear plate 32 of the intermediate plate 30.
  • the shape of the sliding member 51R is a ring and a plate.
  • the protrusion 51Ra provided on the sliding member 51R is inserted into the opening 12a provided on the rear plate 12. Therefore, the slide member 51R rotates integrally with the drive plate 10, and slides with the rear plate 32 of the intermediate plate 30 when the drive plate 10 and the intermediate plate 30 are relatively twisted.
  • the sliding member 51R is made of, for example, a synthetic resin material.
  • the disc spring 53 is interposed between the sliding member 51R and the rear plate 12, and elastically presses the sliding member 51R axially forward toward the rear plate 32 of the intermediate plate 30.
  • the front plate 31 and the rear plate 32 of the intermediate plate 30 are coupled by a connecting member 33. Therefore, the front plate 31 of the intermediate plate 30 elastically presses the sliding member 51 F axially forward toward the front plate 11 of the drive plate 10.
  • the disc spring 53 is an example of a first pressing element.
  • the resistance torque (first resistance torque) due to the sliding of the sliding members 51F, 51R with the intermediate plate 30 is the specification (position, elastic coefficient, material, thickness, etc.) of the disc spring 53,
  • the adjustment can be made according to the specifications (position, material, sliding area, coefficient of friction, etc.) of the sliding members 51F, 51R.
  • the sliding members 51F and 51R are an example of the first sliding element 51.
  • the specifications of the sliding members 51F and 51R and the disc spring 53 are not limited to those disclosed herein, and various modifications are possible.
  • the sliding members 51F and 51R may rotate integrally with the intermediate plate 30, slide on the drive plate 10, or slide on both the drive plate 10 and the intermediate plate 30.
  • an elastic member such as a spring or an elastomer may be provided.
  • the disc spring 53 is located between the rear plate 12 and the first sliding element 51, but is not limited to this. It may be positioned between the front plate 31 and the first sliding element 51, between the rear plate 32 and the first sliding element 51, or the like.
  • a sliding member 52F is interposed between the front plate 31 of the intermediate plate 30 and the center plate 22 of the driven plate 20 in the axial direction.
  • the shape of the sliding member 52F is ring-like and plate-like. As shown in FIG. 1, the protrusion 52Fa provided on the sliding member 52F is inserted into the opening 31b provided on the front plate 31. Therefore, the sliding member 52F rotates integrally with the intermediate plate 30, and slides with the center plate 22 when the intermediate plate 30 and the driven plate 20 are relatively twisted.
  • the sliding member 52F is made of, for example, a synthetic resin material.
  • a sliding member 52R is axially interposed between the rear plate 32 of the intermediate plate 30 and the center plate 22 of the driven plate 20.
  • the shape of the sliding member 52R is ring-like and plate-like. As shown in FIG. 1, the protrusion 52 ⁇ / b> Ra provided on the sliding member 52 ⁇ / b> R is inserted into the opening 32 a provided on the rear plate 32. Therefore, the sliding member 52R rotates integrally with the intermediate plate 30, and slides with the center plate 22 when the intermediate plate 30 and the driven plate 20 are relatively twisted.
  • the sliding member 52R is made of, for example, a synthetic resin material.
  • the disc spring 54 is interposed between the sliding member 52F and the front plate 31, and elastically presses the sliding member 52F toward the center plate 22 rearward in the axial direction.
  • the center plate 22 is axially movably supported by the hub 21.
  • the center plate 22 elastically presses the sliding member 51R rearward in the axial direction toward the rear plate 32 of the intermediate plate 30.
  • the disc spring 54 is an example of a second pressing element.
  • the resistance torque (second resistance torque) due to the sliding of the sliding members 52F, 52R with the driven plate 20 is the specification (position, elastic modulus, material, thickness, etc.) of the disc spring 54, Adjustment can be made according to the specifications (position, material, sliding area, friction coefficient, etc.) of the sliding members 52F, 52R.
  • the sliding members 52F and 52R are an example of the second sliding element 52.
  • the specifications of the sliding members 52F and 52R and the disc spring 54 are not limited to those disclosed herein, and various modifications are possible.
  • the slide members 52F and 52R may rotate integrally with the driven plate 20 and slide on the intermediate plate 30, or slide on both the driven plate 20 and the intermediate plate 30.
  • an elastic member such as a spring or an elastomer may be provided.
  • the disc spring 54 is located between the front plate 31 and the second sliding element 52, but is not limited to this. It may be positioned between the center plate 22 and the second sliding element 52 or the like.
  • FIG. 4 is a schematic view showing the state of the damper 1 in the initial state S0 of the damper 1 and a plurality of operating states S1 to S3.
  • the operating state having a relatively large torsional amplitude is a first state S1
  • the operating state having a relatively small torsional amplitude is a third state S3
  • the operating state having a medium torsional amplitude is a second state S2.
  • FIG. 4 is a developed view in which the horizontal axis is in the circumferential direction, and in FIG.
  • FIG. 4 is an example of the case where the resistance torque H1 of the first sliding element 51 is set smaller than the resistance torque H2 of the second sliding element 52 (H1 ⁇ H2).
  • both the first coil spring 41 and the second coil spring 42 are elastically compressed, and the first sliding element 51 and the second sliding element Both 52 slide.
  • the first coil spring 41 is elastically compressed and the first sliding element 51 slides, while the second coil spring 42 is not elastically compressed.
  • the second sliding element 52 also does not slide. This is because the intermediate plate 30 does not rotate relative to the driven plate 20 until the increase in torsional torque exceeds the maximum static friction torque (> H2 (dynamic friction torque)) by the second sliding element 52. .
  • both the first coil spring 41 and the second coil spring 42 are elastically compressed, and the first sliding element 51 and the second slide Both moving elements 52 slide.
  • the maximum torque width at the twist angle is different from that in the first state S1. This will be described later.
  • K1 ⁇ ( ⁇ 2) + H1 K2 ⁇ ⁇ 2 + H1 (2)
  • torsion angle between drive plate 10 and driven plate 20
  • ⁇ 1 compression amount of first coil spring 41 (torsion angle)
  • ⁇ 2 compression amount of second coil spring 42 (torsion angle)
  • K1 first It is a spring constant (torque / twist angle) of the one coil spring 41
  • K2 a spring constant (torque / twist angle) of the second coil spring.
  • the spring constant is the ratio of the change in elastic torque to the change in the angle of the central angle at the rotational center Ax between both ends in the circumferential direction of the first coil spring 41 or the second coil spring 42. It can be done.
  • the spring constant (torque / twist angle) of the first coil spring 41 is an example of a first change rate
  • the spring constant (torque / twist angle) of the second coil spring 42 is an example of a second change rate.
  • T ((K1 ⁇ K2) / (K1 + K2)) ⁇ ⁇ + (K2 / (K1 + K2)) ⁇ H1 + (K1 / (K1 + K2)) ⁇ H2 ...
  • the torque Ts according to the torsion angle of the damper 1 can be expressed by the following equation (4), and the sliding of the first sliding element 51 and the second sliding element 52
  • the fluctuation range Tr of the resistance torque can be expressed by the following equation (5).
  • Tr (K2 / (K1 + K2)) ⁇ H1 + (K1 / (K1 + K2)) ⁇ H2 (5)
  • FIG. 5 is a graph showing torsion torque characteristics (hysteresis characteristics) according to the torsion angle in each operation state S1 to S3 of the damper 1.
  • the horizontal axis is the twist angle between the drive plate 10 and the driven plate 20, and the vertical axis is the twist torque.
  • the resistance torque of the first sliding element 51 Since H1 is set smaller than the resistance torque H2 of the second sliding element 52, initially, the intermediate plate 30 does not operate with respect to the driven plate 20, and the second coil spring 42 is not compressed. Therefore, the resistance torque H1 of the first sliding element 51 first increases with the increase of the twisting torque (p11 ⁇ p12), and the spring of the first coil spring 41 is compressed with the further increase of the twisting torque.
  • the twisting torque increases with a constant K1 (p12 ⁇ p13).
  • the resistance torque H1 of the first sliding element 51 is the second sliding element as in the case of the increase. Since the resistance torque H2 of 52 is set smaller, the intermediate plate 30 does not operate with respect to the driven plate 20 initially, and the second coil spring 42 is not stretched. For this reason, as the direction of the resistance torque H1 of the first sliding element 51 reverses with the reduction of the torsion torque, 2H1 which is twice the resistance torque H1 decreases (p14 ⁇ p15). The twisting torque decreases with the spring constant K1 along with the extension of the first coil spring 41 accompanying the decrease (p15 ⁇ p16).
  • the synthetic spring constant K of the first coil spring 41 and the second coil spring 42 (formula By (4), the torsional torque is reduced (p16 ⁇ p17).
  • the state of the point p17 when the decrease in the torsional torque, that is, the rotation fluctuation (torsion) stops, the state shifts to the state of the point p11, and when the torsional torque increases, the state shifts to the state of the point p12.
  • the resistance torque of the first sliding element 51 Since H1 is set smaller than the resistance torque H2 of the second sliding element 52, initially, the intermediate plate 30 does not operate with respect to the driven plate 20, and the second coil spring 42 is not compressed. For this reason, the resistance torque H1 of the first sliding element 51 first increases with the increase of the twisting torque (p31 ⁇ p32), and the spring of the first coil spring 41 is compressed with the further increase of the twisting torque.
  • the twisting torque increases with a constant K1 (p32 ⁇ p33).
  • the transition of the torsion angle and the torsion torque in the second state S2 is similar to the transition of the torsion angle and the torsion torque in the first state S1. That is, the operation between the points p21 to p27 ( ⁇ points p21 and p22) and the operation between those states is the operation between the states p11 to p17 ( ⁇ the points p11 and p12) and between those states Is the same as
  • the resistance torque H1 is set smaller than the resistance torque H2 of the second sliding element 52, initially, the intermediate plate 30 does not operate with respect to the driven plate 20, and the second coil spring 42 is not compressed. Therefore, the resistance torque H1 of the first sliding element 51 first increases with the increase of the torsion torque (p21 ⁇ p22), and the spring of the first coil spring 41 is further compressed with the increase of the torsion torque.
  • the twisting torque increases with a constant K1 (p22 ⁇ p23).
  • the resistance torque H1 of the first sliding element 51 is the second sliding element as in the case of the increase. Since the resistance torque H2 of 52 is set smaller, the intermediate plate 30 does not operate with respect to the driven plate 20 initially, and the second coil spring 42 is not stretched. For this reason, as the direction of the resistance torque H1 of the first sliding element 51 reverses with the reduction of the torsion torque, 2H1 twice as large as the resistance torque H1 decreases (p24 ⁇ p25). The twisting torque decreases with the spring constant K1 along with the extension of the first coil spring 41 accompanying the decrease (p25 ⁇ p26).
  • the synthetic spring constant K of the first coil spring 41 and the second coil spring 42 (formula By (4), the torsional torque is reduced (p26 ⁇ p27).
  • the state of the point p27 when the reduction of the torsional torque, that is, when the rotation fluctuation (torsion) stops, the state shifts to the state of the point p21, and when the torsional torque increases, the state shifts to the state of the point p22.
  • the fluctuation range of the torsion torque is 2 ⁇ H1 plus ⁇ ( ⁇ : positive number), and the fluctuation range of the torsion torque in the first state S1 (2Tr) Less than.
  • the resistance torque H1 (first resistance torque) of the first sliding element 51 and the resistance torque H2 (second resistance torque) of the second sliding element 52 I made it different. Therefore, among the first sliding element 51 and the second sliding element 52, the variation (increment or decrement) of the torsional torque exceeds the maximum static friction torque of the second sliding element 52 having a large resistance torque.
  • the second sliding element 52 does not slide, that is, the intermediate plate 30 (third rotating element) does not move relative to the driven plate 20 (second rotating element), and the second coil spring It is possible to obtain a state in which 42 (the second elastic element) is not compressed.
  • a state of relatively small resistance torque can be obtained without causing a disadvantage such as a configuration in which the sliding resistance is changed by providing a gap between the drive plate 10 and the driven plate 20. Can be obtained more reliably.
  • a damper capable of changing the resistance torque between the first rotating element and the second rotating element is realized by a simpler structure, as the configuration for providing the gap is unnecessary.
  • the resistance torque H1 of the first sliding element 51 is set smaller than the resistance torque H2 of the second sliding element 52
  • the resistance torque H1 of the first sliding element 51 is The resistance torque H2 of the second sliding element 52 may be set larger.
  • the spring constants K1 and K2 of the first coil spring 41 (first elastic member) and the second coil spring 42 (second elastic member) may be different from each other.
  • FIG. 6 is a schematic view showing the state of the damper 1 in the acceleration state S4 and the deceleration state S5 of the damper 1.
  • 6 is a developed view in which the horizontal axis is a circumferential direction, and in FIG. 6, the drive plate 10 (drive arm 10 b), the intermediate plate 30 (intermediate arm 30 b), the driven plate 20 (driven arm 20 b), the first The coil spring 41, the second coil spring 42, the first sliding element 51, and the second sliding element 52 are schematically shown. Further, in FIG.
  • the spring constant (torque / twist angle) of the first coil spring 41 is set larger than the spring constant (torque / twist angle) of the second coil spring 42 (K1> K2), and the first In this example, the resistance torque H1 of the sliding element 51 is set smaller than the resistance torque H2 of the second sliding element 52 (H1 ⁇ H2).
  • the first coil spring 41 (first elastic element) and the first sliding element 51 operate in parallel as in the above embodiment (1).
  • the second coil spring 42 (second elastic element) and the second sliding element 52 operate in parallel.
  • the first change rate by the first coil spring 41 and the second change rate by the second coil spring 42 are different. Therefore, in the acceleration state S4, assuming that the torsion torque at the start of torsion is 0 (zero), the torsion angle remains 0 (zero) until the torsion torque exceeds the resistance torque Tr4, and the torsion does not start. Twisting is started when the torque exceeds the resistance torque Tr4. Also, when twisting is started, both the first sliding element 51 and the second sliding element 52 slide.
  • the second coil spring 42 and the first sliding element 51 operate in parallel, and the first coil spring 41 and the second sliding element 52 and works in parallel. Therefore, in the decelerating state S5, assuming that the torsion torque at the start of torsion is 0 (zero), the torsion angle remains 0 (zero) until the torsion torque exceeds the resistance torque Tr5, and the torsion is not started. Twisting is started when the torque exceeds the resistance torque Tr5. Also, when twisting is started, both the first sliding element 51 and the second sliding element 52 slide.
  • the damper 1 in the acceleration state S4, the damper 1 is in the positive torsion state, and the first coil is compressed in the circumferential direction by the drive plate 10 and the intermediate plate 30 as the first sliding element 51 slides.
  • a second coil spring 42 is a spring 41 that is circumferentially compressed by the intermediate plate 30 and the driven plate 20 as the second sliding element 52 slides.
  • a spring 42 is a first coil spring 41 that is circumferentially compressed by the intermediate plate 30 and the driven plate 20 as the second sliding element 52 slides.
  • the combination of the operating elastic element and the sliding element can be switched depending on the rotation direction of the drive plate 10.
  • FIG. 7 is a graph showing the characteristic (hysteresis characteristic) of the torsion torque according to the torsion angle in the acceleration state S4 and the deceleration state S5 of the damper 1.
  • the horizontal axis is the twist angle between the drive plate 10 and the driven plate 20, and the vertical axis is the twist torque.
  • Tr4 (K2 / (K1 + K2)) ⁇ H1 + (K1 / (K1 + K2)) ⁇ H2 (6) It is.
  • Tr5 (K1 / (K1 + K2)) ⁇ H1 + (K2 / (K1 + K2)) ⁇ H2 (7) It will be easy to understand.
  • the resistance torque between the drive plate 10 and the driven plate 20 in the acceleration state S4 is, as shown in FIG. 7, for example, by appropriate selection (setting) of the value of each parameter.
  • the fluctuation width Tr4 can be set larger than the fluctuation width Tr5 of the resistance torque between the drive plate 10 and the driven plate 20 in the decelerating state S5, and the decelerating state becomes the reverse torsion state to the acceleration state S4 in the positive torsion state.
  • the magnitude of the resistance torque between the drive plate 10 and the driven plate 20 can be made different.
  • the damper 1 is set by setting the resistance torque H1 smaller than the resistance torque H2 and setting the spring constant K1 of the first coil spring 41 larger than the spring constant K2 of the second coil spring 42. Makes the resistance torque between the drive plate 10 and the driven plate 20 relatively large in the acceleration state S4 in which the torque is in the positive torsion state, and the drive plate 10 and the driven plate 20 in the deceleration state S5 in which the damper 1 is the reverse torsion state. Of the damper 1 can be made relatively small, so that more preferable damping characteristics of the damper 1 can be obtained in both the acceleration state S4 and the deceleration state S5.
  • the acceleration state S4 by making the resistance torque between the drive plate 10 and the driven plate 20 relatively large, it is possible to more effectively suppress the resonance phenomenon by the engine forcing force, and on the other hand, the deceleration state S5.
  • the resistance torque H1 is set larger than the resistance torque H2
  • the spring constant K1 of the first coil spring 41 is set smaller than the spring constant K2 of the second coil spring 42.
  • the resistance torque between the drive plate 10 and the driven plate 20 is relatively increased, and in the deceleration state S5 in which the damper 1 is in the reverse torsion state. Since the resistance torque with the driven plate 20 can be made relatively small, more preferable damping characteristics of the damper 1 can be obtained in both the acceleration state S4 and the deceleration state S5. That is, in the acceleration state S4, by making the resistance torque between the drive plate 10 and the driven plate 20 relatively large, it is possible to more effectively suppress the resonance phenomenon by the engine forcing force, and on the other hand, the deceleration state S5. In this case, by making the resistance torque between the drive plate 10 and the driven plate 20 relatively small, the elastic force of the first coil spring 41 and the second coil spring 42 more effectively attenuates the engine force. be able to.
  • the embodiment of the present invention was illustrated, the above-mentioned embodiment is an example, and limiting the scope of the invention is not intended.
  • the embodiment can be implemented in various other forms, and various omissions, substitutions, combinations, and changes can be made without departing from the scope of the invention.
  • the configuration and shape of each example can be partially replaced and implemented.
  • the specifications (structure, type, direction, type, size, length, width, height, number, arrangement, position, etc.) of each configuration and shape can be appropriately changed and implemented.
  • the first rotation element is the input rotation element and the second rotation element is the output rotation element
  • the present invention is not limited to this.
  • the first rotation element is the output rotation element
  • the second rotation element is It may be an input rotation element.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

本発明のダンパは、第一回転要素と第三回転要素との間に介在して回転中心の周方向に弾性的に伸縮する第一弾性要素と、第二回転要素と第三回転要素との間に介在して回転中心の周方向に弾性的に伸縮する第二弾性要素と、第一回転要素と第三回転要素との間に介在して第一回転要素と第三回転要素との捩れにより第一回転要素および第三回転要素のうち少なくとも一方と摺動し、第一回転要素と第三回転要素との間に第一抵抗トルクを生じる第一摺動要素と、第二回転要素と第三回転要素との間に介在して第二回転要素と第三回転要素との捩れにより第二回転要素および第三回転要素のうち少なくとも一方と摺動し、第二回転要素と第三回転要素との間に第一抵抗トルクとは異なる第二抵抗トルクを生じる第二摺動要素と、を備える。

Description

ダンパ
 本発明は、ダンパに関する。
 従来、二つの回転部材の間に周方向の相対移動を許容する隙間が設けられ、当該隙間が存在する状態における二つの回転部材の比較的小さな相対回転範囲において、二つの回転部材のうち一方と摺動部材とを摺動させることにより、比較的小さい抵抗トルクが得られるよう構成されるとともに、隙間が詰まった状態では、比較的大きい抵抗トルクが得られるよう構成されたダンパが、知られている(特許文献1)。
特開2002-266943号公報
 この種のダンパでは、平均トルクが経時的にそれほど変化しない状態では、隙間が維持され、当該隙間が存在する状態での比較的小さい抵抗トルクが得られるが、例えば、加速時のように平均トルクが経時的に上昇しているような状態では、隙間が詰まってしまい、当該隙間が存在する状態を前提とする比較的小さい抵抗トルクが得られ難くなってしまう場合があった。
 そこで、本発明の課題の一つは、回転部材と摺動部材との摺動による抵抗トルクを切替可能なダンパにおいて、例えば、所望の抵抗トルクがより確実に得られるような、より不都合の少ない新規な構成のダンパを得ること、である。
 本発明のダンパは、回転中心回りに回転可能な第一回転要素と、上記回転中心回りに回転可能な第二回転要素と、上記回転中心回りに回転可能な第三回転要素と、上記第一回転要素と上記第三回転要素との間に介在して上記回転中心の周方向に弾性的に伸縮する第一弾性要素と、上記第二回転要素と上記第三回転要素との間に介在して上記回転中心の周方向に弾性的に伸縮する第二弾性要素と、上記第一回転要素と上記第三回転要素との間に介在して上記第一回転要素と上記第三回転要素との捩れにより上記第一回転要素および上記第三回転要素のうち少なくとも一方と摺動し、上記第一回転要素と上記第三回転要素との間に第一抵抗トルクを生じる第一摺動要素と、上記第二回転要素と上記第三回転要素との間に介在して上記第二回転要素と上記第三回転要素との捩れにより上記第二回転要素および上記第三回転要素のうち少なくとも一方と摺動し、上記第二回転要素と上記第三回転要素との間に上記第一抵抗トルクとは異なる第二抵抗トルクを生じる第二摺動要素と、を備える。
 上記ダンパでは、第一摺動要素による第一抵抗トルクと、第二摺動要素による第二抵抗トルクとを異ならせた。よって、第一摺動要素および第二摺動要素のうち、捩れトルクの変分(増分または減分)がより大きい抵抗トルクを生じる摺動要素の最大静止摩擦トルクを超えない範囲において、当該より大きい抵抗トルクを生じる摺動要素が摺動しない構成を得ることができる。よって、このような構成によれば、例えば、抵抗トルクを変化させるために第一回転要素と第二回転要素との間に隙間を設けた構成のような不都合を生じることなく、比較的小さい抵抗トルクの状態をより確実に得ることができる。
 また、上記ダンパでは、例えば、上記第一回転要素は、一体に結合された第一フロントプレートと第一リヤプレートとを有し、上記第三回転要素は、一体に結合された第二フロントプレートと第二リヤプレートとを有し、上記第二フロントプレートは、上記第一フロントプレートと上記第二回転要素との間に位置し、上記第二リヤプレートは、上記第一リヤプレートと上記第二回転要素との間に位置し、上記第一摺動要素は、上記第一フロントプレートと上記第二フロントプレートとの間、および上記第一リヤプレートと上記第二リヤプレートとの間の両方に介在し、上記第二摺動要素は、上記第二フロントプレートと上記第二回転要素との間、および上記第二リヤプレートと上記第二回転要素との間の両方に、介在する。よって、第一抵抗トルクは、第一回転要素と第三回転要素との間において生じ、第二抵抗トルクは、第二回転要素と第三回転要素との間において生じる。よって、このような構成によれば、第一摺動要素および第二摺動要素のうち、捩れトルクの変分(増分または減分)がより大きい抵抗トルクを生じる摺動要素の最大静止摩擦トルクを超えない範囲において、当該より大きい抵抗トルクを生じる摺動要素が摺動しない構成を得ることができる。
 また、上記ダンパでは、例えば、上記第一摺動要素と上記第一回転要素との間、または上記第一摺動要素と上記第三回転要素との間に位置され、上記第一摺動要素を上記第一回転要素または上記第三回転要素へ弾性的に押圧する第一押圧要素と、上記第二摺動要素と上記第二回転要素との間、または上記第二摺動要素と上記第三回転要素との間に位置され、上記第二摺動要素を上記第二回転要素または上記第三回転要素へ弾性的に押圧する第二押圧要素と、を備える。よって、このような構成によれば、例えば、第一押圧要素が、第一摺動要素と第一回転要素との間、または第一摺動要素と第三回転要素との間に位置されることにより、第一抵抗トルクを第一回転要素と第三回転要素との間で生じさせることができ、第二押圧要素が、第二摺動要素と第二回転要素との間、または第二摺動要素と第三回転要素との間に位置されることにより、第二抵抗トルクを第二回転要素と第三回転要素との間で生じさせることができる。
 また、上記ダンパでは、例えば、上記第一回転要素は、第一アームを有し、上記第二回転要素は、第二アームを有し、上記第三回転要素は、第三アームを有し、上記第一弾性要素が、上記第一アームおよび上記第二アームに対して上記周方向の一方に位置されるとともに上記第三アームに対して上記周方向の他方に位置され、上記第二弾性要素が、上記第三アームに対して上記周方向の一方に位置されるとともに上記第一アームおよび上記第二アームに対して上記周方向の他方に位置され、上記第一回転要素が上記周方向の一方に回転した場合には、上記第一アーム、上記第一弾性要素、上記第三アーム、上記第二弾性要素、および上記第二アームの順に押圧され、上記第一回転要素が上記周方向の他方に回転した場合には、上記第一アーム、上記第二弾性要素、上記第三アーム、上記第一弾性要素、および上記第二アームの順に押圧され、上記第一弾性要素の伸縮角度あたりの弾性トルクの第一変化率と上記第二弾性要素の伸縮角度あたりの弾性トルクの第二変化率とを互いに異ならせるとともに、上記第一抵抗トルクと上記第二抵抗トルクとを異ならせ、上記第一回転要素が上記第二回転要素に対して中立位置から相対的に正転方向に捩れた正捩れ状態と上記第一回転要素が上記第二回転要素に対して上記中立位置から相対的に逆転方向に捩れた逆捩れ状態とで上記第一回転要素と上記第二回転要素との間の抵抗トルクを異ならせるようにした。よって、このような構成によれば、例えば、加速状態と減速状態とで、第一回転要素と第二回転要素との間の抵抗トルクの大きさを切り替えることができ、これによりダンパによる所望の減衰特性が得られ易くなる。
 また、上記ダンパでは、例えば、上記第一抵抗トルクを上記第二抵抗トルクよりも小さく、かつ上記第一変化率を上記第二変化率よりも大きくすることにより、上記正捩れ状態における前記第一回転要素と前記第二回転要素との間の抵抗トルクを上記逆捩れ状態における前記第一回転要素と前記第二回転要素との間の抵抗トルクよりも大きくした。このような構成によれば、例えば、加速状態の第一回転要素と第二回転要素との間の抵抗トルクの大きさを、減速状態の第一回転要素と第二回転要素との間の抵抗トルクの大きさよりも大きくでき、加速状態および減速状態の双方においてより好適な減衰特性が得られやすい。
 また、上記ダンパでは、例えば、上記第一抵抗トルクを上記第二抵抗トルクよりも大きく、かつ上記第一変化率を上記第二変化率よりも小さくすることにより、上記正捩れ状態における前記第一回転要素と前記第二回転要素との間の抵抗トルクを上記逆捩れ状態における前記第一回転要素と前記第二回転要素との間の抵抗トルクよりも大きくした。このような構成によれば、例えば、加速状態の第一回転要素と第二回転要素との間の抵抗トルクの大きさを、減速状態の第一回転要素と第二回転要素との間の抵抗トルクの大きさよりも大きくでき、加速状態および減速状態の双方においてより好適な減衰特性が得られやすい。
図1は、実施形態のダンパの模式的かつ例示的な断面図である。 図2は、実施形態のダンパの軸方向から見た模式的かつ例示的な正面図である。 図3は、実施形態のダンパの図1とは別の位置での模式的かつ例示的な断面図である。 図4は、第1実施形態のダンパの初期状態およびダンパの複数の作動状態における捩れ状態を示す模式的かつ例示的な説明図である。 図5は、第1実施形態のダンパの各作動状態における第一回転要素と第二回転要素との間の捩れ角とトルクとの相関関係を示す模式的かつ例示的なグラフである。 図6は、第2実施形態のダンパの初期状態およびダンパの加速状態および減速状態における捩れ状態を示す模式的かつ例示的な説明図である。 図7は、第2実施形態のダンパの第一回転要素と第二回転要素との間の捩れ角とトルクとの相関関係を示す模式的かつ例示的なグラフである。
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。
 なお、以下の説明では、便宜上、エンジン(不図示)に近い方(図1では左方)をフロントと称し、エンジンから遠い方(図1では右方)をリヤと称している。以下の説明におけるフロントおよびリヤは、車載状態における前後とは必ずしも一致しない。
 また、以下では、回転中心Axの軸方向を、単に軸方向と称し、回転中心Axの径方向を、単に径方向と称し、回転中心Axの周方向を、単に周方向と称する。
 図1は、ダンパ1の断面図である。図1に示されるように、ダンパ1は、ドライブプレート10、ドリブンプレート20、および中間プレート30を備えている。ドライブプレート10、ドリブンプレート20、および中間プレート30は、それぞれ独立して回転中心Ax回りに回転可能に設けられている。言い換えると、ドライブプレート10、ドリブンプレート20、および中間プレート30は、互いに相対回転可能である。また、ドライブプレート10、ドリブンプレート20、および中間プレート30は、例えば、鉄系材料等の金属材料で構成されている。ドライブプレート10は、第一回転要素の一例であり、ドリブンプレート20は、第二回転要素の一例であり、中間プレート30は、第三回転要素の一例である。なお、ドライブプレート10は、アウタプレートとも称され、ドリブンプレート20は、インナプレートとも称されうる。
 ドライブプレート10は、フロントプレート11と、リヤプレート12と、を有している。フロントプレート11とリヤプレート12とは、図1の下部に示される接続部材13によって一体に結合されている。接続部材13は、例えばリベットであるが、ボルトおよびナット等の他の結合具であってもよいし、シャフト等であってもよい。なお、フロントプレート11とリヤプレート12とは、例えば溶接や、溶着、接着のように、接続部材によらずに直接結合されてもよい。フロントプレート11は、第一フロントプレートの一例であり、リヤプレート12は、第二リヤプレートの一例である。
 フロントプレート11は、エンジンとリヤプレート12との間に位置されている。言い換えると、リヤプレート12は、フロントプレート11に対してエンジンの反対側に位置されている。フロントプレート11およびリヤプレート12の形状は、回転中心Axと交差する(直交する)板状である。
 フロントプレート11の最外縁には、過大なトルクの伝達を遮断するリミッタ60が設けられている。
 ドリブンプレート20は、ハブ21と、センタープレート22と、コイルスプリング23と、を有している。
 ハブ21は、回転中心Axを中心とする円筒部21aと、円筒部21aから径方向外方に突出したフランジ21bと、を有している。
 センタープレート22は、フランジ21bの径方向外方に位置されている。また、センタープレート22は、ドライブプレート10のフロントプレート11とリヤプレート12との間に位置されている。センタープレート22の形状は、回転中心Axと交差する(直交する)板状である。
 コイルスプリング23は、その巻回中心が周方向(接線方向)に沿って延びた姿勢で設けられている。コイルスプリング23は、フランジ21bとセンタープレート22との間に挟まれ、フランジ21bとセンタープレート22との相対回転に応じて弾性的に圧縮される。フランジ21bおよびセンタープレート22は、比較的小さい捩れ角において相対回転し、コイルスプリング23を周方向に弾性的に圧縮する。フランジ21bおよびセンタープレート22は、比較的大きい捩れ角においては、周方向に一体に回転する。
 中間プレート30は、フロントプレート31と、リヤプレート32と、を有している。フロントプレート31とリヤプレート32とは、接続部材33によって一体に結合されている。接続部材33は、例えばリベットであるが、ボルトおよびナット等の他の結合具であってもよいし、シャフト等であってもよい。また、フロントプレート31とリヤプレート32とは、例えば溶接や、溶着、接着のように、接続部材によらずに直接結合されてもよい。フロントプレート31は、第二フロントプレートの一例であり、リヤプレート32は、第二リヤプレートの一例である。
 フロントプレート31は、ドライブプレート10のフロントプレート11と、ドリブンプレート20のセンタープレート22との間に位置されている。また、リヤプレート32は、ドライブプレート10のリヤプレート12と、センタープレート22との間に位置されている。フロントプレート31およびリヤプレート32の形状は、回転中心Axと交差する(直交する)板状である。
 ドリブンプレート20のハブ21の外周には、円筒状のスライドブッシュ50が設けられている。スライドブッシュ50の内周面50aとハブ21の外周面21cとは周方向に摺動する。スライドブッシュ50は、ドライブプレート10と一体に回転する。よって、スライドブッシュ50は、ドライブプレート10の構成部品と言うことができる。
 また、中間プレート30のフロントプレート31の内縁31aが、スライドブッシュ50の外周面50bに周方向に摺動可能に支持されている。スライドブッシュ50は、例えば、合成樹脂材料によって構成されている。スライドブッシュ50は、軸受部材とも称されうる。なお、ダンパ1は、スライドブッシュ50に替えて、例えば玉軸受やころ軸受のようなベアリングを備えてもよい。
 また、ドライブプレート10のフロントプレート11と中間プレート30のフロントプレート31との間、当該フロントプレート31とセンタープレート22との間、当該センタープレート22と中間プレート30のリヤプレート32との間、および当該リヤプレート32とドライブプレート10のリヤプレート12との間には、それぞれ、第一摺動要素51または第二摺動要素52が介在している。第一摺動要素51または第二摺動要素52については後述する。
 図2は、ダンパ1の正面図である。ドライブプレート10は、中央部10aと、ドライブアーム10bと、周縁部10cと、を有している。中央部10aは、ドライブプレート10の径方向の内側に位置され、中央部10aの形状は、回転中心Axを中心とする円環状である。ドライブアーム10bは、中央部10aから径方向外方に向けて突出し、中央部10aと周縁部10cとの間で架け渡されている。本実施形態では、ドライブプレート10は、中央部10aから図2の左下方向に延びたドライブアーム10bと、中央部10aから図2の右上方向に延びたドライブアーム10bと、を有している。すなわち、ドライブプレート10は、回転中心Axから径方向に互いに反対方向に延びた二つのドライブアーム10bを有している。言い換えると、二つのドライブアーム10bは、周方向に略180°間隔で配置されている。また、周縁部10cは、ドライブプレート10の径方向の外側に位置され、円環状に構成されている。
 ドリブンプレート20のセンタープレート22は、中央部20aと、ドリブンアーム20bと、を有している。中央部20aは、ドリブンプレート20の径方向の内側に位置され、中央部20aの形状は、回転中心Axを中心とする円環状である。ドリブンアーム20bは、中央部20aから径方向外方に向けて突出している。本実施形態では、ドリブンプレート20は、中央部20aから図2の左下方向に延びたドリブンアーム20bと、中央部20aから図2の右上方向に延びたドリブンアーム20bと、を有している。すなわち、ドリブンプレート20は、回転中心Axから径方向に互いに反対方向に延びた二つのドリブンアーム20bを有している。言い換えると、二つのドリブンアーム20bは、周方向に略180°間隔で配置されている。また、図1の下部を参照すれば明らかとなるように、ドライブアーム10bとドリブンアーム20bとは、軸方向に重なっている。
 中間プレート30は、中央部30aと、中間アーム30bと、を有している。中央部30aは、中間プレート30の径方向の内側に位置され、中央部30aの形状は、回転中心Axを中心とする円環状である。中間アーム30bは、中央部30aから径方向外方に向けて突出している。本実施形態では、中間プレート30は、中央部30aから図2の左上方向に延びた中間アーム30bと、中央部30aから図2の右下方向に延びた中間アーム30bと、を有している。すなわち、中間プレート30は、回転中心Axから径方向に互いに反対方向に延びた二つの中間アーム30bを有している。言い換えると、二つの中間アーム30bは、周方向に略180°間隔で配置されている。
 図2に示されるように、ドライブアーム10bおよびドリブンアーム20bと中間アーム30bとの間には、第一コイルスプリング41および第二コイルスプリング42が介在している。第一コイルスプリング41および第二コイルスプリング42は、それぞれ周方向(接線方向)に略沿って延びている。第一コイルスプリング41は、ドライブアーム10bおよびドリブンアーム20bに対しては図2の時計回り方向に隣接して位置されるとともに、中間アーム30bに対しては図2の反時計回り方向に隣接して位置されている。また、第二コイルスプリング42は、ドライブアーム10bおよびドリブンアーム20bに対しては図2の反時計回り方向に隣接して位置されるとともに、中間アーム30bに対しては図2の時計回り方向に隣接して位置されている。第一コイルスプリング41は、回転中心Axを挟んで互いに反対側に位置されている。すなわち、ダンパ1は、回転中心Axを挟んで反対側に位置された二つの第一コイルスプリング41を有している。言い換えると、二つの第一コイルスプリング41は、周方向に略180°間隔で配置されている。また、ダンパ1は、回転中心Axを挟んで反対側に位置された二つの第二コイルスプリング42を有している。言い換えると、二つの第二コイルスプリング42は、周方向に略180°間隔で配置されている。第一コイルスプリング41および第二コイルスプリング42は、周方向に90°間隔で交互に配置されている。第一コイルスプリング41は、第一弾性要素の一例であり、第二コイルスプリング42は、第二弾性要素の一例である。第一弾性要素および第二弾性要素は、コイルスプリングには限定されず、例えばエラストマのような他の弾性要素であってもよい。なお、本実施形態では、第一弾性要素の数および第二弾性要素の数は、それぞれ2であったが、これには限定されず、第一弾性要素の数および第二弾性要素の数は、1あるいは3以上であってもよい。
 ダンパ1の正転方向が時計回り方向である場合、加速時には、ドライブプレート10とドリブンプレート20との相対的な捩れによって、ドライブアーム10bと中間アーム30bとが第一コイルスプリング41を弾性的に圧縮するとともに、中間アーム30bとドリブンアーム20bとが第二コイルスプリング42を弾性的に圧縮する。他方、減速時には、ドライブプレート10とドリブンプレート20との相対的な捩れによって、ドライブアーム10bと中間アーム30bとが第二コイルスプリング42を弾性的に圧縮するとともに、中間アーム30bとドリブンアーム20bとが第一コイルスプリング41を弾性的に圧縮する。加速時の捩れ状態は、ドライブプレート10がドリブンプレート20に対する中立位置(捩れていない位置、捩れ角が0である位置)から相対的に正転方向に捩れている状態であり、本明細書では、この状態をダンパ1の正捩れ状態とする。他方、減速時の捩れ状態は、ドライブプレート10がドリブンプレート20に対する中立位置から相対的に逆転方向(正転方向の反対方向)に捩れている状態であり、本明細書では、この状態をダンパ1の逆捩れ状態とする。
 第一コイルスプリング41および第二コイルスプリング42のそれぞれの長手方向(巻回軸方向、ダンパ1の周方向)の両端と、ドライブアーム10b、ドリブンアーム20b、および中間アーム30bとの間には、シート部材43が介在している。シート部材43は、リテーナとも称されうる。
 図3は、図1とは異なる位置におけるダンパ1の断面図である。図3に示されるように、ドライブプレート10のフロントプレート11と中間プレート30のフロントプレート31との間には、軸方向に摺動部材51Fが挟まれている。摺動部材51Fの形状は、リング状かつ板状である。摺動部材51Fに設けられた突起51Faは、フロントプレート11に設けられた開口部11aに挿入されている。したがって、摺動部材51Fは、ドライブプレート10と一体に回転し、ドライブプレート10と中間プレート30とが相対的に捩れた場合にあっては、中間プレート30のフロントプレート31と摺動する。摺動部材51Fは、例えば、合成樹脂材料によって構成されている。
 ドライブプレート10のリヤプレート12と中間プレート30のリヤプレート32との間には、軸方向に摺動部材51Rが挟まれている。摺動部材51Rの形状は、リング状かつ板状である。摺動部材51Rに設けられた突起51Raは、リヤプレート12に設けられた開口部12aに挿入されている。したがって、摺動部材51Rは、ドライブプレート10と一体に回転し、ドライブプレート10と中間プレート30とが相対的に捩れた場合にあっては、中間プレート30のリヤプレート32と摺動する。摺動部材51Rは、例えば、合成樹脂材料によって構成されている。
 皿ばね53は、摺動部材51Rとリヤプレート12との間に介在し、摺動部材51Rを中間プレート30のリヤプレート32に向けて軸方向前方に弾性的に押圧している。中間プレート30のフロントプレート31とリヤプレート32とは接続部材33によって結合されている。よって、中間プレート30のフロントプレート31は、摺動部材51Fをドライブプレート10のフロントプレート11に向けて軸方向前方に弾性的に押圧している。皿ばね53は、第一押圧要素の一例である。
 このような構成において、摺動部材51F,51Rの中間プレート30との摺動による抵抗トルク(第一抵抗トルク)は、皿ばね53のスペック(位置、弾性係数、材質、厚さ等)や、摺動部材51F,51Rのスペック(位置、材質、摺動面積、摩擦係数等)等によって調整することができる。摺動部材51F,51Rは、第一摺動要素51の一例である。なお、摺動部材51F,51Rや皿ばね53のスペックは、ここに開示されたものには限定されず、種々の変更が可能である。例えば、摺動部材51F,51Rは、中間プレート30と一体に回転し、ドライブプレート10と摺動してもよいし、ドライブプレート10および中間プレート30の双方と摺動してもよい。また、例えば、皿ばね53に替えて、スプリングやエラストマのような弾性部材を設けてもよい。また、実施形態では、皿ばね53は、リヤプレート12と第一摺動要素51との間に位置されているが、これには限定されず、フロントプレート11と第一摺動要素51との間や、フロントプレート31と第一摺動要素51との間、リヤプレート32と第一摺動要素51との間等に、位置されてもよい。
 他方、中間プレート30のフロントプレート31とドリブンプレート20のセンタープレート22との間には、軸方向に摺動部材52Fが挟まれている。摺動部材52Fの形状は、リング状かつ板状である。図1に示されるように、摺動部材52Fに設けられた突起52Faは、フロントプレート31に設けられた開口部31bに挿入されている。したがって、摺動部材52Fは、中間プレート30と一体に回転し、中間プレート30とドリブンプレート20とが相対的に捩れた場合にあっては、センタープレート22と摺動する。摺動部材52Fは、例えば、合成樹脂材料によって構成されている。
 中間プレート30のリヤプレート32とドリブンプレート20のセンタープレート22との間には、軸方向に摺動部材52Rが挟まれている。摺動部材52Rの形状は、リング状かつ板状である。図1に示されるように、摺動部材52Rに設けられた突起52Raは、リヤプレート32に設けられた開口部32aに挿入されている。したがって、摺動部材52Rは、中間プレート30と一体に回転し、中間プレート30とドリブンプレート20とが相対的に捩れた場合にあっては、センタープレート22と摺動する。摺動部材52Rは、例えば、合成樹脂材料によって構成されている。
 皿ばね54は、摺動部材52Fとフロントプレート31との間に介在し、摺動部材52Fをセンタープレート22に向けて軸方向後方に弾性的に押圧している。センタープレート22は、ハブ21に軸方向に移動可能に支持されている。よって、センタープレート22は、摺動部材51Rを中間プレート30のリヤプレート32に向けて軸方向後方に弾性的に押圧している。皿ばね54は、第二押圧要素の一例である。
 このような構成において、摺動部材52F,52Rのドリブンプレート20との摺動による抵抗トルク(第二抵抗トルク)は、皿ばね54のスペック(位置、弾性係数、材質、厚さ等)や、摺動部材52F,52Rのスペック(位置、材質、摺動面積、摩擦係数等)等によって調整することができる。摺動部材52F,52Rは、第二摺動要素52の一例である。なお、摺動部材52F,52Rや皿ばね54のスペックは、ここに開示されたものには限定されず、種々の変更が可能である。例えば、摺動部材52F,52Rは、ドリブンプレート20と一体に回転し、中間プレート30と摺動してもよいし、ドリブンプレート20および中間プレート30の双方と摺動してもよい。また、例えば、皿ばね54に替えて、スプリングやエラストマのような弾性部材を設けてもよい。また、実施形態では、皿ばね54は、フロントプレート31と第二摺動要素52との間に位置されているが、これには限定されず、リヤプレート32と第二摺動要素52との間や、センタープレート22と第二摺動要素52との間等に、位置されてもよい。
[第一摺動要素51の抵抗トルクH1と第二摺動要素52の抵抗トルクH2とが異なる実施形態(1)]
 発明者らは、上述した構成のダンパ1についての鋭意研究により、第一摺動要素51の抵抗トルクH1(摺動トルク)と第二摺動要素52の抵抗トルクH2(摺動トルク)とを異ならせることにより、捩れ振幅の大きさに応じて捩れ角と捩れトルクとのヒステリシス特性を異ならせることができるという知見を得た。以下、これについて、図4,5を参照しながら詳細に説明する。抵抗トルクH1は、第一抵抗トルクの一例であり、抵抗トルクH2は、第二抵抗トルクの一例である。
 図4は、ダンパ1の初期状態S0および複数の作動状態S1~S3におけるダンパ1の状態を示す模式図である。ここでは、捩れ振幅が比較的大きい作動状態を第一状態S1、捩れ振幅が比較的小さい作動状態を第三状態S3、捩れ振幅が中程度である作動状態を第二状態S2としている。図4は、横軸を周方向とした展開図であり、図4には、ドライブプレート10(ドライブアーム10b)、中間プレート30(中間アーム30b)、ドリブンプレート20(ドリブンアーム20b)、第一コイルスプリング41、第二コイルスプリング42、第一摺動要素51、および第二摺動要素52が模式的に示されている。また、図4は、第一摺動要素51の抵抗トルクH1が、第二摺動要素52の抵抗トルクH2よりも小さく設定された(H1<H2)場合の例である。
 図4に示されるように、捩れ振幅が大きい第一状態S1では、第一コイルスプリング41および第二コイルスプリング42の双方が弾性的に圧縮され、第一摺動要素51および第二摺動要素52の双方が摺動する。
 捩れ振幅が小さい第三状態S3では、第一コイルスプリング41が弾性的に圧縮されるとともに第一摺動要素51が摺動するのに対し、第二コイルスプリング42は弾性的に圧縮されず、第二摺動要素52も摺動しない。これは、捩れトルクの増分が第二摺動要素52による最大静止摩擦トルク(>H2(動摩擦トルク))を超えるまで、中間プレート30がドリブンプレート20に対して相対的に回動しないからである。
 捩れ振幅が中程度である第二状態S2では、第一状態S1と同様、第一コイルスプリング41および第二コイルスプリング42の双方が弾性的に圧縮され、第一摺動要素51および第二摺動要素52の双方が摺動する。ただし、捩れ角における最大トルク幅が第一状態S1とは異なっている。これについては後述する。
 図4に示されるモデルにおいては、トルクT(捩れトルク)について、以下の式(1)および(2)が成り立つ。
 T=K1×θ1+H1
 =K1(θ-θ2)+H1   ・・・(1)
 K1×(θ-θ2)+H1=K2×θ2+H1   ・・・(2)
ここに、θ:ドライブプレート10とドリブンプレート20との捩れ角、θ1:第一コイルスプリング41の圧縮量(捩れ角)、θ2:第二コイルスプリング42の圧縮量(捩れ角)、K1:第一コイルスプリング41のバネ定数(トルク/捩れ角)、K2:第二コイルスプリング42のバネ定数(トルク/捩れ角)である。また、バネ定数は、第一コイルスプリング41または第二コイルスプリング42の周方向両端間の回転中心Axにおける中心角の角度の変化に対する弾性トルクの変化の比率であり、周方向の弾性係数とも称されうる。第一コイルスプリング41のバネ定数(トルク/捩れ角)は、第一変化率の一例であり、第二コイルスプリング42のバネ定数(トルク/捩れ角)は、第二変化率の一例である。
 式(1)および式(2)から、次の式(3)が導き出せる。
 T=((K1×K2)/(K1+K2))×θ
 +(K2/(K1+K2))×H1+(K1/(K1+K2))×H2
   ・・・(3)
 式(3)のトルクTにおいて、ダンパ1の捩れ角に応じたトルクTsは、以下の式(4)で表すことができ、第一摺動要素51および第二摺動要素52の摺動による抵抗トルクの変動幅Trは、以下の式(5)で表すことができる。
 Ts=((K1×K2)/(K1+K2))×θ=K×θ
   ・・・(4)
 Tr=(K2/(K1+K2))×H1+(K1/(K1+K2))×H2   ・・・(5)
 図5は、ダンパ1の各作動状態S1~S3における捩れ角に応じた捩れトルクの特性(ヒステリシス特性)を示すグラフである。図5において、横軸はドライブプレート10とドリブンプレート20との捩れ角、縦軸は捩れトルクである。
 第一状態S1において、点p11の状態でエンジンからドライブプレート10への入力に基づく正転方向の捩れトルクが増大すると、上述したように、本実施形態では、第一摺動要素51の抵抗トルクH1が第二摺動要素52の抵抗トルクH2よりも小さく設定されているため、当初、ドリブンプレート20に対して中間プレート30が動作せず、第二コイルスプリング42は圧縮されない。このため、捩れトルクの増大に伴って、まずは第一摺動要素51の抵抗トルクH1分が増大し(p11→p12)、さらなる捩れトルクの増大に伴う第一コイルスプリング41の圧縮に伴ってバネ定数K1で捩れトルクが増大する(p12→p13)。そして、捩れトルクの増分が第二摺動要素52の最大静止摩擦トルク(>H2)を上回った時点(p13)から、第一コイルスプリング41および第二コイルスプリング42の合成バネ定数K(式(4))により、捩れトルクが増大する(p13→p14)。
 点p14の状態においてエンジンからドライブプレート10への入力に基づく正転方向の捩れトルクが減少する場合も、増加する場合と同様に、第一摺動要素51の抵抗トルクH1が第二摺動要素52の抵抗トルクH2よりも小さく設定されているため、当初、ドリブンプレート20に対して中間プレート30が動作せず、第二コイルスプリング42は伸長されない。このため、捩れトルクの減少に伴って、まずは第一摺動要素51の抵抗トルクH1の方向が反転する分、抵抗トルクH1の2倍の2H1が減少し(p14→p15)、さらなる捩れトルクの減少に伴う第一コイルスプリング41の伸長に伴ってバネ定数K1で捩れトルクが減少する(p15→p16)。そして、捩れトルクの減分が第二摺動要素52の最大静止摩擦トルク(>H2)を上回った時点(p16)から、第一コイルスプリング41および第二コイルスプリング42の合成バネ定数K(式(4))により、捩れトルクが減少する(p16→p17)。点p17の状態において、捩れトルクの減少、すなわち回転変動(捩れ)が停止すると点p11の状態へ移行し、捩れトルクが増大すると、点p12の状態へ移行する。
 第三状態S3において、点p31の状態でエンジンからドライブプレート10への入力に基づく正転方向の捩れトルクが増大すると、上述したように、本実施形態では、第一摺動要素51の抵抗トルクH1が第二摺動要素52の抵抗トルクH2よりも小さく設定されているため、当初、ドリブンプレート20に対して中間プレート30が動作せず、第二コイルスプリング42は圧縮されない。このため、捩れトルクの増大に伴って、まずは第一摺動要素51の抵抗トルクH1分が増大し(p31→p32)、さらなる捩れトルクの増大に伴う第一コイルスプリング41の圧縮に伴ってバネ定数K1で捩れトルクが増大する(p32→p33)。
 捩れトルクの増分が第二摺動要素52の最大静止摩擦トルク(>H2)を上回る前の時点(p33)でエンジンからドライブプレート10への入力に基づく正転方向の捩れトルクが減少する場合、ドリブンプレート20に対して中間プレート30が動作せず、第二コイルスプリング42が動かない状態が維持されるため、捩れトルクの減少に伴って、第一摺動要素51の抵抗トルクH1の方向が反転する分、抵抗トルクH1の2倍の2H1が減少し(p33→p34)、さらなる捩れトルクの減少に伴う第一コイルスプリング41の伸長に伴ってバネ定数K1で捩れトルクが減少する(p34→p35)。点p35の状態において、捩れトルクの減少、すなわち回転変動(捩れ)が停止すると点p31の状態へ移行し、捩れトルクが増大すると、点p32の状態へ移行する。
 第二状態S2における捩れ角および捩れトルクの推移は、第一状態S1における捩れ角および捩れトルクの推移と同様である。すなわち、点p21~点p27(→点p21,p22)の各状態およびそれらの状態の間の作動は、点p11~点p17(→点p11,p12)の各状態およびそれらの状態の間の作動と同じである。
 すなわち、第二状態S2において、点p21の状態でエンジンからドライブプレート10への入力に基づく正転方向の捩れトルクが増大すると、上述したように、本実施形態では、第一摺動要素51の抵抗トルクH1が第二摺動要素52の抵抗トルクH2よりも小さく設定されているため、当初、ドリブンプレート20に対して中間プレート30が動作せず、第二コイルスプリング42は圧縮されない。このため、捩れトルクの増大に伴って、まずは第一摺動要素51の抵抗トルクH1分が増大し(p21→p22)、さらなる捩れトルクの増大に伴う第一コイルスプリング41の圧縮に伴ってバネ定数K1で捩れトルクが増大する(p22→p23)。そして、捩れトルクの増分が第二摺動要素52の最大静止摩擦トルク(>H2)を上回った時点(p23)から、第一コイルスプリング41および第二コイルスプリング42の合成バネ定数K(式(4))により、捩れトルクが増大する(p23→p24)。
 点p24の状態においてエンジンからドライブプレート10への入力に基づく正転方向の捩れトルクが減少する場合も、増加する場合と同様に、第一摺動要素51の抵抗トルクH1が第二摺動要素52の抵抗トルクH2よりも小さく設定されているため、当初、ドリブンプレート20に対して中間プレート30が動作せず、第二コイルスプリング42は伸長されない。このため、捩れトルクの減少に伴って、まずは第一摺動要素51の抵抗トルクH1の方向が反転する分、抵抗トルクH1の2倍の2H1が減少し(p24→p25)、さらなる捩れトルクの減少に伴う第一コイルスプリング41の伸長に伴ってバネ定数K1で捩れトルクが減少する(p25→p26)。そして、捩れトルクの減分が第二摺動要素52の最大静止摩擦トルク(>H2)を上回った時点(p26)から、第一コイルスプリング41および第二コイルスプリング42の合成バネ定数K(式(4))により、捩れトルクが減少する(p26→p27)。点p27の状態において、捩れトルクの減少、すなわち回転変動(捩れ)が停止すると点p21の状態へ移行し、捩れトルクが増大すると、点p22の状態へ移行する。
 ただし、第二状態S2を示すグラフに示されるように、捩れトルクの変動幅は、2×H1プラスα(α:正数)であって、第一状態S1における捩れトルクの変動幅(2Tr)よりも小さい。
 以上、説明したように、本実施形態によれば、第一摺動要素51の抵抗トルクH1(第一抵抗トルク)と、第二摺動要素52の抵抗トルクH2(第二抵抗トルク)とを異ならせた。よって、第一摺動要素51および第二摺動要素52のうち、捩れトルクの変分(増分または減分)が、大きい抵抗トルクを有した第二摺動要素52の最大静止摩擦トルクを超えない範囲において、当該第二摺動要素52が摺動しない状態、すなわち、ドリブンプレート20(第二回転要素)に対して中間プレート30(第三回転要素)が動かず、また、第二コイルスプリング42(第二弾性要素)が圧縮されない状態、を得ることができる。したがって、本実施形態によれば、ドライブプレート10とドリブンプレート20との間に隙間を設けることによって摺動抵抗を変化させる構成のような不都合を生じることなく、例えば、比較的小さい抵抗トルクの状態をより確実に得ることができる。また、例えば、当該隙間を設けるための構成が不要となる分、第一回転要素と第二回転要素との間の抵抗トルクを変化させることが可能なダンパを、より簡素な構成によって実現することができるという利点もある。
 なお、本実施形態では、第一摺動要素51の抵抗トルクH1は、第二摺動要素52の抵抗トルクH2よりも小さく設定されたが、第一摺動要素51の抵抗トルクH1は、第二摺動要素52の抵抗トルクH2よりも大きく設定されてもよい。第一コイルスプリング41(第一弾性部材)と第二コイルスプリング42(第二弾性部材)のバネ定数K1,K2は、互いに異なってもよい。
[第一コイルスプリング41のバネ定数K1と第二コイルスプリング42のバネ定数K2とが異なるとともに、第一摺動要素51の抵抗トルクH1と第二摺動要素52の抵抗トルクH2とが異なる実施形態(2)]
 発明者らは、上述した構成のダンパ1についての鋭意研究により、第一コイルスプリング41のバネ定数K1と第二コイルスプリング42のバネ定数K2とを異ならせるとともに、第一摺動要素51の抵抗トルクH1(摺動トルク)と第二摺動要素52の抵抗トルクH2(摺動トルク)とを異ならせることにより、加速時および減速時において捩れ角と捩れトルクとのヒステリシス特性を異ならせることができるという知見を得た。以下、これについて、図6,7を参照しながら詳細に説明する。
 図6は、ダンパ1の加速状態S4および減速状態S5におけるダンパ1の状態を示す模式図である。図6は、横軸を周方向とした展開図であり、図6には、ドライブプレート10(ドライブアーム10b)、中間プレート30(中間アーム30b)、ドリブンプレート20(ドリブンアーム20b)、第一コイルスプリング41、第二コイルスプリング42、第一摺動要素51、および第二摺動要素52が模式的に示されている。また、図6は、第一コイルスプリング41のバネ定数(トルク/捩れ角)が、第二コイルスプリング42のバネ定数(トルク/捩れ角)よりも大きく設定され(K1>K2)、かつ第一摺動要素51の抵抗トルクH1が、第二摺動要素52の抵抗トルクH2よりも小さく設定された(H1<H2)場合の例である。
 ここで、図2から明らかとなるように、ダンパ1の正捩れ状態、すなわち、ドライブプレート10がドリブンプレート20に対する中立位置から相対的に正転方向に捩れた状態にあっては、ドライブプレート10と中間プレート30との間で第一コイルスプリング41が弾性的に圧縮され、中間プレート30とドリブンプレート20との間で第二コイルスプリング42が圧縮される。他方、ダンパ1の逆捩れ状態、すなわち、ドライブプレート10がドリブンプレート20に対する中立位置から相対的に逆転方向(正転方向の反対方向)に捩れた状態にあっては、ドライブプレート10と中間プレート30との間では第二コイルスプリング42が弾性的に圧縮され、中間プレート30とドリブンプレート20との間では第一コイルスプリング41が弾性的に圧縮される。ここで、第一摺動要素51は、ドライブプレート10と中間プレート30との相対回動によって摺動し、第二摺動要素52は、中間プレート30とドリブンプレート20との相対回転によって摺動する。
 このような本実施形態によれば、加速状態S4にあっては、上記実施形態(1)と同様に第一コイルスプリング41(第一弾性要素)と第一摺動要素51とが並列に作動し、第二コイルスプリング42(第二弾性要素)と第二摺動要素52とが並列に作動する。しかしながら、本実施形態では、第一コイルスプリング41による第一変化率と第二コイルスプリング42による第二変化率とが相違している。よって、加速状態S4にあっては、捩れ開始時の捩れトルクを0(ゼロ)とすると、捩れトルクが抵抗トルクTr4を超えるまでは捩れ角が0(ゼロ)のまま捩れが開始されず、捩れトルクが抵抗トルクTr4を超えた時点で、捩れが開始される。また、捩れが開始されると、第一摺動要素51と第二摺動要素52とが両方とも摺動する。
 他方、減速状態S5にあっては、上記実施形態(1)とは異なり、第二コイルスプリング42と第一摺動要素51とが並列に作動し、第一コイルスプリング41と第二摺動要素52とが並列に作動する。よって、減速状態S5にあっては、捩れ開始時の捩れトルクを0(ゼロ)とすると、捩れトルクが抵抗トルクTr5を超えるまでは捩れ角が0(ゼロ)のまま捩れが開始されず、捩れトルクが抵抗トルクTr5を超えた時点で、捩れが開始される。また、捩れが開始されると、第一摺動要素51と第二摺動要素52とが両方とも摺動する。
 したがって、加速状態S4にあっては、ダンパ1は正捩れ状態となり、第一摺動要素51の摺動に伴ってドライブプレート10と中間プレート30とによって周方向に圧縮されるのは第一コイルスプリング41であり、第二摺動要素52の摺動に伴って中間プレート30とドリブンプレート20とによって周方向に圧縮されるのは第二コイルスプリング42である。
 他方、減速状態S5にあっては、ダンパ1は逆捩れ状態となり、第一摺動要素51の摺動に伴ってドライブプレート10と中間プレート30とによって周方向に圧縮されるのは第二コイルスプリング42であり、第二摺動要素52の摺動に伴って中間プレート30とドリブンプレート20とによって周方向に圧縮されるのは第一コイルスプリング41である。
 このように、本実施形態では、ドライブプレート10の回動方向によって、作動する弾性要素と摺動要素との組み合わせを切り替えることができる。
 図7は、ダンパ1の加速状態S4および減速状態S5における捩れ角に応じた捩れトルクの特性(ヒステリシス特性)を示すグラフである。図7において、横軸はドライブプレート10とドリブンプレート20との捩れ角、縦軸は捩れトルクである。
 加速状態S4での、第一摺動要素51および第二摺動要素52の摺動による抵抗トルクの変動幅Tr4は、式(5)と同じであり、
 Tr4=(K2/(K1+K2))×H1+(K1/(K1+K2))×H2   ・・・(6)
である。他方、減速状態S5での、第一摺動要素51および第二摺動要素52の摺動による抵抗トルクの変動幅Tr5は、上述した摺動要素と弾性要素との組み合わせの入れ替えにより、式(5)から、
 Tr5=(K1/(K1+K2))×H1+(K2/(K1+K2))×H2   ・・・(7)
となることは、容易に理解できよう。
 本実施形態では、上述したように、抵抗トルクH1と抵抗トルクH2を異ならせるとともに、第一コイルスプリング41のバネ定数K1と第二コイルスプリング42のバネ定数K2とを異ならせている。よって、本実施形態によれば、例えば、各パラメータの値の適切な選択(設定)により、図7に示されるように、加速状態S4におけるドライブプレート10とドリブンプレート20との間の抵抗トルクの変動幅Tr4を減速状態S5におけるドライブプレート10とドリブンプレート20との間の抵抗トルクの変動幅Tr5よりも大きく設定することができるとともに、正捩れ状態となる加速状態S4と逆捩れ状態となる減速状態S5とで、ドライブプレート10とドリブンプレート20との間の抵抗トルクの大きさを異ならせることができる。
 本実施形態のように、抵抗トルクH1を抵抗トルクH2よりも小さく設定し、かつ第一コイルスプリング41のバネ定数K1を第二コイルスプリング42のバネ定数K2よりも大きく設定することにより、ダンパ1が正捩れ状態となる加速状態S4ではドライブプレート10とドリブンプレート20との間の抵抗トルクを比較的大きくし、かつダンパ1が逆捩れ状態となる減速状態S5ではドライブプレート10とドリブンプレート20との間の抵抗トルクを比較的小さくすることができるため、加速状態S4および減速状態S5の双方においてダンパ1のより好適な減衰特性を得ることができる。すなわち、加速状態S4では、ドライブプレート10とドリブンプレート20との間の抵抗トルクを比較的大きくすることにより、エンジン強制力による共振現象をより効果的に抑制することができ、他方、減速状態S5では、ドライブプレート10とドリブンプレート20との間の抵抗トルクを比較的小さくすることにより、第一コイルスプリング41および第二コイルスプリング42の弾性的な伸縮によってエンジン強制力をより効果的に減衰することができる。また、本実施形態とは逆に、抵抗トルクH1を抵抗トルクH2よりも大きく設定し、かつ第一コイルスプリング41のバネ定数K1を第二コイルスプリング42のバネ定数K2よりも小さく設定することによっても、ダンパ1が正捩れ状態となる加速状態S4ではドライブプレート10とドリブンプレート20との間の抵抗トルクを比較的大きくし、かつダンパ1が逆捩れ状態となる減速状態S5ではドライブプレート10とドリブンプレート20との間の抵抗トルクを比較的小さくすることができるため、加速状態S4および減速状態S5の双方においてダンパ1のより好適な減衰特性を得ることができる。すなわち、加速状態S4では、ドライブプレート10とドリブンプレート20との間の抵抗トルクを比較的大きくすることにより、エンジン強制力による共振現象をより効果的に抑制することができ、他方、減速状態S5では、ドライブプレート10とドリブンプレート20との間の抵抗トルクを比較的小さくすることにより、第一コイルスプリング41および第二コイルスプリング42の弾性的な伸縮によってエンジン強制力をより効果的に減衰することができる。
 以上、本発明の実施形態を例示したが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各例の構成や形状は、部分的に入れ替えて実施することも可能である。また、各構成や形状等のスペック(構造や、種類、方向、形式、大きさ、長さ、幅、高さ、数、配置、位置等)は、適宜に変更して実施することができる。例えば、上記実施形態では、第一回転要素が入力回転要素、第二回転要素が出力回転要素であったが、これには限定されず、第一回転要素が出力回転要素、第二回転要素が入力回転要素であってもよい。
 1…ダンパ、10…ドライブプレート(第一回転要素)、20…ドリブンプレート(第二回転要素)、30…中間プレート(第三回転要素)、41…第一コイルスプリング(第一弾性要素)、42…第二コイルスプリング(第二弾性要素)、51…第一摺動要素、52…第二摺動要素、Ax…回転中心。

Claims (6)

  1.  回転中心回りに回転可能な第一回転要素と、
     前記回転中心回りに回転可能な第二回転要素と、
     前記回転中心回りに回転可能な第三回転要素と、
     前記第一回転要素と前記第三回転要素との間に介在して前記回転中心の周方向に弾性的に伸縮する第一弾性要素と、
     前記第二回転要素と前記第三回転要素との間に介在して前記回転中心の周方向に弾性的に伸縮する第二弾性要素と、
     前記第一回転要素と前記第三回転要素との間に介在して前記第一回転要素と前記第三回転要素との捩れにより前記第一回転要素および前記第三回転要素のうち少なくとも一方と摺動し、前記第一回転要素と前記第三回転要素との間に第一抵抗トルクを生じる第一摺動要素と、
     前記第二回転要素と前記第三回転要素との間に介在して前記第二回転要素と前記第三回転要素との捩れにより前記第二回転要素および前記第三回転要素のうち少なくとも一方と摺動し、前記第二回転要素と前記第三回転要素との間に前記第一抵抗トルクとは異なる第二抵抗トルクを生じる第二摺動要素と、
     を備えた、ダンパ。
  2.  前記第一回転要素は、一体に結合された第一フロントプレートと第一リヤプレートとを有し、
     前記第三回転要素は、一体に結合された第二フロントプレートと第二リヤプレートとを有し、
     前記第二フロントプレートは、前記第一フロントプレートと前記第二回転要素との間に位置し、
     前記第二リヤプレートは、前記第一リヤプレートと前記第二回転要素との間に位置し、
     前記第一摺動要素は、前記第一フロントプレートと前記第二フロントプレートとの間、および前記第一リヤプレートと前記第二リヤプレートとの間の両方に介在し、
     前記第二摺動要素は、前記第二フロントプレートと前記第二回転要素との間、および前記第二リヤプレートと前記第二回転要素との間の両方に、介在した、請求項1に記載のダンパ。
  3.  前記第一摺動要素と前記第一回転要素との間、または前記第一摺動要素と前記第三回転要素との間に位置され、前記第一摺動要素を前記第一回転要素または前記第三回転要素へ弾性的に押圧する第一押圧要素と、
     前記第二摺動要素と前記第二回転要素との間、または前記第二摺動要素と前記第三回転要素との間に位置され、前記第二摺動要素を前記第二回転要素または前記第三回転要素へ弾性的に押圧する第二押圧要素と、
     を備えた、請求項1または2に記載のダンパ。
  4.  前記第一回転要素は、第一アームを有し、
     前記第二回転要素は、第二アームを有し、
     前記第三回転要素は、第三アームを有し、
     前記第一弾性要素が、前記第一アームおよび前記第二アームに対して前記周方向の一方に位置されるとともに前記第三アームに対して前記周方向の他方に位置され、
     前記第二弾性要素が、前記第三アームに対して前記周方向の一方に位置されるとともに前記第一アームおよび前記第二アームに対して前記周方向の他方に位置され、
     前記第一回転要素が前記周方向の一方に回転した場合には、前記第一アーム、前記第一弾性要素、前記第三アーム、前記第二弾性要素、および前記第二アームの順に押圧され、
     前記第一回転要素が前記周方向の他方に回転した場合には、前記第一アーム、前記第二弾性要素、前記第三アーム、前記第一弾性要素、および前記第二アームの順に押圧され、
     前記第一弾性要素の伸縮角度あたりの弾性トルクの第一変化率と前記第二弾性要素の伸縮角度あたりの弾性トルクの第二変化率とを互いに異ならせるとともに、前記第一抵抗トルクと前記第二抵抗トルクとを異ならせ、前記第一回転要素が前記第二回転要素に対して中立位置から相対的に正転方向に捩れた正捩れ状態と前記第一回転要素が前記第二回転要素に対して前記中立位置から相対的に逆転方向に捩れた逆捩れ状態とで前記第一回転要素と前記第二回転要素との間の抵抗トルクを異ならせるようにした、請求項1~3のうちいずれか一つに記載のダンパ。
  5.  前記第一抵抗トルクを前記第二抵抗トルクよりも小さく、かつ前記第一変化率を前記第二変化率よりも大きくすることにより、上記正捩れ状態における前記第一回転要素と前記第二回転要素との間の抵抗トルクを上記逆捩れ状態における前記第一回転要素と前記第二回転要素との間の抵抗トルクよりも大きくした、請求項4に記載のダンパ。
  6.  前記第一抵抗トルクを前記第二抵抗トルクよりも大きく、かつ前記第一変化率を前記第二変化率よりも小さくすることにより、上記正捩れ状態における前記第一回転要素と前記第二回転要素との間の抵抗トルクを上記逆捩れ状態における前記第一回転要素と前記第二回転要素との間の抵抗トルクよりも大きくした、請求項4に記載のダンパ。
PCT/JP2018/037290 2017-10-30 2018-10-04 ダンパ WO2019087677A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018004984.1T DE112018004984T5 (de) 2017-10-30 2018-10-04 Dämpfer
JP2019550926A JP7143856B2 (ja) 2017-10-30 2018-10-04 ダンパ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017209727 2017-10-30
JP2017-209727 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019087677A1 true WO2019087677A1 (ja) 2019-05-09

Family

ID=66333270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037290 WO2019087677A1 (ja) 2017-10-30 2018-10-04 ダンパ

Country Status (3)

Country Link
JP (1) JP7143856B2 (ja)
DE (1) DE112018004984T5 (ja)
WO (1) WO2019087677A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022121098A (ja) * 2021-02-08 2022-08-19 株式会社ユタカ技研 ダンパ機能付き伝動装置及びトルクコンバータ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347525A (ja) * 1986-08-16 1988-02-29 Atsugi Motor Parts Co Ltd 捩り振動減衰装置
JPH02134415A (ja) * 1988-11-15 1990-05-23 Daikin Mfg Co Ltd ダンパーディスク
JP2000179574A (ja) * 1998-12-18 2000-06-27 Exedy Corp ダンパーディスク組立体
JP2016008712A (ja) * 2014-06-26 2016-01-18 アイシン精機株式会社 ダンパ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3943849B2 (ja) 2001-03-09 2007-07-11 株式会社エクセディ ダンパー機構

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347525A (ja) * 1986-08-16 1988-02-29 Atsugi Motor Parts Co Ltd 捩り振動減衰装置
JPH02134415A (ja) * 1988-11-15 1990-05-23 Daikin Mfg Co Ltd ダンパーディスク
JP2000179574A (ja) * 1998-12-18 2000-06-27 Exedy Corp ダンパーディスク組立体
JP2016008712A (ja) * 2014-06-26 2016-01-18 アイシン精機株式会社 ダンパ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022121098A (ja) * 2021-02-08 2022-08-19 株式会社ユタカ技研 ダンパ機能付き伝動装置及びトルクコンバータ
JP7429661B2 (ja) 2021-02-08 2024-02-08 株式会社ユタカ技研 トルクコンバータ

Also Published As

Publication number Publication date
DE112018004984T5 (de) 2020-06-04
JPWO2019087677A1 (ja) 2020-11-12
JP7143856B2 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
EP2711586B1 (en) Torque fluctuation absorber
US5976020A (en) Torsional vibration damper with rolling bodies as coupling
JP5625676B2 (ja) トルク変動吸収装置
WO2011113410A1 (de) Drehschwingungstilger
JP5633577B2 (ja) 捩り振動減衰装置
JPH10238592A (ja) 相対回動可能な少なくとも2つのはずみ質量体の間に設けられた緩衝装置を有する装置
JPH0816500B2 (ja) 回転衝撃を補償するための装置
JPH1054442A (ja) ねじり振動ダンパ
US5032107A (en) Flywheel device with a torsional damper
CN102678818B (zh) 扭矩波动吸收器
US10428876B2 (en) Clutch disk with torsional angular-dependent friction damping device
US11674553B2 (en) Torsion damping device with main damper and additional damper
CN110325766A (zh) 过滤带轮
US20190186593A1 (en) Torque fluctuation inhibiting device, torque converter and power transmission device
EP3006774A1 (en) Damper apparatus with torque limiter
CN108286586A (zh) 减震装置
JP2001074102A (ja) トルク変動吸収装置
WO2019087677A1 (ja) ダンパ
KR102714881B1 (ko) 플랜지 부분 사이에서 오직 한 방향의 운동을 갖는 진자 진동 댐퍼를 갖는 클러치 디스크; 및 마찰 클러치
CN101349318B (zh) 扭转振动减振器
JP2016114193A (ja) ダンパ装置
US20200248752A1 (en) Torsion damping device with activatable friction device
CN102893053B (zh) 转矩传递装置
WO2010012078A1 (en) Dual mass flywheel with continuous non-linear system stiffness, overrunning ability, through axial translation against spring system
JPH0620915Y2 (ja) ト−ショナルダンパ付フライホイ−ル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550926

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18872876

Country of ref document: EP

Kind code of ref document: A1