WO2019087362A1 - 空間ベクトルパルス幅変調法 - Google Patents

空間ベクトルパルス幅変調法 Download PDF

Info

Publication number
WO2019087362A1
WO2019087362A1 PCT/JP2017/039792 JP2017039792W WO2019087362A1 WO 2019087362 A1 WO2019087362 A1 WO 2019087362A1 JP 2017039792 W JP2017039792 W JP 2017039792W WO 2019087362 A1 WO2019087362 A1 WO 2019087362A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current supply
period
current
supply period
Prior art date
Application number
PCT/JP2017/039792
Other languages
English (en)
French (fr)
Inventor
田中 正一
Original Assignee
田中 正一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中 正一 filed Critical 田中 正一
Priority to PCT/JP2017/039792 priority Critical patent/WO2019087362A1/ja
Publication of WO2019087362A1 publication Critical patent/WO2019087362A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to space vector pulse width modulation, and more particularly to dead state space vector pulse width modulation for multiphase motor driving.
  • FIG. 1 shows a conventional three-phase motor drive circuit for driving a three-phase induction motor or a three-phase synchronous motor.
  • the star-connected (Wye) type stator coil 1 comprises a U-phase coil 1U, a V-phase coil 1V, and a W-phase coil 1W.
  • the stator coil 1 is connected to a three-phase inverter 3.
  • Three-phase inverter 3 includes U-phase leg 3U, V-phase leg 3V, and W-phase leg 3W.
  • the U-phase leg 3U comprises an upper arm switch 31 and a lower arm switch 32 connected in series.
  • the V-phase leg 3V includes an upper arm switch 33 and a lower arm switch 34 connected in series.
  • the W-phase leg 3W comprises an upper arm switch 35 and a lower arm switch 36 connected in series.
  • the switches 31 to 36 each comprise an IGBT and an antiparallel diode.
  • the phase coil 1U is connected to the DC power supply 5 through the leg 3U.
  • the phase coil 1V is connected to the DC power supply 5 through the leg 3V.
  • the phase coil 1W is connected to the DC power supply 5 through the leg 3W.
  • the DC power supply 5 includes a battery 51 and a capacitor 52 connected in parallel.
  • the battery 51 has an internal resistance rb, and the capacitor 52 has an internal resistance rc.
  • the DC power supply 5 applies a power supply voltage Vd to the inverter 3 to supply a power supply current I5.
  • the leg 3U applies a U-phase voltage V1 to the phase coil 1U to supply a U-phase current I1.
  • the leg 3V applies a V-phase voltage V2 to the V-phase coil 1V to supply a V-phase current I2.
  • the leg 3W applies a W-phase voltage V3 to the W-phase coil 1W to supply a W-phase current I3.
  • the controller 100 controls the pulse width modulation (PWM) operation of the inverter 3.
  • PWM pulse width modulation
  • the inverter 3 applies the three-phase AC voltage V1-V3 to the stator coil 1.
  • FIG. 2 shows fundamental waveforms of three-phase voltages V1, V2, and V3 in the range of 360 degrees of electrical angle.
  • the six phase periods (T1-T6) shown in FIG. 2 are arranged in this 360 degree electrical range.
  • the inverter 3 is driven by three-phase PWM (pulse width modulation).
  • Three-phase PWM includes triangular wave PWM or space vector PWM (SVPWM).
  • FIG. 3 shows a triangular wave carrier signal St used in conventional triangular wave PWM. Carrier signal St is compared with phase voltage signals V1X, V2X and V3X.
  • FIG. 4 shows the states of the switches 31 to 36 determined by the comparison result.
  • one PWM cycle period TC shown in FIG. 4 has periods TO, TA, and TB.
  • the period T0 corresponds to the zero vector area (000 or 111).
  • the period TA corresponds to the vector (110), and the period TB corresponds to the vector (100).
  • FIG. 5 is a state diagram showing conventional SVPWM.
  • the SVPWM uses eight vectors (000-111).
  • a voltage vector is formed by two of the six vectors (100-101) excluding the zero vectors (000) and (111).
  • a composite vector of U-phase vector (100) and -W-phase (110) is formed in region 11, and a composite vector of -W-phase vector (110) and V-phase vector (010) is formed in region 12.
  • a composite vector of V-phase vector (010) and -U-phase vector (011) is formed in region 13, and a composite vector of -U-phase vector (011) and W-phase vector (001) is formed in region 14.
  • a composite vector of W-phase vector (001) and -V-phase vector (101) is formed in region 15, and a composite vector of -V-phase vector (101) and U-phase vector (100) is formed in region 16.
  • FIG. 6 shows an example of the state of the switches 31 to 36 corresponding to a predetermined composite vector in the area 11.
  • Each PWM cycle period TC comprises current supply periods TA and TB and a zero vector period T0.
  • the current supply period TA corresponds to a vector (100)
  • the current supply period TB corresponds to a vector (110).
  • the DC power supply 5 does not supply a phase current to the stator coil 1, and only the freewheel current flows in the stator coil 1.
  • FIGS. 7 and 8 are wiring diagrams showing the power supply current I5 supplied to the inverter 3 by the DC power supply 5 in the region 11.
  • FIG. Freewheeling current is ignored.
  • FIG. 7 shows a current supply period TA
  • FIG. 8 shows a current supply period TB.
  • the power supply current I5 consists of two phase currents having relatively small amplitudes.
  • the internal resistance r of the DC power supply 5 generates a resistive loss that is proportional to the square of the current I5.
  • internal resistance r generates a resistive loss proportional to the square of the sum of phase currents I2 and I3 in period TA, and a resistive loss proportional to the square of the sum of phase currents I1 and I2 in period TB.
  • Patent application 1 from the applicant discloses a four-leg inverter connected to a series three-phase winding.
  • the four-leg inverter can execute single-phase mode in addition to three-phase mode. According to this single phase mode, the number of turns and the number of poles of the stator coil are tripled respectively. According to this single phase mode, the three phase induction motor is driven as a single phase induction motor.
  • One object of the present invention is to provide a space vector pulse width modulation method capable of loss reduction.
  • Each vector used in space vector modulation indicates the state of all legs of the inverter.
  • the space vector pulse width modulation (SVPWM) of the present invention uses at least six subvectors. In these subvectors, at least one leg is dead. This dead leg, called the dead leg, has upper and lower arm switches turned off.
  • this dead state equation SVPWM one or two zero vectors and six subvectors are used.
  • six major vectors are used in addition to one or two zero vectors and six minor vectors.
  • a three-phase inverter, a symmetric six-phase inverter, and a four-leg inverter can be employed as the inverter.
  • the dead state space vector pulse width modulation method of the present invention reduces the amplitude of the current flowing through the battery, the smoothing capacitor and some switches of the inverter. This achieves a reduction in their resistive losses and an increase in battery life.
  • the motor device of the present invention is particularly effective for electric vehicles and hybrid vehicles. This is because these traction motor drive inverters have a very low PWM duty ratio, such as 10%, for most of their operating time.
  • Each PWM cycle period of the three-phase inverter has two current supply periods. Each of the two current supply periods has one dead leg. Three-phase coils are star-connected. In each current supply period, the battery supplies common phase current only to the two phase coils of the stator coil. These two phase coils are not connected to the dead leg. Dead legs are replaced in turn.
  • these two current supply periods are formed continuously in each PWM cycle period.
  • the battery supplies a relatively high amplitude first phase current.
  • the battery supplies a relatively low amplitude second phase current.
  • the inverter comprises a plurality of three-phase inverters separately connected to a plurality of three-phase coils.
  • the plurality of three-phase inverters have dead states that do not overlap each other in the light load region. Battery losses are thereby significantly reduced in the light load region.
  • two three-phase inverters are connected to a stator coil consisting of six-phase coils.
  • a plurality of three-phase inverters are separately connected to stator coils of different motors.
  • the inverter comprises a four leg inverter connected to a series three phase winding.
  • the battery supplies phase current to each phase coil of the series 3-phase winding in time sequence. Thereby, battery loss is reduced in the light load region.
  • FIG. 1 is a wiring diagram showing a battery-powered three-phase motor device.
  • FIG. 2 is a timing chart showing waveforms of fundamental wave components of the three-phase voltage in FIG.
  • FIG. 3 is a timing chart showing the carrier signal of the conventional triangular wave PWM.
  • FIG. 4 is a timing chart showing the state of three-phase voltage in the triangular wave PWM shown in FIG.
  • FIG. 5 is a vector diagram for explaining a conventional space vector PWM.
  • FIG. 6 is a timing chart showing an exemplary state of three-phase voltages in the space vector PWM shown in FIG.
  • FIG. 7 is a wiring diagram showing a switching state corresponding to one voltage vector in the conventional space vector PWM.
  • FIG. 8 is a wiring diagram showing a switching state corresponding to another voltage vector in the conventional space vector PWM.
  • 9 to 48 are views showing each embodiment of the present invention.
  • FIG. 9 is a diagram showing the state of the three-phase PWM voltage in the second phase region.
  • FIG. 10 is a diagram showing the state of the three-phase PWM voltage in the third phase region.
  • FIG. 11 is a diagram showing the state of the three-phase PWM voltage in the fourth phase region.
  • FIG. 12 is a diagram showing the state of the three-phase PWM voltage in the fifth phase region.
  • FIG. 13 is a diagram showing the state of the three-phase PWM voltage in the sixth phase region.
  • FIG. 14 is a diagram showing the state of the three-phase PWM voltage in the first phase region.
  • FIG. 14 is a diagram showing the state of the three-phase PWM voltage in the first phase region.
  • FIG. 15 is a wiring diagram showing the phase current in the first current supply period of the second phase region.
  • FIG. 16 is a wiring diagram showing the phase current in the second current supply period of the second phase region.
  • FIG. 17 is a wiring diagram showing phase currents in the first current supply period of the third phase region.
  • FIG. 18 is a wiring diagram showing the phase current in the second current supply period of the third phase region.
  • FIG. 19 is a wiring diagram showing the phase current in the first current supply period of the fourth phase region.
  • FIG. 20 is a wiring diagram showing phase currents in a second current supply period of the fourth phase region.
  • FIG. 21 is a wiring diagram showing the phase current in the first current supply period of the fifth phase region.
  • FIG. 22 is a wiring diagram showing the phase current in the second current supply period of the fifth phase region.
  • FIG. 23 is a wiring diagram showing the phase current in the first current supply period of the sixth phase region.
  • FIG. 24 is a wiring diagram showing the phase current in the second current supply period of the sixth phase region.
  • FIG. 25 is a wiring diagram showing the phase current in the first current supply period of the first phase region.
  • FIG. 26 is a wiring diagram showing the phase current in the second current supply period of the first phase region.
  • FIG. 27 is a vector diagram showing six subvectors.
  • FIG. 28 is a timing chart showing current supply periods of three legs in the range of 360 electrical degrees.
  • FIG. 29 is a timing chart showing two current supply periods successive to each other.
  • FIG. 30 is a schematic wiring diagram showing a three-phase inverter.
  • FIG. 30 is a schematic wiring diagram showing a three-phase inverter.
  • FIG. 31 is a timing chart showing a state in which the end of one preceding current supply period is delayed from the start of another subsequent current supply period.
  • FIG. 32 is a wiring diagram showing a battery-powered six-phase motor device.
  • FIG. 33 shows the state of the six-phase PWM voltage shown in FIG.
  • FIG. 34 is a wiring diagram showing a battery-powered four-wheel drive motor device.
  • FIG. 35 shows the state of the 12-phase PWM voltage.
  • FIG. 36 is a wiring diagram showing a circuit for supplying power to three three-phase motors from a battery.
  • FIG. 37 is a diagram showing the state of the 9-phase PWM voltage.
  • FIG. 38 is a wiring diagram showing a four-leg inverter connected to a series three-phase winding.
  • FIG. 39 is a vector diagram showing six subvectors.
  • FIG. 40 is a block circuit diagram showing a state in which power is supplied to the first phase coil in the dead state SVPWM mode.
  • FIG. 41 is a block circuit diagram showing a state in which power is supplied to the second phase coil in the dead state SVPWM mode.
  • FIG. 42 is a block circuit diagram showing a state in which power is supplied to the third phase coil in the dead state SVPWM mode.
  • FIG. 43 is a diagram showing the state of the four-phase PWM voltage in the dead state type SVPWM mode.
  • FIG. 44 is a vector diagram showing 12 phase regions.
  • FIG. 45 is a state diagram showing the state of the leg corresponding to the major vector and the minor vector.
  • FIG. 46 is a vector diagram showing one voltage vector on the sub vector.
  • FIG. 47 is a timing chart showing an arrangement example of two sub-current supply periods.
  • FIG. 48 is a schematic view showing the state of the inverter corresponding to each current supply
  • FIG. 2 shows fundamental wave components of three-phase voltages V1, V2, and V3 applied to the phase coils 1U, 1V, and 1W by the legs 3U, 3V, and 3W of the three-phase inverter 3.
  • Six phase regions T2-T1 shown in FIG. 2 are included in the electrical angle of 60 degrees of the phase voltage V1-V. Each of the phase regions T2-T1 corresponds to an electrical angle of 60 degrees.
  • the DC power supply 5 supplies a power supply current I5 to the inverter 3, and the inverter 3 supplies three phase currents I1, I2 and I3 to the three phase coils 1U-1W of the stator coil 1.
  • the supply current I5 corresponds to the difference between the three phase currents I1-I3 and the freewheel current.
  • the controller 100 implements the dead state SVPWM mode in a partial load environment where the PWM duty ratio of the leg is less than a predetermined value.
  • this dead state SVPWM mode one phase current included in the power supply current I5 is cut off in order.
  • the DC power supply 5 supplies phase current to one of the three phase coils 1U-1W. The combination of pairs to which the phase current is supplied is sequentially changed.
  • DC power supply 5 does not supply phase current I3 to phase coil 1W.
  • the DC power supply 5 does not supply the phase current I2 to the phase coil 1V.
  • the DC power supply 5 does not supply the phase current I1 to the phase coil 1U in a current supply period in which the DC power supply 5 can supply the phase currents 12 and 13 to the phase coils 1V and 1W.
  • Dead state SVPWM mode employing two phase modulation is described with reference to FIGS. 9-14.
  • the PWM carrier frequency is 10 kHz
  • one PWM cycle period TC is 100 microseconds.
  • the controller 100 has a first counter and a second counter that respectively count 1 MHz clock signals. These counters are reset at the beginning of each PWM cycle period TC.
  • the PWM cycle period TC includes a current supply period TA, a current supply period TB, and a freewheel period TF.
  • the freewheel period TF is a so-called zero vector period in which phase voltages V1 to V3 outputted by the three legs 3U, 3V and 3W are substantially equal to one another.
  • the DC power supply 5 does not supply current to the inverter 3 in the freewheel period TF.
  • freewheel current can circulate in the inverter 3 and the stator coil 1.
  • one of the three phase voltages V1-V3 is fixed to the highest potential (H) or the lowest potential (L).
  • the highest potential (H) is approximately equal to the positive potential of the DC power supply 5, and the lowest potential (L) is approximately equal to the negative potential of the DC power supply 5.
  • This fixed phase voltage is called fixed phase voltage (Fix).
  • a leg that outputs a fixed phase voltage (Fix) is called a fixed leg. When the upper arm switch of the fixed leg is turned on, the fixed leg outputs the highest potential (H). When the lower arm switch of the fixed leg is turned on, this fixed leg outputs the lowest potential (L).
  • the fixed leg 3U In the phase region T2 shown in FIG. 9, the fixed leg 3U outputs a high level potential (H). In the phase region T3 shown in FIG. 10, the fixed leg 3W outputs a low level potential (L). In the phase region T4 shown in FIG. 11, the fixed leg 3V outputs a high level potential (H). In the phase region T5 shown in FIG. 12, the fixed leg 3U outputs a low level potential (L). In the phase region T6 shown in FIG. 13, the fixed leg 3W outputs a high level potential (H). In the phase region T1 shown in FIG. 14, the fixed leg 3V outputs a low level potential (L).
  • the remaining two legs except the fixed leg are called PWM legs.
  • the first PWM leg outputs a voltage opposite to that of the fixed leg in the first current supply period TA.
  • the second PWM leg outputs a voltage opposite to that of the fixed leg in the second current supply period TB.
  • the DC power supply 5 supplies a predetermined phase current to the stator coil 1 during the current supply period.
  • the second PWM leg is in the dead state (D) in the first current supply period TA, and the first PWM leg is in the dead state (D) in the second current supply period TB.
  • both the upper arm switch and the lower arm switch of the dead leg are turned off.
  • This dead state (D) is essentially different from the known dead time in a very short transient period in which the states of the upper arm switch and the lower arm switch of one leg change.
  • the conventional dead time is a very short period for inhibiting the short circuit current flowing through the upper arm switch and the lower arm switch of one leg, for example, 1 microsecond.
  • the predetermined one phase current supplied to the predetermined one PWM leg in the current supply periods TA and TB by the DC power supply 5 is inhibited.
  • freewheel current can flow, for example, through anti-parallel diodes in the dead state (D).
  • the freewheel current is formed by the magnetic energy stored in the inductance of the phase coil and is not supplied from the DC power supply 5.
  • the freewheeling current does not cause power loss in the DC power supply 5.
  • the first current supply period TA is provided at the beginning of each PWM cycle period TC.
  • the current supply period TA ends when the count value which the first counter counts from the start of each PWM cycle period TC matches the predetermined first time point t1. Therefore, the duty ratio of the current supply period TA is TA / TC.
  • the second current supply period TB is provided at the end of each PWM cycle period TC.
  • the current supply period TB starts when the second count value counted by the second counter from the start of each PWM cycle period TC coincides with the predetermined second time point t2.
  • the current supply period TB ends at the end of the PWM cycle period TC. Therefore, the duty ratio of the current supply period TB is TB / TC.
  • the two current supply periods TA and TB do not overlap.
  • the freewheel period TF is shortened.
  • the freewheel period TF is zero.
  • the sum of the two current supply periods TA and TB is longer than the PWM cycle period TC, the two current supply periods TA and TB overlap.
  • the length of the overlap period in which the two current supply periods TA and TB overlap is TA + TB ⁇ TC. According to this embodiment, this overlap period is shortest.
  • FIG. 9 shows the second phase period T2.
  • the phase voltage V2 becomes the lowest potential (L), and the phase voltage V3 becomes the dead state (D).
  • the phase voltage V3 becomes the lowest potential (L), and the phase voltage V2 becomes the dead state (D).
  • the phase voltages V2 and V3 have the highest potential (H) in the freewheel period TF.
  • the DC power supply 5 supplies the phase current I2 to the phase coils 1U and 1V in the current supply period TA, and supplies the phase current I3 to the phase coils 1U and 1W in the current supply period TB.
  • FIG. 10 shows the third phase period T3.
  • the phase voltage V1 becomes the highest potential (H), and the phase voltage V2 becomes the dead state (D).
  • the phase voltage V2 becomes the highest potential (H), and the phase voltage V1 becomes the dead state (D).
  • the phase voltages V1 and V2 have the lowest potential (L) in the freewheel period TF.
  • the DC power supply 5 supplies the phase current I1 to the phase coils 1U and 1W in the current supply period TA, and supplies the phase current I2 to the phase coils 1V and 1W in the current supply period TB.
  • FIG. 11 shows the fourth phase period T4.
  • the phase voltage V1 becomes the lowest potential (L), and the phase voltage V3 becomes the dead state (D).
  • the phase voltage V3 becomes the lowest potential (L), and the phase voltage V1 becomes the dead state (D).
  • the phase voltages V1 and V3 have the highest potential (H) in the freewheel period TF.
  • the DC power supply 5 supplies the phase current I1 to the phase coils 1U and 1V in the current supply period TA, and supplies the phase current I3 to the phase coils 1V and 1W in the current supply period TB.
  • FIG. 12 shows the fifth phase period T5.
  • the phase voltage V2 becomes the highest potential (H), and the phase voltage V3 becomes the dead state (D).
  • the phase voltage V3 becomes the highest potential (H), and the phase voltage V2 becomes the dead state (D).
  • the phase voltages V2 and V3 have the lowest potential (L) in the freewheel period TF.
  • the DC power supply 5 supplies the phase current I2 to the phase coils 1U and 1V in the current supply period TA, and supplies the phase current I3 to the phase coils 1U and 1W in the current supply period TB.
  • FIG. 13 shows a sixth phase period T6.
  • the phase voltage V1 becomes the lowest potential (L), and the phase voltage V2 becomes the dead state (D).
  • the phase voltage V2 becomes the lowest potential (L), and the phase voltage V1 becomes the dead state (D).
  • the phase voltages V1 and V2 have the highest potential (H) in the freewheel period TF.
  • the DC power supply 5 supplies the phase current I1 to the phase coils 1U and 1W in the current supply period TA, and supplies the phase current I2 to the phase coils 1V and 1W in the current supply period TB.
  • FIG. 14 shows the first phase period T1.
  • the phase voltage V1 becomes the highest potential (H), and the phase voltage V3 becomes the dead state (D).
  • the phase voltage V3 becomes the highest potential (H), and the phase voltage V1 becomes the dead state (D).
  • the phase voltages V1 and V3 have the lowest potential (L) in the freewheel period TF.
  • the DC power supply 5 supplies the phase current I1 to the phase coils 1U and 1V in the current supply period TA, and supplies the phase current I3 to the phase coils 1V and 1W in the current supply period TB.
  • FIGS. 15 to 26 show the states of the legs 3U-3W in the current supply periods TA and TB of the phase period T1-T6.
  • FIG. 15 shows the current supply period TA of the phase period T2
  • FIG. 16 shows the current supply period TB of the phase period T2.
  • FIG. 17 shows the current supply period TA of the phase period T3, and
  • FIG. 18 shows the current supply period TB of the phase period T3.
  • FIG. 19 shows a current supply period TA of the phase period T4, and
  • FIG. 20 shows a current supply period TB of the phase period T4.
  • FIG. 21 shows a current supply period TA of the phase period T5, and
  • FIG. 22 shows a current supply period TB of the phase period T5.
  • FIG. 23 shows a current supply period TA of the phase period T6, and FIG.
  • FIG. 24 shows a current supply period TB of the phase period T6.
  • FIG. 25 shows a current supply period TA of the phase period T1
  • FIG. 26 shows a current supply period TB of the phase period T1.
  • the DC power supply 5 supplies the power supply current IA in the current supply period TA, and supplies the power supply current IB in the current supply period TB.
  • each of the switches 31 to 36 has an on resistance rt
  • the DC power supply 5 has an equivalent resistance r.
  • the equivalent resistance r includes the resistance rb of the battery 51 and the resistance rc of the capacitor 52.
  • battery 51 supplies charging current to capacitor 52.
  • capacitor 52 generates power loss both during its charge and during its discharge.
  • FIG. 27 is a vector diagram showing the dead state equation SVPWM of this embodiment.
  • This dead state equation SVPWM indicated by a solid line uses six subvectors (1D0, D10, 01D, 0D1, D01, and 10D).
  • the freewheel period TF corresponds to the zero vector (000, 111).
  • the conventional SVPWM shown by broken lines uses six major vector major vectors (100, 110, 010, 011, 001 and 101).
  • the parameter (D) included in the subvector indicates the dead state of the leg.
  • the DC power supply 5 supplies phase currents I1, I2, and I to the stator coil 1 through the inverter 3.
  • the comparison mode which is the conventional PWM method, for example, the DC power supply 5 supplies phase currents I2 and I simultaneously.
  • the DC power supply 5 supplies the phase currents I2 and I in order.
  • the amplitudes of the phase currents I2 and I are 1 respectively. Furthermore, it is assumed that the internal resistance value of the DC power supply 5 is r and the resistance value of the inverter 3 is rt. Therefore, the amplitude of the power supply current I5 is 2 in the conventional PWM method. The resistance loss of the DC power supply 5 is 4r, and the loss of the inverter is 6rt. Inverter losses due to freewheel current are ignored.
  • the resistance loss of the DC power supply 5 is 2r, and the loss of the inverter is 4rt. Inverter losses due to freewheel current are ignored. After all, according to the dead state SVPWM mode, the power loss of the DC power supply 5 is halved and the conduction loss of the inverter is 2 /.
  • the dead state type SVPWM mode of this embodiment which avoids overlapping of a plurality of phase currents as much as possible, the power loss of the DC power supply 5 and the inverter 3 is reduced. Be done. Thereby, the loss of battery 51, smoothing capacitor 52, and inverter 3 is reduced. It is important that the electrical resistance of the battery 51 be related to the frequency of the current.
  • the electrical resistance value of the battery 51 increases in a high frequency region such as a PWM operation.
  • the resistance of the degraded battery 51 is twice the initial resistance value. As a result, the temperature rise of the deteriorated battery is further promoted, and the battery deterioration is accelerated. Therefore, loss reduction in the dead state SVPWM mode is particularly effective in a degraded battery.
  • phase current I3 is half of the phase current I2
  • the phase current I2 is 1 and the phase current I3 is 0.5.
  • the loss of the DC power supply 5 is 2.25r.
  • the loss of the DC power supply 5 is 1.5r.
  • phase current I3 is 30% of the phase current I2
  • the phase current I2 is 1
  • the phase current I3 is 0.3.
  • the loss of the DC power supply 5 is 1.69r.
  • the loss of the DC power supply 5 is 1.3r.
  • the electrical angle of 360 degrees is divided into 12 phase regions P1-P12 corresponding to 30 electrical degrees, respectively.
  • the phase region P1 is in the range of 60 degrees to 90 degrees of the electrical angle
  • the phase region P2 is in the range of 90 degrees to 120 degrees of the electrical angle.
  • the phase region P3 is in the range of 120 degrees-150 degrees of the electrical angle
  • the phase region P4 is in the range of 150 degrees-180 degrees of the electrical angle.
  • the phase region P5 is in the range of 180 degrees-210 degrees of electrical angle
  • the phase region P6 is in the range of 210 degrees-240 degrees of electrical angle.
  • the phase region P7 is in the range of 240 degrees to 270 degrees of the electrical angle, and the phase region P8 is in the range of 270 degrees to 300 degrees of the electrical angle.
  • the phase region P9 is in the range of 300 degrees to 330 degrees of the electrical angle, and the phase region P10 is in the range of 330 degrees to 360 degrees of the electrical angle.
  • the phase region P11 is in the range of 0 ° -30 ° of the electrical angle, and the phase region P12 is in the range of 30 ° -60 ° of the electrical angle.
  • the phase region T2 consists of phase regions P1 and P2.
  • the phase region T3 consists of phase regions P3 and P4.
  • the phase region T4 consists of phase regions P5 and P6.
  • the phase region T5 consists of phase regions P7 and P8.
  • the phase region T6 consists of phase regions P9 and P10.
  • the phase region T1 consists of phase regions P1 and P2.
  • the leg 3U is a fixed leg that outputs a fixed potential (Fix) in the phase regions P1, P2, P7, and P8.
  • the leg 3V is a fixed leg in the phase regions P5, P6, P11 and P12.
  • the leg 3W is a fixed leg in the phase regions P3, P4, P9 and P10.
  • the PWM leg 3V has a current supply period TB, and the PWM leg 3W has a current supply period TA.
  • the PWM leg 3V has a current supply period TA, and the PWM leg 3W has a current supply period TB.
  • the PWM leg 3U has a current supply period TB, and the PWM leg 3V has a current supply period TA.
  • the PWM leg 3U has a current supply period TA, and the PWM leg 3V has a current supply period TB.
  • the PWM leg 3U has a current supply period TA, and the PWM leg 3W has a current supply period TB.
  • the PWM leg 3U has a current supply period TB, and the PWM leg 3W has a current supply period TA.
  • FIG. 29 is a timing chart showing continuously provided current supply periods TA and TB.
  • the phase current of the current supply period TB has a larger amplitude than the phase current of the current supply period TA.
  • the current supply period TB is ended at the start time t0 of the PWM cycle period TC in which the current supply period TA is started. Thereby, the rapid decrease of the power supply current I5 is suppressed. As a result, the surge voltage generated in the high potential DC link line is reduced.
  • FIG. 30 is a block circuit diagram showing the three-phase motor device shown in FIG.
  • FIG. 31 is a timing chart showing an example of the potential state in the phase region P1 of the six switches 31 to shown in FIG.
  • the upper arm switch 31 is always on, and the lower arm switch 32 is always off.
  • the upper arm switches 33 and 35 are always off during the current supply periods TA and TB.
  • the lower arm switch 34 is substantially turned off in the current supply period TB and turned on in the current supply period TA.
  • the lower arm switch 36 is turned on in the current supply period TB and turned off in the current supply period TA.
  • the current supply period TA starts at time t0.
  • the current supply period TB ends at time tx.
  • the time tx is delayed by the delay time TX from the time t0.
  • This delay time TX is, for example, one microsecond.
  • the potential of the DC link line connecting the positive electrode of the DC power supply 5 and the inverter 3 is lowered by the start of the current supply period TA.
  • the potential of the DC link line rises due to the surge voltage generated from the end time tx of the current supply period TB. However, the potential of this DC link line is already lowered by the start of the current supply period TA. Therefore, the potential rise of the DC link line is suppressed.
  • the two current supply periods TA and TB can have the shortest overlap period in the heavy load mode where the phase current is increased. Therefore, the power loss of DC power supply 5 and inverter 3 can be reduced.
  • the motor has a so-called symmetrical six-phase stator coil consisting of two three-phase coils 1 and 2.
  • the star-connected three-phase coil 1 comprises a U-phase coil 1U, a V-phase coil 1V, and a W-phase coil 1W.
  • the star-connected three-phase coil 2 is composed of -U-phase coil 2U, -V-phase coil 2V, and -W-phase coil 2W.
  • Three-phase coil 1 is connected to three-phase inverter 3
  • three-phase coil 2 is connected to three-phase inverter 4.
  • Three-phase inverter 3 is equal to three-phase inverter 3 shown in FIG.
  • Three-phase inverter 4 consists of -U-phase leg 4U, -V-phase leg 4V, and -W-phase leg 4W.
  • the leg 4U applies the phase voltage V4 to the phase coil 2U
  • the leg 4V applies the phase voltage V5 to the phase coil 2V
  • the leg 4W applies the phase voltage V6 to the phase coil 2W.
  • Phase voltages V1 and V4 have phases opposite to each other.
  • Phase voltages V2 and V5 have opposite phases.
  • Phase voltages V3 and V6 have phases opposite to each other.
  • FIG. 33 shows the state of phase voltages V1 to V6 in the dead state SVPWM mode.
  • Each of phase voltages V1-V6 has an active state (A), a dead state (D), a free wheel state (Fr), and a potential fixed state (Fix).
  • the phase voltage is fixed to either the highest potential (H) or the lowest potential (L).
  • the battery 51 supplies power source current to the stator coils 1 and 2 through the leg in the active state (A) and the leg in the potential fixing state (Fix).
  • the active state (A) leg has the opposite potential as the voltage fixed state (Fix) leg.
  • phase current flows to the two phase coils through the PWM leg in the active state (A) and the fixed leg in the potential fixed state (Fix) in the current supply period.
  • the remaining one leg is dead (D).
  • the phase voltage is the same as the potential fixed state (Fix). This forms a freewheeling period (TF).
  • Each PWM cycle period TC of the three-phase inverter 3 includes current supply periods TA1 and TB1.
  • Each PWM cycle period TC of the three-phase inverter 4 includes current supply periods TA2 and TB2.
  • the current supply periods TA1, TA2, TB1, and TB2 do not overlap each other in a light load state where the PWM duty ratio is small.
  • FIG. 33 shows phase periods in which the phase voltages V2 and V5 have the potential fixed state (Fix).
  • the phase voltage V2 is at the highest potential (H)
  • the phase voltage V5 is at the lowest potential (L).
  • the phase voltage V5 is at the highest potential (H).
  • the leg having the voltage fixed state (Fix) is alternated every 60 degrees of electrical angle.
  • the phase voltage V1 is in the active state (A). In other words, when the phase voltage V2 is at the highest potential (H), the phase voltage V1 is at the lowest potential (L). When the phase voltage V2 is at the lowest potential (L), the phase voltage V1 is at the highest potential (H). In the current supply period TA1, the phase voltage V3 is in the dead state (D), and the phase voltages V4 and V6 are in the freewheel state (Fr).
  • the phase voltage V6 is in the active state (A). In other words, when the phase voltage V5 is at the highest potential (H), the phase voltage V6 is at the lowest potential (L). When the phase voltage V5 is at the lowest potential (L), the phase voltage V6 is at the highest potential (H). In the current supply period TA2, the phase voltage V4 is in the dead state (D), and the phase voltages V1 and V3 are in the free wheel state (Fr).
  • the phase voltage V3 is in the active state (A). In other words, when the phase voltage V2 is at the highest potential (H), the phase voltage V3 is at the lowest potential (L). When the phase voltage V2 is at the lowest potential (L), the phase voltage V3 is at the highest potential (H). In the current supply period TB1, the phase voltage V1 is in the dead state (D), and the phase voltages V4 and V6 are in the free wheel state (Fr).
  • the phase voltage V4 is in the active state (A). In other words, when the phase voltage V5 is at the highest potential (H), the phase voltage V4 is at the lowest potential (L). When the phase voltage V5 is at the lowest potential (L), the phase voltage V4 is at the highest potential (H). In the current supply period TB2, the phase voltage V6 is in the dead state (D), and the phase voltages V1 and V3 are in the free wheel state (Fr).
  • each current supply period TA1, TA2, TB1, and TB2 are set in each PWM cycle period TC.
  • the battery 51 separately supplies four phase currents in the current supply periods TA1, TA2, TB1, and TB2.
  • three-phase inverters 3 and 4 are each operated in the dead state SVPWM mode.
  • the current supply periods TA1, TA2, TB1, and TB2 do not overlap each other.
  • the power loss of the DC power supply 5 is significantly reduced.
  • an overlap of four current supply periods TA1, TA2, TB1, and TB2 is allowed.
  • the three-phase coil 1 is a stator coil of a first three-phase motor
  • the three-phase coil 2 is a stator coil of a second three-phase motor.
  • the first motor is a traction motor for driving the left wheel of the electric vehicle
  • the second motor is a traction motor for driving the right wheel of the electric vehicle.
  • the first motor is a traction motor of an electric vehicle
  • the second motor is a motor for driving an air conditioning compressor of the electric vehicle.
  • the current supply periods designated by the active states (A) of the two motors are arranged so as not to overlap as much as possible within a common PWM cycle period. Thereby, the loss of DC power supply 5 can be reduced.
  • a fourth embodiment is described with reference to FIGS. 34 and 35.
  • four three-phase motors drive the four wheels of the electric vehicle separately.
  • the stator coil 1A of the first motor is connected to the three-phase inverter 3A.
  • the stator coil 1B of the second motor is connected to the three-phase inverter 3B.
  • the stator coil 1C of the third motor is connected to the three-phase inverter 3C.
  • the stator coil 1D of the fourth motor is connected to the three-phase inverter 3D.
  • Three-phase inverter 3A outputs phase voltage V1-V3
  • three-phase inverter 3B outputs phase voltage V4-V6
  • three-phase inverter 3C outputs phase voltage V7-V9
  • three-phase inverter 3D outputs phase voltage V10.
  • -V12 is output.
  • FIG. 35 is a timing chart showing the state of the phase voltages V1-V12.
  • the four three-phase inverters 3A-3D have a common PWM cycle period TC.
  • each leg of three-phase inverter 3A-3D has a current supply period in each PWM cycle period TC.
  • the current supply periods indicated by the active state (A) do not overlap each other.
  • three-phase inverters 3A-3D each have two active states (A) which do not overlap each other.
  • the active regions (A) of the phase inverters AD can overlap one another. According to this embodiment, the power loss of the DC power supply 5 can be reduced.
  • the three-phase coil 1A is a stator coil of the first motor
  • the three-phase coil 1B is a stator coil of the second motor.
  • the first motor is a three-phase motor for driving the left wheel of the electric vehicle
  • the second motor is a three-phase motor for driving the right wheel of the electric vehicle.
  • the three-phase coil 1E is a stator coil of the air conditioning compressor drive motor.
  • the three-phase coil 1A is connected to the three-phase inverter 3A
  • the three-phase coil 1B is connected to the three-phase inverter 3B
  • the three-phase coil 3E is connected to the three-phase inverter 3E.
  • Three-phase inverter 3A outputs phase voltage V1-V3
  • three-phase inverter 3B outputs phase voltage V4-V6, and three-phase inverter 3E outputs phase voltage V7-V9.
  • FIG. 37 is a timing chart showing the states of the phase voltages V1 to V9.
  • the three three-phase inverters 3A, 3B and 3E have a common PWM cycle period TC.
  • the active states (A) of the three-phase inverters 3A, 3B and 3E do not overlap each other.
  • three-phase inverters 3A, 3B and 3E can have active states (A) overlapping one another. According to this embodiment, the power loss of the DC power supply 5 can be reduced.
  • FIG. 38 is a wiring diagram showing a three-phase motor drive device of this embodiment.
  • a stator coil consisting of three phase coils 1U, 1V, and 1W connected in series is called a series three-phase winding 1A.
  • the series three-phase winding 1A is connected to a four-leg inverter 3A consisting of four legs 3U, 3V, 3W, and 3X.
  • the four-leg inverter 3A includes upper arm switches 31, 33, 35, 37 and lower arm switches 32, 34, 36, 38.
  • the leg 3U is connected to the independent end of the phase coil 1U.
  • the leg 3V is connected to the junction of the phase coils 1U and 1V.
  • the leg 3W is connected to the connection point of the phase coils 1V and 1W.
  • the leg 3X is connected to the independent end of the phase coil 1W.
  • the leg 3U outputs the phase voltage V1, and the leg 3V outputs the phase voltage V2.
  • the leg 3W outputs a phase voltage V3 and the leg 3X outputs a phase voltage V4.
  • the controller 100 that controls the PWM operation of the four-leg inverter 3 has a delta mode and a dead state SVPWM mode.
  • phase voltage V4 output by the leg 3X is always equal to the phase voltage V1 output by the receiver 3U.
  • This delta mode is employed in the high speed region or high torque region.
  • FIG. 9 is a vector diagram showing a dead state SVPWM mode performed in a partial load region.
  • the DC power supply 5 sequentially supplies the U-phase current IU, the V-phase current IV, and the W-phase current IW in each PWM cycle period TC. Thereby, the power loss of DC power supply 5 is reduced.
  • Each of the six vectors (10DD, DD01, D10D, 01DD, DD10, and D01D) includes two dead leg dead states D.
  • FIG. 40 to 42 are schematic diagrams showing the dead state SVPWM mode.
  • FIG. 40 shows a first current supply period TX in which the DC power supply 5 supplies the U-phase current IU to the phase coil 1U.
  • FIG. 41 shows a second current supply period TY in which the DC power supply 5 supplies the V-phase current IV to the phase coil 1V.
  • FIG. 42 shows a first current supply period TZ in which the DC power supply 5 supplies the W-phase current IW to the phase coil 1W.
  • FIG. 43 is a state diagram showing the state of phase voltages V1-V4 in the dead state SVPWM mode.
  • the phase voltages V1 and V2 are in the active state (A) in the first current supply period TX, and the DC power supply 5 supplies the U-phase current IU to the phase coil 1U.
  • the phase voltage V1 becomes the highest potential (H)
  • the phase voltage V2 becomes the lowest potential (L).
  • the phase voltage V2 is at the highest potential (H).
  • the amplitude of the phase current IU is adjusted by adjusting the length of the first current supply period TX. It is prohibited for the DC power supply 5 to supply current to the phase coils 1V and 1W. Therefore, the phase voltages V3 and V4 are in the dead state (D). In other words, the switches 35-38 are turned off.
  • phase voltages V2 and V3 are in the active state (A) in the second current supply period TY, and the DC power supply 5 supplies the V-phase current IV to the phase coil 1V.
  • the amplitude of the phase current IV is adjusted by adjusting the length of the second current supply period TY. It is prohibited that the DC power supply 5 supply current to the phase coils 1U and 1W. Therefore, the phase voltages V1 and V4 are in the dead state (D). In other words, the switches 31-32 and 37-38 are turned off.
  • the phase voltages V3 and V4 are in the active state (A) in the third current supply period TZ, and the DC power supply 5 supplies the W-phase current IW to the phase coil 1W.
  • the amplitude of the phase current IW is adjusted by adjusting the length of the third current supply period TZ. It is prohibited that the DC power supply 5 supply current to the phase coils 1U and 1V. Thus, the phase voltages V1 and V2 are dead (D). In other words, the switches 31-34 are turned off.
  • the amplitude of the power supply current I5 supplied by the DC power supply 5 to the four-leg inverter 3A is reduced. Thereby, the power loss of DC power supply 5 is reduced.
  • the freewheel period TF becomes zero. Therefore, it is preferable that this dead state SVPWM mode is performed in a light load period in which the sum of the current supply periods TX, TY and TZ is equal to or less than the PWM cycle period TC.
  • the single-phase PWM mode can be implemented in a three-phase motor device having four-leg inverter 3A and series three-phase winding 1A shown in FIG. According to this single phase PWM mode, legs 3V and 3W are always paused, and only legs 3U and 3X are PWM driven. Thus, the DC power supply 5 applies single-phase AC voltage to the phase coils 1U, 1V, and 1W.
  • this single-phase PWM mode the number of poles and the number of turns of stator coil 1A are tripled. Therefore, the rotor needs to have three times as many poles.
  • An induction motor in which the number of rotor poles automatically matches the number of stator poles can easily execute this single-phase PWM mode.
  • the back electromotive force of stator coil 1A is approximately nine times that in delta mode. For this reason, this single phase PWM mode is suitable for engine starting and regenerative braking.
  • This dead state equation SVPWM is six in addition to the six main vectors (100, 110, 010, 011, 001 and 101) and at least one zero vector (000 or 111) employed in conventional SVPWM.
  • the subvectors (1D0, D10, 01D, 0D1, D01, and 10D) are adopted.
  • Each of the six subvectors has one dead leg, and each dead leg has a dead state (D).
  • FIG. 44 shows twelve phase regions formed by six major vectors and six subvectors. These twelve phase regions, each corresponding to a 30 degree electrical angle, can be called a sub-sector.
  • Subvector 1D0 divides main sector 11 into subsectors 11A and 11B.
  • Subvector D10 divides main sector 12 into subsectors 12A and 12B.
  • Subvector 01D divides main sector 13 into subsectors 13A and 13B.
  • Subvector 0D1 divides main sector 14 into subsectors 14A and 14B.
  • Subvector D01 divides main sector 15 into subsectors 15A and 15B.
  • Subvector 10D divides main sector 16 into subsectors 16A and 16B.
  • Three-phase inverter 3 shown in FIG. 30 is connected to star-connected stator coil 1.
  • the main vectors (100, 110, 010, 011, 001, and 101) and the subvectors (1D0, D10, 01D, 0D1, D01, and 10D) define the states of legs 3U, 3V, and 3W of the three-phase inverter Show.
  • FIG. 45 is a state diagram showing the states of the legs 3U, 3V, and 3W corresponding to each major vector and each minor vector.
  • an arbitrary voltage vector can be formed by the sum of two vectors selected from these major and minor vectors.
  • a voltage vector is formed by the sum of one major vector and one minor vector.
  • Two current supply periods TA and TB respectively corresponding to the major vector and the minor vector are arranged in each PWM cycle period (TC).
  • the current supply periods TA and TB can be divided.
  • two sub-current supply periods TA ' can be arranged before and after the current supply period TB.
  • the length of the current supply period TA is equal to the total length of the two sub-current supply periods TA '.
  • the zero vector (000 or 111) corresponds to the freewheel period TF already described.
  • FIG. 46 shows one voltage vector V1D0 on the subvector (1D0).
  • the voltage vector V1D0 corresponds to the sum of the voltage vector V100 on the main vector (100) and the voltage vector V110 on the main vector (110).
  • the length of voltage vector V1D0 is shorter than the sum of the length of voltage vector V100 and the length of voltage vector V110. Therefore, the current supply period corresponding to the voltage vector V1D0 is shorter than the sum of the current supply period corresponding to the voltage vector V100 and the current supply period corresponding to the voltage vector V110.
  • the SVPWM of this embodiment using six main vectors and six subvectors can reduce the phase voltage applied to the stator coil 1 by the inverter 3. This reduces the power loss. For example, when 5% of the average value of the voltage vector is reduced, the resistive power loss of inverter 3 and stator coil 1 is reduced by about 10%.
  • FIG. 47 is a timing chart showing an example in which two sub-current supply periods TA 'are separately disposed before and after the current supply period TB corresponding to the voltage vector V100 on the main vector (100).
  • the two sub-current supply periods TA 'corresponding to the voltage vector V1D0 on the sub-vector (1D0) each have a half length of the current supply period TA corresponding to the voltage vector V1D0.
  • FIG. 48 is a schematic diagram showing the state of inverter 3 corresponding to current supply periods TA 'and TB shown in FIG.
  • a major vector without dead legs has better current supply capability than a minor vector.
  • conventional SVPWM that does not use side vectors is preferred in heavy load regions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

直流電源及びインバータの損失低減が可能なSVPWM法が提供される。インバータは多相モータの各相コイルに相電流を供給する3個以上のレグをもつ。直流電源は各PWMサイクル期間内の電流供給期間に電源電流をインバータに供給する。電流供給期間において、一部のレグは、デッド状態をもつ。このデッド状態において、レグの上アームスイッチおよび下アームスイッチは、直流電源から一部の相コイルへの給電を禁止するためにオフされる。1つのPWMサイクル期間内の複数の電流供給期間において、直流電源は互いに異なる相電流を別々にインバータへ供給する。電流供給期間は部分負荷領域において互いにオーバーラップしない。

Description

空間ベクトルパルス幅変調法
本発明は、空間ベクトルパルス幅変調法に関し、特に多相モータ駆動用のデッド状態式空間ベクトルパルス幅変調法に関する。
図1は3相誘導モータ又は3相同期モータを駆動する従来の3相モータ駆動回路を示す。星形接続(Wye)タイプのステータコイル1はU相コイル1U、V相コイル1V、及びW相コイル1Wからなる。ステータコイル1は3相インバータ3に接続されている。3相インバータ3はU相レグ3U、V相レグ3V、及びW相レグ3Wからなる。U相レグ3Uは、直列接続された上アームスイッチ31及び下アームスイッチ32からなる。V相レグ3Vは、直列接続された上アームスイッチ33及び下アームスイッチ34からなる。W相レグ3Wは、直列接続された上アームスイッチ35及び下アームスイッチ36からなる。
スイッチ31-36はそれぞれ、IGBT及び逆並列ダイオードからなる。相コイル1Uはレグ3Uを通じて直流電源5に接続されている。相コイル1Vはレグ3Vを通じて直流電源5に接続されている。相コイル1Wはレグ3Wを通じて直流電源5に接続されている。直流電源5は、並列接続されたバッテリ51及びキャパシタ52からなる。バッテリ51は内部抵抗rbをもち、キャパシタ52は内部抵抗rcをもつ。直流電源5はインバータ3に電源電圧Vdを印加し、電源電流I5を供給する。
レグ3Uは相コイル1UにU相電圧V1を印加し、U相電流I1を供給する。レグ3VはV相コイル1VにV相電圧V2を印加し、V相電流I2を供給する。レグ3WはW相コイル1WにW相電圧V3を印加し、W相電流I3を供給する。コントローラ100はインバータ3のパルス幅変調(PWM)動作を制御する。これにより、インバータ3は3相交流電圧V1-V3をステータコイル1に印加する。図2は電気角360度の範囲における3相電圧V1、V2、及びV3の基本波波形を示す。図2に示される6つの位相期間(T1-T6)がこの電気角360度の角度範囲に配置される。
インバータ3は3相PWM(パルス幅変調)により駆動される。3相PWMは三角波PWM又は空間ベクトルPWM(SVPWM)を含む。図3は従来の三角波PWMにおいて使用される三角波キャリヤ信号Stを示す。キャリヤ信号Stは相電圧信号V1X、V2X、及びV3Xと比較される。図4はこの比較結果により決定されるスイッチ31-36の状態を示す。結局、図4に示される1PWMサイクル期間TCは、期間TO、TA、及びTBをもつ。期間T0はゼロベクトル領域(000又は111)に相当する。期間TAはベクトル(110)に相当し、期間TBはベクトル(100)に相当する。
図5は従来のSVPWMを示す状態図である。SVPWMは8つのベクトル(000-111)を用いる。ゼロベクトル(000)及び(111)を除く6つのベクトル(100-101)のうちの2つのベクトルにより電圧ベクトルが形成される。U相ベクトル(100)及び-W相(110)の合成ベクトルが領域11において形成され、-W相ベクトル(110)及びV相ベクトル(010)の合成ベクトルが領域12において形成される。V相ベクトル(010)及び-U相ベクトル(011)の合成ベクトルが領域13において形成され、-U相ベクトル(011)及びW相ベクトル(001)の合成ベクトルが領域14において形成される。W相ベクトル(001)及び-V相ベクトル(101)の合成ベクトルが領域15において形成され、-V相ベクトル(101)及びU相ベクトル(100)の合成ベクトルが領域16において形成される。
図6は、領域11における所定の合成ベクトルに相当するスイッチ31-36の状態の一例を示す。各PWMサイクル期間TCは電流供給期間TA及びTBとゼロベクトル期間T0からなる。電流供給期間TAはベクトル(100)に相当し、電流供給期間TBはベクトル(110)に相当する。ゼロベクトル期間TOにおいて、直流電源5はステータコイル1へ相電流を供給せず、フリーホィール電流だけがステータコイル1を流れる。
図7及び図8は直流電源5が領域11においてインバータ3に供給する電源電流I5を示す配線図である。フリーホィーリング電流は無視される。図7は電流供給期間TAを示し、図8は電流供給期間TBを示す。期間TAにおいて、相電流I1(=I2+I3)に相当する電源電流I5が流れる。期間TBにおいて、相電流I3(=I1+I2)に相当する電源電流I5が流れる。結局、期間TA及びTBにおいて、電源電流I5は、相対的に小振幅をもつ2つの相電流からなる。直流電源5の内部抵抗rは電流I5の二乗に比例する抵抗損失を発生する。言い換えれば、内部抵抗rは、期間TAにおいて相電流I2及びI3の和の二乗に比例する抵抗損失を発生し、期間TBにおいて相電流I1及びI2の和の二乗に比例する抵抗損失を発生する。
本出願人により出願された特許文献1は、シリーズ3相巻線に接続される4レグインバータを開示する。この4レグインバータは、3相モードの他に単相モードを実行することができる。この単相モードによれば、ステータコイルの巻数及び極数がそれぞれ3倍となる。この単相モードによれば、3相誘導モータは単相誘導モータとして駆動される。
WO/2017/081900
本発明の一つの目的は、損失低減が可能な空間ベクトルパルス幅変調法を提供することである。
空間ベクトル変調法において使用される各ベクトルはインバータの全てのレグの状態を示す。デッド状態式SVPWMと名付けられた本発明の空間ベクトルパルス幅変調(SVPWM)は、少なくとも6個の副ベクトルを使用する。これらの副ベクトルにおいて、少なくとも一つのレグはデッド状態をもつ。デッドレグと呼ばれるこのデッド状態のレグは、ターンオフされた上アームスイッチおよび下アームスイッチをもつ。
このデッド状態式SVPWMの一例によれば、1又は2個のゼロベクトルと6個の副ベクトルとが使用される。このデッド状態式SVPWMのもう1つの例によれば、1又は2個のゼロベクトルと6個の副ベクトルとに加えて6個の主ベクトルが使用される。たとえば3相インバータ、対称6相インバータ、及び4レグインバータがインバータとして採用されることができる。
副ベクトル及び主ベクトルに相当する電流供給期間が、3相以上の多相モータを駆動するPWMインバータの各PWMサイクル期間内に配置される。各電流供給期間において、直流電源がインバータを通じてステータコイルへ相電流を供給する。各副ベクトルはデッド状態を含む。各主ベクトルはデッド状態を含まない。
本発明のデッド状態式空間ベクトルパルス幅変調法によれば、バッテリ、平滑キャパシタ及びインバータの一部のスイッチを流れる電流の振幅が低減される。これにより、それらの抵抗損失の低減及びバッテリ寿命の延長が実現する。本発明のモータ装置は特に電気自動車やハイブリッド車に有効である。なぜならそれらのトラクションモータ駆動用のインバータは、その運転時間のほとんどにおいてたとえば10%というような非常に低いPWMデユーティ比をもつからである。
3相インバータの各PWMサイクル期間はそれぞれ、2つの電流供給期間をもつ。2つの電流供給期間はそれぞれ、一つのデッドレグをもつ。3相コイルは星形接続される。各電流供給期間において、バッテリはステータコイルの2つの相コイルにだけ共通の相電流を供給する。これら2つの相コイルはデッドレグに接続されない。デッドレグは順番に交代される。
好適には、これら2つの電流供給期間は各PWMサイクル期間に連続して形成される。先行する第1の電流供給期間において、バッテリは相対的に高振幅の第1相電流を供給する。後続する第2の電流供給期間において、バッテリは相対的に低振幅の第2相電流を供給する。これにより、第1の電流供給期間が終了する時点におけるバッテリ電流の変化を低減することができる。さらに、この第1の電流供給期間の終了時点は第2の電流供給期間の開始時点より遅れる。これにより、バッテリの正端子とインバータの高電位直流端子とを接続するDCリンク線のサージ電圧が低減される。
もう一つの態様において、インバータは、複数の3相コイルに別々に接続される複数の3相インバータからなる。複数の3相インバータは軽負荷領域において互いに重ならないデッド状態をもつ。これにより、バッテリ損失は軽負荷領域において大幅に低減される。一例において、2つの3相インバータは6相コイルからなるステータコイルに接続される。他例において、複数の3相インバータは、異なるモータのステータコイルに別々に接続される。
もう一つの態様において、インバータはシリーズ3相巻線に接続される4レグインバータからなる。バッテリは、シリーズ3相巻線の各相コイルに時間順次に相電流を供給する。これにより、バッテリ損失は軽負荷領域において低減される。
図1は、バッテリ給電3相モータ装置を示す配線図である。 図2は図1における3相電圧の基本波成分の波形を示すタイミングチャートである。 図3は従来の三角波PWMのキャリヤ信号を示すタイミングチャートである。 図4は図3に示される三角波PWMにおける3相電圧の状態を示すタイミングチャートである。 図5は従来の空間ベクトルPWMを説明するためのベクトル図である。 図6は図5に示される空間ベクトルPWMにおける3相電圧の状態例を示すタイミングチャートである。 図7は従来の空間ベクトルPWMにおける一つの電圧ベクトルに相当するスイッチング状態を示す配線図である。 図8は従来の空間ベクトルPWMにおけるもう一つの電圧ベクトルに相当するスイッチング状態を示す配線図である。 図9-図48は本発明の各実施例を示す図である。図9は第2位相領域における3相PWM電圧の状態を示す図である。 図10は第3位相領域における3相PWM電圧の状態を示す図である。 図11は第4位相領域における3相PWM電圧の状態を示す図である。 図12は第5位相領域における3相PWM電圧の状態を示す図である。 図13は第6位相領域における3相PWM電圧の状態を示す図である。 図14は第1位相領域における3相PWM電圧の状態を示す図である。 図15は第2位相領域の第1電流供給期間における相電流を示す配線図である。 図16は第2位相領域の第2電流供給期間における相電流を示す配線図である。 図17は第3位相領域の第1電流供給期間における相電流を示す配線図である。 図18は第3位相領域の第2電流供給期間における相電流を示す配線図である。 図19は第4位相領域の第1電流供給期間における相電流を示す配線図である。 図20は第4位相領域の第2電流供給期間における相電流を示す配線図である。 図21は第5位相領域の第1電流供給期間における相電流を示す配線図である。 図22は第5位相領域の第2電流供給期間における相電流を示す配線図である。 図23は第6位相領域の第1電流供給期間における相電流を示す配線図である。 図24は第6位相領域の第2電流供給期間における相電流を示す配線図である。 図25は第1位相領域の第1電流供給期間における相電流を示す配線図である。 図26は第1位相領域の第2電流供給期間における相電流を示す配線図である。 図27は、6個の副ベクトルを示すベクトル図である。 図28は電気角360度の範囲内における3つのレグの電流供給期間を示すタイミングチャートである。 図29は、互いに連続する2つの電流供給期間を示すタイミングチャートである。 図30は、3相インバータを示す模式配線図である。 図31は、先行する一つの電流供給期間の終了が、後続するもう一つの電流供給期間の開始から遅れる状態を示すタイミングチャートである。 図32はバッテリ給電6相モータ装置を示す配線図である。 図33は図32に示される6相PWM電圧の状態を示す図である。 図34はバッテリ給電4輪駆動モータ装置を示す配線図である。 図35は12相PWM電圧の状態を示す図である。 図36はバッテリから3つの3相モータに給電する回路を示す配線図である。 図37は9相PWM電圧の状態を示す図である。 図38はシリーズ3相巻線に接続される4レグインバータを示す配線図である。 図39は6個の副ベクトルを示すベクトル図である。 図40はデッド状態式SVPWMモードにおいて第1の相コイルに給電する状態を示すブロック回路図である。 図41はデッド状態式SVPWMモードにおいて第2の相コイルに給電する状態を示すブロック回路図である。 図42はデッド状態式SVPWMモードにおいて第3の相コイルに給電する状態を示すブロック回路図である。 図43はデッド状態式SVPWMモードにおける4相PWM電圧の状態を示す図である。 図44は12個の位相領域を示すベクトル図である。 図45は主ベクトル及び副ベクトルに相当するレグの状態を示す状態図である。 図46は副ベクトル上の1つの電圧ベクトルを示すベクトル図である。 図47は2つのサブ電流供給期間の配置例を示すタイミングチャートである。 図48は図47に示される各電流供給期間に相当するインバータの状態を示す模式図である。
本発明のデッド状態式SVPWM法の好適な実施形態が図面を参照して説明される。
第1実施例
第1実施例のデッド状態式SVPWM法を用いるバッテリ給電3相モータ装置が説明される。このモータ装置は、図1に示される従来の3相モータ装置と同じ回路構造をもつ。ステータコイル1は星形結線された3つの相コイル1U、1V、及び1Wからなる。図2は、3相インバータ3のレグ3U、3V、及び3Wにより相コイル1U、1V、1Wに印加される3相電圧V1、V2、及びV3の基本波成分を示す。図2に示される6個の位相領域T2-T1が、相電圧V1-Vの電気角60度に含まれる。位相領域T2-T1はそれぞれ、電気角60度に相当する。直流電源5は電源電流I5をインバータ3に供給し、インバータ3はステータコイル1の3つの相コイル1U-1Wに3つの相電流I1、I2、及びI3を供給する。電源電流I5は、3つの相電流I1-I3とフリーホィール電流との間の差値に相当する。
コントローラ100は、レグのPWMデユーティ比が所定値未満である部分負荷環境においてデッド状態式SVPWMモードを実施する。このデッド状態式SVPWMモードによれば、電源電流I5に含まれる1つの相電流が順番に遮断される。言い換えれば、このデッド状態式SVPWMモードにおいて、直流電源5は3つの相コイル1U-1Wのうちの1ペアの相コイルに相電流を供給する。相電流が供給されるペアの組み合わせは順番に変更される。
たとえば、直流電源5が相コイル1U及び1Vに相電流11及びI2を供給可能な電流供給期間において、直流電源5は相コイル1Wに相電流I3を供給しない。同様に、直流電源5が相コイル1U及び1Wに相電流11及びI3を供給可能な電流供給期間において、直流電源5は相コイル1Vに相電流I2を供給しない。同様に、直流電源5が相コイル1V及び1Wに相電流12及びI3を供給可能な電流供給期間において、直流電源5は相コイル1Uに相電流I1を供給しない。
2相変調を採用するデッド状態式SVPWMモードが図9-図14を参照して説明される。PWMキャリア周波数は10kHzであり、1PWMサイクル期間TCは100マイクロ秒である。コントローラ100は、1メガヘルツのクロック信号をそれぞれカウントする第1カウンタ及び第2カウンタを有している。これらのカウンタは各PWMサイクル期間TCの最初にリセットされる。
図9-図14は、図2に示される6つの位相期間T1-T6内の各PWMサイクル期間TCにおけるレグ3U-3Wの状態を示す。PWMサイクル期間TCは、電流供給期間TA、電流供給期間TB、及びフリーホィール期間TFからなる。フリーホィール期間TFは、3つのレグ3U、3V、及び3Wが出力する相電圧V1-V3は互いにほぼ等しいいわゆるゼロベクトル期間である。直流電源5はフリーホィール期間TFにおいてインバータ3に電流を供給しない。フリーホィール期間TFにおいて、フリーホィール電流がインバータ3及びステータコイル1を循環することができる。
この2相変調デッド状態式SVPWMにおいて、3つの相電圧V1-V3の一つは、最高電位(H)又は最低電位(L)に固定される。最高電位(H)は直流電源5の正電位にほぼ等しく、最低電位(L)は直流電源5の負電位にほぼ等しい。固定されたこの相電圧は固定相電圧(Fix)と呼ばれる。固定相電圧(Fix)を出力するレグは固定レグと呼ばれる。固定レグの上アームスイッチがオンされる時、この固定レグは最高電位(H)を出力する。固定レグの下アームスイッチがオンされる時、この固定レグは最低電位(L)を出力する。
図9に示される位相領域T2において、固定レグ3Uはハイレベル電位(H)を出力する。図10に示される位相領域T3において、固定レグ3Wはローレベル電位(L)を出力する。図11に示される位相領域T4において、固定レグ3Vはハイレベル電位(H)を出力する。図12に示される位相領域T5において、固定レグ3Uはローレベル電位(L)を出力する。図13に示される位相領域T6において、固定レグ3Wはハイレベル電位(H)を出力する。図14に示される位相領域T1において、固定レグ3Vはローレベル電位(L)を出力する。
固定レグを除く残りの2つのレグはPWMレグと呼ばれる。第1のPWMレグは第1の電流供給期間TAにおいて固定レグと反対の電圧を出力する。第2のPWMレグは第2の電流供給期間TBにおいて固定レグと反対の電圧を出力する。これにより、直流電源5は電流供給期間においてステータコイル1に所定の相電流を供給する。
第2のPWMレグは第1の電流供給期間TAにおいてデッド状態(D)となり、第1のPWMレグは第2の電流供給期間TBにおいてデッド状態(D)となる。このデッド状態(D)によれば、デッドレグの上アームスイッチ及び下アームスイッチの両方はオフされる。このデッド状態(D)は、一つのレグの上アームスイッチ及び下アームスイッチの状態が変化する非常に短い過渡期間における周知のデッドタイムとは本質的に異なる。従来のデッドタイムは一つのレグの上アームスイッチ及び下アームスイッチを通じて流れる短絡電流を禁止するための非常に短い期間であり、たとえば1マイクロ秒である。この実施例のデッド状態(D)において、直流電源5により電流供給期間TA及びTBにおいて所定の一つのPWMレグへ供給される所定の一つの相電流は禁止される。
けれども、フリーホィール電流はデッド状態(D)においてたとえば逆並列ダイオードを通じて流れることができる。このフリーホィール電流は、相コイルのインダクタンスに蓄積された磁気エネルギーにより形成され、直流電源5から供給されない。したがって、フリーホィール電流は、直流電源5に電力損失を発生しない。
第1の電流供給期間TAは各PWMサイクル期間TCの初期に設けられる。第1カウンタが各PWMサイクル期間TCの開始からカウントするカウント値が所定の第1時点t1に一致する時、電流供給期間TAは終了する。したがって、電流供給期間TAのデユーティ比はTA/TCとなる。同様に、第2の電流供給期間TBは、各PWMサイクル期間TCの終期に設けられる。第2カウンタが各PWMサイクル期間TCの開始からカウントするもう1つのカウント値が所定の第2時点t2に一致する時、電流供給期間TBは開始される。電流供給期間TBはPWMサイクル期間TCの終了時点にて終了する。したがって、電流供給期間TBのデユーティ比はTB/TCとなる。
結局、2つの電流供給期間TA及びTBの和がPWMサイクル期間TCより短い時、2つの電流供給期間TA及びTBは重ならない。電流供給期間TA又はTBが延長される時、フリーホィール期間TFは短縮される。電流供給期間TA及びTBの和がPWMサイクル期間TCと等しい時、フリーホィール期間TFはゼロとなる。2つの電流供給期間TA及びTBの和がPWMサイクル期間TCより長い時、2つの電流供給期間TA及びTBは重なる。2つの電流供給期間TA及びTBが重なるオーバーラップ期間の長さは、TA+TB-TCとなる。この実施例によれば、このオーバーラップ期間は最短となる。
図9は第2位相期間T2を示す。電流供給期間TAにおいて、相電圧V2が最低電位(L)となり、相電圧V3がデッド状態(D)となる。電流供給期間TBにおいて、相電圧V3が最低電位(L)となり、相電圧V2がデッド状態(D)となる。相電圧V2及びV3はフリーホィール期間TFにおいて最高電位(H)となる。結局、直流電源5は、電流供給期間TAにおいて相コイル1U及び1Vに相電流I2を供給し、電流供給期間TBにおいて相コイル1U及び1Wに相電流I3を供給する。
図10は第3位相期間T3を示す。電流供給期間TAにおいて、相電圧V1が最高電位(H)となり、相電圧V2がデッド状態(D)となる。電流供給期間TBにおいて、相電圧V2が最高電位(H)となり、相電圧V1がデッド状態(D)となる。相電圧V1及びV2はフリーホィール期間TFにおいて最低電位(L)となる。結局、直流電源5は、電流供給期間TAにおいて相コイル1U及び1Wに相電流I1を供給し、電流供給期間TBにおいて相コイル1V及び1Wに相電流I2を供給する。
図11は第4位相期間T4を示す。電流供給期間TAにおいて、相電圧V1が最低電位(L)となり、相電圧V3がデッド状態(D)となる。電流供給期間TBにおいて、相電圧V3が最低電位(L)となり、相電圧V1がデッド状態(D)となる。相電圧V1及びV3はフリーホィール期間TFにおいて最高電位(H)となる。結局、直流電源5は、電流供給期間TAにおいて相コイル1U及び1Vに相電流I1を供給し、電流供給期間TBにおいて相コイル1V及び1Wに相電流I3を供給する。
図12は第5位相期間T5を示す。電流供給期間TAにおいて、相電圧V2が最高電位(H)となり、相電圧V3がデッド状態(D)となる。電流供給期間TBにおいて、相電圧V3が最高電位(H)となり、相電圧V2がデッド状態(D)となる。相電圧V2及びV3はフリーホィール期間TFにおいて最低電位(L)となる。結局、直流電源5は、電流供給期間TAにおいて相コイル1U及び1Vに相電流I2を供給し、電流供給期間TBにおいて相コイル1U及び1Wに相電流I3を供給する。
図13は第6位相期間T6を示す。電流供給期間TAにおいて、相電圧V1が最低電位(L)となり、相電圧V2がデッド状態(D)となる。電流供給期間TBにおいて、相電圧V2が最低電位(L)となり、相電圧V1がデッド状態(D)となる。相電圧V1及びV2はフリーホィール期間TFにおいて最高電位(H)となる。結局、直流電源5は、電流供給期間TAにおいて相コイル1U及び1Wに相電流I1を供給し、電流供給期間TBにおいて相コイル1V及び1Wに相電流I2を供給する。
図14は第1位相期間T1を示す。電流供給期間TAにおいて、相電圧V1が最高電位(H)となり、相電圧V3がデッド状態(D)となる。電流供給期間TBにおいて、相電圧V3が最高電位(H)となり、相電圧V1がデッド状態(D)となる。相電圧V1及びV3はフリーホィール期間TFにおいて最低電位(L)となる。結局、直流電源5は、電流供給期間TAにおいて相コイル1U及び1Vに相電流I1を供給し、電流供給期間TBにおいて相コイル1V及び1Wに相電流I3を供給する。
図15-図26は、位相期間T1-T6の電流供給期間TA及びTBにおけるレグ3U-3Wの状態を示す。図15は位相期間T2の電流供給期間TAを示し、図16は位相期間T2の電流供給期間TBを示す。図17は位相期間T3の電流供給期間TAを示し、図18は位相期間T3の電流供給期間TBを示す。図19は位相期間T4の電流供給期間TAを示し、図20は位相期間T4の電流供給期間TBを示す。図21は位相期間T5の電流供給期間TAを示し、図22は位相期間T5の電流供給期間TBを示す。図23は位相期間T6の電流供給期間TAを示し、図24は位相期間T6の電流供給期間TBを示す。図25は位相期間T1の電流供給期間TAを示し、図26は位相期間T1の電流供給期間TBを示す。直流電源5は、電流供給期間TAにおいて電源電流IAを供給し、電流供給期間TBにおいて電源電流IBを供給する。
図15-図26において、各スイッチ31-36はそれぞれオン抵抗rtをもち、直流電源5は等価抵抗rをもつ。この等価抵抗rはバッテリ51の抵抗rb及びキャパシタ52の抵抗rcを含む。直流電源5が独立PWMモードにおいてステータコイル1に供給する電源電流I5(=IA+IB)はバッテリ電流とキャパシタ電流の和となる。電源電流I5が遮断される時、バッテリ51はキャパシタ52に充電電流を供給する。したがって、キャパシタ52はその充電時及び放電時の両方において電力損失を発生する。
図27はこの実施例のデッド状態式SVPWMを示すベクトル図である。実線で示されるこのデッド状態式SVPWMは6個の副ベクトル(1D0、D10、01D、0D1、D01、及び10D)を用いる。フリーホィール期間TFはゼロベクトル(000、111)に相当する。破線で示される従来のSVPWMは6個の主ベクトル主ベクトル(100、110、010、011、001、及び101)を用いる。副ベクトルに含まれるパラメータ(D)はレグのデッド状態を示す。
このデッド状態式SVPWMモードの効果が説明される。図1に示されるように、直流電源5はインバータ3を通じてステータコイル1に相電流I1、I2、及びIを供給する。従来のPWM法である比較モードにおいて、たとえば直流電源5は相電流I2及びIを同時に供給する。この実施例のデッド状態式SVPWM法において、たとえば直流電源5は相電流I2及びIを順番に供給する。
まず、相電流I2及びIの振幅がそれぞれ1であることが仮定される。さらに、直流電源5の内部抵抗値がrであり、インバータ3の抵抗値がrtであることが仮定される。したがって、従来のPWM法において、電源電流I5の振幅は2となる。直流電源5の抵抗損失は4rとなり、インバータの損失は6rtとなる。フリーホィール電流によるインバータの損失は無視される。
次に、この実施例のデッド状態式SVPWMにおいて、直流電源5の抵抗損失は2rとなり、インバータの損失は4rtとなる。フリーホィール電流によるインバータの損失は無視される。結局、デッド状態式SVPWMモードによれば、直流電源5の電力損失は半分となり、インバータの導通損失は2/となる。
結局、各電流供給期間においてデッド状態Dを採用することにより複数の相電流のオーバーラップをできるだけ回避するこの実施例のデッド状態式SVPWMモードによれば、直流電源5及びインバータ3の電力損失が低減される。これにより、バッテリ51、平滑キャパシタ52、及びインバータ3の損失が低減される。バッテリ51の電気抵抗値が電流の周波数に関係することは重要である。PWM動作のような高周波数領域において、バッテリ51の電気抵抗値は増加する。
さらに、バッテリの劣化はバッテリ容量を減少させ、バッテリ抵抗を増加させる。たとえば、劣化バッテリ51の抵抗は初期抵抗値の2倍となる。その結果、劣化バッテリの温度上昇はさらに促進されるので、バッテリ劣化が加速される。したがって、デッド状態式SVPWMモードの損失低減は劣化バッテリにおいて特に有効である。
次に、相電流I3が相電流I2の半分であるもう1つの例が説明される。相電流I2は1であり、相電流I3は0.5である。比較モードによれば、直流電源5の損失は2.25rとなる。デッド状態式SVPWMモードによれば、直流電源5の損失は1.5rとなる。
次に、相電流I3が相電流I2の30%であるもう1つの例が説明される。相電流I2は1、相電流I3は0.3と仮定される。比較モードによれば、直流電源5の損失は1.69rとなる。デッド状態式SVPWMモードによれば、直流電源5の損失は1.3rとなる。
次に、電流供給期間TB及びTAの好適な配置例が図28-図31を参照して説明される。電気角360度は、それぞれ電気角30度に相当する12個の位相領域P1-P12に分割される。位相領域P1は電気角の60度-90度の範囲であり、位相領域P2は電気角の90度-120度の範囲である。位相領域P3は電気角の120度-150度の範囲であり、位相領域P4は電気角の150度-180度の範囲である。位相領域P5は電気角の180度-210度の範囲であり、位相領域P6は電気角の210度-240度の範囲である。位相領域P7は電気角の240度-270度の範囲であり、位相領域P8は電気角の270度-300度の範囲である。位相領域P9は電気角の300度-330度の範囲であり、位相領域P10は電気角の330度-360度の範囲である。位相領域P11は電気角の0度-30度の範囲であり、位相領域P12は電気角の30度-60度の範囲である。
位相領域T2は位相領域P1及びP2からなる。位相領域T3は位相領域P3及びP4からなる。位相領域T4は位相領域P5及びP6からなる。位相領域T5は位相領域P7及びP8からなる。位相領域T6は位相領域P9及びP10からなる。位相領域T1は位相領域P1及びP2からなる。
レグ3Uは位相領域P1、P2、P7、及びP8において固定電位(Fix)を出力する固定レグとなる。レグ3Vは位相領域P5、P6、P11、及びP12において固定レグとなる。レグ3Wは位相領域P3、P4、P9、及びP10において固定レグとなる。
位相領域P1及びP7において、PWMレグ3Vは電流供給期間TBをもち、PWMレグ3Wは電流供給期間TAをもつ。位相領域P2及びP8において、PWMレグ3Vは電流供給期間TAをもち、PWMレグ3Wは電流供給期間TBをもつ。位相領域P3及びP9において、PWMレグ3Uは電流供給期間TBをもち、PWMレグ3Vは電流供給期間TAをもつ。位相領域P4及びP10において、PWMレグ3Uは電流供給期間TAをもち、PWMレグ3Vは電流供給期間TBをもつ。位相領域P5及びP11において、PWMレグ3Uは電流供給期間TAをもち、PWMレグ3Wは電流供給期間TBをもつ。位相領域P6及びP12において、PWMレグ3Uは電流供給期間TBをもち、PWMレグ3Wは電流供給期間TAをもつ。
これにより、電流供給期間TBは電流供給期間TAよりも常に長くなる。言い換えれば、電流供給期間TBにおいて供給される相電流の振幅は、電流供給期間TAにおいて供給される相電流の振幅よりも大きくなる。図29は、連続して設けられる電流供給期間TA及びTBを示すタイミングチャートである。電流供給期間TBの相電流は電流供給期間TAの相電流より大振幅である。電流供給期間TAが開始されるPWMサイクル期間TCの開始時点t0において、電流供給期間TBが終了される。これにより、電源電流I5の急減が抑止される。その結果、高電位DCリンク線に発生するサージ電圧が低減される。
図30は図1に示される三相モータ装置を示すブロック回路図である。図31は図30に示される6つのスイッチ31-36の位相領域P1における電位状態例を示すタイミングチャートである。上アームスイッチ31は常にオンされ、下アームスイッチ32は常にオフされている。上アームスイッチ33及び35は電流供給期間TA及びTBにおいて常にオフされている。下アームスイッチ34は電流供給期間TBにおいてほぼオフされ、電流供給期間TAにおいてオンされている。下アームスイッチ36は電流供給期間TBにおいてオンされ、電流供給期間TAにおいてオフされている。
電流供給期間TAは時点t0から開始される。電流供給期間TBは時点txにおいて終了する。時点txは時点t0よりも遅延時間TXだけ遅れる。この遅延時間TXはたとえば1マイクロ秒である。直流電源5の正極とインバータ3との接続するDCリンク線の電位は電流供給期間TAの開始により低下する。このDCリンク線の電位は電流供給期間TBの終了時点txから発生するサージ電圧により上昇する。しかし、このDCリンク線の電位は電流供給期間TAの開始により既に低下している。したがって、DCリンク線の電位上昇は抑制される。
この実施例によれば、2つの電流供給期間TA及びTBは相電流が増加される重負荷モードにおいて最短のオーバーラップ期間をもつことができる。このため、直流電源5及びインバータ3の電力損失を低減することができる。
第2実施例
第2実施例が図32及び図33を参照して説明される。この実施例によれば、モータは2つの3相コイル1及び2からなるいわゆる対称6相ステータコイルをもつ。星形結線タイプの3相コイル1はU相コイル1U、V相コイル1V、及びW相コイル1Wからなる。星形結線タイプの3相コイル2は-U相コイル2U、-V相コイル2V、及び-W相コイル2Wからなる。3相コイル1は3相インバータ3に接続され、3相コイル2は3相インバータ4に接続される。3相インバータ3は図1に示される3相インバータ3に等しい。3相インバータ4は-U相レグ4U、-V相レグ4V、及び-W相レグ4Wからなる。レグ4Uは相電圧V4を相コイル2Uに印加し、レグ4Vは相電圧V5を相コイル2Vに印加し、レグ4Wは相電圧V6を相コイル2Wに印加する。相電圧V1及びV4は互いに反対の位相をもつ。相電圧V2及びV5は互いに反対の位相をもつ。相電圧V3及びV6は互いに反対の位相をもつ。
図33はデッド状態式SVPWMモードにおける相電圧V1-V6の状態を示す。相電圧V1-V6はそれぞれ、アクティブ状態(A)、デッド状態(D)、フリーホィール状態(Fr)、及び電位固定状態(Fix)をもつ。電位固定状態(Fix)によれば、相電圧は最高電位(H)及び最低電位(L)のどちらかに固定される。バッテリ51は、アクティブ状態(A)のレグ及び電位固定状態(Fix)のレグを通じてステータコイル1及び2に電源電流を供給する。したがって、アクティブ状態(A)のレグは電位固定状態(Fix)のレグと反対の電位をもつ。これにより、相電流が電流供給期間においてアクティブ状態(A)のPWMレグと電位固定状態(Fix)の固定レグとを介して2つの相コイルへ流れる。電流供給期間において、残りの一つのレグはデッド状態(D)となる。フリーホィール状態(Fr)によれば、相電圧は電位固定状態(Fix)と同じ電位となる。これにより、フリーホィール期間(TF)が形成される。
3相インバータ3の各PWMサイクル期間TCは電流供給期間TA1及びTB1を含む。3相インバータ4の各PWMサイクル期間TCは電流供給期間TA2及びTB2を含む。電流供給期間TA1、TA2、TB1、及びTB2は、PWMデユーティ比が小さい軽負荷状態において互いに重ならない。
図33は、相電圧V2及びV5が電位固定状態(Fix)をもつ位相期間を示す。相電圧V2が最高電位(H)である時、相電圧V5は最低電位(L)となる。相電圧V2が最低電位(L)である時、相電圧V5は最高電位(H)となる。電位固定状態(Fix)をもつレグは電気角60度毎に交代される。
電流供給期間TA1において、相電圧V1はアクティブ状態(A)となる。言い換えれば、相電圧V2が最高電位(H)である時、相電圧V1は最低電位(L)となる。相電圧V2が最低電位(L)である時、相電圧V1は最高電位(H)となる。電流供給期間TA1において、相電圧V3はデッド状態(D)となり、相電圧V4及びV6はフリーホィール状態(Fr)となる。
電流供給期間TA2において、相電圧V6はアクティブ状態(A)となる。言い換えれば、相電圧V5が最高電位(H)である時、相電圧V6は最低電位(L)となる。相電圧V5が最低電位(L)である時、相電圧V6は最高電位(H)となる。電流供給期間TA2おいて、相電圧V4はデッド状態(D)となり、相電圧V1及びV3はフリーホィール状態(Fr)となる。
電流供給期間TB1において、相電圧V3はアクティブ状態(A)となる。言い換えれば、相電圧V2が最高電位(H)である時、相電圧V3は最低電位(L)となる。相電圧V2が最低電位(L)である時、相電圧V3は最高電位(H)となる。電流供給期間TB1において、相電圧V1はデッド状態(D)となり、相電圧V4及びV6はフリーホィール状態(Fr)となる。
電流供給期間TB2において、相電圧V4はアクティブ状態(A)となる。言い換えれば、相電圧V5が最高電位(H)である時、相電圧V4は最低電位(L)となる。相電圧V5が最低電位(L)である時、相電圧V4は最高電位(H)となる。電流供給期間TB2おいて、相電圧V6はデッド状態(D)となり、相電圧V1及びV3はフリーホィール状態(Fr)となる。
この実施例によれば、4つの電流供給期間TA1、TA2、TB1、及びTB2が各PWMサイクル期間TC内に設定される。バッテリ51は電流供給期間TA1、TA2、TB1、及びTB2において4つの相電流を別々に供給する。言い換えれば、3相インバータ3及び4がそれぞれデッド状態式SVPWMモードで運転される。軽負荷モードにおいて、電流供給期間TA1、TA2、TB1、及びTB2は互いに重ならない。その結果、直流電源5の電力損失は大幅に低減される。PWMデユーティ比が増加される重負荷領域において、4つの電流供給期間TA1、TA2、TB1、及びTB2のオーバーラップが許可される。
第3実施例
第3実施例が図32及び図33を参照して説明される。この実施例によれば、3相コイル1は第1の3相モータのステータコイルであり、3相コイル2は第2の3相モータのステータコイルである。たとえば、第1モータは電気自動車の左輪駆動用のトラクションモータであり、第2モータは電気自動車の右輪駆動用のトラクションモータである。もう1つの例において、第1モータは電気自動車のトラクションモータであり、第2モータは電気自動車の空調用コンプレッサ駆動用のモータである。2つのモータのアクティブ状態(A)により指定される各電流供給期間は共通のPWMサイクル期間内においてできるだけ重ならないように配置される。これにより、直流電源5の損失を低減することができる。
第4実施例
第4実施例が図34及び図35を参照して説明される。この実施例によれば、4つの3相モータが電気自動車の4輪を別々に駆動する。第1のモータのステータコイル1Aは3相インバータ3Aに接続される。第2のモータのステータコイル1Bは3相インバータ3Bに接続される。第3のモータのステータコイル1Cは3相インバータ3Cに接続される。第4のモータのステータコイル1Dは3相インバータ3Dに接続される。3相インバータ3Aは相電圧V1-V3を出力し、3相インバータ3Bは相電圧V4-V6を出力し、3相インバータ3Cは相電圧V7-V9を出力し、3相インバータ3Dは相電圧V10-V12を出力する。
図35は相電圧V1-V12の状態を示すタイミングチャートである。4つの3相インバータ3A-3Dは共通のPWMサイクル期間TCをもつ。軽負荷領域において、3相インバータ3A-3Dの各レグは、各PWMサイクル期間TCにおいてそれぞれ電流供給期間をもつ。図35において、アクティブ状態(A)により示される電流供給期間は互いに重ならない。部分負荷領域において、3相インバータ3A-3Dはそれぞれ、互いに重ならない2つのアクティブ状態(A)をもつ。重負荷領域において、相インバータA-Dのアクティブ領域(A)は互いに重なることができる。この実施例によれば、直流電源5の電力損失を低減することができる。
第5実施例
第5実施例が図36及び図37を参照して説明される。この実施例によれば、3相コイル1Aは第1モータのステータコイルであり、3相コイル1Bは第2モータのステータコイルである。たとえば、第1モータは電気自動車の左輪駆動用の3相モータであり、第2モータは電気自動車の右輪駆動用の3相モータである。3相コイル1Eは空調用コンプレッサ駆動用モータのステータコイルである。3相コイル1Aは3相インバータ3Aに接続され、3相コイル1Bは3相インバータ3Bに接続され、3相コイル3Eは3相インバータ3Eに接続されている。3相インバータ3Aは相電圧V1-V3を出力し、3相インバータ3Bは相電圧V4-V6を出力し、3相インバータ3Eは相電圧V7-V9を出力する。
図37は相電圧V1-V9の状態を示すタイミングチャートである。3つの3相インバータ3A、3B、及び3Eは共通のPWMサイクル期間TCをもつ。軽負荷領域において、3相インバータ3A、3B、及び3Eのアクティブ状態(A)は互いに重ならない。重負荷領域において、3相インバータ3A、3B、及び3Eは互いに重なるアクティブ状態(A)ををもつことができる。この実施例によれば、直流電源5の電力損失を低減することができる。
第6実施例
第6実施例が図38-図43を参照して説明される。図38はこの実施例の3相モータ駆動装置を示す配線図である。直列に接続された3つの相コイル1U、1V、及び1Wからなるステータコイルはシリーズ3相巻線1Aと呼ばれる。シリーズ3相巻線1Aは、4つのレグ3U、3V、3W、及び3Xからなる4レグインバータ3Aに接続されている。4レグインバータ3Aは、上アームスイッチ31、33、35、37、及び下アームスイッチ32、34、36、38からなる。レグ3Uは相コイル1Uの独立端に接続されている。レグ3Vは相コイル1U及び1Vの接続点に接続されている。レグ3Wは相コイル1V及び1Wの接続点に接続されている。レグ3Xは相コイル1Wの独立端に接続されている。レグ3Uは相電圧V1を出力し、レグ3Vは相電圧V2を出力する。レグ3Wは相電圧V3を出力し、レグ3Xは相電圧V4を出力する。4レグインバータ3のPWM動作を制御するコントローラ100はデルタモード及びデッド状態式SVPWMモードをもつ。
このデルタモードによれば、レグ3Xが出力する相電圧V4はレシーバ3Uが出力する相電圧V1と常に等しい。これはシリーズ3相巻線1Aが完全にデルタ結線となることを意味する。このデルタモードは、高速領域又は高トルク領域において採用される。
図9は、部分負荷領域において実行されるデッド状態式SVPWMモードを示すベクトル図である。この純デッド状態式SVPWMモードによれば、直流電源5は、各PWMサイクル期間TCにおいてU相電流IU、V相電流IV、及びW相電流IWを順番に通電する。これにより、直流電源5の電力損失が低減される。6つのベクトル(10DD、DD01、D10D、01DD、DD10、及びD01D)はそれぞれ、2つのデッドレグのデッド状態Dを含む。
図40-図42は、デッド状態式SVPWMモードを示す模式図である。図40は、直流電源5がU相電流IUを相コイル1Uに供給する第1電流供給期間TXを示す。図41は、直流電源5がV相電流IVを相コイル1Vに供給する第2電流供給期間TYを示す。図42は、直流電源5がW相電流IWを相コイル1Wに供給する第電流供給期間TZを示す。
図43はこのデッド状態式SVPWMモードにおける相電圧V1-V4の状態を示す状態図である。相電圧V1及びV2はそれぞれ、第1電流供給期間TXにおいてアクティブ状態(A)となり、直流電源5はU相電流IUを相コイル1Uに供給する。言い換えれば、相電圧V1が最高電位(H)となる時、相電圧V2は最低電位(L)となる。逆に、相電圧V1が最低電位(L)となる時、相電圧V2は最高電位(H)となる。相電流IUの振幅は第1電流供給期間TXの長さを調節することにより調節される。直流電源5が相コイル1V及び1Wに電流を供給することは禁止される。このため、相電圧V3及びV4はデッド状態(D)となる。言い換えれば、スイッチ35-38はオフされる。
相電圧V2及びV3はそれぞれ、第2の電流供給期間TYにおいてアクティブ状態(A)となり、直流電源5はV相電流IVを相コイル1Vに供給する。相電流IVの振幅は第2電流供給期間TYの長さを調節することにより調節される。直流電源5が相コイル1U及び1Wに電流を供給することは禁止される。このため、相電圧V1及びV4はデッド状態(D)となる。言い換えれば、スイッチ31-32及び37-38はオフされる。
相電圧V3及びV4はそれぞれ、第3の電流供給期間TZにおいてアクティブ状態(A)となり、直流電源5はW相電流IWを相コイル1Wに供給する。相電流IWの振幅は第3電流供給期間TZの長さを調節することにより調節される。直流電源5が相コイル1U及び1Vに電流を供給することは禁止される。このため、相電圧V1及びV2はデッド状態(D)となる。言い換えれば、スイッチ31-34はオフされる。
この実施例によれば、直流電源5が4レグインバータ3Aに供給する電源電流I5の振幅が低減される。これにより、直流電源5の電力損失が低減される。電流供給期間TX、TY、及びTZの和がPWMサイクル期間TCと等しくなる時、フリーホィール期間TFはゼロとなる。したがって、このデッド状態式SVPWMモードは、電流供給期間TX、TY、及びTZの和がPWMサイクル期間TC以下である軽負荷期間において実行されることが好適である。
図38に示される4レグインバータ3A及びシリーズ3相巻線1Aをもつ3相モータ装置において、単相PWMモードを実施することができる。この単相PWMモードによれば、レグ3V及び3Wは常に休止され、レグ3U及び3XだけがPWM駆動される。これにより、直流電源5は相コイル1U、1V、及び1Wに単相交流電圧を印加する。
この単相PWMモードによれば、ステータコイル1Aの極数及び巻数が3倍となる。したがって、ロータは3倍の極数をもつ必要がある。ロータ極数がステータ極数と自動的に一致する誘導モータはこの単相PWMモードを容易に実行することができる。この単相PWMモードにおいて、ステータコイル1Aの逆起電力はデルタモードと比べてほぼ9倍となる。このため、この単相PWMモードは、エンジン始動及び回生制動に好適である。
第7実施例
もう一つのデッド状態式SVPWM法が図44-図48を参照して説明される。このデッド状態式SVPWMは、従来のSVPWMにおいて採用される6個の主ベクトル(100、110、010、011、001、及び101)及び少なくとも1つのゼロベクトル(000又は111)に加えて6個の副ベクトル(1D0、D10、01D、0D1、D01、及び10D)を採用する。6個の副ベクトルはそれぞれ、1つのデッドレグをもち、各デッドレグは、デッド状態(D)をもつ。
図5に示される従来のSVPWMのベクトル図において、6個の主ベクトル(100、110、010、011、001、及び101)は、電気角360度をそれぞれが電気角60度に相当する6つの位相領域11-16に分割する。これらの位相領域11-16は主セクターと呼ばれることがてきる。図44は、6個の主ベクトル及び6個の副ベクトルにより形成される12個の位相領域を示す。それぞれが電気角30度に相当するこれら12個の位相領域はサブセクタ-と呼ばれることができる。
副ベクトル1D0は主セクター11をサブセクター11A及び11Bに分割する。副ベクトルD10は主セクター12をサブセクター12A及び12Bに分割する。副ベクトル01Dは主セクター13をサブセクター13A及び13Bに分割する。副ベクトル0D1は主セクター14をサブセクター14A及び14Bに分割する。副ベクトルD01は主セクター15をサブセクター15A及び15Bに分割する。副ベクトル10Dは主セクター16をサブセクター16A及び16Bに分割する。
図30に示される3相インバータ3は星形結線ステータコイル1に接続されている。主ベクトル(100、110、010、011、001、及び101)及び副ベクトル(1D0、D10、01D、0D1、D01、及び10D)は、3相インバータ3のレグ3U、3V、及び3Wの状態を示す。図45は、各主ベクトル及び各副ベクトルに相当するレグ3U、3V、及び3Wの状態を示す状態図である。この実施例によれば、任意の電圧ベクトルはこれらの主ベクトル及び副ベクトルから選択された2つのベクトルの和により形成されることができる。一般に、電圧ベクトルは、1つの主ベクトルと1つの副ベクトルとの和により形成される。主ベクトル及び副ベクトルにそれぞれ相当する2つの電流供給期間TA及びTBが各PWMサイクル期間(TC)内に配置される。電流供給期間TA及びTBは分割されることができる。たとえば、電流供給期間TBの前後に2つのサブ電流供給期間TA’を配置することができる。電流供給期間TAの長さは2つのサブ電流供給期間TA’の合計長さに等しい。ゼロベクトル(000又は111)は、既述されたフリーホィール期間TFに相当する。
この実施例のデッド状態式SVPWMの効果が図46を参照して説明される。図46は、副ベクトル(1D0)上の1つの電圧ベクトルV1D0を示す。この電圧ベクトルV1D0は、主ベクトル(100)上の電圧ベクトルV100と、主ベクトル(110)上の電圧ベクトルV110との和に相当する。電圧ベクトルV1D0の長さは、電圧ベクトルV100の長さと電圧ベクトルV110の長さの和よりも短くなる。したがって、電圧ベクトルV1D0に相当する電流供給期間は、電圧ベクトルV100に相当する電流供給期間と電圧ベクトルV110に相当する電流供給期間と和よりも短かくなる。結局、6個の主ベクトル及び6個の副ベクトルを用いるこの実施例のSVPWMは、インバータ3によりステータコイル1に印加される相電圧を低減することができる。これにより、電力損失が低減される。たとえば、電圧ベクトルの平均値の5%が低減される時、インバータ3及びステータコイル1の抵抗電力損失は約10%低減される。
図47は主ベクトル(100)上の電圧ベクトルV100に相当する電流供給期間TBの前後に2つのサブ電流供給期間TA’を別々に配置する例を示すタイミングチャートである。副ベクトル(1D0)上の電圧ベクトルV1D0に相当する2つのサブ電流供給期間TA’はそれぞれ、電圧ベクトルV1D0に相当する電流供給期間TAの半分の長さをもつ。図48は図47に示される電流供給期間TA’及びTBに相当するインバータ3の状態を示す模式図である。デッドレグをもたない主ベクトルは副ベクトルよりも優れた電流供給能力をもつ。したがって、副ベクトルを使用しない従来のSVPWMは重負荷領域において好適である。

Claims (15)

  1.  少なくとも3個のレグをもつインバータを駆動するために、少なくとも1つの電流供給期間を各PWMサイクル期間内に有する空間ベクトルパルス幅変調法において、
     少なくとも1つの前記レグは、その上アームスイッチおよび下アームスイッチが前記電流供給期間中においてオフされるデッド状態をもつデッドレグであることを特徴とする空間ベクトルパルス幅変調法。
  2.  前記インバータは、星形結線タイプの3相モータの3個の相コイルに別々に接続されるつのレグをもつ請求項1記載の空間ベクトルパルス幅変調法。
  3.  前記インバータ及び前記相コイルを循環するフリーホィール電流は、前記デッドレグを通過する請求項2記載の空間ベクトルパルス幅変調法。
  4.  前記インバータは、前記電流供給期間において、前記デッドレグと、最高電位を出力する最高電位レグと、最低電位を出力する最低電位レグとをもつ請求項2記載の空間ベクトルパルス幅変調法。
  5.  前記各PWMサイクル期間はそれぞれ、前記デッド状態をもつ2種類の前記電流供給期間を含む請求項1記載の空間ベクトルパルス幅変調法。
  6.  前記2種類の電流供給期間はそれぞれ、それぞれ前記デッド状態を含む6種類の副ベクトル(1D0、D10、01D、0D1、D01、及び10D)の各一つに相当する請求項5記載の空間ベクトルパルス幅変調法。
  7.  前記インバータは、互いに隣接する2つの前記副ベクトルのベクトル和からなる電圧ベクトルに相当する3相電圧を出力する請求項6記載の空間ベクトルパルス幅変調法。
  8.  前記各PWMサイクル期間はそれぞれ、前記デッド状態をもつ前記電流供給期間と、前記デッド状態をもたない前記電流供給期間とを含む請求項1記載の空間ベクトルパルス幅変調法。
  9.  前記デッド状態をもつ前記電流供給期間は、前記デッド状態を含む6種類の副ベクトル(1D0、D10、01D、0D1、D01、及び10D)の一つに相当し、
     前記デッド状態をもたない前記電流供給期間は、前記デッド状態を含まない6種類の主ベクトル(100、110、010、011、001、及び101)の一つに相当する請求項8記載の空間ベクトルパルス幅変調法。
  10.  前記インバータは、互いに隣接する各一つの前記副ベクトル及び前記主ベクトルのベクトル和からなる電圧ベクトルに相当する3相電圧を出力する請求項6記載の空間ベクトルパルス幅変調法。
  11.  前記PWMサイクル期間(TC)はそれぞれ、第1の電流供給期間(TA)及び第2の電流供給期間(TB)を含み、
     前記第1の電流供給期間(TA)は、前記PWMサイクル期間(TC)の開始時点から所定の終了時点まで継続し、
     前記第2の電流供給期間(TB)は、所定の開始時点から前記PWMサイクル期間(TC)の次の開始時点まで継続する請求項1記載の空間ベクトルパルス幅変調法。
  12.  前記第1の電流供給期間(TA)は、前記第2の電流供給期間(TB)よりも短い請求項11記載の空間ベクトルパルス幅変調法。
  13.  前記第1の電流供給期間(TA)は、前記第2の電流供給期間(TB)の終了直前に開始される請求項12記載の空間ベクトルパルス幅変調法。
  14.  前記インバータは、共通のPWMサイクル期間内において互いに重ならない前記電流供給期間をもつ複数の3相インバータからなる請求項1記載の空間ベクトルパルス幅変調法。
  15.  前記インバータは、直列接続されたU相コイル、V相コイル、及びW相コイルからなるシリーズ相巻線の4つの端子に別々に接続される4つのレグをもつ4レグインバータからなり、
     前記各PWMサイクル期間はそれぞれ、前記直流電源が前記U相コイルにU相電流を供給する第1の電流供給期間(TX)と、前記直流電源が前記V相コイルにV相電流を供給する第2の電流供給期間(TY)と、前記直流電源が前記W相コイルにW相電流を供給する第の電流供給期間(TZ)とを含む請求項1記載の空間ベクトルパルス幅変調法。
PCT/JP2017/039792 2017-11-02 2017-11-02 空間ベクトルパルス幅変調法 WO2019087362A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039792 WO2019087362A1 (ja) 2017-11-02 2017-11-02 空間ベクトルパルス幅変調法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039792 WO2019087362A1 (ja) 2017-11-02 2017-11-02 空間ベクトルパルス幅変調法

Publications (1)

Publication Number Publication Date
WO2019087362A1 true WO2019087362A1 (ja) 2019-05-09

Family

ID=66331720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039792 WO2019087362A1 (ja) 2017-11-02 2017-11-02 空間ベクトルパルス幅変調法

Country Status (1)

Country Link
WO (1) WO2019087362A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191185A (ja) * 2000-12-19 2002-07-05 Sanyo Electric Co Ltd インバータ装置
JP2005160183A (ja) * 2003-11-25 2005-06-16 Mitsubishi Electric Corp 同期電動機駆動装置及び同期電動機駆動装置の制御方法及び冷凍冷蔵庫及び空気調和機
JP2008271620A (ja) * 2007-04-16 2008-11-06 Shimadzu Corp モータサーボ装置
WO2017081900A1 (ja) * 2015-11-12 2017-05-18 田中 正一 巻数切替式電気機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191185A (ja) * 2000-12-19 2002-07-05 Sanyo Electric Co Ltd インバータ装置
JP2005160183A (ja) * 2003-11-25 2005-06-16 Mitsubishi Electric Corp 同期電動機駆動装置及び同期電動機駆動装置の制御方法及び冷凍冷蔵庫及び空気調和機
JP2008271620A (ja) * 2007-04-16 2008-11-06 Shimadzu Corp モータサーボ装置
WO2017081900A1 (ja) * 2015-11-12 2017-05-18 田中 正一 巻数切替式電気機械

Similar Documents

Publication Publication Date Title
JP5660025B2 (ja) 電圧変換回路およびその電圧変換回路を備える電圧変換システム
JP2020509730A (ja) Dcリンク電流リップルを低減するための駆動システムおよびその動作方法
JP7191951B2 (ja) 電気自動車のパワーシステム
El Badsi et al. Bus-clamping-based DTC: An attempt to reduce harmonic distortion and switching losses
US20120206076A1 (en) Motor-driving apparatus for variable-speed motor
Umesh et al. Pole-phase modulated multiphase induction motor drive with reduced torque ripple and improved DC link utilization
JP2013236413A (ja) スイッチドリラクタンス機械駆動用のパワーコンバータ
Menon et al. A comprehensive survey on permanent magnet synchronous motor drive systems for electric transportation applications
WO2012086095A1 (en) Motor-driving apparatus for driving three-phase motor of variable speed type
US20200304049A1 (en) Pulse width modulation pattern generator and corresponding systems, methods and computer programs
US20150097505A1 (en) Current source inverter device
JP7218460B2 (ja) 3相モータ駆動装置
CN110663170A (zh) 多组多相旋转电机的驱动装置
JP2015164385A (ja) 可変速電気機械
JP6055486B2 (ja) 電源装置
US11909342B2 (en) Rotating electrical machine control device
WO2019087362A1 (ja) 空間ベクトルパルス幅変調法
JP2014039446A (ja) 極数変換モータ装置
WO2019244212A1 (ja) 可変速モータ装置
CN110677080B (zh) 一种基于混合储能单元的无刷直流电机系统控制方法
WO2021019608A1 (ja) 3相モータドライブ
WO2018142635A1 (ja) インバータ駆動6相モータ装置
WO2018207719A1 (ja) 可変速モータ装置
JP7391130B2 (ja) インバータ駆動法
JP2019037124A (ja) タンデム式回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP