WO2019082762A1 - 電気炉及び酸化鉄含有鉄原料の溶解及び還元方法 - Google Patents

電気炉及び酸化鉄含有鉄原料の溶解及び還元方法

Info

Publication number
WO2019082762A1
WO2019082762A1 PCT/JP2018/038636 JP2018038636W WO2019082762A1 WO 2019082762 A1 WO2019082762 A1 WO 2019082762A1 JP 2018038636 W JP2018038636 W JP 2018038636W WO 2019082762 A1 WO2019082762 A1 WO 2019082762A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
iron oxide
iron
electric furnace
containing iron
Prior art date
Application number
PCT/JP2018/038636
Other languages
English (en)
French (fr)
Inventor
貴大 田口
強 山▲崎▼
秀平 笠原
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020207010333A priority Critical patent/KR102374981B1/ko
Priority to BR112020006455-6A priority patent/BR112020006455B1/pt
Priority to JP2019551050A priority patent/JP6911935B2/ja
Priority to CN201880068529.3A priority patent/CN111263821B/zh
Priority to CA3079388A priority patent/CA3079388A1/en
Priority to US16/757,276 priority patent/US11536514B2/en
Priority to EP18870967.9A priority patent/EP3705586A4/en
Publication of WO2019082762A1 publication Critical patent/WO2019082762A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/10Making pig-iron other than in blast furnaces in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5294General arrangement or layout of the electric melt shop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • F27B3/085Arc furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • F27D11/10Disposition of electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • C22B9/106General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents the refining being obtained by intimately mixing the molten metal with a molten salt or slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • F27D2027/002Gas stirring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0033Charging; Discharging; Manipulation of charge charging of particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an electric furnace for producing hot metal using an iron oxide-containing iron raw material, and a method for dissolving and reducing an iron oxide-containing iron raw material using the electric furnace.
  • the method of using a natural gas as a reducing agent in a reducing furnace type shaft shaft furnace, or the method of using coal as a reducing furnace type reducing furnace type coal in a rotary hearth furnace As a method of producing hot metal using an iron oxide-containing iron raw material, a method of melting hot iron oxide-containing iron raw material having a high reduction ratio in an arc furnace to produce hot metal is currently the mainstream.
  • the direct reduction furnace is a preliminary reduction furnace, and the preliminary reduction furnace produced by this preliminary reduction furnace has a relatively low reduction rate.
  • a method of melting and reducing iron oxide-containing iron raw material using an arc furnace or a melting converter to produce hot metal is employed.
  • a mixture material pellet or particulate mixture material containing semireduced iron prereduced in a rotary hearth furnace (RHF) is charged into a submerged arc furnace (SRF), It is stated that finishing and refining for final reduction and dissolution are carried out.
  • SRF supplies oxygen gas and coal to obtain hot metal and recovered gas.
  • SRF while starting up the furnace, it is necessary to charge a molten metal or other starting water, but in steady-state operation this is not necessary due to the presence of the iron bath in the furnace.
  • the carbon material is internally contained in the dust generated in the converter to be agglomerated, heated at high temperature in the preliminary reduction furnace, and preliminarily reduced using the internal carbon material as a reducing material, and then the iron-containing cold material is heated at high temperature.
  • a method is disclosed that is supplied to a melting converter dedicated to the presence of starting water as a part and reused.
  • the iron oxide-containing iron raw material introduced is any device
  • the iron oxide-containing iron raw material contains slag components such as CaO and SiO 2
  • the slag floats on the hot metal surface when dissolution proceeds, and the raw material input from the furnace is captured by the slag and makes contact with the hot metal. It does not dissolve because of inhibition, which leads to a decrease in iron yield.
  • the iron oxide-containing iron raw material that has been charged is involved in the molten metal by flow control while using the high temperature part as much as possible. The method is mentioned.
  • Patent Document 3 describes an invention of a method of smelting reduction of metal oxides using a three-phase alternating current electric furnace.
  • the invention supplies a powdered metal raw material ore, for example, chromium ore, to a forming region of an arc in a three-phase alternating current electric furnace, melts the metal raw material ore by arc heat, and further gas in the furnace bottom of the electric furnace.
  • the present invention relates to an electric furnace refining method characterized by disposing a blowing nozzle and blowing gas into molten metal in the electric furnace, which relates to reduction of chromium ore, which is a method of contacting a reducing agent in slag with raw material ore. It is unclear how to distinguish the effect of improving the reduction reaction and the effect of improving the reduction reaction due to the contact between the molten metal and the raw material ore.
  • Patent Document 4 discloses a method of blowing in a carbon-containing fuel and an oxygen-containing gas and supplying oxygen by means of a nozzle disposed at the bottom of the arc furnace in a steelmaking arc furnace. It is described that using an arc furnace with three electrodes, ores, pre-reduced ores, etc. are blown through hollow electrodes to give bottom blowing agitation when producing a metal melt, but high temperatures produced by arcs There is no mention of the concentration of the ore in the field, the number of pre-reduced ores, the positional relationship of the bottom blowing nozzle at the furnace bottom, and the yield of the input material.
  • the present invention is an electric furnace for charging and melting iron oxide-containing iron raw material onto a molten iron bath to melt and reduce the electric furnace, which has a high iron yield, and which enables the iron oxide-containing iron raw material to be melted and reduced; It aims at provision of the dissolution and reduction method of iron oxide content iron materials using the electric furnace.
  • An electric furnace is a charging apparatus for charging an iron oxide-containing iron material, a mechanical stirrer having one or more upper electrodes, one or more bottom blow nozzles, and an impeller.
  • a device for charging an iron oxide-containing iron material, a mechanical stirrer having one or more upper electrodes, one or more bottom blow nozzles, and an impeller.
  • the following configuration may be adopted in the electric furnace according to the above (1): having three or more bottom blowing nozzles; having a plurality of upper electrodes; each of the above in plan view Of the two line segments that divide the shortest line segment among the line segments connecting the center of the upper electrode and the center of the impeller, a straight line orthogonal to the line segment is drawn at a point closer to the impeller
  • the centers of the bottom blowing feathers are at least three.
  • the centers of all the upper electrodes and the raw material inlets of the charging device are closer to the upper electrodes than the straight line orthogonal to each other. It may be inside a polygon connecting the centers of three or more of the bottom blow-off mouths on the near side.
  • the method for dissolving and reducing the iron oxide-containing iron raw material according to one aspect of the present invention uses the electric furnace described in any one of the above (1) to (3).
  • the iron oxide-containing iron raw material having a metallization ratio of 45% to 95% of iron is charged from the charging apparatus into the electric furnace in which the molten metal is present.
  • the impeller of the mechanical stirrer is immersed in the melt and rotated to stir the slag and the melt on the surface of the melt.
  • slag and oxidation are caused by gas blowing from the bottom blowing nozzle.
  • High by combining bottom-blowing stirring to promote mixing of iron-containing iron raw material and hot metal, and mechanical stirring that causes slag and iron oxide-containing iron raw material to float on the hot metal by rotating the impeller.
  • the iron yield enables dissolution and reduction of the iron oxide-containing iron raw material.
  • the upper electrode and the iron oxide-containing iron raw material input port are arranged inside the polygon connecting the centers of the respective bottom blow-off mouths in plan view with three or more bottom blow-off mouths, and iron oxide-containing iron
  • the iron oxide-containing iron raw material is introduced into the high temperature part in the vicinity immediately below the upper electrode and immediately moves from the high temperature part to the side wall side. Can. This promotes the dissolution and reduction of the iron oxide-containing iron raw material.
  • the impeller installed at a place away from the high temperature part in the vicinity immediately below the upper electrode, the slag moved from the high temperature part and the iron oxide-containing iron raw material which has not been dissolved and reduced are contained in the hot metal. Since it can be involved, the reduction of FeO in the slag and the dissolution and reduction of the iron oxide-containing iron raw material are further promoted, and a high iron yield can be stably achieved.
  • FIG. 2B is a view showing the electric furnace of FIG. 2A and is a view on arrow AA of FIG. 2A.
  • the present invention is directed to an electric furnace capable of preparing iron oxide-containing iron raw material from above the furnace onto a molten metal, melting and reducing it by contact of arc heat and the molten metal, and producing molten metal. .
  • the iron oxide-containing iron raw material charged from the furnace stays in the high temperature part due to the arc generated by the upper electrode, and the mechanical stirrer installed outside the high temperature part rotates the iron oxide containing iron raw material and its dissolution
  • the present invention provides an electric furnace capable of producing molten iron with high iron yield, by allowing the inclusion of slag having a high FeO concentration, which is generated along with the above, into the molten iron.
  • the present invention preferably applies a direct current arc furnace as the arc furnace.
  • the invention is also applicable to alternating current arc furnaces.
  • a mode for carrying out the present invention will be described in detail with reference to FIGS. 1 to 3 by taking a direct current arc furnace as an example.
  • the electric furnace 1 of the present embodiment includes a mechanical stirrer 5 having one or more upper electrodes 2, one or more bottom blow nozzles 3, and an impeller 4, and a feeder 6 for iron oxide-containing iron raw material And.
  • the iron oxide-containing iron raw material feeding device 6 holds the iron oxide-containing iron raw material in the device itself, or, although it can not be said that the device itself, the iron oxide-containing iron material in the device It refers to a container holding an iron oxide-containing iron raw material so as to be able to supply the raw material and a container connected via a transport mechanism.
  • the two upper electrodes 2 and the three bottom blowing nozzles 3 are provided. Furthermore, it has one mechanical stirrer 5 and one charging device 6.
  • FIG. 1 to 3 are diagrams showing an example of the electric furnace 1 used when supplying an iron oxide-containing iron raw material 13 and dissolving and reducing it to produce hot metal.
  • the iron oxide-containing iron raw material 13 is charged from the charging device 6.
  • the upper electrode 2 forms an arc 14 with the surface of the molten metal 11, and a gas is blown into the molten metal 11 from the bottom blowing nozzle 3 to stir the molten metal 11 and also to contain iron oxide-containing iron 13 and the mixing of the slag 12 and the molten metal 11 are also performed.
  • the impeller 4 of the mechanical stirrer 5 rotates in a state where the lower half thereof is immersed in the molten metal 11, thereby stirring the molten metal 11, the slag 12 and the iron oxide-containing iron raw material 13. Since the electric furnace 1 shown in FIG. 1 is a direct current electric furnace, it has a furnace bottom electrode 10. A solid electrode may be used as the upper electrode 2. The iron oxide-containing iron raw material 13 is injected toward the surface of the molten metal 11 from the raw material inlet 7 of the injection device 6.
  • the mechanical stirrer 5 holds a shaft 5a extending along the vertical direction, an impeller 4 fixed to the lower end of the shaft 5a, and an upper portion of the shaft 5a, around the vertical axis And a drive unit 5b for rotating.
  • the impeller 4 is a rotating body having a center 17 along the vertical direction, and has, for example, four wings around it.
  • the impeller 4 has an outer shape that tapers downward, and as it rotates, it rolls in the iron oxide-containing iron raw material 13 and the slag 12 floating around, and sends it downward.
  • the mixing of iron oxide-containing iron raw material 13 and slag 12 with molten iron is promoted by gas blowing from the bottom blowing nozzle 3.
  • the impeller 4 by rotating the impeller 4, the slag 12 and the iron oxide-containing iron raw material 13 floating on the hot metal can be caught in the hot metal (molten metal 11). Therefore, it becomes possible to dissolve and reduce the iron oxide-containing iron raw material 13 with a high iron yield.
  • the arc 14 is formed between the upper electrode 2 and the molten metal 11 and the high temperature region H is formed in the vicinity of the arc 14, the iron oxide-containing iron raw material 13 charged into the electric furnace 1 is rapidly melted.
  • the raw material inlet 7 of the iron oxide-containing iron raw material 13 is disposed as close to the high temperature area H as close to the arc 14 as possible, and the input iron oxide containing iron raw material 13 is kept in the high temperature area H Is preferable.
  • the electrode center 16 of each upper electrode 2 and the center 17 of the impeller 4 of the mechanical stirrer 5 are connected.
  • the shortest line segment 20 is equally divided into three. Then, a straight line 22 orthogonal to the line segment 20 is drawn at a point 21 a closer to the impeller 4 among two points (21) which divide the line segment 20 into three equal parts.
  • the center 18 of at least three or more tuyeres 3 among the bottom blow-off ports 3 is closer to the upper electrode 2 than the straight line 22 orthogonal to each other, and all the electrodes of the upper electrode 2
  • Three or more tuyeres 3 of which the raw material inlet 7 of the center 16 and the iron oxide-containing iron raw material feeding device 6 into the electric furnace 1 is closer to each upper electrode 2 than the straight line 22 intersecting at right angles It is inside a polygon 23 (in this example, a triangle) connecting each center 18.
  • the arrangement of the bottom blowing nozzle 3 is, in plan view, a point 21 a on the impeller 4 side among two points (21) which divide equally the line segment 20 connecting the electrode center 16 of the upper electrode 2 and the center 17 of the impeller 4.
  • the center 18 of at least three or more tuyeres is installed closer to the upper electrode 2 than the straight line 22 orthogonal to the straight line.
  • the shortest line segment 20 of the two horizontal line segments connecting each electrode center 16 and the center 17 of the impeller is equally divided into three.
  • a straight line 22 perpendicular to the line segment 20 and horizontal may be used as a reference.
  • FIG. 2A in a state where the impeller 4 and the respective upper electrodes 2 are arranged in a horizontal row, the three bottom blow-off ports 3 are respectively disposed at the illustrated positions.
  • the impeller 4 and the upper electrode 2 may not be in a single horizontal row.
  • FIG. 2B shows that the two upper electrodes 2 are equidistant to the impeller 4.
  • the positions of the three bottom blowing nozzles 3 are above the position of the straight line 22 drawn by the point 21 obtained by dividing the line segment 20 connecting the center 17 of the impeller 4 and the electrode center 16 into three. It is located on the electrode 2 side.
  • the center 18 positions of the tuyeres of the three bottom blow-off blades 3 are equidistant from each other, but they need not necessarily be equidistant.
  • the position of the orthogonal straight line 22 is oxidized using the high temperature region H in the vicinity immediately below the upper electrode 2 by drawing orthogonally at the middle point of the line segment 20 connecting the electrode center 16 and the center 17 of the impeller. It is more preferable to the feature of the present invention of dissolving and reducing the iron-containing iron material 13.
  • all the electrode centers 16 of one or more upper electrodes 2 and the raw material inlet 7 to the electric furnace 1 of the charging device 6 of the iron oxide-containing iron raw material 13 is required to be inside a polygon 23 connecting the centers 18 of three or more bottom blow nozzles 3 on the upper electrode 2 side.
  • the bottom blow gas flowing from each bottom blowout nozzle 3 connects the centers 18 of their tuyeres.
  • the flow toward the central portion of the square 23 (see the symbol F1 in FIG. 2A and FIG. 3) is formed, and the iron oxide-containing iron raw material 13 introduced into the polygon 23 remains in the vicinity of the high temperature region H, thereby causing oxidation. This is because the dissolution promoting effect of the iron-containing iron raw material 13 is expected.
  • each bottom blowing feather 3 is disposed so as to have the upper electrode 2 and the raw material inlet 7 of the iron oxide-containing iron raw material 13 inside the polygon 23 connecting the centers 18 of the bottom blowing feathers 3. From this, the horizontal shortest distance between the bottom blowout nozzles 3 is naturally determined in consideration of equipment connection. Further, the longest horizontal distance between the bottom blow nozzles 3 may be appropriately determined from the relationship with the side wall of the electric furnace 1. The mutual distance between the bottom blowing nozzles 3 constituting the polygon 23 is within the above-mentioned range, surrounding the iron oxide-containing iron raw material 13 charged on the hot metal with the bottom blowing gas, and preferably from the enclosed space It may be decided as appropriate from the viewpoint of preventing it from being missed.
  • the iron oxide-containing iron raw material 13 is added in the vicinity of the high temperature region H in the vicinity immediately below the upper electrode 2 and, at the same time, molten iron and strong agitation while being surrounded by the bottom blowing gas. It will be done.
  • the iron oxide-containing iron raw material 13 can be used as an electric furnace between the respective upper electrodes 2 and the internal passage of the hollow upper electrodes 2. It can be introduced into 1.
  • the electric furnace 1 since the high temperature arc 14 is formed between the upper electrode 2 and the molten metal 11, the raw material charged into the molten metal 11 through the internal passage of the hollow upper electrode 2 (iron oxide-containing iron raw material 13) Is preferable because it is heated to a high temperature as it passes through the arc 14 and melts easily.
  • the iron oxide-containing iron raw material 13 introduced into the electric furnace 1 is dissolved and reduced while floating on the surface of the molten metal 11 because the specific gravity is lighter than the molten metal (molten metal 11).
  • the iron oxide-containing iron raw material 13 is dissolved and reduced, not only CaO and SiO 2 in the raw material but also the iron oxide portion which is not reduced becomes a slag, which also has a specific gravity smaller than that of the molten metal (molten metal 11) Float on the surface of the molten metal 11 to form a layer of slag 12 with a high FeO concentration.
  • this FeO-rich slag 12 flows out of the aforementioned enclosure (polygon 23) sooner or later together with the iron oxide-containing iron raw material 13 which has not been dissolved and reduced. . Under this condition, neither the iron oxide-containing iron raw material 13 that has been melted and reduced nor the FeO in the slag 12 has insufficient contact with C (reducing material) in the molten metal 11, and the reduction is not sufficiently promoted.
  • the present invention has a mechanical stirrer 5 having an impeller 4 and comprises the molten metal 11 in the furnace, the above-described iron oxide-containing iron raw material 13 which has not been dissolved and reduced, and the slag 12 having a high FeO concentration, Stir using impeller 4.
  • the impeller 4 By arranging the impeller 4 and rotating it in the molten metal 11, as shown by symbol F2 in FIG. 3, the iron oxide-containing iron raw material 13 introduced into the electric furnace 1 is melted and reduced to form a slag
  • the iron oxide-containing iron raw material 13 which is left as it is can be caught in the hot metal.
  • the impeller 4 is a refractory-made swirling blade, if it is installed in a high temperature part near the upper electrode 2, there is a possibility that the erosion will be severe. Therefore, it is preferable to install at a position away from the upper electrode 2. Specifically, as described above, in the preferred embodiment of the present invention, as shown in FIG. 2A and FIG.
  • the impeller 4 is separated from the high temperature area H in the vicinity immediately below the upper electrode 2, and bottom blowing gas is present between the high temperature area H and the impeller 4. Makes it easy to maintain the life of the impeller 4. In addition, it plays an expected role of the impeller 4 in that the slag 12 with high FeO concentration on the bath surface flowing out from the range of the polygon 23 and the undissolved iron oxide-containing iron raw material 13 are caught in the bath. be able to.
  • Interfacial area where carbon in the hot metal and iron oxide in the slag 12 react when the molten iron is mixed and stirred with the slag or the like of high FeO concentration generated by melting the iron oxide-containing iron raw material 13 in the high temperature part By promoting heat supply from the hot metal, reduction of the slag 12 and the like can be promoted.
  • the slag 12 and iron oxide are injected by gas injection from each bottom blowing nozzle 3
  • nitrogen gas, argon gas, oxygen-containing gas, or the like can be used as the gas species blown from the bottom blowing nozzle 3.
  • the bottom spray nozzle 3 can be a single pipe tuyere.
  • an oxygen-containing gas for example, pure oxygen
  • the gas flow rate blown from one bottom blowing nozzle 3 may be about 3 to 15 Nm 3 / h per 1 ton of hot metal.
  • the iron oxide-containing iron raw material 13 to be dissolved and reduced in the present embodiment preferably has a metalization ratio of 45% to 95% of iron.
  • the metallization ratio (%) of iron means the mass% of metallic iron in the iron oxide-containing iron raw material 13 (metallic iron mass / total iron content iron total mass ⁇ 100).
  • the iron oxide-containing raw material such as iron ore and dust is heated and pre-reduced by a preliminary reduction furnace such as a shaft furnace or a rotary hearth furnace to obtain an iron oxide-containing iron raw material 13
  • the present invention relates to an electric furnace 1 used for producing the molten metal by supplying the iron oxide-containing iron raw material 13 into the furnace, and dissolving and reducing it in the molten metal.
  • CO gas generated when reducing the raw material by using carbon as a reducing agent in a direct current arc furnace as a preliminary reducing agent in the preliminary reduction furnace can significantly reduce or eliminate the use amount of natural gas It is preferable because it is possible to eliminate the need for a new process that is not directly related to the molten steel manufacturing process such as a gas generation furnace.
  • the metallization ratio of iron of iron oxide-containing iron raw material 13 manufactured by prereduction is 45% or more, the entire amount of CO gas generated in the direct current arc furnace is used as CO gas for reduction in the prereduction furnace It is possible to prevent an increase in power consumption rate by suppressing an increase in carbon material consumption rate and an increase in required reduction heat in a direct current arc furnace without causing a reduction in the overall reduction efficiency.
  • the metallizing rate upper limit of iron of the contained iron raw material 13 into 95%.
  • Iron oxide in the iron oxide-containing iron raw material 13 is reduced by using carbon contained in the molten metal as a reducing agent. As a result, it is necessary to supply a carbon source because the carbon concentration in the molten iron hot metal is reduced.
  • the iron oxide-containing iron raw material 13 may contain a carbon-containing substance as a reducing agent contributing to the reduction in the arc furnace. Further, the additional carbon source may be supplied by charging a carbon-containing substance into the direct current arc furnace separately from the iron oxide-containing iron raw material 13.
  • the iron oxide-containing iron raw material 13 preferably contains 4 to 24% by mass in total of oxides other than iron oxide.
  • oxides include CaO, SiO 2 , Al 2 O 3 and MgO. These oxides are slag components.
  • the slag component in the raw material floats on the hot metal surface as melting proceeds, and the raw material input from the furnace is captured by the slag and does not dissolve in contact with the hot metal, resulting in a reduction in iron yield. Therefore, the upper limit of the slag component occupied in a raw material shall be 24 mass%.
  • the iron oxide-containing iron raw material 13 is used as a sintered ore or pellet in order to heat and prereduce the iron oxide-containing iron raw material such as iron ore and dust in a preliminary reduction furnace.
  • the iron oxide-containing iron raw material such as iron ore and dust
  • the electric furnace 1 As the electric furnace 1, the DC electric furnace shown in FIG. 1, FIG. 2A and FIG. 3 was used.
  • the electric furnace 1 has a furnace inner radius of 4 m in plan view, can accommodate 100 tons of molten iron as the molten metal 11, and has a hollow structure with an outer diameter of 800 mm and an inner diameter of 200 mm.
  • Two upper electrodes 2 are disposed at the positions shown in FIGS. 1 and 2A at an interval of 2 m.
  • Each of the three bottom spray nozzles 3 was a single pipe and had an inner diameter of 15 mm, and N 2 gas was blown in from each at a speed of 110 Nm 3 / h.
  • the raw material inlet 7 of the feeder 6 is located near the center 9 of the polygon 23 connecting the centers 18 of the tuyeres.
  • the impeller 4 of the mechanical stirrer 5 was disposed at the position shown in FIGS. 1 and 2A.
  • the mechanical stirrer 5 has an impeller 4 made of alumina castable as a refractory.
  • the impeller 4 has four stirring blades, the diameter of the stirring blade is 1.0 m, and the height of the stirring blades is 0.3 m.
  • the center 17 of the impeller 4 is 2 from the center of the electric furnace 1 (furnace radius 4 m) It was set up to be at a position of .2m.
  • the impeller 4 is a point 21a on the impeller 4 side among two points (21) which divide the shortest line segment 20 equally among the line segments connecting each electrode center 16 and the center 17 of the impeller in plan view.
  • a straight line 22 orthogonal to the line segment 20 is drawn, the centers 18 of at least three or more tuyeres are installed so as to be closer to the upper electrode 2 than the straight line 22 orthogonal to the straight line. Therefore, it is possible to stir so that the slag 12 and the undissolved iron oxide-containing iron raw material 13 floating on the hot metal may be caught in the hot metal at a place away from the high temperature part in the vicinity of the upper electrode 2.
  • the iron oxide-containing iron raw material 13 was put into a furnace in which the starting water was present, and the dissolution and reduction operation was performed.
  • the iron oxide-containing iron raw material 13 As the iron oxide-containing iron raw material 13, the iron oxide-containing iron raw material prereduced in a rotary hearth furnace was used.
  • the composition of the iron oxide-containing iron raw material 13 was as shown in Table 1.
  • the metallization ratio of iron is 65.6%, and the oxide content other than iron oxide is 17.8% by mass.
  • the iron oxide-containing iron raw material 13 is injected into the high temperature part in the vicinity immediately below the upper electrode 2 and the bottom blowing is given at that place to quickly dissolve the iron oxide-containing iron raw material 13
  • reduction of the molten FeO generated as a result of the dissolution is also said to have a reduction promoting effect because the maximum concentration is not changed despite the rapid dissolution.
  • the overall effect is that the dissolution can be completed quickly, and the subsequent reduction time becomes long, and at the end of 60 minutes after the start of the dissolution and reduction operation, the FeO concentration in the slag is relative Had the effect of lowering the
  • the application of the rotation by the mechanical stirrer 5 extends the winding of the slag 12 and the iron oxide-containing iron raw material 13 into the molten metal by the rotation to the high temperature portion in the vicinity immediately below the upper electrode 2
  • the dissolution rate of the iron oxide-containing iron raw material 13 was not different from that in the absence thereof.
  • the reduction of the FeO-containing slag generated as it melts can be rapidly progressed even at a place away from the high temperature part, and when 60 minutes finally pass, the FeO concentration in the slag is wound by rotation. There was an effect to lower according to the included strength.
  • bottom blowing is performed by stirring the iron oxide-containing iron raw material 13 floating on the hot metal surface
  • the effect of rapidly dissolving the iron oxide-containing iron raw material 13 was exhibited.
  • the reduction of FeO generated along with the dissolution was also advanced, and the maximum concentration of FeO was equivalent to the case of the above (i) (ii) despite the rapid dissolution.
  • the time until the FeO concentration reaches the maximum was almost the same as in the case of the above (i), it can be said that there was almost no influence of mechanical stirring during this time.
  • the mechanical stirring is performed by winding the slag 12 containing FeO derived from the iron oxide-containing iron raw material rapidly dissolved by the bottom blowing and the undissolved iron oxide-containing iron raw material 13
  • the effect of promoting contact with carbon and the heat supply possessed by hot metal was exhibited as in the case of (ii) above. Since the rate of decrease of the FeO concentration from the time when the FeO concentration reached the maximum was almost the same as in the case of (ii) above, it can be said that the influence of the presence or absence of the bottom blowing was hardly present.
  • the FeO concentration in the slag being 10% or less within 40 minutes from the start of raw material supply is an operation with a very high iron yield. It can be said.
  • the present invention it is possible to provide an electric furnace capable of dissolving and reducing iron oxide-containing iron raw material having high iron yield, and a method of dissolving and reducing iron oxide-containing iron raw material using the electric furnace. . Therefore, the industrial applicability is great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

この電気炉は、1本以上の上部電極と、1本以上の底吹き羽口と、インペラーを具備する機械式攪拌機と、酸化鉄含有鉄原料を投入する投入装置と、を備える。

Description

電気炉及び酸化鉄含有鉄原料の溶解及び還元方法
 本発明は、酸化鉄含有鉄原料を使用して溶銑を製造する電気炉、及びその電気炉を用いた酸化鉄含有鉄原料の溶解及び還元方法に関する。
 本願は、2017年10月23日に、日本国に出願された特願2017-204540号に基づき優先権を主張し、その内容をここに援用する。
 鉄鉱石や、製鉄所から発生したダストから還元鉄を製造する直接還元製鉄法では、還元炉形式についてはシャフト炉、ロータリーキルン、回転炉床炉、流動層等が用いられ、還元剤については天然ガス、石炭等が用いられている。これらの組み合わせによる各種の製鉄プロセスが提案され、工業化されている。
 また、これらの直接還元製鉄法のうち、還元炉形式がシャフト炉で還元剤として天然ガスを用いる方法、又は、還元炉形式が回転炉床炉で還元剤として石炭を用いる方法、により製造された酸化鉄含有鉄原料を使用して溶銑を製造する方法として、還元率の高い酸化鉄含有鉄原料をアーク炉において溶解し、溶銑を製造する方法が現在最も主流となっている。
 しかしながら、還元率の高い酸化鉄含有鉄原料を製造するためには多量の還元剤を使用し、酸化鉄の還元反応がほぼ完遂するまでの滞留時間が必要となるため、天然ガス非産出国においてはコストと生産性の点からその採用が難しい。そこで、これら直接還元炉で還元率の高い酸化鉄含有鉄原料を製造するのではなく、直接還元炉は予備還元炉とし、この予備還元炉で予備還元を行って製造した還元率が比較的低い酸化鉄含有鉄原料を、アーク炉や溶解転炉を用いて溶解及び還元し、溶銑を製造する方法が採用されている。特許文献1の第66頁には、回転炉床炉(RHF)で予備還元された半還元鉄を含む混合物原料(ペレット又は粉粒状混合物原料)がサブマージドアーク炉(SRF)に装入され、最終還元と溶解を目的とした仕上げ精錬が行われると記載されている。SRFでは酸素ガスと石炭が供給され、溶銑と回収ガスが得られる。なお、SRFでは炉の立ち上げ時には溶銑等の種湯の装入を必要とするが、定常操業状態では炉内鉄浴の存在によりその必要はない。特許文献2には、転炉で発生するダストに炭材を内装させて塊成化し、予備還元炉で高温加熱して内装炭材を還元材として予備還元後、高温状態で含鉄冷材の一部として種湯の存在する溶解専用転炉に供給し、再使用する方法が開示されている。
 予備還元して製造した酸化鉄含有鉄原料を、種湯が存在するアーク炉内に投入して溶解及び還元し、溶銑を製造するための方法において、投入した酸化鉄含有鉄原料は、何らかの工夫を施さない限り、例えば、溶銑の攪拌がないような場合、比重が小さいため溶銑面に浮いた状態で溶解及び還元される。また、酸化鉄含有鉄原料はCaO、SiOなどのスラグ成分を含有するため、溶解が進むと溶銑面にスラグが浮かび、炉上から投入された原料がスラグに捕捉されて溶銑との接触を阻害するため溶解せず、鉄歩留まりの低下を招く。投入した酸化鉄含有鉄原料の溶解と還元を促進するためには、投入した酸化鉄含有鉄原料を、なるべく高温部を利用すると共に、流動制御により溶銑へ巻き込ませて、原料を溶解及び還元する方法が挙げられる。
 酸化物原料を、直流電気炉または交流電気炉のアークによる高温領域へ投入し、底吹き攪拌を付与して溶解および還元する方法については従来から種々の提案がなされている。
 例えば、特許文献3には、3相交流電気炉を用いた金属酸化物の溶融還元方法の発明が記載されている。その発明は、3相交流電気炉において、粉末状の金属原料鉱石、例としてクロム鉱石をアークの形成領域へ供給し、アーク熱により金属原料鉱石を溶解し、さらに、電気炉の炉底部にガス吹き込みノズルを配置して電気炉内の溶湯にガスを吹き込むことを特徴とする電気炉精錬法に関するものであるが、クロム鉱石の還元に係る方法であって、スラグ中還元剤と原料鉱石の接触による還元反応向上効果と溶湯と原料鉱石の接触による還元反応向上効果との切り分けが不明瞭である。
 特許文献4には、製鋼用アーク炉において、炭素含有燃料及び酸素含有ガスを吹き込むとともに、アーク炉底部に配置されたノズルにより酸素を供給する方法が開示されている。3本の電極を有するアーク炉を用い、鉱石、予備還元鉱石などを、中空電極を介して吹き込み、金属溶融物を生成する際に底吹き攪拌を付与するとの記載があるが、アークが作る高温場における鉱石、予備還元鉱石の個数の集中度や、炉底における底吹きノズルの位置関係、投入原料の歩留まりについては言及されていない。
国際公開WO01/018256号 日本国特開2000-45012号公報 日本国特開平1-294815号公報 日本国特開昭63-125611号公報
 予備還元して製造した酸化鉄含有鉄原料を、種湯上に投入して溶解及び還元し、溶銑を製造する電気炉に関して、従来知られていた電気炉で炉底部から溶鉄中にガスを吹き込んで攪拌しつつ酸化鉄含有鉄原料を投入する方法を採用しても、溶銑に巻き込ませて十分に溶銑と混合させることができない。また、比重が小さい酸化鉄含有鉄原料を上部電極の下にある高温湯面部に留まらせることもできず、鉄歩留まりの向上効果が十分ではなかった。
 本発明は、酸化鉄含有鉄原料を種湯溶銑上へ投入して溶解及び還元する電気炉であって、鉄歩留まりが高い、酸化鉄含有鉄原料の溶解及び還元を可能とする電気炉と、その電気炉を用いた酸化鉄含有鉄原料の溶解及び還元方法との提供を目的とする。
 本発明の要旨とするところは以下の通りである。
(1)本発明の一態様に係る電気炉は、1本以上の上部電極と、1本以上の底吹き羽口と、インペラーを具備する機械式攪拌機と、酸化鉄含有鉄原料を投入する投入装置と、を備える。
(2)上記(1)に記載の電気炉において以下の構成を採用してもよい:前記底吹き羽口を3本以上有し;前記上部電極を複数本有し;平面視において、前記各上部電極の中心と前記インペラーの中心とを結ぶ各線分のうちで最も短い線分を3等分する2点のうちで、前記インペラーに近い側の点で当該線分と直交する直線を引いたとき、前記各底吹き羽口のうち、少なくとも3本以上の前記底吹き羽口の中心が、前記直交する直線よりも前記各上部電極に近い側にある。
(3)上記(2)に記載の電気炉では、前記平面視において、前記各上部電極の全ての中心と、前記投入装置の原料投入口とが、前記直交する直線よりも前記各上部電極に近い側にある3本以上の前記底吹き羽口の各中心を結ぶ多角形の内側にあってもよい。
(4)本発明の一態様に係る酸化鉄含有鉄原料の溶解及び還元方法は、上記(1)~(3)の何れか1項に記載の電気炉を用いる。この酸化鉄含有鉄原料の溶解及び還元方法では、溶湯が存在する前記電気炉内に、鉄の金属化率が45%以上95%以下の前記酸化鉄含有鉄原料を前記投入装置から投入して溶解及び還元するに際し、前記機械式攪拌機の前記インペラーを前記溶湯中に浸漬して回転させることにより、前記溶湯の表面にあるスラグ及び前記溶湯を攪拌する。
 本発明の上記態様によれば、酸化鉄含有鉄原料を溶銑上に供給し、溶解および還元して溶銑を製造する際に使用する電気炉において、底吹き羽口からのガス吹き込みによりスラグ及び酸化鉄含有鉄原料と溶銑との混合を促進する底吹き攪拌と、インペラーを回転させることにより溶銑上に浮遊するスラグ及び酸化鉄含有鉄原料を溶銑中に巻き込ませる機械攪拌とを併せ持つことによって、高い鉄歩留まりで酸化鉄含有鉄原料の溶解及び還元が可能となる。
 さらに、底吹き羽口を3本以上として、平面視で、各底吹き羽口の中心同士を結ぶ多角形の内側に上部電極と酸化鉄含有鉄原料の投入口を配置し、酸化鉄含有鉄原料をその多角形の内側に供給することで、酸化鉄含有鉄原料が上部電極直下近傍の高温部に投入され、かつ、その高温部から直ちに側壁側へと移動してしまうことを抑止することができる。このことにより、酸化鉄含有鉄原料の溶解及び還元が促進される。その上、上部電極直下近傍の高温部から離れた場所に設置したインペラーを回転させることにより、その高温部から移動してしまったスラグ及び溶解及び還元されなかった酸化鉄含有鉄原料を溶銑中に巻き込むことができるので、スラグ中FeOの還元や酸化鉄含有鉄原料の溶解及び還元が一層促進され、高い鉄歩留まりを安定して達成することができる。
本発明における電気炉の一例を示す縦断面図である。 同電気炉の平断面図である。 本発明における電気炉の他の例を示す平断面図である。 図2Aの電気炉を示す図であって、図2AのA-A矢視図である。 機械攪拌なしでの操業において、底吹きの有無が溶解及び還元処理中のスラグFeO濃度に及ぼす影響を示すグラフである。 底吹きなしでの操業において、機械式攪拌が溶解及び還元処理中のスラグFeO濃度に及ぼす影響を示すグラフである。 本発明に係る操業において、底吹きと機械式攪拌の両方が溶解及び還元処理中のスラグFeO濃度に及ぼす影響を示すグラフである。
 本発明は、酸化鉄含有鉄原料を、炉上から種湯溶銑上へ投入し、アーク熱と種湯溶銑との接触により溶解および還元し、溶銑を製造することのできる電気炉を対象とする。また、炉上から投入した酸化鉄含有鉄原料が上部電極により生成したアークによる高温部に滞留し、かつ当該高温部の外側に設置した機械式攪拌機を回転させ、酸化鉄含有鉄原料およびその溶解に伴って生成するFeO濃度の高いスラグの溶銑内への巻き込みを可能とし、高い鉄歩留まりで溶銑を製造できる電気炉を提供する。
 本発明は、アーク炉として好ましくは直流アーク炉を適用する。本発明は、交流アーク炉にも適用可能である。本発明を実施するための形態について、以下、直流アーク炉を例に取り、図1~図3を用いて詳細に説明する。
 本実施形態の電気炉1は、1本以上の上部電極2と、1本以上の底吹き羽口3と、インペラー4を具備する機械式攪拌機5と、酸化鉄含有鉄原料の投入装置6と、を有する。酸化鉄含有鉄原料の投入装置6は、その装置自体に酸化鉄含有鉄原料を保持しているものであるか、或いは、その装置自体にとは言えなくても、その装置に酸化鉄含有鉄原料を供給できるように酸化鉄含有鉄原料を保持した容器と搬送機構を介して連結されているものを言う。図1~図3に示す例では、2本の上部電極2と、3本の底吹き羽口3と、を有している。さらに、1台の機械式攪拌機5と、1台の投入装置6と、を有している。図1~図3は、酸化鉄含有鉄原料13を供給し、溶解および還元して溶銑を製造する際に使用する電気炉1の一例を示す図である。図1において、投入装置6から酸化鉄含有鉄原料13が投入されている。この電気炉1では、上部電極2が溶湯11の表面との間にアーク14を形成し、底吹き羽口3から溶湯11中にガスを吹き込み、溶湯11の攪拌を行うと共に酸化鉄含有鉄原料13及びスラグ12と溶湯11との混合も行う。機械式攪拌機5のインペラー4はその下半分が溶湯11に浸漬した状態で回転することにより、溶湯11と、スラグ12及び酸化鉄含有鉄原料13とを攪拌する。
 図1に示す電気炉1は直流電気炉であることから、炉底電極10を有している。上部電極2として中実電極を用いても良い。酸化鉄含有鉄原料13は、投入装置6の原料投入口7から溶湯11の表面に向けて投入される。
 図1に示すように、機械式攪拌機5は、鉛直方向に沿って延在するシャフト5aと、このシャフト5aの下端に固定されたインペラー4と、シャフト5aの上部を保持して鉛直軸線回りに回転させる駆動部5bと、を備える。インペラー4は、鉛直方向に沿った中心17を有する回転体であり、その周囲に例えば4枚の羽を有している。インペラー4は下方に向かって先細りとなる外形状を有し、自らが回転することによって周囲に浮かんでいる酸化鉄含有鉄原料13及びスラグ12を巻き込み、そして下方に向かって送り出す。
 電気炉1において、以上の基本構成を具備することによって、底吹き羽口3からのガス吹き込みにより酸化鉄含有鉄原料13及びスラグ12と溶銑との混合を促進する。加えて、インペラー4を回転させることにより、溶銑上に浮遊するスラグ12及び酸化鉄含有鉄原料13を溶銑(溶湯11)中に巻き込ませることができる。したがって、高い鉄歩留まりで酸化鉄含有鉄原料13の溶解及び還元が可能となる。
 但し、上部電極2と溶湯11との間にアーク14が形成され、アーク14の近傍には高温領域Hが形成されるので、電気炉1内に投入した酸化鉄含有鉄原料13を迅速に溶解及び還元するためには、酸化鉄含有鉄原料13の原料投入口7をできるだけアーク14近傍にある高温領域H近くに配置し、かつ、投入した酸化鉄含有鉄原料13を高温領域Hに留めておくことが好ましい。その目的を達成するため、本発明での好ましい形態では、平面視において、図2Aに示すように、前記各上部電極2の電極中心16と前記機械式攪拌機5のインペラー4の中心17とを結ぶ各線分のうちで最も短い線分20を3等分する。そして、この線分20を3等分する2点(21)のうち、インペラー4に近い側の点21aで当該線分20と直交する直線22を引く。そして、前記各底吹き羽口3のうち、少なくとも3本以上の羽口3の中心18が前記直交する直線22よりも上部電極2に近い側にあること、並びに、上部電極2の全ての電極中心16及び前記酸化鉄含有鉄原料の投入装置6の電気炉1内への原料投入口7が、前記直交する直線22よりも各上部電極2に近い側にある3本以上の羽口3の各中心18を結ぶ多角形23(本例では三角形)の内側にある。
 底吹き羽口3の配置は、平面視において、上部電極2の電極中心16とインペラー4の中心17とを結ぶ線分20を3等分する2点(21)のうちインペラー4側の点21aで当該線分20と直交する直線22を引いたとき、少なくとも3本以上の羽口の中心18が前記直交する直線22よりも上部電極2に近い側にあるように設置する。図2Aに示すように、上部電極2が2本以上あるときは、各電極中心16とインペラーの中心17とを結ぶ水平な線分2本のうちで最も短い方の線分20を3等分する2点(21)のうちインペラー4に近い側の点21aで、当該線分20と直交してかつ水平な直線22を基準とすればよい。図2Aでは、インペラー4と各上部電極2とが横一列に並んだ状態で、3本の底吹き羽口3それぞれを図示した位置に配置している。なお、この直線22よりもインペラー4に近い側に、他の底吹き羽口があることを排除する規定ではない。
 また、インペラー4と上部電極2とは横一列でなくても良い。その一例として、図2Bにインペラー4に対して2つの上部電極2が等距離にあるものを示す。この場合にも、3本の底吹き羽口3の位置は、インペラー4の中心17と電極中心16とを結ぶ線分20を3等分した点21で引いた前述の直線22位置よりも上部電極2側に位置している。この例では、3本の底吹き羽口3の羽口の中心18位置を互いに等距離としてあるが、必ずしも等距離である必要はない。
 この直交する直線22の位置は、電極中心16とインペラーの中心17とを結ぶ線分20の中点で直交するように引く方が、上部電極2の直下近傍の高温領域Hを利用して酸化鉄含有鉄原料13を溶解及び還元する本発明の特徴にとって、より好ましいと言える。
 また平面視において、1本以上の上部電極2の全ての電極中心16と、酸化鉄含有鉄原料13の投入装置6の電気炉1内への原料投入口7とが、前記直交する直線22よりも上部電極2側にある3本以上の底吹き羽口3の中心18を結ぶ多角形23の内側にあることを要する。底吹き羽口3の位置と電極中心16及び原料投入口7との関係をこのように定めることにより、各底吹き羽口3から流す底吹きガスは、それらの羽口の中心18を結ぶ多角形23の中心部へ向かう流れ(図2A及び図3の符号F1参照)を形成し、その多角形23内に投入した酸化鉄含有鉄原料13が高温領域Hの近傍に滞留することで、酸化鉄含有鉄原料13の溶解促進効果が期待されるからである。
 このように各底吹き羽口3の中心18を結ぶ多角形23の内側に上部電極2と酸化鉄含有鉄原料13の原料投入口7とを有するように各底吹き羽口3を配置することから、各底吹き羽口3間の水平最短距離は設備的な取り合いを考えて自ずと定まる。さらに、各底吹き羽口3間の水平最長距離も、電気炉1の側壁との関係から適宜決めれば良いことである。この多角形23を構成する各底吹き羽口3間の相互の距離は、上記した範囲内で、溶銑上に投入された酸化鉄含有鉄原料13を底吹きガスで取り囲み、取り囲んだ空間からなるべく逃がさないようにする観点から適宜決めればよい。この観点からは底吹き羽口3の数は多い方が効果的と言えるが、多くなり過ぎても羽口コストが嵩むほか、炉底電極10を備える場合にはその配置との干渉も生じるので、6本程度が通常の上限になる。
 このような構成をとることによって、酸化鉄含有鉄原料13は上部電極2の直下近傍の高温領域Hの近傍に添加されるようになり、併せて、底吹きガスによって取り囲まれつつ溶銑と強攪拌されることになる。
 なお、図1に示すように中空の上部電極2を用いた場合には、各上部電極2の相互間、および中空の上部電極2の内部通路を経由して酸化鉄含有鉄原料13を電気炉1内へ投入することができる。電気炉1内においては上部電極2と溶湯11との間に高温のアーク14を形成しているので、中空の上部電極2の内部通路を通じて溶湯11に投入した原料(酸化鉄含有鉄原料13)は、アーク14中を通過する際に高温に加熱され、容易に溶融するので好ましい。
 ところで、電気炉1内に投入された酸化鉄含有鉄原料13は、溶銑(溶湯11)よりも比重が軽いために溶湯11の表面に浮遊しつつ溶解及び還元される。酸化鉄含有鉄原料13が溶解及び還元されると、原料中のCaOやSiO等と共に、還元されなかった酸化鉄部分もスラグとなって、それも溶銑(溶湯11)よりも比重が軽いために溶湯11の表面に浮遊して、FeO濃度の高いスラグ12の層を形成する。前述した好ましい形態をとったとしても、このFeO濃度の高いスラグ12は、溶解及び還元されなかった酸化鉄含有鉄原料13と一緒に、遅かれ早かれ前述した囲い(多角形23)の外へ流出する。このままでは、溶解及び還元されなかった酸化鉄含有鉄原料13もスラグ12中のFeOも、共に溶湯11中のC(還元材)との接触が不十分であり、還元が十分には促進されない。
 そこで、本発明は、インペラー4を具備する機械式攪拌機5を有し、炉内の溶湯11と、上記した溶解及び還元されなかった酸化鉄含有鉄原料13及びFeO濃度の高いスラグ12とを、インペラー4を用いて攪拌する。インペラー4を配置して溶湯11中で回転させることによって、図3中の符号F2に示すように、電気炉1内に投入された酸化鉄含有鉄原料13が溶解及び還元されて形成したスラグと、原料中にあって還元されなかった酸化鉄部分とが一体となったスラグに加えて、酸化鉄含有鉄原料13のまま残っているものをも、溶銑中に巻き込むことができる。電気炉1のように浴深が浅い場合には、底吹きガスによる攪拌によって浴面上にあるスラグ12や酸化鉄含有鉄原料13を浴中に巻き込むことは効率が悪いが、インペラー4による攪拌であれば、インペラー4の回転によって鉛直下方への浴流れF2を形成させることができるために、その効率が良い。
 但し、インペラー4は耐火物製の旋回羽根であるために、上部電極2近くの高温部に設置すると溶損が激しくなる恐れがある。したがって、上部電極2から離れた位置に設置することが好ましい。具体的には、前述したように本発明の好ましい形態においては、平面視において、図2Aや図2Bに示したように、電極中心16とインペラーの中心17とを結ぶ各線分のうちで最も短い線分を3等分する2点(21)のうちインペラー側の点21aで当該線分20と直交する直線22を引いたとき、少なくとも3本以上の底吹き羽口3の各中心18が前記直交する直線22よりも各上部電極2側にあるように設置することが可能なように当該直線22を引くことを規定している。よって、インペラー4の位置は上部電極2近くの高温領域Hから離れていることになる。このように配置することによって、図3に示すように、インペラー4は上部電極2の直下近傍の高温領域Hから離れ、かつ、その高温領域Hとインペラー4との間には底吹きガスが存在するために、インペラー4の寿命を保つことが容易になる。また、前記多角形23の範囲から流れ出てきた浴面上の高FeO濃度のスラグ12や未溶解の酸化鉄含有鉄原料13を浴中に巻き込むという、インペラー4に期待する役割を効果的に果たすことができる。
 高温部で酸化鉄含有鉄原料13が溶解することにより発生した高いFeO濃度のスラグ等と、溶銑とが混合攪拌されて、溶銑中の炭素とスラグ12中の酸化鉄等とが反応する界面積が増やされるとともに、溶銑からの熱供給が促進されることで、スラグ12等の還元促進が実現できる。
 以上説明してきたように、本実施形態では、酸化鉄含有鉄原料13を上方から供給して溶銑を製造する電気炉1において、各底吹き羽口3からのガス吹込みによりスラグ12及び酸化鉄含有鉄原料13と溶銑との混合を促進する底吹き攪拌と、インペラー4を回転させることにより溶銑上に浮遊するスラグ12及び酸化鉄含有鉄原料13を溶銑中に巻き込ませる機械攪拌とを併せ持つ。よって、高い歩留まりで酸化鉄含有鉄原料13の溶解及び還元を可能としている。
 本実施形態において、底吹き羽口3から吹き込むガス種として、窒素ガス、アルゴンガス、酸素含有ガスなどを用いることができる。窒素ガス、アルゴンガスの場合は底吹き羽口3を単管羽口とすることができる。酸素含有ガス、例えば純酸素を吹き込む場合には、二重管羽口とし、内管の内部から酸素含有ガスを流し、内管と外管の間の空間から冷却用のガスを流すと良い。また、1本の底吹き羽口3から吹き込むガス流量としては、溶銑1ton当たりで3~15Nm/h程度とすればよい。この流量が少な過ぎると底吹きによる酸化鉄含有鉄原料13の溶解及び還元促進効果が明確に表れない一方、多くし過ぎても効果が飽和してしまうばかりか、底吹き羽口3の損耗速度悪化やスロッピングの多発により、総合的に操業改善にならなくなるからである。
 本実施形態において溶解及び還元する酸化鉄含有鉄原料13は、鉄の金属化率が45%以上95%以下のものが好適である。鉄の金属化率(%)とは、酸化鉄含有鉄原料13中における金属鉄の質量%(金属鉄質量/全鉄含有量鉄合計質量×100)を意味する。
 本実施形態は、前述のとおり、鉄鉱石やダストなどの酸化鉄含有原料をシャフト炉や回転炉床炉などの予備還元炉により加熱及び予備還元処理して酸化鉄含有鉄原料13とした後、当該酸化鉄含有鉄原料13を炉内に供給し、溶銑内で溶解および還元して溶銑を製造する際に使用する電気炉1に関するものである。直流アーク炉で炭素を還元剤として原料を還元する際に発生するCOガスを、予備還元炉での予備還元剤として用いることが、天然ガスの使用量を大幅に削減もしくは不使用とすることができ、かつ、ガス生成炉等の溶鋼製造プロセスとは直接関係ない新たなプロセスを不要とすることができるために好ましい。
 予備還元して製造した酸化鉄含有鉄原料13の鉄の金属化率が45%以上であれば、直流アーク炉で発生するCOガスの全量を予備還元炉での還元用のCOガスとして使用することができるとともに、全体の還元効率低下を来すことなく、炭材原単位の増加を抑制し、直流アーク炉での必要還元熱の増加を抑制して電力原単位増加を防止することができる。一方、シャフト炉などの予備還元炉で天然ガスを用いずにCOガスを主体にして還元を行う場合、還元率の上限が95%超の還元鉄を製造することは困難であるため、酸化鉄含有鉄原料13の鉄の金属化率上限を95%とすることが好ましい。
 酸化鉄含有鉄原料13中の酸化鉄は、種湯溶銑中に含有する炭素を還元剤として還元される。その結果、種湯溶銑中の炭素濃度が低減するので、炭素源を供給する必要がある。酸化鉄含有鉄原料13は、アーク炉での還元に寄与する還元剤として、炭素含有物質を含有しても良い。また、追加の炭素源は、酸化鉄含有鉄原料13とは別に、炭素含有物質を直流アーク炉中に投入することで供給しても良い。
 酸化鉄含有鉄原料13は、酸化鉄以外の酸化物を合計で4~24質量%含有することが好ましい。酸化物は具体的にはCaO、SiO、Al、MgOが挙げられる。これら酸化物はスラグ成分である。原料中のスラグ成分は、溶解が進むと溶銑面にスラグが浮かび、炉上から投入された原料がスラグに捕捉されて溶銑との接触を阻害するため溶解せず、鉄歩留まりの低下を招く。そのため、原料中に占めるスラグ成分の上限を24質量%とする。一方、酸化鉄含有鉄原料13は、鉄鉱石やダスト等の酸化鉄含有鉄原料を予備還元炉により加熱及び予備還元処理するために、焼結鉱やペレットにして用いる。そのためには、上記した酸化物を少なくとも4質量%含有させるのが通常であるため、原料中に占めるスラグ成分の下限を4質量%とする。
 以下に、本発明に係る実施例を、比較例を含めて説明する。
 電気炉1としては、図1、図2A、図3に示した直流電気炉を用いた。この電気炉1は、平面視において炉内半径が4mであり、溶湯11として100トンの溶銑を収容することができるもので、外径800mm、内径200mmの中空構造である。2本の上部電極2が、2mの間隔をあけて図1及び図2Aに示した位置に配置されている。
 3本の底吹き羽口3はそれぞれ単管で内径15mmであり、各々からNガスを110Nm/hの速度で吹き込んだ。投入装置6の原料投入口7は、羽口の中心18間を結ぶ多角形23の中心9付近の位置にある。さらに、機械式攪拌機5のインペラー4を、図1、図2Aに示す位置に配置した。機械式攪拌機5は、耐火物としてアルミナキャスタブルで製作されたインペラー4を有する。インペラ-4は、攪拌羽根が4本であり、攪拌羽根の直径が1.0mであり、攪拌羽根の高さが0.3mである。このインペラー4を、炉底からインペラー4の底面までの高さが50mmとなるよう溶銑内へ浸漬させた状態で、インペラー4の中心17が、電気炉1(炉内半径4m)の中心から2.2mの位置になるよう設置した。
 インペラー4は、平面視で各電極中心16とインペラーの中心17とを結ぶ各線分のうちで最も短い線分20を3等分する2点(21)のうち、インペラー4側の点21aで当該線分20と直交する直線22を引いたとき、少なくとも3本以上の羽口の中心18が前記直交する直線22よりも上部電極2側にあるように設置されている。そのため、上部電極2の近傍にある高温部分から離れた場所で、溶銑上に浮遊するスラグ12及び未溶解の酸化鉄含有鉄原料13を溶銑中に巻き込ませるように攪拌することが可能である。
 上記説明した電気炉1を用い、種湯が存在する炉内に、酸化鉄含有鉄原料13を投入し、溶解及び還元操業を行った。
 酸化鉄含有鉄原料13として、回転炉床炉にて予備還元した酸化鉄含有鉄原料を使用した。酸化鉄含有鉄原料13の組成は、表1に示す通りとした。鉄の金属化率は65.6%、酸化鉄以外の酸化物含有量は17.8質量%である。
Figure JPOXMLDOC01-appb-T000001
 電気炉1内には、平均温度1450℃~1500℃、C濃度3.5質量%~4.0質量%の種湯溶銑50tonが装入されており、2本の上部電極2の間に位置する原料投入口7から粒径1mm~50mmの酸化鉄含有鉄原料13を、溶銑量換算で2.5t/minの速度で連続的に20分間(溶銑にして50ton分)、炉内の高温部へ目掛けて重力落下で供給し、その後、40分間、溶解及び還元を行った。種湯溶銑中の炭素は還元の進行とともに消費され、炭素濃度が低減するので、消費された炭素分を補給するため、炭素含有物質として土壌黒鉛を上部電極2の中空部分から逐次炉内に投入した。酸化鉄含有鉄原料13の供給開始から60分後、溶銑量50tonを鍋に出湯し、繰り返し上記作業を行うことで、酸化鉄含有鉄原料13の溶解及び還元を行った。溶解及び還元操業中、5分おきにスラグサンプリングを行い、スラグ中のFeO濃度を評価した。
 比較のために、攪拌条件だけ変えた例として、(i)機械式攪拌を行わない条件での操業結果、(ii)底吹きを行わない条件での操業結果についても、(iii)機械式攪拌も底吹きも行った本発明での操業結果と併せて説明する。なお、本発明に係る効果を説明するために、鉄歩留まりの指標として、溶解及び還元中の時間経過におけるスラグ中のFeO濃度の変化の状況を採用した。その結果を、図4、図5、図6に纏めて示す。
 (i)の場合(比較例:機械式攪拌なし)、図4に示した通り、底吹きを付与した場合で、酸化鉄含有鉄原料13の溶解によるスラグ中のFeO濃度の上昇速度は、底吹きを付与しない場合と比較して高位であった。しかしながら、酸化鉄含有鉄原料13の溶解後のスラグの還元速度は両条件で大きな差はなかった。このことから、この例では、上部電極2の直下近傍の高温部分に酸化鉄含有鉄原料13を投入して、その場所で底吹きを付与することにより、酸化鉄含有鉄原料13の溶解は迅速に進行させることができた。また、その溶解に伴って発生した溶融FeOの還元にも、溶解が迅速であったにも関わらず最高濃度が変わっていないことから、還元促進効果もあったと言える。この総合的効果として、溶解を早く終えることができたためにその後の還元時間が長くなり、最終的に溶解及び還元操業を開始してから60分が経過した時点では、スラグ中のFeO濃度を相対的に低くする効果があった。
 (ii)の場合(比較例:底吹きなし)、図5に示した通り、機械式攪拌を付与した場合でも、酸化鉄含有鉄原料13の溶解によるスラグ中のFeO濃度の上昇速度は、どの回転数でも機械式攪拌機5を付与しない場合と比較して大きな差はなかった。しかし、酸化鉄含有鉄原料13の溶解後のスラグの還元速度は回転速度が大きいほど上昇し、いずれも攪拌を付与しなかった場合と比較して高位であった。このことから、この例では、機械式攪拌機5による回転の付与は、その回転によるスラグ12及び酸化鉄含有鉄原料13の溶銑中への巻込みが上部電極2の直下近傍の高温部までは及ばないこともあって、それがない場合と比較して酸化鉄含有鉄原料13の溶解速度に差はなかった。しかし、溶解に伴い発生したFeOを含むスラグの還元は、高温部から離れた場所でも迅速に進行させることができ、最終的に60分が経過した時点では、スラグ中のFeO濃度を回転による巻込み強度に応じて低くする効果があった。
 (iii)の場合(本発明例:機械式攪拌も底吹きも、両方あり)、図6に示した通り、酸化鉄含有鉄原料13の溶解によるスラグ12中のFeO濃度の上昇速度は底吹き実施によって上昇し、スラグ12の還元速度はインペラー4の回転速度が大きいほど上昇していた。底吹きも機械式攪拌も付与しなかった場合(図中□)と比較すると、いずれも高位であったことが分かる。
 上記した(i)と(ii)の場合の結果も併せて考えると、本発明例において底吹きは、溶銑面に浮かぶ酸化鉄含有鉄原料13を攪拌によって上部電極2の直下の高温湯面部になるべく長く留め、かつ、そこで溶銑と攪拌することにより、酸化鉄含有鉄原料13を迅速に溶解させる効果を発揮した。このとき、溶解に伴って生成したFeOの還元も進行させており、迅速に溶解させたにも関わらず、FeOの最高濃度は上記(i)(ii)の場合と同等であった。なお、このFeO濃度が最高に達するまでの時間は、上記(i)の場合とほぼ同じであったので、この間での機械式攪拌の影響は殆どなかったと言える。
 但し、本発明例において機械式攪拌は、底吹きにより迅速に溶解した酸化鉄含有鉄原料由来のFeOを含むスラグ12及び未溶解の酸化鉄含有鉄原料13を溶銑内に巻き込んで、溶銑内のカーボンとの接触、および溶銑の持つ熱供給の促進効果を、上記(ii)の場合と同等に発揮した。このFeO濃度が最高に達した時点からのFeO濃度の減少速度は、上記(ii)の場合とほぼ同じであったので、この間での底吹き有無の影響は殆ど無かったと言える。
 しかし、底吹きと機械式攪拌とを併用していた効果として、酸化鉄含有鉄原料13の溶解が速かった一方、FeOの最高濃度は底吹きなしで溶解に時間を要した場合と同等であり、そのようなFeO濃度の最高値からのFeOの還元速度は速かったため、60分間で評価すれば到達FeO濃度の減少効果があったと言える。また、底吹き有りでインペラー4の回転速度を50rpmにした例では、35分間でFeO濃度が5%以下に低下しているため、能率向上効果としても評価できる。
 通常の直流アーク炉による酸化鉄含有鉄原料を用いた溶銑製造操業において、原料供給開始から40分でスラグ中のFeO濃度が10%以下であることは、非常に鉄歩留まりが高位な操業であると言える。
 本発明によれば、鉄歩留まりが高い酸化鉄含有鉄原料の溶解及び還元を可能とする電気炉と、その電気炉を用いた酸化鉄含有鉄原料の溶解及び還元方法とを提供することができる。よって、産業上の利用可能性は大である。
 1 電気炉
 2 上部電極
 3 底吹き羽口
 4 インペラー
 5 機械式攪拌機
 6 投入装置
 7 原料投入口
 10 炉底電極
 11 溶湯
 12 スラグ
 13 酸化鉄含有鉄原料
 14 アーク
 15 内周
 16 電極中心(上部電極の中心)
 17 インペラーの中心
 18 羽口の中心
 20 線分
 21 点
 22 直線
 23 多角形

Claims (4)

  1.  1本以上の上部電極と、
     1本以上の底吹き羽口と、
     インペラーを具備する機械式攪拌機と、
     酸化鉄含有鉄原料を投入する投入装置と、
    を備えることを特徴とする電気炉。
  2.  前記底吹き羽口を3本以上有し;
     前記上部電極を複数本有し;
     平面視において、
      前記各上部電極の中心と前記インペラーの中心とを結ぶ各線分のうちで最も短い線分を3等分する2点のうちで、前記インペラーに近い側の点で当該線分と直交する直線を引いたとき、
      前記各底吹き羽口のうち、少なくとも3本以上の前記底吹き羽口の中心が、前記直交する直線よりも前記各上部電極に近い側にある;
    ことを特徴とする請求項1に記載の電気炉。
  3.  前記平面視において、前記各上部電極の全ての中心と、前記投入装置の原料投入口とが、前記直交する直線よりも前記各上部電極に近い側にある3本以上の前記底吹き羽口の各中心を結ぶ多角形の内側にある
    ことを特徴とする請求項2に記載の電気炉。
  4.  請求項1~3の何れか1項に記載の電気炉を用いた、酸化鉄含有鉄原料の溶解及び還元方法であって、
     溶湯が存在する前記電気炉内に、鉄の金属化率が45%以上95%以下の前記酸化鉄含有鉄原料を前記投入装置から投入して溶解及び還元するに際し、前記機械式攪拌機の前記インペラーを前記溶湯中に浸漬して回転させることにより、前記溶湯の表面にあるスラグ及び前記溶湯を攪拌する
    ことを特徴とする酸化鉄含有鉄原料の溶解及び還元方法。
PCT/JP2018/038636 2017-10-23 2018-10-17 電気炉及び酸化鉄含有鉄原料の溶解及び還元方法 WO2019082762A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207010333A KR102374981B1 (ko) 2017-10-23 2018-10-17 전기로 및 산화철 함유 철원료의 용해 및 환원 방법
BR112020006455-6A BR112020006455B1 (pt) 2017-10-23 2018-10-17 Forno elétrico e método para fusão e redução de matériaprima de ferro contendo óxido de ferro
JP2019551050A JP6911935B2 (ja) 2017-10-23 2018-10-17 電気炉及び酸化鉄含有鉄原料の溶解及び還元方法
CN201880068529.3A CN111263821B (zh) 2017-10-23 2018-10-17 电炉及含氧化铁铁原料的熔解及还原方法
CA3079388A CA3079388A1 (en) 2017-10-23 2018-10-17 Electric furnace and method for melting and reducing iron oxide-containing iron raw material
US16/757,276 US11536514B2 (en) 2017-10-23 2018-10-17 Electric furnace and method for melting and reducing iron oxide-containing iron raw material
EP18870967.9A EP3705586A4 (en) 2017-10-23 2018-10-17 ELECTRIC FURNACE AND PROCESS FOR MELTING AND REDUCING IRON RAW MATERIALS CONTAINING IRON

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017204540 2017-10-23
JP2017-204540 2017-10-23

Publications (1)

Publication Number Publication Date
WO2019082762A1 true WO2019082762A1 (ja) 2019-05-02

Family

ID=66246500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038636 WO2019082762A1 (ja) 2017-10-23 2018-10-17 電気炉及び酸化鉄含有鉄原料の溶解及び還元方法

Country Status (9)

Country Link
US (1) US11536514B2 (ja)
EP (1) EP3705586A4 (ja)
JP (1) JP6911935B2 (ja)
KR (1) KR102374981B1 (ja)
CN (1) CN111263821B (ja)
BR (1) BR112020006455B1 (ja)
CA (1) CA3079388A1 (ja)
TW (1) TWI693288B (ja)
WO (1) WO2019082762A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7382036B2 (ja) 2020-02-21 2023-11-16 東北大学 連続溶融還元製鉄法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699306B (zh) * 2021-08-25 2022-04-12 中冶赛迪工程技术股份有限公司 一种用于直流电弧炉底电极复合底吹多元介质系统及方法
CN114001552B (zh) * 2021-11-01 2023-12-19 甘肃金麓银峰冶金科技有限公司 一种镍铁冶炼矿热炉多用途炉顶插钎机构和方法
KR20240079659A (ko) 2022-11-29 2024-06-05 현대제철 주식회사 전기로용 저취교반장치 및 이를 포함하는 전기로
CN115786633A (zh) * 2022-12-01 2023-03-14 宜兴市宇能冶金设备制造有限公司 一种矿热炉上料设备及其上料方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280216A (en) * 1975-12-22 1977-07-05 Kennecott Copper Corp Extracting method of nickel* nickel copper* nickel cobalt and nickel copper cobalt from concentrates
EP0077190A2 (en) * 1981-10-09 1983-04-20 Unisearch Limited Method and apparatus for the smelting and fuming of tin concentrates
JPS63125611A (ja) 1986-08-27 1988-05-28 クレックナー ツェーエルアー パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ア−ク炉エネルギ−供給の増加方法
JPH01162713A (ja) * 1987-12-17 1989-06-27 Shinagawa Refract Co Ltd スクラップ溶解方法
JPH01294815A (ja) * 1988-05-19 1989-11-28 Nkk Corp 電気炉精錬法
JP2000045012A (ja) 1998-05-22 2000-02-15 Nippon Steel Corp 転炉製鋼におけるダスト利用方法
WO2001018256A1 (fr) 1999-09-06 2001-03-15 Nkk Corporation Procede et equipement pour la fusion du metal
JP2010090428A (ja) * 2008-10-07 2010-04-22 Nippon Steel Corp クロム含有スラグからのクロム回収方法
JP2011084811A (ja) * 2009-09-15 2011-04-28 Jfe Steel Corp 溶銑の製造方法
JP2017204540A (ja) 2016-05-10 2017-11-16 ローム株式会社 電子部品およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861660A (en) * 1973-03-05 1975-01-21 Kennecott Copper Corp Pyrometallurgical system with fluid cooled stirrer
US4071687A (en) * 1975-03-17 1978-01-31 National Research Institute For Metals Electric arc furnace for continuous melting of directly reduced iron or directly reduced iron ore
US4662937A (en) * 1984-05-28 1987-05-05 Nippon Steel Corporation Process for production of high-manganese iron alloy by smelting reduction
US4913732A (en) * 1988-05-19 1990-04-03 Nkk Corporation Method for smelting reduction in electric furnace
DE4343957C2 (de) * 1993-12-22 1997-03-20 Tech Resources Pty Ltd Konverterverfahren zur Produktion von Eisen
IT1295102B1 (it) 1997-04-21 1999-04-30 Danieli Off Mecc Sistema a forno elettrico ad arco
US6149709A (en) * 1997-09-01 2000-11-21 Kabushiki Kaisha Kobe Seiko Sho Method of making iron and steel
AU2002250975B2 (en) * 2001-02-23 2006-11-23 Paul Wurth S.A. Method for producing a melt iron in an electric furnace
LU90788B1 (fr) 2001-06-13 2002-12-16 Wurth Paul Sa Procédé de production de fonte liquide dans un four électrique
CN101029794A (zh) * 2007-03-30 2007-09-05 攀枝花钢铁(集团)公司 一种电弧炉
JP5280216B2 (ja) 2009-01-09 2013-09-04 株式会社日立産機システム 全排気型安全キャビネット
CN201779998U (zh) * 2009-11-16 2011-03-30 云南锡业集团(控股)有限责任公司 一种冶金直流电炉装置
KR101504973B1 (ko) * 2013-08-29 2015-03-23 주식회사 포스코 정련 장치 및 정련 방법
CN204022872U (zh) * 2014-09-16 2014-12-17 苏州宝蠡耐火材料有限公司 用于铁水脱硫的搅拌桨
JP6413710B2 (ja) * 2014-12-02 2018-10-31 新日鐵住金株式会社 直流アーク式電気炉による高純度鋼の製造方法
JP6458531B2 (ja) * 2015-02-17 2019-01-30 新日鐵住金株式会社 アーク式底吹き電気炉における撹拌方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280216A (en) * 1975-12-22 1977-07-05 Kennecott Copper Corp Extracting method of nickel* nickel copper* nickel cobalt and nickel copper cobalt from concentrates
EP0077190A2 (en) * 1981-10-09 1983-04-20 Unisearch Limited Method and apparatus for the smelting and fuming of tin concentrates
JPS63125611A (ja) 1986-08-27 1988-05-28 クレックナー ツェーエルアー パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ア−ク炉エネルギ−供給の増加方法
JPH01162713A (ja) * 1987-12-17 1989-06-27 Shinagawa Refract Co Ltd スクラップ溶解方法
JPH01294815A (ja) * 1988-05-19 1989-11-28 Nkk Corp 電気炉精錬法
JP2000045012A (ja) 1998-05-22 2000-02-15 Nippon Steel Corp 転炉製鋼におけるダスト利用方法
WO2001018256A1 (fr) 1999-09-06 2001-03-15 Nkk Corporation Procede et equipement pour la fusion du metal
JP2010090428A (ja) * 2008-10-07 2010-04-22 Nippon Steel Corp クロム含有スラグからのクロム回収方法
JP2011084811A (ja) * 2009-09-15 2011-04-28 Jfe Steel Corp 溶銑の製造方法
JP2017204540A (ja) 2016-05-10 2017-11-16 ローム株式会社 電子部品およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705586A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7382036B2 (ja) 2020-02-21 2023-11-16 東北大学 連続溶融還元製鉄法

Also Published As

Publication number Publication date
JPWO2019082762A1 (ja) 2020-10-22
EP3705586A1 (en) 2020-09-09
BR112020006455A2 (pt) 2020-09-29
KR20200052927A (ko) 2020-05-15
JP6911935B2 (ja) 2021-07-28
US11536514B2 (en) 2022-12-27
KR102374981B1 (ko) 2022-03-16
BR112020006455B1 (pt) 2023-12-05
TW201923095A (zh) 2019-06-16
EP3705586A4 (en) 2021-08-04
TWI693288B (zh) 2020-05-11
US20210190427A1 (en) 2021-06-24
CN111263821A (zh) 2020-06-09
CN111263821B (zh) 2022-01-11
CA3079388A1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
WO2019082762A1 (ja) 電気炉及び酸化鉄含有鉄原料の溶解及び還元方法
TWI409338B (zh) Removal of copper from steel scrap
JPH10195513A (ja) 金属鉄の製法
WO2014101688A1 (zh) 铜锍底吹吹炼工艺和铜锍底吹吹炼炉
ES2847865T3 (es) Proceso de fundición directa
JP6458531B2 (ja) アーク式底吹き電気炉における撹拌方法
CN104018006B (zh) 一种镍锍底吹吹炼工艺和镍锍底吹吹炼炉
JP5033302B2 (ja) 直接製錬法および装置
JP6809248B2 (ja) 電気炉用電極、電気炉及び電気炉の使用方法
JP6729073B2 (ja) 酸化鉄含有鉄原料の還元・溶解方法
JP5493335B2 (ja) 溶銑の脱銅処理方法
WO1989001532A1 (en) Process for melt reduction of cr starting material and melt reduction furnace
US4071687A (en) Electric arc furnace for continuous melting of directly reduced iron or directly reduced iron ore
JP4630031B2 (ja) 酸化鉄含有鉄原料の還元・溶解方法
JP5581760B2 (ja) 鋼屑中の銅の除去方法及び鋼屑を鉄源とした溶鋼の製造方法
CN104018007B (zh) 镍锍底吹吹炼工艺和镍锍底吹吹炼装置
JP5304816B2 (ja) 溶鋼の製造方法
WO2022234762A1 (ja) 電気炉および製鋼方法
JP2013095924A (ja) 溶銑の脱硫方法
JP3806385B2 (ja) 着熱効率の優れた冷鉄源溶解方法
KR950012402B1 (ko) 함 망간 용철 제조방법 및 그 장치
JP2007277704A (ja) 還元金属の製造方法
JP2008184682A (ja) 還元金属の製造方法
JPH03177512A (ja) 溶融還元製錬における耐火物損耗抑制方法
JPH10251725A (ja) 金属鉄の製法および製造設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551050

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207010333

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3079388

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018870967

Country of ref document: EP

Effective date: 20200525

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020006455

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020006455

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200331