WO2022234762A1 - 電気炉および製鋼方法 - Google Patents

電気炉および製鋼方法 Download PDF

Info

Publication number
WO2022234762A1
WO2022234762A1 PCT/JP2022/017372 JP2022017372W WO2022234762A1 WO 2022234762 A1 WO2022234762 A1 WO 2022234762A1 JP 2022017372 W JP2022017372 W JP 2022017372W WO 2022234762 A1 WO2022234762 A1 WO 2022234762A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
burner
fuel
electric furnace
gas
Prior art date
Application number
PCT/JP2022/017372
Other languages
English (en)
French (fr)
Inventor
太 小笠原
涼 川畑
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022542155A priority Critical patent/JP7388563B2/ja
Priority to BR112023022801A priority patent/BR112023022801A2/pt
Priority to EP22798869.8A priority patent/EP4303327A1/en
Priority to CN202280028818.7A priority patent/CN117280048A/zh
Priority to KR1020237041345A priority patent/KR20240004790A/ko
Publication of WO2022234762A1 publication Critical patent/WO2022234762A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5294General arrangement or layout of the electric melt shop
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/10Making pig-iron other than in blast furnaces in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/06Induction heating, i.e. in which the material being heated, or its container or elements embodied therein, form the secondary of a transformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a technique for melting cold iron sources using heat sources with reduced CO2 emissions in order to reduce greenhouse gas emissions during steel product production.
  • Electric furnaces such as arc furnaces and induction melting furnaces are often used in high-mix cold iron source operations. Most of the melting heat of the cold iron source is supplied by electric power.
  • 1) supporting burners are arranged on the furnace wall and the slag outlet to promote melting of cold iron sources such as cold spots, 2) 3) supplying oxygen from an oxygen gas supply lance to provide oxidation heat of iron, so-called oxygen enrichment operation;
  • Techniques such as forming to cover the arc and increase the heat transfer efficiency of the arc to the molten steel are adopted.
  • Patent Literatures 1 and 2 propose techniques for lowering the oxygen concentration and flame temperature by providing a preliminary combustion space upstream of the main combustion space. Further, according to Patent Document 3, the distance between the hydrogen gas supply channel and the combustion air supply channel is secured, and the mixing of the hydrogen gas and the combustion air is suppressed to retard the combustion speed and reduce the flame temperature. Methods have been proposed to reduce it.
  • JP-A-2020-46098 Japanese Patent Application Laid-Open No. 2021-25713 Japanese Patent Application Laid-Open No. 2020-46099
  • the present invention has been made in view of such circumstances, and provides an electric furnace that uses electric energy and uses a heat source with reduced CO 2 emissions to melt a cold iron source and obtain molten iron,
  • the purpose is to propose a steelmaking method in which a cold iron source is melted using a heat source with reduced CO2 emissions. Furthermore, it aims at proposing a steelmaking method capable of stably melting solid reduced iron as a source of cold iron.
  • An electric furnace that advantageously solves the above problems is an electric furnace that obtains molten iron by melting a source of cold iron using electric energy, wherein a burner is arranged in the electric furnace toward the contents of the furnace.
  • the burner includes a powder supply pipe, an injection hole for ejecting fuel, and an injection hole for ejecting a combustion-supporting gas, and hydrogen gas or hydrogen-enriched gaseous fuel is injected as the fuel, It is characterized in that a burner flame is formed, a powdery or powdered secondary raw material is injected from the powder supply pipe, and the secondary raw material passes through the burner flame.
  • the electric furnace according to the present invention can be a more preferable means of solving the problem if it is a DC arc furnace, an AC arc furnace or an induction melting furnace.
  • a steelmaking method that advantageously solves the above problems is a steelmaking method in an electric furnace for obtaining molten iron by melting a cold iron source using electric energy, wherein the electric furnace includes injection holes for ejecting fuel. and a burner for injecting a flame into the furnace from the injection hole for ejecting a combustion-supporting gas, and the burner is operated for at least a part of the operation of one heat of the electric furnace.
  • the fuel is hydrogen gas or hydrogen-enriched gaseous fuel, and powder or powder-processed auxiliary material is blown so as to pass through the flame formed by the burner.
  • the steelmaking method according to the present invention is (1) the cold iron source comprises solid reduced iron; (2) the powdery or powdered raw material is lime powder; (3) the electric furnace is a DC arc furnace, an AC arc furnace or an induction melting furnace; etc. is considered to be a more preferable solution.
  • the powder by supplying the powder through the burner flame, the powder is heated within the burner flame and becomes a heat transfer medium. It can be used for iron source heating and can reduce power consumption. Furthermore, CO2 emissions can be reduced by using mainly hydrogen gas as the fuel. In addition, since the sensible heat of the burner combustion gas is consumed in the burner flame to heat the powder, the flame temperature drops, ensuring the durability of the burner nozzle and avoiding damage to the refractory body of the electric furnace. It is possible.
  • FIG. 1 is a schematic vertical cross-sectional view showing an outline of an AC arc furnace as an electric furnace according to an embodiment of the present invention
  • FIG. 2 is a schematic vertical cross-sectional view showing an outline of an induction melting furnace as an electric furnace according to another embodiment of the present invention
  • It is a vertical cross-sectional schematic diagram of the front-end
  • FIG. 1 is a schematic vertical cross-sectional view showing an outline of an AC arc furnace 101 as an electric furnace according to one embodiment of the present invention, and shows a mode of operation of the AC arc type electric furnace.
  • the burner lance 1 is inserted through a burner lance insertion hole provided in the furnace lid so as to be able to move up and down.
  • the burner lance 1 is inserted vertically from the furnace lid so as to be vertically movable, but the present invention is not limited to this.
  • the burner lance 1 may be inserted obliquely into the furnace from above the furnace wall.
  • the burner is not limited to a lance type that can be raised and lowered, and may be of a form in which the nozzle portion is fixed to the furnace lid or the furnace wall.
  • an acid-feeding lance for charging from a slag outlet may be provided, or the burner may be provided with an acid-feeding function to feed acid from the burner.
  • a burner lance 1 injects a burner flame 7 toward the surface of furnace contents such as a cold iron source 2 and molten iron 3 housed in a furnace body 9 .
  • the illustrated AC arc furnace 101 has three graphite electrodes 5 . Stirring may be performed by blowing gas from the bottom of the furnace.
  • FIG. 1 shows a state in which solid reduced iron is charged as the cold iron source 2, energization is started, and the cold iron source 2 is being melted. During this time, the powdery auxiliary material 8 is sprayed from the burner lance 1 through the burner flame 7 to accelerate the melting of the cold iron source 2 .
  • fuel mainly composed of hydrogen gas refers to hydrogen gas or hydrogen-enriched gaseous fuel.
  • a mixed gas of hydrogen gas and methane gas, natural gas or petroleum gas can be used as the hydrogen-enriched gaseous fuel. From the viewpoint of reducing CO 2 , it is preferable to mix 50 vol % or more of hydrogen gas.
  • the AC arc furnace 101 having three electrodes was used as the electric furnace, but it may be a DC arc furnace having upper and lower electrodes.
  • the electrode 5 and the arc exist in the central portion of the furnace body 9, and the installation position of the burner lance 1 is limited.
  • the burner of the present embodiment can reduce the temperature of the burner flame 7 by appropriately blowing in the powdery auxiliary material 8 even when using a fuel mainly composed of hydrogen gas. It can be operated without damaging the panels and refractories of the hearth.
  • FIG. 2 is a schematic vertical cross-sectional view showing an outline of an induction melting furnace 102 as an electric furnace according to another embodiment of the present invention, showing a mode of operation of the induction melting furnace.
  • the burner lance 1 of this embodiment is inserted into a burner lance insertion hole provided in the furnace lid so as to be able to move up and down.
  • the burner is not limited to a lance type that can be raised and lowered, and may be of a form in which the nozzle portion is fixed to the furnace lid.
  • a burner lance 1 injects a burner flame 7 toward the surface of a cold iron source 2 and molten iron 3 housed in a furnace body 9.
  • the illustrated induction melting furnace 102 has, for example, a coil 6 for induction heating.
  • FIG. 2 shows a state in which solid reduced iron is charged as the cold iron source 2, energization is started, and induction heating melting is performed.
  • powdery auxiliary materials are sprayed from a burner lance through a burner flame to accelerate the dissolution of the cold iron source 2 and modify the slag composition.
  • lime powder is sprayed from a burner onto the slag as the powdery auxiliary material 8 to dilute the SiO 2 and Al 2 O 3 contained in the solid reduced iron, thereby lowering the melting point of the slag.
  • a fuel mainly composed of hydrogen gas produced by renewable energy it is preferable to use.
  • FIG. 3 shows a schematic view of a tip portion 10 of the burner lance 1 used in the above-described embodiment.
  • a powder supply pipe 11 having an injection hole is arranged in the center, and a fuel supply pipe 12 and a combustion-supporting gas supply pipe 13 having injection holes are arranged in order around it. Its outside is provided with a shell 15 having cooling water passages 14 .
  • a burner flame 7 is formed by supplying a hydrogen gas or a hydrogen-enriched gaseous fuel as a fuel gas 16 and a combustion-supporting gas 17 from an injection hole provided in the outer peripheral portion of the powder supply pipe 11 . Then, the powdery auxiliary material 8 injected from the powder supply pipe 11 is heated in the burner flame 7 .
  • the powdery auxiliary material 8 serves as a heat transfer medium, so that the heat transfer efficiency of the flame to the furnace contents such as the cold iron source 2 and the molten iron 3 can be improved. As a result, power consumption can be reduced.
  • the combustion-supporting gas 17 in addition to pure oxygen, a mixed gas of oxygen and CO 2 or an inert gas, air, or oxygen-enriched air can be used.
  • the gas that conveys the powder 8 can be an inert gas or a combustion-supporting gas.
  • the burner lance is configured as an integral lance by providing a powder supply pipe in the center and arranging injection holes for injecting fuel and injection holes for injecting combustion-supporting gas around it.
  • the form of the burner lance is not limited to this. That is, the burner according to the present invention includes a powder supply pipe, an injection hole for ejecting fuel, and an injection hole for ejecting a combustion-supporting gas, and hydrogen gas or hydrogen-enriched gaseous fuel is injected as the fuel.
  • a burner flame is formed, and the auxiliary raw material injected from the powder supply pipe passes through the burner flame.
  • an injection hole for ejecting fuel and an injection hole for ejecting combustion-supporting gas are arranged in an integrated lance, and a powder supply pipe is separately arranged adjacent to this lance, and the powder is injected from the powder supply pipe. It may also be configured such that the secondary raw material to be used passes through the burner flame.
  • an electric furnace such as the AC arc furnace 101 shown in FIG. 1 or the induction melting furnace 102 shown in FIG.
  • a cold iron source 2 such as iron is charged. After charging the first cold iron source 2, the energization is started. After that, the burner lance 1 installed in the upper part of the furnace is inserted into the electric furnace, and the cold iron source 2 is heated by electric power and burner flame 7 . When the initial cold iron source 2 melts further and becomes a flat bath state (even if there is an undissolved cold iron source 2, it is immersed in the molten iron 3), the slag is discharged from the slag outlet as necessary.
  • the furnace lid is opened, and the cold iron source 2 can be charged for the second time.
  • the number of charging times of the cold iron source 2 may be 3 or more.
  • the inventors investigated the efficiency of heat transfer to the contents of the furnace and the durability of the burner lance nozzle by variously changing the fuel gas flow rate and the powder supply speed. .
  • the powder fuel ratio represented by (powder supply speed) / (heat value of fuel gas) to 6.7 (kg / MJ) or more, the flame temperature is approximately 1500 ° C. or less, and the water cooling panel on the furnace wall It is possible to suppress the heat load on the refractories, etc. of the hearth and the burner lance nozzle.
  • the powder species it is possible to use the slag-forming material, dust, etc., which is the auxiliary raw material 8 processed into powder or powder.
  • the particle size is preferably about 100 ⁇ m or less.
  • the particle size of the auxiliary material it is preferable to process the particle size to about 100 ⁇ m or less by pulverization or the like.
  • the particle size is represented by a volume-based 50% passage rate.
  • scrap iron or solid reduced iron reduced with a reducing agent that reduces CO2 emissions contains about 10 to 20% by mass of gangue derived from iron ore as SiO 2 or Al 2 O 3 , depending on the brand.
  • gangue derived from iron ore as SiO 2 or Al 2 O 3 , depending on the brand.
  • This slag as it is, has a high melting point composition and is likely to solidify and adhere to the walls of the furnace, possibly causing an impediment to operation.
  • the induction melting furnace 102 since the slag is not heated by induction, there is a great concern that the slag will solidify.
  • the furnace body may be tilted in the arc furnace or the induction melting furnace to discharge or drain the slag during melting or before tapping.
  • an electric furnace it is applicable as long as it uses electric energy to melt a cold iron source to obtain molten iron.
  • a cold iron source to obtain molten iron.
  • the furnace may be not only the AC or DC arc furnace described above, but also an immersion type arc furnace in which a Zetaberg type self-firing electrode or the like is immersed in the slag for heating.
  • the furnace may be an indirect resistance furnace that heats an object to be heated by radiation from a heating element provided in the furnace, or convection and conductive heat transfer in the furnace.
  • it may be a plasma arc melting furnace.
  • the molten iron 3 melted in this embodiment has the same metal composition as the iron scrap and solid reduced iron used as raw materials, and is usually molten steel with a relatively low C content.
  • alloy addition may be performed directly in the electric furnace after melting, or finishing decarburization treatment or dephosphorization treatment by oxygen blowing may be performed.
  • secondary refining such as molten steel desulfurization treatment and vacuum degassing treatment may be performed after tapping. After that, a semi-finished product such as a slab is manufactured through a casting process such as continuous casting.
  • Example 1 A cold iron source melting operation test was conducted using an AC arc furnace 101 having the same type as that shown in FIG. As the cold iron source 2 used, solid reduced iron was used, and the total charging amount was 100 tons.
  • a burner lance 1 having a fuel supply line and an oxygen supply line was installed in the furnace body, and the tip 10 of the burner lance 1 had a multi-tube structure similar to that shown in FIG.
  • the burner fuel methane gas, hydrogen gas and mixed gas of 50 vol % hydrogen and 50 vol % methane were used.
  • a case where no burner was used a case where burner fuel was supplied but no powder was supplied and the furnace contents were heated by the burner flame alone, and a case where powdered lime was blown into the burner flame were compared.
  • the outlet hot water temperature was 1650°C.
  • the initial cold iron source melts further and becomes a flat bath state (even if there is undissolved cold iron source, it is immersed in the molten metal), the slag is discharged from the slag outlet, and then the power is turned on and the burner is used. was interrupted, the furnace cover was opened, and the cold iron source was charged for the second time. After charging the cold iron source for the second time, the energization was resumed and the operation was performed in the same manner as after the first charging. In this way, molten steel of 1650° C. was finally obtained and poured into a ladle.
  • Table 1 shows the treatment conditions and their results.
  • the nozzle wear index indicates the relative wear amount as an index, with the wear amount when methane is used as the fuel gas being 1.0.
  • the electric power unit consumption the amount of electric power used for each processing condition is set to the processing No., which is a conventional example.
  • the value obtained by dividing by the power consumption of 1 is used as the index.
  • Slag solidification was determined by visual observation.
  • the CO 2 emission index is calculated by dividing the amount of CO 2 emitted under each treatment condition into the treatment No. 1, which is a conventional example. A value obtained by dividing 1 by the amount of CO2 emitted is used as an index.
  • the amount of CO 2 emitted also takes into consideration the fossil fuel consumed to obtain electricity.
  • Example 2 A cold iron source melting operation test was conducted using an induction melting furnace 102 having a form similar to that shown in FIG. Reduced iron was used as the cold iron source, and the total charging amount was 50 tons.
  • a burner lance 1 having a fuel supply line and an oxygen supply line was installed in the furnace body, and the tip 10 of the burner lance 1 had a multi-tube structure similar to that shown in FIG.
  • burner fuel methane gas, hydrogen gas, and 50 vol% hydrogen-50 vol% methane mixed gas are used, and when no burner is used, the burner fuel is supplied but the powder is not supplied, and the contents of the furnace are heated by the burner flame alone. was compared with the case of blowing powdered lime into the burner flame.
  • the outlet hot water temperature was 1650°C.
  • the heat transfer efficiency is improved, the cold iron source can be melted using a heat source with reduced CO 2 emissions, the power consumption rate can be reduced, and the environmental load can be reduced. is reduced and is industrially useful. It is suitable for application to processes such as smelting furnaces that require a heat source with reduced CO 2 emissions and the addition of powdery auxiliary materials.
  • Burner lance 2 Cold iron source 3 Molten iron 4 Slag 5 Electrode 6 Coil 7 Burner flame 8 Powdery auxiliary raw material (powder) 9 Furnace body 10 Burner lance tip (nozzle) 11 Powder supply pipe 12 Fuel supply pipe 13 Combustion-supporting gas supply pipe 14 Cooling water passage 15 Outer shell 16 Fuel gas 17 Combustion-supporting gas 101 AC arc furnace 102 Induction melting furnace

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

CO2排出量を低減した熱源を使用して、冷鉄源を溶解する技術を提供する。電気炉には、炉内容物に向けてバーナーが配され、バーナーは、粉体供給管と、燃料を噴出させる噴射孔と、支燃性ガスを噴出させる噴射孔と、を備え、燃料として水素ガスまたは水素富化気体燃料が噴射されて、バーナー火炎が形成され、粉体供給管からは粉状または粉状に加工された副原料が噴射され、副原料がバーナー火炎中を通過するように構成されている電気炉である。電気炉には、燃料を噴出させる噴射孔および支燃性ガスを噴出させる噴射孔を備え、噴射孔から炉内に向けて火炎を噴射するバーナーが配され、電気炉の1ヒートの操業中の少なくとも一部の期間、バーナーの燃料を水素ガスまたは水素富化気体燃料とし、かつバーナーにより形成される火炎の中を通過するように粉状または粉状に加工した副原料を吹込む製鋼方法である。

Description

電気炉および製鋼方法
 本発明は、鉄鋼製品生産時の温室効果ガス排出低減のために、CO排出量を低減した熱源を使用して、冷鉄源を溶解する技術に関する。
 近年、地球温暖化防止の観点から、鉄鋼業界においても化石燃料の消費量を削減してCOガスの発生量を減少させる技術開発が進められている。従来の一貫製鉄所においては、鉄鉱石を炭素で還元して溶銑を製造している。この溶銑を製造するには鉄鉱石の還元等のために溶銑1tあたり500kg程度の炭素源を必要とする。一方、鉄スクラップなどの冷鉄源を原料として溶鋼を製造する場合には、鉄鉱石の還元に必要とされる炭素源が不要となり、冷鉄源を溶解するのに十分な熱量のエネルギーのみを必要とする。そのため、CO排出量を大幅に低減可能となる。
 冷鉄源高配合操業においては、アーク炉や誘導溶解炉等の電気炉が使用される場合が多い。冷鉄源の溶解熱の多くを電力で付与している。電力原単位の削減のため、例えばアーク炉の一般的な操業においては、1)助燃バーナーを炉壁や排滓口に配し、コールドスポット等の冷鉄源の溶解を促進させること、2)酸素ガス供給ランスから酸素を供給して鉄の酸化熱を付与するいわゆる酸素富化操業を行なうこと、3)酸素ガス供給ランスから酸素を供給するとともにカーボンインジェクションランスよりカーボン粉を供給し、スラグをフォーミングさせてアークを覆い、アークの溶鋼への伝熱効率を高めること、等の技術が採用されている。
 しかしながら、酸素富化操業においては、鉄の酸化ロスに伴う歩留低下が問題となる。また、助燃バーナーの多くは炭化水素を燃料とするバーナーを使用している。スラグフォーミング操業もカーボン粉をスラグ内に吹き込んでCOガスを発生させるものである。これらの技術により、電力原単位は削減可能であるが、CO排出量の低減効果は小さい。そもそも、使用する電力が化石燃料によって得られたものであれば、電力の使用によってもCOは排出されることとなる。そこで、さらなるCO排出量低減のためには、CO排出量を低減したエネルギー源の使用量を増加させつつ熱効率の向上を図ることが望まれる。
 今後、仮に、CO排出量を低減した電力が得られるようになり、使用する電力がCO排出量を低減した電力に置き換わったとしても、上記の電力原単位削減技術の必要性は変わらないと考えられる。これらの技術についてもCO排出量の低減を進める必要がある。例えば、助燃バーナー等の燃料として、再生可能エネルギー等を用いて製造された水素ガスを用いることが想定される。ただし、水素ガスの性質として、炭化水素ガス等と比較して燃焼速度が速く、火炎温度が高温になるという問題があり、この問題を解決するために、以下の技術が知られている。
 たとえば、特許文献1や2によれば、主燃焼空間の上流側に予備燃焼空間を設けることで、酸素濃度を低下させ、火炎温度を低下させる技術が提案されている。また、特許文献3によれば、水素ガス供給流路と燃焼用空気供給流路との距離を確保し、水素ガスと燃焼用空気との混合を抑制することで燃焼速度を遅らせ、火炎温度を低下させる方法が提案されている。
 さらに、溶解すべき冷鉄源としても、鉄スクラップの他、CO排出量を低減した還元剤を使用して製造した固体還元鉄の使用量が増加することが予想される。
特開2020-46098号公報 特開2021-25713号公報 特開2020-46099号公報
 しかしながら、上記従来技術には以下の問題がある。
 特許文献1~3に記載の方法では、設備構造が複雑となりまた大型になってしまう。そのため、製鋼用電気炉への適用を図る際には設備投資額および維持管理費が増大するという問題がある。また、一般的に固体還元鉄は原料である鉄鉱石に起因する脈石分、たとえばSiOやAlを含有する。このため溶解時に大量のスラグが発生し、炉内でスラグが固化するなどの操業阻害が生じるという問題がある。
 本発明は、このような事情に鑑みてなされたものであって、電気エネルギーを用い、CO排出量を低減した熱源を使用して冷鉄源を溶解し溶鉄を得る電気炉を提供し、その電気炉において、CO排出量を低減した熱源を使用して冷鉄源を溶解する製鋼方法の提案を目的としている。さらに、冷鉄源として、固体還元鉄を安定して溶解可能な製鋼方法の提案を目的としている。
 上記課題を有利に解決する本発明にかかる電気炉は、電気エネルギーを用いて冷鉄源を溶解し溶鉄を得る電気炉であって、該電気炉には、炉内容物に向けてバーナーが配され、該バーナーは、粉体供給管と、燃料を噴出させる噴射孔と、支燃性ガスを噴出させる噴射孔と、を備え、前記燃料として水素ガスまたは水素富化気体燃料が噴射されて、バーナー火炎が形成され、前記粉体供給管からは粉状または粉状に加工された副原料が噴射され、該副原料が前記バーナー火炎中を通過するように構成されていることを特徴とする。
 なお、本発明にかかる電気炉は、直流アーク炉、交流アーク炉または誘導溶解炉であることがより好ましい解決手段になり得るものと考えられる。
 上記課題を有利に解決する本発明にかかる製鋼方法は、電気エネルギーを用いて冷鉄源を溶解し溶鉄を得る電気炉における製鋼方法であって、前記電気炉には、燃料を噴出させる噴射孔および支燃性ガスを噴出させる噴射孔を備え、該噴射孔から炉内に向けて火炎を噴射するバーナーが配され、前記電気炉の1ヒートの操業中の少なくとも一部の期間、前記バーナーの前記燃料を水素ガスまたは水素富化気体燃料とし、かつ前記バーナーにより形成される火炎の中を通過するように粉状または粉状に加工した副原料を吹込むことを特徴とする。
 なお、本発明にかかる製鋼方法は、
(1)前記冷鉄源が固体還元鉄を含むこと、
(2)前記粉状または粉状に加工した原料が石灰粉であること、
(3)前記電気炉が直流アーク炉、交流アーク炉または誘導溶解炉であること、
などがより好ましい解決手段になり得るものと考えられる。
 本発明によれば、バーナー火炎を介して粉粒体を供給することで、粉粒体がバーナー火炎内で加熱されて伝熱媒体となるため、バーナー燃焼熱を高効率で電気炉内の冷鉄源加熱に利用可能であり、電力の使用量を削減可能である。さらに燃料として水素ガスを主体に使用することで、CO排出量も低減することが可能である。また、バーナー燃焼ガスの持っている顕熱がバーナー火炎内で粉体の加熱に消費されるため、火炎温度が低下し、バーナーノズルの耐久性確保や電気炉の炉体耐火物の損耗回避も可能である。
 さらに、バーナー火炎で加熱された粉状の石灰を固体還元鉄溶解時に発生するスラグに吹き付けることで、スラグの加熱と低融点化を図る。これにより、スラグの滓化が促進され、スラグの固化による操業阻害を抑止することが可能となる。特に電気炉として誘導溶解炉を用いた場合は、スラグには誘導電流が発生せず直接加熱されることがないので、スラグ固化が起こりやすかった。本発明の適用によりこの問題が顕著に改善される。
本発明の一実施形態にかかる電気炉として、交流アーク炉の概要を示す縦断面模式図である。 本発明の他の実施形態にかかる電気炉として、誘導溶解炉の概要を示す縦断面模式図である。 上記実施形態に用いるバーナーランスの先端部の縦断面模式図である。
 以下、本発明の実施の形態について具体的に説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
  図1は、本発明の一実施形態にかかる電気炉としての交流アーク炉101の概要を示す縦断面模式図であり、交流アーク型電気炉操業の形態様式を示す。本実施形態では、バーナーランス1が炉蓋に設けられたバーナーランス挿入孔から昇降可能に挿入されている。なお、図1の例では、バーナーランス1が炉蓋から垂直に昇降可能に挿入されているが、これに限らない。バーナーランス1が炉壁の上方から炉内に向けて斜めに挿入されてもよい。また、バーナーは昇降可能なランス形式に限らず、ノズル部が炉蓋や炉壁に固定されている形態でもよい。また、上記バーナーの他に、例えば排滓口から装入する送酸ランスを備えてもよいし、上記バーナーに送酸機能を付与して、上記バーナーから送酸を行なってもよい。バーナーランス1は炉体9に収容された冷鉄源2や溶鉄3などの炉内容物の表面に向かってバーナー火炎7を噴射している。図示した交流アーク炉101は、黒鉛電極5を3本有する。炉底からガス吹込みによる攪拌を行ってもよい。また、炉体9は出湯孔を有し、炉蓋には排ガスダクト(図示せず)が設置されている。図1は、冷鉄源2として、固体還元鉄を装入し、通電を開始して、冷鉄源2の溶解を行っている状態である。この間、バーナーランス1からバーナー火炎7を通じて粉状副原料8を吹き付けて、冷鉄源2の溶解を促進させている。この操業では、太陽光や風力、水力など再生可能エネルギーで製造した水素ガスを主体とする燃料を用いることが好ましい。水素ガスを主体とする燃料とは、水素ガスまたは水素富化気体燃料をいう。水素富化気体燃料としては、水素ガスとメタンガス、天然ガスまたは石油ガスとの混合ガスを用いることができる。CO削減の観点からは水素ガスを50vol%以上混合することが好ましい。
 上記実施形態では、電気炉として、電極を3本有する交流アーク炉101を用いたが、上部電極と下部電極を有する直流アーク炉であってもよい。電気炉として、交流アーク炉101を用いる場合には、電極5とアークが炉体9の中央部に存在していて、バーナーランス1の設置位置は限定される。本実施形態のバーナーは、下記で説明するように、水素ガスを主体とする燃料を用いても粉状副原料8を適切に吹き込むことでバーナー火炎7の温度を低減できるので、炉壁の水冷パネルや炉床の耐火物等を損耗させることなく操業できる。
 図2は、本発明の他の実施形態にかかる電気炉としての誘導溶解炉102の概要を示す縦断面模式図であり、誘導溶解炉による操業の形態様式を示す。本実施形態のバーナーランス1が炉蓋に設けられたバーナーランス挿入孔から昇降可能に挿入されている。また、バーナーは昇降可能なランス形式に限らず、ノズル部が炉蓋に固定されている形態でもよい。バーナーランス1は炉体9に収容された冷鉄源2や溶鉄3の表面に向かってバーナー火炎7を噴射している。図示した誘導溶解炉102は、たとえば、誘導加熱用のコイル6を有している。炉底からガス吹込みによる攪拌を行ってもよい。また、炉体9は出湯口を有している。図2は、冷鉄源2として、固体還元鉄を装入し、通電を開始して、誘導加熱溶解を行っている状態である。この間、バーナーランスからバーナー火炎を通じて粉状副原料を吹き付けて、冷鉄源2の溶解を促進させるとともに、スラグ組成を改質している。具体的には、石灰粉を粉状副原料8としてバーナーからスラグ上に吹き付け、固体還元鉄の含むSiOやAlを希釈しスラグの融点を下げている。この操業では、上記と同様、再生可能エネルギーで製造した水素ガスを主体とする燃料を用いることが好ましい。
 図3に上記実施形態で用いるバーナーランス1の一形態例として、その先端部10を概略図で示す。中心に噴射孔を有する粉体供給管11を配置し、その周囲に噴射孔を有する燃料供給管12および支燃性ガス供給管13を順に配置する。その外側は冷却水通路14を有する外殻15を備える。粉体供給管11の外周部に設けられた噴射孔から、燃料ガス16である水素ガスまたは水素富化気体燃料と支燃性ガス17を供給してバーナー火炎7を形成する。そして、粉体供給管11から噴射した粉状副原料8を該バーナー火炎7中で加熱する。そうすることで、粉状副原料8が伝熱媒体となるため、冷鉄源2や溶鉄3など炉内容物への火炎の着熱効率を向上させることが可能となる。その結果、電力量を低減することが可能となる。支燃性ガス17としては、純酸素のほか、酸素とCOや不活性ガスとの混合ガス、空気や酸素富化空気が適用できる。さらに、粉体8を搬送するガスを不活性ガスや支燃性ガスとすることができる。
 上記一形態例では、中心に粉体供給管を備え、その周囲に燃料を噴射する噴射孔、および支燃性ガスを噴射する噴射孔を配することにより一体のランスとして構成されるバーナーランスの例を示したが、バーナーランスの形態はこれに限らない。すなわち、本発明に係るバーナーは、粉体供給管と、燃料を噴出させる噴射孔と、支燃性ガスを噴出させる噴射孔と、を備え、前記燃料として水素ガスまたは水素富化気体燃料が噴射されて、バーナー火炎が形成され、粉体供給管から噴射される副原料がバーナー火炎中を通過するように構成されていればよい。例えば、燃料を噴出させる噴射孔と支燃性ガスを噴出させる噴射孔とを一体のランスに配するとともに、このランスに隣接して粉体供給管を別途配置し、粉体供給管から噴射される副原料がバーナー火炎中を通過するように構成してもよい。
 本発明の別の実施形態にかかる製鋼方法では、たとえば、図1に示す交流アーク炉101や図2に示す誘導溶解炉102などの電気炉に、まず、図示しないバケットより、鉄スクラップや固体還元鉄などの冷鉄源2を装入する。初装の冷鉄源2を装入したのちに、通電を開始する。そののちに炉内上部に設置されたバーナーランス1を電気炉内に挿入し、電力とバーナー火炎7で冷鉄源2の加熱を行なう。初装の冷鉄源2の溶解がさらに進み、フラットバス状態(未溶解の冷鉄源2があっても溶鉄3内に浸漬した状態)になったら、必要に応じ排滓口より排滓を行なった後、通電とバーナー使用を中断し、炉蓋を開けて2回目の冷鉄源2を装入することもできる。2回目の冷鉄源2の装入後は、通電を再開し、初装後と同様にバーナー加熱操業を行なうことが好ましい。なお、冷鉄源2の装入回数は3回以上であってもよい。
 発明者らは、図1や図2に示す電気炉を用い、燃料ガス流量や粉体の供給速度を種々変更して、炉内容物への着熱効率や、バーナーランスノズルの耐久性を調査した。その結果、燃料ガス16の発熱量に対し十分な量の粉体8を供給することで、炉内容物への着熱効率が高位となり、かつ燃焼火炎温度が低下することを見出した。(粉体の供給速度)/(燃料ガスの発熱量)で表す粉体燃料比を6.7(kg/MJ)以上とすることで、火炎温度はおおむね1500℃以下となり、炉壁の水冷パネルや炉床の耐火物等およびバーナーランスノズルへの熱負荷を抑止することが可能である。
 粉体種としては、粉状または粉状に加工した副原料8である造滓材、ダスト等を用いることができる。バーナー火炎内で効率的に加熱するためには、比表面積を大きくする必要があり、粒径100μm程度以下であることが好ましい。副原料の粒度が大きい場合には、粉砕等により、粒径を100μm程度以下に加工することが好ましい。ここで、粒径は体積基準の50%通過率で表す。
 冷鉄源2として、鉄スクラップやCO排出量を低減した還元剤で還元した固体還元鉄を用いることが好ましい。固体還元鉄は、銘柄にもよるが、鉄鉱石由来の脈石分が10~20質量%程度のSiOやAlとして含有されている。固体還元鉄を溶解したときには、これらはスラグ4となって、溶鉄3の湯面上に存在することになる。このスラグはそのままでは高融点組成であり、固化しやすく炉壁に付着し、操業阻害を引き起こす可能性がある。特に、誘導溶解炉102を用いた場合は、スラグが誘導加熱されないため、スラグ固化の懸念が大きい。
 そこで、前記バーナー加熱して供給する粉体副原料8を石灰とすれば、スラグ中の塩基度、つまり、質量比のCaO/SiOを1.0程度にコントロールすることができるので好ましい。もって、スラグを低融点化し、スラグの固化を抑止することが可能である。さらに加熱された粉体によってスラグに熱付与されるため、スラグ滓化を促進する効果が得られる。なお、上記のようにスラグが滓化された後、アーク炉および誘導溶解炉にて炉体を傾動させて、溶解中もしくは出湯前に排滓または流滓を行ってもよい。
 また、電気炉としては、電気エネルギーを用いて冷鉄源を溶解し溶鉄を得るものであれば適用可能である。例えば、アーク炉であれば、上記の交流または直流のアーク炉だけでなく、ゼータベルグ式自焼成電極等をスラグ内に浸漬させて加熱を行なう浸漬型アーク炉であってもよい。また、炉内に設けられた発熱体からの輻射や炉内の対流及び伝導伝熱で被加熱物を加熱する間接式抵抗炉であってもよい。さらには、プラズマアーク溶解炉であってもよい。
 本実施形態で溶解した溶鉄3は、原料とする鉄スクラップや固体還元鉄の金属組成と同等の組成となり、通常は比較的C含有量の少ない溶鋼である。成分調整のために、溶解した電気炉でそのまま、合金添加を行ったり、酸素吹精による仕上げ脱炭処理や脱りん処理等を行ったりしてもよい。さらに、出湯後、溶鋼脱硫処理、真空脱ガス処理等の2次精錬を行ってもよい。その後、連続鋳造などの鋳造工程を経て、鋳片等の半製品が製造される。
(実施例1)
 図1に示すのと同様の形式を有する交流アーク炉101を用いて、冷鉄源溶解操業試験を行った。使用冷鉄源2としては固体還元鉄を用い、合計装入量は100tとした。
 炉体には燃料供給ラインと酸素供給ラインを備えたバーナーランス1を設置しており、バーナーランス1の先端部10は図3に示すのと同様の多重管構造とした。バーナー燃料16としては、メタンガス、水素ガスおよび水素50vol%-メタン50vol%混合ガスを用いた。バーナーを使用しない場合と、バーナー燃料は供給するが粉体は供給せず炉内容物をバーナー火炎単体で加熱した場合と、バーナー火炎中に粉状の石灰を吹き込んだ場合と、を比較した。出湯温度は1650℃とした。
 通電開始後、初装冷鉄源の溶解が進んで炉内の装入物の高さが下がり、炉内上部に空間ができた時点で、バーナーランス1を下降し、バーナー火炎7による加熱を併用した。粉体の供給は、搬送ガスにアルゴンガスを用い、粉状の石灰を100kg/minの供給速度にて電気炉内に供給した。燃料ガス16としてメタンガスを使用する場合には5Nm/minの流量、水素ガスを使用する場合には16Nm/minの流量、水素-メタン混合ガスを使用する場合には10.5Nm/minの流量として、それぞれについて燃料ガス16を燃焼させるための支燃性ガス17として酸素ガスを供給した。
 初装冷鉄源の溶解がさらに進み、フラットバス状態(未溶解冷鉄源があっても溶湯内に浸漬した状態)になったら、排滓口より排滓を行なった後、通電とバーナー使用を中断し、炉蓋を開けて2回目の冷鉄源の装入を行なった。2回目の冷鉄源の装入後は、通電を再開し、初装後と同様に操業を行なった。このようにして最終的に1650℃の溶鋼を得て、取鍋に出湯した。
 各処理条件について、バーナーランスノズルの損耗状況、電力原単位、スラグ固化の有無、CO排出量の比較を行った。各処理条件およびその結果を表1に示す。ノズルの損耗指数は、メタンを燃料ガスとしたときの損耗量を1.0として相対的な損耗量を指数で示す。電力原単位は、各処理条件の使用電力量を従来例である処理No.1の使用電力量で除した値を指数とする。スラグ固化は目視による観察で判断した。CO排出指数は、各処理条件の排出CO量を従来例である処理No.1の排出CO量で除した値を指数とする。ここで、排出CO量には電力を得るのに消費する化石燃料も考慮した。
Figure JPOXMLDOC01-appb-T000001
 バーナーを使用しない従来例(処理No.1)に対し、バーナー火炎単体で炉内容物を加熱した水準(処理No.2~4)においては、バーナー燃焼熱が有効に着熱せず、電力原単位がほぼ同等であった。水素を含有したガスを燃料として使用し、粉体を供給しなかった水準(処理No.3~4)においては、バーナーランスノズルの損耗が大きかった。バーナー火炎を介して粉状の石灰を吹き込んだ条件(処理No.5~7)においては、バーナーの燃焼熱が高効率で炉内容物に伝熱され、電力原単位を大幅に削減することが可能であった。一方、バーナー燃料にメタンを使用した水準(処理No.5)に対し、水素を含有するガスを用いた条件(処理No.6~7)においては、CO排出量を大幅に低減することが可能となり、バーナーノズルの損耗も抑止することが可能となった。
 アーク炉を使用した本実施例においては、スラグの固化はいずれの水準においても確認されなかった。
(実施例2)
 図2に示すのと同様の形式を有する誘導溶解炉102を用いて、冷鉄源溶解操業試験を行った。使用冷鉄源としては還元鉄を用い、合計装入量は50tとした。
 炉体には燃料供給ラインと酸素供給ラインを備えたバーナーランス1を設置しており、バーナーランス1の先端部10は図3に示すのと同様の多重管構造とした。バーナー燃料としては、メタンガス、水素ガスおよび水素50vol%-メタン50vol%混合ガスを用い、バーナーを使用しない場合と、バーナー燃料は供給するが粉体は供給せず炉内容物をバーナー火炎単体で加熱した場合と、バーナー火炎中に粉状の石灰を吹き込んだ場合と、を比較した。出湯温度は1650℃とした。
 通電開始後、初装冷鉄源の溶解が進んで炉内の装入物の高さが下がり、炉内上部に空間ができた時点で、バーナーランス1を下降し、バーナー火炎7による加熱を併用した。粉体の供給は、搬送ガスにアルゴンガスを用い、粉状の石灰を100kg/minの供給速度にて電気炉内に供給した。燃料ガス16としてメタンガスを使用する場合には5Nm/minの流量、水素ガスを使用する場合には16Nm/minの流量、水素-メタン混合ガスを使用する場合には10.5Nm/minの流量として、それぞれについて燃料ガスを燃焼させるための支燃性ガス17として酸素ガスを供給した。
 初装冷鉄源の溶解がさらに進み、フラットバス状態(未溶解冷鉄源があっても溶湯内に浸漬した状態)になったら、通電とバーナー使用を中断し、炉蓋を開け、炉体を傾動して排滓を行なった。排滓完了後、炉体を垂直に戻して2回目の冷鉄源の装入を行ない、通電を再開した。2回目の冷鉄源の装入後は、通電を再開し、初装後と同様に操業を行なった。このようにして最終的に1650℃の溶鋼を得て、取鍋に出湯した。
 各処理条件について、バーナーランスノズルの損耗状況、電力原単位、スラグ固化の有無、CO排出量の比較を行った。各処理条件およびその結果を表2に示す。評価指標は実施例1と同様とし、比較する従来例は処理No.8とした。
Figure JPOXMLDOC01-appb-T000002
 バーナーを使用しない従来例(処理No.8)に対し、バーナー火炎単体で炉内容物を加熱した水準(処理No.9~11)においては、バーナー燃焼熱が有効に着熱せず、電力原単位がほぼ同等であった。水素を含有するガスを燃料とし、粉体を供給しなかった水準(処理No.10~11)においてはバーナーランスノズルの損耗が大きかった。また、炉内スラグ固化による操業阻害が発生した。
 バーナー火炎を介して粉状の石灰を添加した条件(処理No.12~14)においては、バーナーの燃焼熱が高効率で炉内容物に伝熱され、電力原単位を大幅に削減することが可能であった。一方、バーナー燃料にメタンを使用した水準(処理No.12)に対し、水素を含有するガスを用いた条件(処理No.13~14)においては、CO排出量を大幅に低減することが可能となり、バーナーノズルの損耗も抑止することが可能となった。また、スラグの固化も抑止することが可能であった。
 本発明の電気炉および製鋼方法によれば、着熱効率が向上して、CO排出量を低減した熱源を使用して冷鉄源を溶解することができ、電力原単位が削減できるとともに環境負荷が軽減され産業上有用である。CO排出量を低減した熱源および粉状副原料の添加を必要とする精錬炉などのプロセスに適用して好適である。
1 バーナーランス
2 冷鉄源
3 溶鉄
4 スラグ
5 電極
6 コイル
7 バーナー火炎
8 粉状副原料(粉体)
9 炉体
10 バーナーランス先端部(ノズル)
11 粉体供給管
12 燃料供給管
13 支燃性ガス供給管
14 冷却水通路
15 外殻
16 燃料ガス
17 支燃性ガス
101 交流アーク炉
102 誘導溶解炉

 

Claims (6)

  1. 電気エネルギーを用いて冷鉄源を溶解し溶鉄を得る電気炉であって、
    該電気炉には、炉内容物に向けてバーナーが配され、
    該バーナーは、粉体供給管と、燃料を噴出させる噴射孔と、支燃性ガスを噴出させる噴射孔と、を備え、
    前記燃料として水素ガスまたは水素富化気体燃料が噴射されて、バーナー火炎が形成され、
    前記粉体供給管からは粉状または粉状に加工された副原料が噴射され、該副原料が前記バーナー火炎中を通過するように構成されていることを特徴とする電気炉。
  2. 前記電気炉が、直流アーク炉、交流アーク炉または誘導溶解炉である、請求項1に記載の電気炉。
  3. 電気エネルギーを用いて冷鉄源を溶解し溶鉄を得る電気炉における製鋼方法であって、
    前記電気炉には、燃料を噴出させる噴射孔および支燃性ガスを噴出させる噴射孔を備え、該噴射孔から炉内に向けて火炎を噴射するバーナーが配され、
    前記電気炉の1ヒートの操業中の少なくとも一部の期間、前記バーナーの前記燃料を水素ガスまたは水素富化気体燃料とし、かつ前記バーナーにより形成される火炎の中を通過するように粉状または粉状に加工した副原料を吹込むことを特徴とする製鋼方法。
  4. 前記冷鉄源が固体還元鉄を含む、請求項3に記載の製鋼方法。
  5. 前記粉状または粉状に加工した副原料が石灰粉である、請求項3または4に記載の製鋼方法。
  6. 前記電気炉が、直流アーク炉、交流アーク炉または誘導溶解炉である、請求項3ないし5のいずれか1項に記載の製鋼方法。

     
PCT/JP2022/017372 2021-05-07 2022-04-08 電気炉および製鋼方法 WO2022234762A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022542155A JP7388563B2 (ja) 2021-05-07 2022-04-08 電気炉および製鋼方法
BR112023022801A BR112023022801A2 (pt) 2021-05-07 2022-04-08 Forno elétrico e método de fabricação de aço
EP22798869.8A EP4303327A1 (en) 2021-05-07 2022-04-08 Electric furnace and steelmaking method
CN202280028818.7A CN117280048A (zh) 2021-05-07 2022-04-08 电炉及制钢方法
KR1020237041345A KR20240004790A (ko) 2021-05-07 2022-04-08 전기로 및 제강 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021078969 2021-05-07
JP2021-078969 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234762A1 true WO2022234762A1 (ja) 2022-11-10

Family

ID=83932184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017372 WO2022234762A1 (ja) 2021-05-07 2022-04-08 電気炉および製鋼方法

Country Status (7)

Country Link
EP (1) EP4303327A1 (ja)
JP (1) JP7388563B2 (ja)
KR (1) KR20240004790A (ja)
CN (1) CN117280048A (ja)
BR (1) BR112023022801A2 (ja)
TW (1) TWI817466B (ja)
WO (1) WO2022234762A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327211A (ja) * 2001-04-26 2002-11-15 Nkk Corp 冷鉄源の溶解方法
JP2010209436A (ja) * 2009-03-12 2010-09-24 Jfe Steel Corp 溶鉄の昇熱方法
JP2018016832A (ja) * 2016-07-26 2018-02-01 Jfeスチール株式会社 電気炉による溶鉄の製造方法
JP2020046098A (ja) 2018-09-18 2020-03-26 中外炉工業株式会社 水素ガス燃焼装置
JP2020046099A (ja) 2018-09-18 2020-03-26 中外炉工業株式会社 水素ガス燃焼装置
JP2021025713A (ja) 2019-08-06 2021-02-22 中外炉工業株式会社 混焼バーナー

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI586446B (zh) * 2013-12-18 2017-06-11 國立清華大學 電弧爐收集之集塵灰運用於化學迴圈燃燒程序之方法
CN114959171A (zh) 2015-01-27 2022-08-30 杰富意钢铁株式会社 电炉以及利用电炉制造铁水的方法
CN111748673B (zh) 2020-06-02 2021-06-11 北京科技大学 一种电弧炉炼钢用多功能氢氧烧嘴及供能控制方法
CN111763792A (zh) * 2020-07-08 2020-10-13 酒泉钢铁(集团)有限责任公司 一种不锈钢除尘灰转底炉-电炉还原处理工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327211A (ja) * 2001-04-26 2002-11-15 Nkk Corp 冷鉄源の溶解方法
JP2010209436A (ja) * 2009-03-12 2010-09-24 Jfe Steel Corp 溶鉄の昇熱方法
JP2018016832A (ja) * 2016-07-26 2018-02-01 Jfeスチール株式会社 電気炉による溶鉄の製造方法
JP2020046098A (ja) 2018-09-18 2020-03-26 中外炉工業株式会社 水素ガス燃焼装置
JP2020046099A (ja) 2018-09-18 2020-03-26 中外炉工業株式会社 水素ガス燃焼装置
JP2021025713A (ja) 2019-08-06 2021-02-22 中外炉工業株式会社 混焼バーナー

Also Published As

Publication number Publication date
BR112023022801A2 (pt) 2024-01-16
JPWO2022234762A1 (ja) 2022-11-10
CN117280048A (zh) 2023-12-22
TWI817466B (zh) 2023-10-01
JP7388563B2 (ja) 2023-11-29
EP4303327A1 (en) 2024-01-10
TW202248424A (zh) 2022-12-16
KR20240004790A (ko) 2024-01-11

Similar Documents

Publication Publication Date Title
JP5552754B2 (ja) アーク炉の操業方法
KR20110054059A (ko) 용철의 제조 방법
JP5413043B2 (ja) 大量の鉄スクラップを用いた転炉製鋼方法
JP5608989B2 (ja) 溶銑の昇熱方法
JP5236926B2 (ja) 溶鋼の製造方法
JP5909957B2 (ja) 鉄スクラップを利用した製鋼方法
JPH0726318A (ja) 製鋼用電気炉の操業方法
KR20100043287A (ko) 용철 제조 방법
JP5549198B2 (ja) 鉄スクラップを利用した製鋼方法
WO2022234762A1 (ja) 電気炉および製鋼方法
JP2007138207A (ja) 溶融還元方法
JP4077533B2 (ja) 金属溶解方法
JP2013533950A (ja) 炉内に形成された付着物を除去するための方法及びシステム
JP3286114B2 (ja) 屑鉄から高炭素溶融鉄を製造する方法
WO2010131742A1 (ja) 電気炉製鋼法
JP2022500556A (ja) 電気炉を用いた低窒素鋼の精錬方法
JP2000008115A (ja) 冷鉄源の溶解方法
JP2021188073A (ja) 電気炉による溶鉄の製造方法
JPS61195909A (ja) 転炉内での屑鉄溶解方法
JPH09227918A (ja) ステンレス鋼溶製方法
JPS6235446B2 (ja)
JP2010100926A (ja) 溶融還元方法
JP2001262216A (ja) 鉄スクラップの溶解方法
JPH08311525A (ja) 鋼スクラップの溶解法及び溶解炉
JP2001172713A (ja) 冷鉄源の溶解方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022542155

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798869

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2022798869

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280028818.7

Country of ref document: CN

Ref document number: 18287140

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022798869

Country of ref document: EP

Effective date: 20231006

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023022801

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2023130959

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 20237041345

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023022801

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231031