WO2019082692A1 - 走行ルートガイダンス装置 - Google Patents

走行ルートガイダンス装置

Info

Publication number
WO2019082692A1
WO2019082692A1 PCT/JP2018/038091 JP2018038091W WO2019082692A1 WO 2019082692 A1 WO2019082692 A1 WO 2019082692A1 JP 2018038091 W JP2018038091 W JP 2018038091W WO 2019082692 A1 WO2019082692 A1 WO 2019082692A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
construction machine
gradient
destination
traveling
Prior art date
Application number
PCT/JP2018/038091
Other languages
English (en)
French (fr)
Inventor
誠司 佐伯
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Priority to US16/753,629 priority Critical patent/US11414834B2/en
Priority to CN201880062264.6A priority patent/CN111148968B/zh
Priority to KR1020207010034A priority patent/KR20200078490A/ko
Priority to EP18871466.1A priority patent/EP3674663B1/en
Publication of WO2019082692A1 publication Critical patent/WO2019082692A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/04Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0217Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with energy consumption, time reduction or distance reduction criteria
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids

Definitions

  • the present invention relates to a travel route guidance device for guiding a travel route of a construction machine.
  • Patent Document 1 discloses that a route from a current position of a vehicle to a destination that does not include a slope area having a gradient rate equal to or more than a predetermined value is searched from map data (claim 5).
  • the traveling route can not be detected if the vehicle can not reach the destination unless the vehicle passes a route including a slope region having a gradient rate equal to or more than a predetermined value.
  • the present invention can provide a travel route guidance device that can guide a construction machine to easily reach a destination even if the construction machine can not reach the destination unless the slope is out of the allowable range. Intended to be provided.
  • a travel route guidance device is a terrain acquisition unit that acquires three-dimensional terrain information around a construction machine; A current location acquisition unit for acquiring the current location of the construction machine in the three-dimensional terrain information; A destination acquisition unit for acquiring a destination in the three-dimensional terrain information; A control unit for searching at least one traveling route of the construction machine from the current location to the destination based on the three-dimensional terrain information; An output unit for outputting information on the travel route searched for by the control unit; And a memory for pre-storing tolerance information indicating tolerance of the gradient determined based on the stability of the construction machine, When the control unit detects a forming unnecessary route which is the traveling route which the construction machine can travel only to the gradient within the allowable range and can reach the destination, the control unit outputs the information on the forming unnecessary route to the output unit And if it does not detect the forming-unnecessary route, it determines the point at which the topography should be formed in order to make the construction machine reachable to the destination by traveling only the slope within
  • the construction machine can be guided to easily reach the destination.
  • FIG. 2 is a block diagram showing a configuration of a traveling route guidance device 20. It is a flowchart of the travel route guidance apparatus 20 shown in FIG. It is a figure which shows an example of shaping
  • the construction machine 10 and the traveling route guidance device 20 will be described with reference to FIGS. 1 to 6.
  • the construction machine 10 is a machine that performs work such as construction work, and is a machine capable of shaping the terrain, and is, for example, a shovel.
  • the traveling of the construction machine 10 may be operated from the cab of the construction machine 10, may be remotely controlled from the outside of the construction machine 10, and may be operated by automatic control. The same applies to operations other than traveling.
  • the construction machine 10 includes a lower traveling body 11, an upper swing body 13, and an attachment 15.
  • the undercarriage 11 includes left and right crawlers 11c, and causes the construction machine 10 to travel forward and backward.
  • the upper swing body 13 is configured to be swingable in the yawing direction with respect to the lower traveling body 11 by, for example, a driving force from an electric motor or a hydraulic motor.
  • the attachment 15 includes a boom pivotally attached to the upper slewing body 12, an arm pivotally attached to the boom, and a bucket pivotally attached to the arm Do work to shape the terrain.
  • the arm, boom and bucket are each rotated by an actuator such as a hydraulic cylinder.
  • the attachment 15 is replaceable from the bucket to another working machine such as a breaker or a nibler.
  • the travel route guidance device 20 is a device that guides (supports and guides) the travel route R of the construction machine 10 in consideration of the slope of the terrain around the construction machine 10.
  • the travel route guidance device 20 may be provided to the construction machine 10, may be provided outside the construction machine 10, and may be provided both outside the construction machine 10 and the construction machine 10.
  • the travel route guidance device 20 When the travel route guidance device 20 is provided outside the construction machine 10, the travel route guidance device 20 is mounted on, for example, a server communicably connected to the construction machine 10. Also, when the traveling route guidance device 20 is provided both outside the construction machine 10 and the construction machine 10, for example, some of the components of the traveling route guidance device 20 are mounted on the construction machine 10, and the remaining components are servers. Implemented in
  • the travel route guidance device 20 includes a terrain acquisition unit 21, a current location acquisition unit 22, a destination acquisition unit 23, a selection unit 31, a control unit 40, an output unit 50, and a memory 60. And
  • the topography acquisition unit 21 acquires three-dimensional topography information T around the construction machine 10, as shown in FIG.
  • Three-dimensional topographical information T is a position that indicates each of a plurality of positions in a three-dimensional coordinate space in which the horizontal direction is the X axis, the vertical direction is the Y axis, and the height direction orthogonal to the X axis and the Y axis is the Z axis. It consists of data.
  • One position data is composed of three components of X, Y and Z. Among the three components, the X component indicates, for example, the latitude, the Y component indicates, for example, the longitude, and the Z component indicates, for example, the elevation. Therefore, the degree of the gradient in any direction at each position of the three-dimensional topography information T can be calculated using the position data included in the three-dimensional topography information T.
  • the terrain acquisition unit 21 is configured by, for example, a distance image sensor provided in the construction machine 10.
  • the distance image sensor may measure a three-dimensional shape by, for example, a TOF (Time Of Flight) method, or may measure a three-dimensional shape with a stereo camera.
  • TOF Time Of Flight
  • the terrain acquisition unit 21 may measure three-dimensional terrain information by aerial imaging.
  • the terrain acquisition unit 21 may be mounted on a flying object such as a drone configured to be communicable with the construction machine 10, for example.
  • the three-dimensional topography information T may be stored in advance in the memory 60.
  • the topography acquisition unit 21 may acquire the three-dimensional topography information T from the memory 60.
  • the topography of the three-dimensional topography information T is represented using contour lines.
  • the current location acquisition unit 22 acquires the current location P1 of the construction machine 10 in the three-dimensional terrain information T.
  • the current position acquisition unit 22 is configured of, for example, a GPS sensor that acquires the current position P1 using a satellite positioning system. However, this is an example, and the present location acquisition unit 22 may acquire the present location P1 using an aerial image.
  • the current position acquisition unit 22 is configured of a distance image sensor and a GPS sensor mounted on the flying object. Furthermore, in this case, the current position acquisition unit 22 calculates the relative position of the construction machine 10 to the flying object from the measurement value of the distance image sensor, and uses the self position and the relative position obtained from the GPS sensor to calculate the position of the construction machine 10 It may be calculated.
  • the present location acquisition part 22 is comprised with input devices, such as a switch, a touch panel, and a keyboard, for example, and based on operation of the user (following, it only describes as a "user".) Of the driving route guidance apparatus 20.
  • the current location P1 may be acquired.
  • the current position acquisition unit 22 may acquire the current position P1 by causing the user to input the coordinates of the current position P1.
  • the current position acquisition unit 22 may acquire the current position P1 by causing the user to designate the position on the map displayed on the display.
  • the destination acquisition unit 23 acquires the destination P2 of the construction machine 10 in the three-dimensional topography information T.
  • the destination acquisition unit 23 includes, for example, an input device such as a switch, a touch panel, and a keyboard, and acquires the destination P2 based on the operation of the user.
  • the destination acquiring unit 23 may acquire the destination P2 by causing the user to input the coordinates of the destination P2.
  • the destination acquiring unit 23 may acquire the current position P1 by causing the user to designate the position on the map displayed on the display.
  • the destination acquisition unit 23 may acquire the destination P2 from a memory in which the destination P2 is stored in advance.
  • the destination acquiring unit 23 acquires the destination P2 by receiving the destination transmitted from the outside via the communication channel using the communication device. It is also good.
  • the selection unit 31 includes, for example, the input device and the display, and allows the user to select one traveling route R from the plurality of traveling route R candidates shown in FIG.
  • the selection unit 31 may cause the user to select one traveling route R from among the plurality of traveling routes R displayed on the display, using an input device such as a switch.
  • the control unit 40 is configured by a computer including a processor such as a CPU and a ROM, and performs operations such as input / output of information, storage of information, and search of a traveling route R. The details of the search for the traveling route R will be described later.
  • the output unit 50 includes, for example, a display and a speaker, and outputs information on the traveling route R.
  • information on the traveling route R for example, an image and a sound for guiding the construction machine 10 along the traveling route R from the current location P1 to the destination P2 can be adopted.
  • the memory 60 is configured of, for example, a non-volatile memory, and stores the tolerance range table 61.
  • the terrain acquisition unit 21 acquires three-dimensional terrain information T around the construction machine 10 shown in FIG. 3 (S11), and inputs the information to the control unit 40.
  • the current location acquisition unit 22 acquires the current location P1 of the construction machine 10 (S12), and inputs the current location P1 to the control unit 40.
  • the destination acquisition unit 23 acquires the destination P2 (S13), and inputs the destination P2 to the control unit 40.
  • the control unit 40 searches for a traveling route R of the construction machine 10 from the current location P1 to the destination P2 based on the three-dimensional topography information T (S21).
  • the control unit 40 may search for one or more traveling routes R, for example, by the following process. First, the control unit 40 divides the three-dimensional topography information T into a plurality of blocks by partitioning the XY plane of the three-dimensional topography information T into a lattice.
  • the block may be, for example, a square or rectangle of a predetermined size.
  • control unit 40 sets the center of each block as a node, and sets a graph in which the centers are connected by straight links.
  • the distance between nodes is adopted as the distance of each link.
  • the control unit 40 applies a plurality of route search algorithms to the three-dimensional terrain information T, and searches for one or more traveling routes R connecting the current location P1 to the destination P2.
  • a route search algorithm various algorithms such as depth first search, width first search, uniform cost search, A-star algorithm, Dijkstra, and random search can be adopted.
  • a plurality of travel routes R can be obtained.
  • the control unit 40 detects a forming unnecessary route R1 which can travel from the current position P1 to the destination P2 by traveling only the gradient within the allowable range from the traveling route R searched in S21.
  • the control unit 40 detects the shaping unnecessary route R1 by comparing the degree of the gradient with the predetermined allowable range of the gradient.
  • the degree of inclination may be, for example, an inclination rate or an angle with respect to a horizontal plane.
  • the tolerance of the gradient is determined based on the stability of the construction machine 10.
  • the gentle slope that can be traveled with the construction machine 10 secured is determined to be within the allowable range.
  • a steep slope on which the construction machine 10 can not travel is determined to be out of tolerance.
  • the direction in which the degree of gradient becomes the steepest that is, the direction in which the amount of change in height is the largest is taken as the direction D1 of the gradient.
  • the direction D1 of the gradient at a certain point Px is illustrated.
  • the direction in which the left and right crawlers 11c extend that is, the traveling direction (longitudinal direction) when the lower traveling body 11 goes straight is taken as the direction D2 of the crawler 11c.
  • the stability of the construction machine 10 differs depending on the direction D2 of the crawler 11c with respect to the direction D1 of the gradient. Specifically, the stability of the construction machine 10 is higher as the angle formed by the direction D1 of the gradient and the direction D2 of the crawler 11c is smaller, even if the degree of the gradient is the same.
  • the construction machine 10 can not reach the destination P2 in a stable state on the travel route Rx traveling linearly from the current location P1 to the destination P2. This is because the traveling route Rx has a large angle between the direction D1 of the gradient and the direction D2 of the crawler 11c, and the degree of the gradient at a certain point is likely to exceed the allowable range.
  • the traveling route where the construction machine 10 travels in the direction of climbing or descending the gradient as in the traveling route R5 from the relay point P5 to the destination P2, the direction D1 of the gradient and the direction D2 of the crawler 11c are substantially the same And the angle between the direction D1 of the gradient and the direction D2 of the crawler 11c is approximately zero. Therefore, in the traveling route R5, there is a high possibility that the gradient degree of a certain point falls within the allowable range, and the construction machine 10 can reach the destination P2 in a stable state.
  • the allowable range of the gradient is set to be different depending on the direction D2 of the crawler 11c with respect to the direction D1 of the gradient. For example, when the angle formed by the direction D1 of the gradient and the direction D2 of the crawler 11c is 0 degree, the allowable range of the gradient is set the largest. Thereby, even if the degree of the gradient is a steep point, if the angle formed by the direction D1 of the gradient and the direction D2 of the crawler 11c is 0 degree, it is determined that the gradient of the point is within the allowable range. The possibilities can be increased.
  • the allowable range of the gradient is set smaller gradually or continuously.
  • the allowable range of the gradient is set to the smallest.
  • the tolerance range table 61 (an example of tolerance range information) stored in the memory 60 has the following data structure. That is, the allowable range table 61 is, for example, a two-dimensional table in which the vertical axis represents the degree of gradient, and the horizontal axis represents the angle formed by the direction D1 of the gradient and the direction of the crawler 11c. In each cell of the tolerance table 61, a predetermined gradient tolerance is stored.
  • the allowable range of the gradient is basically set so that the upper limit of the allowable range of the gradient increases as the degree of the gradient increases.
  • the allowable range is set such that the upper limit of the allowable range decreases as the angle formed by the direction D1 of the gradient and the direction D2 of the crawler 11c increases.
  • the lower limit value of the allowable range of the gradient may be set to, for example, 0 uniformly regardless of the angle formed by the direction D1 of the gradient and the direction D2 of the crawler 11c.
  • control unit 40 determines whether or not the shaping unnecessary route R1 is included in the traveling route R searched in S21.
  • the control unit 40 may determine the shaping unnecessary route R1 from the traveling route R as follows. The following processing is performed for each of a plurality of travel routes R. First, the travel route R is mapped to the three-dimensional topography information T divided into a plurality of blocks, and the blocks constituting the travel route R are specified. Next, the control unit 40 calculates the degree of the gradient with respect to the direction of the traveling route R in each of the identified blocks, that is, the direction D2 of the crawler C1.
  • control unit 40 uses the three-dimensional topography information T to calculate the direction D1 of the gradient for each block constituting the traveling route R.
  • control unit 40 calculates an angle formed by the direction D1 of the gradient and the direction D2 of the crawler C1.
  • control unit 40 allows, for each block constituting the traveling route R, an allowable range corresponding to the angle formed by the direction D1 of the gradient and the direction D2 of the crawler C1 and the degree of the gradient with respect to the direction D2 of the crawler C1. It determines with reference to the range table 61.
  • the control unit 40 determines, for each block constituting the traveling route R, whether the degree of the gradient in the direction D2 of the crawler C1 is within the allowable range.
  • the control unit 40 determines that the degree of the gradient in the one block is within the allowable range. If the degree of gradient in one block is greater than the upper limit value of the allowable range, the degree of gradient in the block may be determined to be outside the allowable range.
  • the control unit 40 determines that the traveling route R is the formation unnecessary route R1. On the other hand, if there is at least one block whose degree of gradient is out of the allowable range among all the blocks constituting the traveling route R, the control unit 40 determines that the traveling route R is a shaping required route R2 It is determined that
  • the process proceeds to S32.
  • S32 when a plurality of molding unnecessary routes R1 are detected in S31, the control unit 40 determines each of the plurality of molding unnecessary routes R1 to determine one or more molding unnecessary routes R1 to be output to the output unit 50. Execute the process of evaluating Hereinafter, a process of evaluating the molding unnecessary route R1 will be described. In addition, since the processing to be evaluated is the same processing contents also for the forming necessary route R2, in the following description, the details of the processing to be evaluated in a form including the forming unnecessary route R1 and the forming necessary route R2 will be described.
  • the control unit 40 determines the traveling route R based on a predetermined evaluation condition.
  • the travel route R to be output to the output unit 50 is determined based on the evaluation and the height of the evaluation.
  • the evaluation conditions are, for example, as follows. Note that the number, content, weighting, etc. of the evaluation conditions may be set variously.
  • Example 1 of evaluation conditions the evaluation value ⁇ of the travel route R to be evaluated (hereinafter referred to as “target travel route”) is set higher as the travel distance from the current position P1 to the destination P2 is shorter. It is a condition.
  • control unit 40 calculates the three-dimensional route length of the target traveling route by using the three-dimensional topography information T, and sets the evaluation value ⁇ of the target traveling route higher as the three-dimensional route length becomes shorter. Good.
  • evaluation value ⁇ for example, the reciprocal of the path length of the target travel route can be adopted.
  • An example 2 of the evaluation condition is a condition that the evaluation value ⁇ of the target travel route is set higher as the route is a gentle slope.
  • the control unit 40 may calculate the margin amount of the degree of the gradient with respect to the allowable range in each block constituting the target travel route, and calculate the sum of the margin amounts as the evaluation value ⁇ for the target travel route.
  • the amount of margin a difference obtained by subtracting the degree of gradient from the allowable range is employed. Therefore, when the degree of the gradient is larger than the allowable range, the margin amount is negative, so that the target travel route including many such points is set to have a low evaluation value ⁇ .
  • Control part 40 may specify a block where the degree of a gradient becomes the largest in a target travel route, and may calculate the amount of allowances in the specified block as evaluation value beta of the target travel route.
  • An example 3 of the evaluation condition is a condition that the evaluation value ⁇ of the target travel route is set higher as the required fuel required to reach the construction machine 10 from the current location P1 to the destination P2 is smaller.
  • the control unit 40 calculates the height difference from the current position P1 to the destination P2 and the path length from the current position P1 to the destination P2 using the three-dimensional topography information T, and calculates the height difference and the path length. Based on the traveling fuel necessary for traveling the construction machine 10 from the current location P1 to the destination P2 is determined as the required fuel of the target traveling route. Then, the control unit 40 may set the reciprocal of the required fuel as the evaluation value ⁇ .
  • the traveling fuel from the current location P1 to the destination P2 increases as the height difference between the destination P2 and the current location P1 decreases and as the path length from the current location P1 to the destination P2 increases. Therefore, in the present embodiment, the memory 60 stores a fuel calculation table having a relationship such that the traveling fuel increases as the height difference of the target traveling route and the route length increase. Then, the control unit 40 may calculate the traveling fuel by determining the traveling fuel corresponding to the height difference and the path length in the target traveling route with reference to the fuel calculation table.
  • the control unit 40 may calculate the required fuel by calculating the formed fuel necessary for the formation of the topography and adding the formed fuel to the traveling fuel for the formation required route R2. In this case, the control unit 40 may set the value of the formed fuel higher, for example, as the difference obtained by subtracting the allowable range from the degree of the slope at the point where the terrain needs to be formed is larger. Alternatively, the control unit 40 may adopt a predetermined value as the formed fuel.
  • control unit 40 may calculate the comprehensive evaluation value in the target traveling route by performing the following calculation on the evaluation value ⁇ , the evaluation value ⁇ , and the evaluation value ⁇ .
  • Comprehensive evaluation value k 1 ⁇ Evaluation value ⁇ + k 2 ⁇ Evaluation value ⁇ + k 3 ⁇ Evaluation value ⁇
  • k1, k2 and k3 are coefficients for normalizing each of the evaluation values ⁇ , ⁇ and ⁇ .
  • the comprehensive evaluation value is calculated using the evaluation values ⁇ , ⁇ and ⁇ , this is an example, and one or two of the evaluation values ⁇ , ⁇ and ⁇ are used.
  • the comprehensive evaluation value may be calculated.
  • the control unit 40 determines one or more shaping-unnecessary routes R1 to be output based on the comprehensive evaluation value calculated in S32, and causes the output unit 50 to output. At this time, the control unit 40 may cause the output unit 50 to output one molding unnecessary route R1 having the highest overall evaluation value among the plurality of molding unnecessary routes R1. In this case, when there are a plurality of forming unnecessary routes R1 having the highest comprehensive evaluation value, the control unit 40 may output all of the plurality of forming unnecessary routes R1 to the output unit 50.
  • the control unit 40 outputs a plurality of unnecessary shaping routes R1 from the first to the nth (n is a predetermined integer) in descending order of the comprehensive evaluation value. It may be output to the unit 50.
  • the selection unit 31 selects the one shaping unnecessary route R1 from the output plurality of shaping unnecessary routes R1. Accept the operation.
  • the process of S34 is not performed, and the process proceeds to S35.
  • control unit 40 causes the output unit 50 to output information on one shaping-unnecessary route R1 to be output, thereby executing guidance by the shaping-unnecessary route R1 (S35).
  • information on the formation unnecessary route R1 for example, an image in which the formation unnecessary route R1 is displayed on a two-dimensional map image obtained from the three-dimensional topography information T as shown in FIGS. it can.
  • information on the shaping unnecessary route R1 may include voice for guiding the shaping unnecessary route R1 by voice instead of or in addition to the image.
  • guidance by voice when the construction machine 10 reaches a point where switching of the traveling direction is required, for example, the voice and construction machine 10 such as "Please switch the traveling direction by X degrees to the left and proceed forward"
  • a voice for guiding the construction machine 10 to the destination P2 can be adopted, such as a voice saying “Arrive at the destination.
  • control unit 40 travels only the gradient within the allowable range to make the construction machine 10 reachable to the destination P2 For each of the one or more required forming routes R2, processing is performed to detect a point requiring forming (S41).
  • the point indicated by P7 on the forming required route R2 is detected as the forming required point P7.
  • the control unit 40 may determine, as the required molding point P7, an area of a certain range including the center of the block whose degree of inclination is out of the allowable range among the blocks constituting the required molding route R2.
  • one molding required point P7 is detected, this is an example.
  • two or more blocks whose degree of gradient is out of the allowable range are detected among the blocks constituting the forming necessary route R2
  • two or more forming necessary points P7 are detected.
  • forming refers to making a slope loose and making a slope into an acceptable range by digging with a construction machine 10 or embankment.
  • the control unit 40 when a plurality of required forming routes R2 is detected in S31, the control unit 40 performs a process of evaluating each of the plurality of required forming routes R2. The details of this process are the same as the process of S32 executed for the forming unnecessary route R1. However, in the case of determining the comprehensive evaluation value of the forming necessary route R2, the control unit 40 may include the reciprocal of the number of the forming necessary points P7 as the evaluation value ⁇ . In this case, the comprehensive evaluation value can be calculated to be higher as the required molding route R2 in which the number of required molding points P7 is smaller.
  • control unit 40 determines one or more forming required routes R2 to be output based on the final evaluation result calculated in S42, and causes the output unit 50 to output. Note that the process of S43 is the same as the process of S33 performed for the forming unnecessary route R1.
  • the selection unit 31 is used to select one forming required route R2 from the output required plurality of required routes R2. Accept the operation of the person.
  • the control unit 40 causes the output unit 50 to output information on one required shaping route R2 to be output (S45).
  • the information on the required forming route R2 includes an image in which the required forming route R2 and the required forming point P7 are described on the map image as shown in FIG. 5 and audio guidance on the required forming point P7.
  • guidance by voice for example, when the construction machine 10 enters within a certain distance from the required molding point P7, a voice such as “There is a point where molding needs to be made forward” can be adopted.
  • the sound may include the upper limit value of the allowable range corresponding to the required molding point P7, the degree of the gradient at the required molding point P7, and the difference between the upper limit value and the degree of the gradient. This allows the user to know how much the terrain should be shaped.
  • control unit 40 causes the output unit 50 to output an image indicating the upper limit value of the allowable range corresponding to the required molding point P7, the degree of the gradient at the required molding point P7, and the upper limit value and the difference between the gradients. Good.
  • the travel route guidance device 20 includes a terrain acquisition unit 21, a current location acquisition unit 22, a destination acquisition unit 23, a control unit 40, and an output unit 50.
  • the topography acquisition unit 21 acquires three-dimensional topography information T around the construction machine 10, as shown in FIG.
  • the current location acquisition unit 22 acquires the current location P1 of the construction machine 10 in the three-dimensional terrain information T.
  • the destination acquisition unit 23 acquires the destination P2 in the three-dimensional topography information T.
  • the control unit 40 searches for the traveling route R of the construction machine 10 from the current location P1 to the destination P2 based on the three-dimensional topography information T.
  • the output unit 50 outputs information regarding the travel route R searched for to the control unit 40.
  • the memory 60 stores an allowance table 61 indicating the allowance of the slope determined based on the stability of the construction machine 10.
  • the control unit 40 outputs information on the shaping unnecessary route R1 when the construction machine 10 travels only the gradient within the allowable range and detects the shaping unnecessary route R1 which is the traveling route R which can reach the destination P2. Make it output.
  • the travel route guidance device 20 includes the above [Configuration 1-1]. Therefore, as shown in FIG. 3, the user of the travel route guidance device 20 can obtain information on the forming unnecessary route R1 which can travel only to the gradient within the allowable range and reach the destination P2. Therefore, the user can grasp that formation of the topography is unnecessary and which formation unnecessary route R1 should be traveled. Thus, the travel route guidance device 20 can guide the construction machine 10 to easily reach the destination P2 from the current location P1.
  • the traveling route guidance device 20 includes the above [Configuration 1-2]. Therefore, even if the molding unnecessary route R1 is not found, the user can recognize the position of the molding required point P7 and the route to be traveled by referring to the information on the molding required route R2. Therefore, the travel route guidance device 20 guides the construction machine 10 to easily reach the destination P2 even if the construction machine 10 can not reach the destination P2 without traveling the slope outside the allowable range. it can.
  • the stability of the construction machine 10 differs depending on the direction D2 of the crawler 11c with respect to the direction D1 of the gradient. Therefore, if the allowable range is set in consideration of only the degree of the gradient regardless of the angle between the direction D1 of the gradient and the direction D2 of the crawler 11c, the angle formed by the direction D1 of the gradient and the direction D2 of the crawler 11c is At large points, the running stability of the construction machine 10 may be impaired. Also, in the case of setting the allowable range in consideration of only the degree of the gradient, if the allowable range of the gradient is set so as to ensure the stability of the construction machine 10 even in the state where the stability of the construction machine 10 is the lowest. The tolerance is set too narrow.
  • control unit 40 "outside the allowable range" although the construction machine 10 can run in a stable state while ensuring stability. It may be judged as the slope of
  • the allowable range of the gradient can be appropriately set according to the direction D2 of the crawler 11c of the construction machine 10 with respect to the direction D1 of the gradient.
  • the allowable range of the gradient can be appropriately set according to the direction D2 of the crawler 11c of the construction machine 10 with respect to the direction D1 of the gradient.
  • the control unit 40 evaluates the traveling route R based on a predetermined evaluation condition, and determines the traveling route R to be output to the output unit 50 based on the height of the evaluation.
  • the evaluation conditions include the condition that the lower the degree of the gradient on the traveling route R, the higher the evaluation.
  • the traveling route guidance device 20 can guide the construction machine 10 to reach the destination P2 in a more stabilized state.
  • the control unit 40 evaluates the traveling route R based on a predetermined evaluation condition, and determines the traveling route R to be output to the output unit 50 based on the height of the evaluation.
  • the evaluation conditions include the condition that the evaluation becomes higher as the amount of fuel required to cause the construction machine 10 to reach from the current location P1 to the destination P2 is smaller.
  • the output unit 50 it is possible to cause the output unit 50 to output information on the travel route R that can reach the destination P2 with as little fuel as possible.
  • the travel route guidance device 20 can guide the construction machine 10 to reach the destination P2 with as little fuel as possible.
  • the traveling route guidance apparatus 20 includes a selection unit 31 which allows the user to select one traveling route R from the plurality of traveling routes R when a plurality of traveling routes R are searched as shown in FIG.
  • the user of the travel route guidance device 20 does not get on the construction machine 10 and is outside the construction machine 10.
  • the user is a person who wants to obtain information on the traveling route R, and corresponds to, for example, an operator who remotely operates the construction machine 10.
  • Such a user may find it difficult to understand the gradient around the construction machine 10 as compared to a person getting on the construction machine 10.
  • the user outside the construction machine 10 determines which traveling route R is appropriate, whether or not the formation of the topography is necessary, and if the formation of the topography is necessary, where the necessary formation point P7 is It may be difficult to grasp.
  • the step of selecting one traveling route R from a plurality of traveling routes R (S34 and S44 in FIG. 2) May be omitted.
  • the selection unit 31 may not be provided.
  • multiple components may be shared.
  • two or more components of the destination acquisition unit 23, the selection unit 31, and the output unit 50 illustrated in FIG. 1 may be shared by, for example, one display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Mathematical Physics (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Instructional Devices (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

制御部(40)は、建設機械(10)が許容範囲内の勾配のみを走行して目的地(P2)まで到達可能な成形不要ルート(R1)を検出した場合、成形不要ルート(R1)に関する情報を出力部(50)に出力させる(S33)。制御部(40)は、成形不要ルート(R1)を検出しない場合、許容範囲内の勾配のみを走行して目的地(P2)まで建設機械(10)を到達可能にするために、地形を成形すべき地点(P7)を決定する。制御部(40)は、成形すべき地点(P7)及び走行ルート(R、R2)に関する情報を出力部(50)に出力させる(S43)。

Description

走行ルートガイダンス装置
 本発明は、建設機械の走行ルートをガイドする走行ルートガイダンス装置に関する。
 近年、車両の周囲の勾配を考慮に入れた走行ルートを探索する技術開発が進められている。例えば、特許文献1には、電動機が界磁弱め状態で駆動しているときに電動機制御装置に故障及び異常等が発生した場合、電動機の出力可能なトルクが小さくなり、これによって、車両が勾配の大きな坂道を登れなくなる事態を回避するために、下記の技術が開示されている。すなわち、特許文献1には、車両の現在位置から目的地まで勾配率が所定値以上の傾斜域を含まないルートを、地図データから検索することが開示されている(請求項5)。
 しかし、上記の技術では、勾配率が所定値以上の傾斜域を含むルートを通らなければ車両が目的地に到達できない場合は、走行ルートが検出されないという課題がある。
特開2009-268270号公報
 そこで、本発明は、許容範囲外の勾配を走行しなければ目的地まで建設機械が到達できない場合であっても、建設機械を目的地まで容易に到達させるようにガイドできる、走行ルートガイダンス装置を提供することを目的とする。
 本発明の一態様に係る走行ルートガイダンス装置は、建設機械の周辺の三次元地形情報を取得する地形取得部と、
 前記三次元地形情報内の前記建設機械の現在地を取得する現在地取得部と、
 前記三次元地形情報内の目的地を取得する目的地取得部と、
 前記三次元地形情報に基づいて、前記現在地から前記目的地までの前記建設機械の少なくとも1つの走行ルートを探索する制御部と、
 前記制御部に探索された前記走行ルートに関する情報を出力する出力部と、
 前記建設機械の安定性に基づいて決定された勾配の許容範囲を示す許容範囲情報を予め記憶するメモリとを備え、
 前記制御部は、前記建設機械が前記許容範囲内の勾配のみを走行して前記目的地まで到達可能な前記走行ルートである成形不要ルートを検出した場合、前記成形不要ルートに関する情報を前記出力部に出力させ、前記成形不要ルートを検出しない場合、前記許容範囲内の勾配のみを走行して前記目的地まで前記建設機械を到達可能にするために、地形を成形すべき地点を決定し、前記成形すべき地点及び前記走行ルートに関する情報を前記出力部に出力させる。
 上記構成により、許容範囲外の勾配を走行しなければ目的地まで建設機械が到達できない場合であっても、建設機械を目的地まで容易に到達させるようにガイドできる。
走行ルートガイダンス装置20の構成を示すブロック図である。 図1に示す走行ルートガイダンス装置20のフローチャートである。 図1に示す制御部40が探索した成形不要ルートR1の一例を示す図である。 図1に示す制御部40が探索した成形不要ルートR1の一例を示す図である。 図1に示す制御部40が探索した成形必要ルートR2の一例を示す図である。 図1に示す制御部40が探索した成形不要ルートR1の一例を示す図である。
 図1~図6を参照して、建設機械10及び走行ルートガイダンス装置20について説明する。
 建設機械10は、図3に示すように、建設作業などの作業を行う機械であり、地形を成形可能な機械であり、例えばショベルである。建設機械10の走行は、建設機械10の運転室から操作されてもよく、建設機械10の外部から遠隔操作されてもよく、自動制御により操作されてもよい。これらのことは、走行以外の操作についても同様である。建設機械10は、下部走行体11と、上部旋回体13と、アタッチメント15と、を備える。下部走行体11は、左右のクローラ11cを備え、建設機械10を前方及び後方に走行させる。上部旋回体13は、例えば、電動機又は油圧モータからの駆動力によって下部走行体11に対してヨーイング方向に旋回可能に構成されている。アタッチメント15は、上部旋回体12に対して回動可能に取り付けられたブームと、ブームに対して回動可能に取り付けられたアームと、アームに対して回動可能に取り付けられたバケットとを備え、地形を成形する作業を行う。アーム、ブーム、及びバケットはそれぞれ油圧シリンダ等のアクチュエータによって回動される。アタッチメント15は、バケットから例えばブレーカー又はニブラー等の他の作業機械に交換可能に構成されている。
 図1に参照を戻す。走行ルートガイダンス装置20は、建設機械10の周辺の地形の勾配を考慮して、建設機械10の走行ルートRをガイド(支援及び案内)する装置である。走行ルートガイダンス装置20は、建設機械10に設けられてもよく、建設機械10の外部に設けられてもよく、建設機械10の外部及び建設機械10の両方に設けられてもよい。
 走行ルートガイダンス装置20を建設機械10の外部に設ける場合、走行ルートガイダンス装置20は、例えば、建設機械10に通信可能に接続されたサーバに実装される。また、走行ルートガイダンス装置20を建設機械10の外部及び建設機械10の両方に設ける場合、例えば、走行ルートガイダンス装置20の構成要素の一部が建設機械10に実装され、残りの構成要素がサーバに実装される。
 図1に示すように、走行ルートガイダンス装置20は、地形取得部21と、現在地取得部22と、目的地取得部23と、選択部31と、制御部40と、出力部50と、メモリ60とを備える。
 地形取得部21は、図3に示すように、建設機械10の周辺の三次元地形情報Tを取得する。三次元地形情報Tは、横方向にX軸、縦方向にY軸、X軸及びY軸に直行する高さ方向にZ軸が設定された三次元座標空間において複数の位置のそれぞれを示す位置データで構成されている。1つの位置データは、X,Y,Zの3成分で構成されている。3成分のうち、X成分は例えば緯度を示し、Y成分は例えば経度を示し、Z成分は例えば標高を示す。したがって、三次元地形情報Tの各位置における任意の方向の勾配の度合いは、三次元地形情報Tに含まれる位置データを用いて算出することができる。
 図1に参照を戻す。地形取得部21は、例えば、建設機械10に設けられた距離画像センサで構成される。距離画像センサは、例えばTOF(Time Of Flight)方式で三次元形状を測定するものであってもよいし、ステレオカメラで三次元形状を測定するものであってもよい。
 なお、地形取得部21は、空撮により三次元地形情報を測定してもよい。この場合、地形取得部21は、例えば、建設機械10と通信可能に構成されたドローンなどの飛行物体に搭載されればよい。三次元地形情報Tは予めメモリ60に記憶されていてもよく、この場合、地形取得部21は、メモリ60から三次元地形情報Tを取得すればよい。なお、図3~図6の例では、三次元地形情報Tの地形は、等高線を用いて表されている。
 現在地取得部22は、三次元地形情報T内の建設機械10の現在地P1を取得する。現在地取得部22は、例えば、衛星測位システムを用いて現在地P1を取得するGPSセンサで構成される。但し、これは一例であり、現在地取得部22は、空撮を用いて現在地P1を取得してもよい。この場合、現在地取得部22は、前記飛行物体に搭載された距離画像センサ及びGPSセンサで構成される。更にこの場合、現在地取得部22は、距離画像センサの測定値から飛行物体に対する建設機械10の相対位置を算出し、GPSセンサから得られる自己位置と相対位置とを用いて建設機械10の位置を算出すればよい。
 なお、現在地取得部22は、例えば、スイッチ、タッチパネル、及びキーボード等の入力装置で構成され、走行ルートガイダンス装置20の使用者(以下、単に「使用者」と記述する。)の操作に基づいて現在地P1を取得してもよい。この場合、現在地取得部22は、現在地P1の座標を使用者に入力させることで現在地P1を取得すればよい。更に、この場合、現在地取得部22は、ディスプレイに表示された地図上の位置を使用者に指定させることで現在地P1を取得すればよい。
 目的地取得部23は、三次元地形情報T内の建設機械10の目的地P2を取得する。目的地取得部23は、例えば、スイッチ、タッチパネル、及びキーボード等の入力装置で構成され、使用者の操作に基づいて目的地P2を取得する。この場合、目的地取得部23は、目的地P2の座標を使用者に入力させることで目的地P2を取得すればよい。更に、この場合、目的地取得部23は、ディスプレイに表示された地図上の位置を使用者に指定させることで現在地P1を取得すればよい。なお、目的地取得部23は、目的地P2が予め記憶されたメモリから目的地P2を取得してもよい。また、建設機械10が遠隔操作又は自動制御される場合、目的地取得部23は外部から通信路を介して送信された目的地を通信装置を用いて受信することで目的地P2を取得してもよい。
 選択部31(図1参照)は、例えば、前記入力装置及びディスプレイで構成され、図6に示す複数の走行ルートRの候補から1つの走行ルートRを使用者に選択させる。例えば、選択部31は、ディスプレイに表示された複数の走行ルートRの中から、スイッチ等の入力装置を用いて使用者に1つの走行ルートRを選択させればよい。
 制御部40は、CPU等のプロセッサ及びROM等を含むコンピュータで構成され、情報の入出力、情報の記憶、及び走行ルートRの探索などの演算を行う。なお、走行ルートRの探索の詳細は後述する。
 出力部50は、例えば、ディスプレイ及びスピーカで構成され、走行ルートRに関する情報を出力する。走行ルートRに関する情報としては、例えば、現在地P1から目的地P2まで走行ルートRに沿って建設機械10を誘導するための画像及び音声が採用できる。
 メモリ60は、例えば、不揮発性のメモリで構成され、許容範囲テーブル61を記憶する。
 (作動)
 図2に示すフローチャートを参照して、図1に示す走行ルートガイダンス装置20の作動について説明する。以下では、走行ルートガイダンス装置20の上記の各構成要素については主に図1を参照し、フローチャートの各ステップについては図2を参照して説明する。
 まず、地形取得部21は、図3に示す建設機械10の周囲の三次元地形情報Tを取得し(S11)、制御部40に入力する。次に、現在地取得部22は、建設機械10の現在地P1を取得し(S12)、制御部40に入力する。次に、目的地取得部23は、目的地P2を取得し(S13)、制御部40に入力する。次に、制御部40は、三次元地形情報Tに基づいて、現在地P1から目的地P2までの建設機械10の走行ルートRを探索する(S21)。
 (走行ルートの探索)
 S21において、制御部40は、例えば、下記の処理により1又は複数の走行ルートRを探索すればよい。まず、制御部40は、三次元地形情報TのX-Y平面を格子状に区画することで、三次元地形情報Tを複数のブロックに区分する。なお、ブロックは、例えば、所定サイズの正方形又は長方形が採用できる。
 次に、制御部40は、各ブロックの中心をノードとし、中心同士が直線状のリンクで繋がれたグラフを設定する。この場合、各リンクの距離は、例えば、ノード間の距離が採用される。
 そして、制御部40は、三次元地形情報Tに対して複数種類の経路探索アルゴリズムを適用して、現在地P1から目的地P2までを繋ぐ1又は複数の走行ルートRを探索する。ここで、経路探索アルゴリズムとしては、深さ優先探索、幅優先探索、均一コスト探索、Aスターアルゴリズム、ダイクストラ、及びランダム探索等の種々のアルゴリズムが採用できる。以上により、複数の走行ルートRが得られる。
 (勾配の許容範囲)
 制御部40は、S21で探索された走行ルートRの中から、許容範囲内の勾配のみを走行して現在地P1から目的地P2まで到達可能な成形不要ルートR1を検出する。制御部40は、勾配の度合と予め定められた勾配の許容範囲とを比較することで、成形不要ルートR1を検出する。勾配の度合いとは、例えば、傾斜率又は水平面に対する角度が採用できる。勾配の許容範囲は、建設機械10の安定性に基づいて決定される。建設機械10が安定性を確保した状態で走行可能な緩やかな勾配は、許容範囲内と判定される。建設機械10が走行不可能な急な勾配は、許容範囲外と判定される。
 ここで、図4に示すように、勾配の度合いが最も急になる方向、すなわち、高さの変化量が最も大きい方向を、勾配の方向D1とする。図4の例では、ある地点Pxでの勾配の方向D1が図示されている。また、左右のクローラ11cのそれぞれが延びる方向、すなわち、下部走行体11が直進するときの進行方向(前後方向)を、クローラ11cの方向D2とする。
 このとき、勾配の方向D1に対する、クローラ11cの方向D2によって、建設機械10の安定度が異なる。具体的には、勾配の度合いが同じでも、勾配の方向D1とクローラ11cの方向D2との成す角度が小さいほど、建設機械10の安定度は高い。例えば、図4に示す地形では、現在地P1から目的地P2に直線的に走行する走行ルートRxでは、建設機械10は、安定した状態では目的地P2まで到達できない可能性が高い。なぜなら、走行ルートRxは勾配の方向D1とクローラ11cの方向D2との成す角度が大きくなり、ある地点の勾配の度合いが許容範囲を超える可能性が高いからである。
 一方、中継地点P5から目的地P2に向かう走行ルートR5のように、勾配を登る又は下る方向に建設機械10が走行する走行ルートでは、勾配の方向D1とクローラ11cの方向D2とがほぼ同じ方向を向き、勾配の方向D1とクローラ11cの方向D2との成す角度がほぼ0になる。そのため、走行ルートR5では、ある地点の勾配の度合いが許容範囲内に収まる可能性が高くなり、建設機械10は、安定した状態で目的地P2に到達できる。
 そこで、勾配の許容範囲は、勾配の方向D1に対するクローラ11cの方向D2によって異なるように設定されている。例えば、勾配の方向D1とクローラ11cの方向D2との成す角度が0度の場合、勾配の許容範囲が最も大きく設定される。これにより、勾配の度合いが急な地点であっても、勾配の方向D1とクローラ11cの方向D2とが成す角度が0度であれば、その地点の勾配が許容範囲内であると判定される可能性を高めることができる。
 勾配の方向D1とクローラ11cの方向D2との成す角度が大きくなるにしたがって、段階的または連続的に、勾配の許容範囲は小さく設定される。勾配の方向D1とクローラ11cの方向D2との成す角度が90°の場合、勾配の許容範囲は最も小さく設定される。
 したがって、メモリ60に記憶された許容範囲テーブル61(許容範囲情報の一例)は以下のデータ構造を持つことになる。すなわち、許容範囲テーブル61は、例えば、縦軸に勾配の度合い、横軸に勾配の方向D1とクローラ11cの方向との成す角度が設定された2次元のテーブルで構成される。許容範囲テーブル61の各セルには、予め定められた勾配の許容範囲が記憶されている。この勾配の許容範囲は、基本的には勾配の度合いが増大するにつれて勾配の許容範囲の上限値が増大するように設定されている。但し、勾配の度合いが同じであれば、勾配の方向D1とクローラ11cの方向D2との成す角度が増大するにつれて、許容範囲の上限値が小さくなるように許容範囲が設定されている。なお、勾配の許容範囲の下限値は、勾配の方向D1とクローラ11cの方向D2との成す角度に関わりなく、例えば、一律に0が設定されればよい。
 図2に参照を戻す。S31では、制御部40は、S21で探索した走行ルートRにおいて成形不要ルートR1が含まれているか否かを判定する。
 (成形不要ルートR1の判定)
 S31では、制御部40は、以下のようにして、走行ルートRの中から成形不要ルートR1を決定すればよい。以下の処理は複数の走行ルートRのそれぞれについて行われる。まず、複数のブロックに区画された三次元地形情報Tに走行ルートRをマッピングし、走行ルートRを構成するブロックを特定する。次に、制御部40は、特定した各ブロックにおける走行ルートRの方向、すなわち、クローラC1の方向D2に対する勾配の度合いを算出する。
 次に、制御部40は、走行ルートRを構成する各ブロックについて、勾配の方向D1を三次元地形情報Tを用いて算出する。次に、制御部40は、走行ルートRを構成する各ブロックについて、勾配の方向D1とクローラC1の方向D2との成す角度を算出する。次に、制御部40は、走行ルートRを構成する各ブロックについて、勾配の方向D1及びクローラC1の方向D2の成す角度と、クローラC1の方向D2に対する勾配の度合いとに対応する許容範囲を許容範囲テーブル61を参照して決定する。次に、制御部40は、走行ルートRを構成する各ブロックについて、クローラC1の方向D2の勾配の度合いが許容範囲内であるか否かを判定する。ここで、制御部40は、ある1のブロックにおいてクローラC1の方向D2の勾配の度合いが許容範囲の上限値以下であれば、当該1のブロックにおける勾配の度合いは許容範囲内であると判定し、ある1のブロックにおいて勾配の度合いが許容範囲の上限値より大きければ、当該1のブロックにおける勾配の度合いは許容範囲外と判定すればよい。
 そして、制御部40は、走行ルートRを構成する全てのブロックにおいて勾配の度合いが許容範囲内であれば、この走行ルートRは成形不要ルートR1であると判定する。一方、制御部40は、走行ルートRを構成する全てのブロックのうち、勾配の度合いが許容範囲外となるブロックが少なくとも1つ存在していれば、この走行ルートRは成形必要ルートR2であると判定する。
 図2に参照を戻す。S31において、成形不要ルートR1が検出された場合(S31でYES)、処理はS32に進む。S32では、制御部40は、S31において複数の成形不要ルートR1が検出された場合、出力部50に出力させる1又は複数の成形不要ルートR1を決定するために、複数の成形不要ルートR1のそれぞれを評価する処理を実行する。以下、成形不要ルートR1を評価する処理について説明する。なお、この評価する処理は、成形必要ルートR2についても同じ処理内容になるため、以下の説明では、成形不要ルートR1及び成形必要ルートR2を含む形で評価する処理の詳細を説明する。
 (走行ルートRの評価)
 図3に示す現在地P1から目的地P2までの走行ルートR(成形不要ルートR1又は成形必要ルートR2)が複数存在する場合、制御部40は、予め定められた評価条件に基づいて走行ルートRを評価し、評価の高さに基づいて出力部50に出力させる走行ルートRを決定する。評価条件は、例えば次の通りである。なお、評価条件の数、内容、重みづけなどは、様々に設定されてもよい。
 [評価条件の例1]
 評価条件の例1は、現在地P1から目的地P2までの走行距離が短いほど、評価対象となる走行ルートR(以下、「対象走行ルート」と記述する。)の評価値αを高く設定するという条件である。
 ここで、制御部40は、三次元地形情報Tを用いることで対象走行ルートの三次元の経路長を算出し、三次元の経路長が短くなるほど対象走行ルートの評価値αを高く設定すればよい。評価値αとしては、例えば、対象走行ルートの経路長の逆数が採用できる。
 [評価条件の例2]
 評価条件の例2は、勾配の緩やかなルートであるほど対象走行ルートの評価値βを高く設定するという条件である。ここで、制御部40は、対象走行ルートを構成する各ブロックにおいて、許容範囲に対する勾配の度合いの余裕量を算出し、その余裕量の総和を対象走行ルートに対する評価値βとして算出すればよい。ここで、余裕量は、許容範囲から勾配の度合いを差し引いた差分が採用される。したがって、許容範囲よりも勾配の度合いが大きい場合、余裕量はマイナスになるため、このような地点を多く含む対象走行ルートは評価値βが低く設定されることになる。
 なお、制御部40は、対象走行ルートにおいて勾配の度合いが最大となるブロックを特定し、特定したブロックにおける余裕量を対象走行ルートの評価値βとして算出してもよい。
 [評価条件の例3]
 評価条件の例3は、現在地P1から目的地P2まで建設機械10を到達させるのに必要な必要燃料が少ないほど対象走行ルートの評価値γを高く設定するという条件である。ここで、制御部40は、現在地P1から目的地P2までの高度差と、現在地P1から目的地P2までの経路長とを三次元地形情報Tを用いて算出し、高度差と経路長とに基づいて、現在地P1から目的地P2まで建設機械10を走行させるのに必要な走行燃料を対象走行ルートの必要燃料として求める。そして、制御部40は、求めた必要燃料の逆数を評価値γとして設定すればよい。
 ここで、現在地P1から目的地P2までの走行燃料は、目的地P2から現在地P1を減じた高度差が増大するほど、且つ、現在地P1から目的地P2までの経路長が長くなるほど増大する。そこで、本実施の形態では、メモリ60は、対象走行ルートの高度差と経路長とが増大するにつれて、走行燃料が増大するような関係を持つ燃料算出テーブルを記憶している。そして、制御部40は、対象走行ルートにおける高度差と経路長とに対応する走行燃料を燃料算出テーブルを参照して決定することで、走行燃料を算出すればよい。
 なお、成形必要ルートR2においては、勾配の度合いが許容範囲外となる地点で地形を成形する必要がある。そこで、制御部40は、成形必要ルートR2については、地形の成形に必要な成形燃料を算出し、この成形燃料を走行燃料に加算することで必要燃料を算出してもよい。この場合、制御部40は、例えば、地形成形が必要な地点における勾配の度合いから許容範囲を減じた差分が大きいほど成形燃料の値を高く設定すればよい。或いは、制御部40は、成形燃料として予め定められた値を採用してもよい。
 そして、制御部40は、評価値αと評価値βと評価値γとに対して下記の演算を行うことで対象走行ルートにおける総合評価値を算出すればよい。
 総合評価値=k1・評価値α+k2・評価値β+k3・評価値γ
 ここで、k1、k2、k3は、評価値α、β、γのそれぞれを正規化するための係数である。
 ここでは、総合評価値は、評価値α、β、γを用いて算出されているが、これは一例であり、評価値α、β、γのうちのいずれか1つ又は2つを用いて総合評価値は算出されてもよい。
 図2に参照を戻す。S33では、制御部40は、S32で算出した総合評価値に基づいて、出力対象となる1又は複数の成形不要ルートR1を決定し、出力部50に出力させる。このとき、制御部40は、複数の成形不要ルートR1のうち総合評価値が最も高い1つの成形不要ルートR1を出力部50に出力させてもよい。この場合、総合評価値が最も高い成形不要ルートR1が複数存在する場合、制御部40はこれら複数の成形不要ルートR1の全てを出力部50に出力させればよい。
 或いは、制御部40は、S31で複数の成形不要ルートR1が検出された場合、総合評価値が大きい順に1番目からn番目(nは所定の整数)までの、複数の成形不要ルートR1を出力部50に出力させてもよい。
 S34では、S33で複数の成形不要ルートR1が出力部50に出力された場合、選択部31は、出力された複数の成形不要ルートR1から1つの成形不要ルートR1を選択するための使用者の操作を受け付ける。なお、S33で1つの成形不要ルートR1が出力部50に出力された場合、S34の処理は実行されずに、処理はS35に進む。
 次に、制御部40は、出力対象となる1つの成形不要ルートR1に関する情報を出力部50に出力させることにより、成形不要ルートR1によるガイダンスを実行する(S35)。
 ここで、成形不要ルートR1に関する情報としては、例えば、図4~図6に示されるように三次元地形情報Tから得られる2次元の地図画像上に成形不要ルートR1が表示された画像が採用できる。また、成形不要ルートR1に関する情報としては、画像に代えて又は加えて成形不要ルートR1を音声でガイダンスするための音声が含まれてもよい。ここで、音声によるガイダンスとしては、建設機械10が進行方向の切り替えが必要な地点に到達すると、例えば「左にX度進行方向を切り替えて前進して下さい」といった音声及び建設機械10が目的地P2に到着すると「目的地に到着しました。お疲れ様でした。」といった音声等、建設機械10を目的地P2に誘導する音声が採用できる。
 一方、S31において、成形不要ルートR1が検出されなかった場合(S31でNO)、制御部40は、許容範囲内の勾配のみを走行して目的地P2まで建設機械10を到達可能とするために、1以上の成形必要ルートR2のそれぞれについて、成形が必要な地点を検出する処理を実行する(S41)。
 図5の例では、成形必要ルートR2上のP7で示される地点が成形必要地点P7として検出されている。ここで、制御部40は、成形必要ルートR2を構成するブロックのうち、勾配の度合いが許容範囲外であるブロックの中心を含む一定範囲の領域を成形必要地点P7として決定すればよい。図5の例では、成形必要地点P7は1つ検出されているが、これは一例である。例えば、成形必要ルートR2を構成するブロックのうち、勾配の度合いが許容範囲外であるブロックが2つ以上検出された場合、2つ以上の成形必要地点P7が検出される。
 なお、「成形」とは、建設機械10による掘削または盛り土によって、勾配を緩やかにして勾配を許容範囲内にすることを指す。
 S42では、制御部40は、S31において複数の成形必要ルートR2が検出された場合、複数の成形必要ルートR2のそれぞれについて評価する処理を行う。この処理の詳細は成形不要ルートR1に対して実行されるS32の処理と同じである。但し、成形必要ルートR2の総合評価値を決定する場合、制御部40は、成形必要地点P7の個数の逆数を評価値σとして含めてもよい。この場合、成形必要地点P7の個数が少ない成形必要ルートR2ほど総合評価値を高く算出することができる。
 S43では、制御部40は、S42で算出した最終評価結果に基づいて、出力対象となる1又は複数の成形必要ルートR2を決定し、出力部50に出力させる。なお、S43の処理は成形不要ルートR1に対して行われるS33の処理と同じである。
 S44では、S43で複数の成形必要ルートR2が出力部50に出力された場合、選択部31は、出力された複数の成形必要ルートR2の中から1つの成形必要ルートR2を選択するための使用者の操作を受け付ける。
 次に、制御部40は、出力対象となる1つの成形必要ルートR2に関する情報を、出力部50に出力させる(S45)。ここで、成形必要ルートR2に関する情報には、図5に示すように地図画像上に成形必要ルートR2及び成形必要地点P7が記載された画像と、成形必要地点P7に関する音声によるガイダンスが含まれる。音声によるガイダンスとしては、例えば、成形必要地点P7に対して一定距離以内に建設機械10が進入すると、「前方に成形が必要な地点があります。」といった音声が採用できる。また、このガイダンスとしては、例えば、建設機械10が成形必要地点P7の手前に到着すると、「そのまま走行すると建設機械10の走行安定性が損なわれる可能性がありますので、掘削又は盛り土により傾斜を緩やかにした後、走行して下さい。」といった音声が採用できる。このとき、音声には成形必要地点P7に対応する許容範囲の上限値と、成形必要地点P7における勾配の度合いと、上限値及び勾配の度合いの差分とが含まれてもよい。これにより、使用者はどの程度、地形を成形すれば良いかを知ることができる。また、制御部40は、成形必要地点P7に対応する許容範囲の上限値と、成形必要地点P7における勾配の度合いと、上限値及び勾配の差分とを示す画像を出力部50に出力させてもよい。
 (効果)
 図1に示す走行ルートガイダンス装置20による効果は次の通りである。なお、走行ルートガイダンス装置20の各構成要素については、図1を参照して説明する。
 (第1の発明の効果)
 走行ルートガイダンス装置20は、地形取得部21と、現在地取得部22と、目的地取得部23と、制御部40と、出力部50とを備える。地形取得部21は、図3に示すように、建設機械10の周辺の三次元地形情報Tを取得する。現在地取得部22は、三次元地形情報T内の建設機械10の現在地P1を取得する。目的地取得部23は、三次元地形情報T内の目的地P2を取得する。制御部40は、三次元地形情報Tに基づいて、現在地P1から目的地P2までの建設機械10の走行ルートRを探索する。出力部50は、制御部40に探索された走行ルートRに関する情報を出力する。
 [構成1-1]
 メモリ60は、建設機械10の安定性に基づいて決定された勾配の許容範囲を示す許容範囲テーブル61を記憶する。制御部40は、建設機械10が許容範囲内の勾配のみを走行して目的地P2まで到達可能な走行ルートRである成形不要ルートR1を検出した場合、成形不要ルートR1に関する情報を出力部50に出力させる。
 [構成1-2]
 制御部40は、成形不要ルートR1を検出しない場合、図5に示すように、許容範囲内の勾配のみを走行して目的地P2まで建設機械10を到達可能にするために、成形必要地点P7を含む成形必要ルートR2を決定し、成形必要ルートR2に関する情報を出力部50に出力させる。
 走行ルートガイダンス装置20は、上記[構成1-1]を備える。よって、図3に示すように、走行ルートガイダンス装置20の使用者は、許容範囲内の勾配のみを走行して目的地P2まで到達可能な成形不要ルートR1に関する情報を入手できる。よって、使用者は、地形の成形が不要であること、及びどの成形不要ルートR1を走行すべきかを把握できる。よって、走行ルートガイダンス装置20は、現在地P1から目的地P2まで建設機械10を容易に到達させるようにガイドできる。
 図5に示すように、許容範囲外の勾配を走行しなければ目的地P2まで建設機械10が到達できない場合は、図3に示す成形不要ルートR1が発見されない。そこで、走行ルートガイダンス装置20は、上記[構成1-2]を備える。よって、成形不要ルートR1が発見されない場合でも、使用者は、成形必要ルートR2に関する情報を参照することで、成形必要地点P7の位置及び走行するべき経路を認識できる。よって、走行ルートガイダンス装置20は、許容範囲外の勾配を走行しなければ目的地P2まで建設機械10が到達できない場合であっても、建設機械10を目的地P2まで容易に到達させるようにガイドできる。
 (第2の発明の効果)
 [構成2]
 上記の勾配の許容範囲は、図4に示すように、ある地点において勾配の度合いが最大の方向である勾配の方向D1に対する、建設機械10のクローラ11cの方向D2によって異なるように設定されている。
 通常、勾配の方向D1に対する、クローラ11cの方向D2によって、建設機械10の安定度が異なる。したがって、勾配の方向D1とクローラ11cの方向D2との角度に拘わらず勾配の度合いのみを考慮して許容範囲を設定してしまうと、勾配の方向D1とクローラ11cの方向D2との成す角度が大きな地点では、建設機械10の走行安定性が損なわれる可能性がある。また、勾配の度合いのみを考慮して許容範囲を設定する場合において、建設機械10の安定度が最も低い状態でも建設機械10の安定性を確保できるように勾配の許容範囲が設定されると、許容範囲が過度に狭く設定されてしまう。すると、勾配の方向D1とクローラ11cの方向D2との成す角度によっては、建設機械10が安定性を確保した状態で走行可能な勾配であるにも拘わらず、制御部40が「許容範囲外」の勾配と判断してしまう場合がある。
 そこで、上記[構成2]では、勾配の方向D1に対する、建設機械10のクローラ11cの方向D2に応じて、勾配の許容範囲を適切に設定できる。その結果、建設機械10の走行安全性が損なわれる事態を抑制できると共に、建設機械10が安定性を確保した状態で走行可能な勾配であるにもかかわらず、許容範囲外の勾配と判断される事態を抑制できる。
 (第3の発明の効果)
 [構成3]
 制御部40は、予め定められた評価条件に基づいて走行ルートRを評価し、評価の高さに基づいて出力部50に出力させる走行ルートRを決定する。評価条件には、走行ルートRでの勾配の度合いが小さいほど評価を高くするという条件が含まれる。
 上記[構成3]により、できるだけ勾配が緩やかな走行ルートRに関する情報を、出力部50に出力させることができる。よって、走行ルートガイダンス装置20は、建設機械10をより安定させた状態で、目的地P2まで到達させるようにガイドできる。
 (第4の発明の効果)
 [構成4]
 制御部40は、予め定められた評価条件に基づいて走行ルートRを評価し、評価の高さに基づいて出力部50に出力させる走行ルートRを決定する。評価条件には、現在地P1から目的地P2まで建設機械10を到達させるのに必要な燃料が少ないほど評価を高くするという条件が含まれる。
 上記[構成4]により、できるだけ少ない燃料で目的地P2まで到達できる走行ルートRに関する情報を、出力部50に出力させることができる。よって、走行ルートガイダンス装置20は、できるだけ少ない燃料で目的地P2まで建設機械10を到達させるようにガイドできる。
 (第5の発明の効果)
 [構成5]
 走行ルートガイダンス装置20は、図6に示すように複数の走行ルートRが探索された場合、複数の走行ルートRの中から1つの走行ルートRを使用者に選択させる選択部31を備える。
 上記[構成5]により、使用者の利便性を高めることができる。
 (第6の発明の効果)
 [構成6]
 建設機械10の走行は、建設機械10の外部から操作される、または、自動制御により操作される。
 上記[構成6]の場合、走行ルートガイダンス装置20の使用者は、建設機械10に乗車せず、建設機械10の外部にいることが想定される。この場合、使用者とは、走行ルートRに関する情報を得ようとする者を指し、例えば建設機械10を遠隔操作するオペレータが該当する。このような使用者は、建設機械10に乗車する者に比べ、建設機械10の周囲の勾配を把握しにくい場合がある。その結果、建設機械10の外部の使用者が、どの走行ルートRが適切であるか、地形の成形が必要か否か、地形の成形が必要であれば成形必要地点P7がどこであるか、を把握しにくい場合がある。一方、走行ルートガイダンス装置20では、上記[構成1-1]及び[構成1-2]により、建設機械10の外部の使用者は、どの成形不要ルートR1を走行すべきか、成形必要ルートR2においては成形必要地点P7がどこであるかを認識できる。よって、上記[構成6]の場合に、上記[構成1-1]及び[構成1-2]による効果が、特に有効である。
 (変形例)
 上記実施形態は様々に変形されてもよい。例えば、図1に示すブロック図の構成は変更されてもよい。例えば、図2などに示すフローチャートのステップの順序は変更されてもよい。例えば、構成要素の一部が設けられなくてもよく、ステップの一部が行われなくてもよい。
 例えば、S33及びS43において、各走行ルートRに対する総合評価値から1つの走行ルートRが決定された場合、複数の走行ルートRから1つの走行ルートRを選択するステップ(図2のS34、S44)は省かれてもよい。この場合、選択部31は設けられなくてもよい。
 例えば、複数の構成要素が兼用されてもよい。例えば、図1に示す目的地取得部23、選択部31、及び出力部50のうち2以上の構成要素が、例えば1つのディスプレイなどで兼用されてもよい。

Claims (6)

  1.  建設機械の周辺の三次元地形情報を取得する地形取得部と、
     前記三次元地形情報内の前記建設機械の現在地を取得する現在地取得部と、
     前記三次元地形情報内の目的地を取得する目的地取得部と、
     前記三次元地形情報に基づいて、前記現在地から前記目的地までの前記建設機械の少なくとも1つの走行ルートを探索する制御部と、
     前記制御部に探索された前記走行ルートに関する情報を出力する出力部と、
     前記建設機械の安定性に基づいて決定された勾配の許容範囲を示す許容範囲情報を予め記憶するメモリとを備え、
     前記制御部は、前記建設機械が前記許容範囲内の勾配のみを走行して前記目的地まで到達可能な前記走行ルートである成形不要ルートを検出した場合、前記成形不要ルートに関する情報を前記出力部に出力させ、前記成形不要ルートを検出しない場合、前記許容範囲内の勾配のみを走行して前記目的地まで前記建設機械を到達可能にするために、地形を成形すべき地点を決定し、前記成形すべき地点及び前記走行ルートに関する情報を前記出力部に出力させる、
     走行ルートガイダンス装置。
  2.  請求項1に記載の走行ルートガイダンス装置であって、
     前記許容範囲は、勾配の度合いが最大となる方向に対する、前記建設機械のクローラの方向によって異なるように設定される、
     走行ルートガイダンス装置。
  3.  請求項1または2に記載の走行ルートガイダンス装置であって、
     前記制御部は、予め定められた評価条件に基づいて前記走行ルートの評価の高さを決定し、前記評価の高さに基づいて前記出力部に出力させる前記走行ルートを決定し、
     前記評価条件には、前記走行ルートでの前記勾配の度合いが小さいほど前記評価を高くするという条件が含まれる、
     走行ルートガイダンス装置。
  4.  請求項1~3のいずれか1項に記載の走行ルートガイダンス装置であって、
     前記制御部は、予め定められた評価条件に基づいて前記走行ルートを評価の高さを決定し、前記評価の高さに基づいて前記出力部に出力させる前記走行ルートを決定し、
     前記評価条件には、前記現在地から前記目的地まで前記建設機械を到達させるのに必要な燃料が少ないほど前記評価を高くするという条件が含まれる、
     走行ルートガイダンス装置。
  5.  請求項1~4のいずれか1項に記載の走行ルートガイダンス装置であって、
     複数の前記走行ルートから1つの前記走行ルートを使用者に選択させる選択部を更に備え、
     前記複数の走行ルートは、前記制御部により探索される前記少なくとも1つの走行ルートに含まれる、
     走行ルートガイダンス装置。
  6.  請求項1~5のいずれか1項に記載の走行ルートガイダンス装置であって、
     前記建設機械は、前記建設機械の外部から操作される、または、自動制御により操作される、
     走行ルートガイダンス装置。
PCT/JP2018/038091 2017-10-27 2018-10-12 走行ルートガイダンス装置 WO2019082692A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/753,629 US11414834B2 (en) 2017-10-27 2018-10-12 Travel route guidance device
CN201880062264.6A CN111148968B (zh) 2017-10-27 2018-10-12 行驶路径导向装置
KR1020207010034A KR20200078490A (ko) 2017-10-27 2018-10-12 주행 루트 가이던스 장치
EP18871466.1A EP3674663B1 (en) 2017-10-27 2018-10-12 Travel route guidance device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017208256A JP6972924B2 (ja) 2017-10-27 2017-10-27 走行ルートガイダンス装置
JP2017-208256 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019082692A1 true WO2019082692A1 (ja) 2019-05-02

Family

ID=66246453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038091 WO2019082692A1 (ja) 2017-10-27 2018-10-12 走行ルートガイダンス装置

Country Status (6)

Country Link
US (1) US11414834B2 (ja)
EP (1) EP3674663B1 (ja)
JP (1) JP6972924B2 (ja)
KR (1) KR20200078490A (ja)
CN (1) CN111148968B (ja)
WO (1) WO2019082692A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021149395A (ja) * 2020-03-18 2021-09-27 株式会社奥村組 運土計画管理装置、運土計画管理方法および運土計画管理プログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043300B2 (ja) * 2018-03-15 2022-03-29 株式会社小松製作所 作業機械の走行経路を計画するためのシステム、方法、及び作業機械
JP7461736B2 (ja) * 2019-12-24 2024-04-04 株式会社小松製作所 施工現場において作業機械の施工計画を決定するためのシステムおよび方法
US11236492B1 (en) * 2020-08-25 2022-02-01 Built Robotics Inc. Graphical user interface for real-time management of an earth shaping vehicle
US11993174B2 (en) * 2021-12-17 2024-05-28 Caterpillar Inc. Systems and methods for identifying modifications to terrain characteristics of a worksite for battery performance
US20230359203A1 (en) * 2022-05-05 2023-11-09 Caterpillar Inc. Stability system for an articulated machine in a coasting mode
US20230359209A1 (en) * 2022-05-05 2023-11-09 Caterpillar Inc. Stability system for an articulated machine
CN114740871B (zh) * 2022-06-13 2022-09-06 北京理工大学 一种面向无人履带混合动力平台的多目标路径重规划方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268270A (ja) 2008-04-25 2009-11-12 Honda Motor Co Ltd 車両の走行支援装置
JP2010073080A (ja) * 2008-09-22 2010-04-02 Komatsu Ltd 無人車両の走行経路生成方法
JP2013019683A (ja) * 2011-07-07 2013-01-31 Hitachi Ltd 経路作成システム、経路作成方法及びプログラム
US20150292892A1 (en) * 2012-10-11 2015-10-15 Volvo Technology Corporation Method and computer program product for estimating a travel time for a vehicle
JP2016095813A (ja) * 2014-11-17 2016-05-26 ヤンマー株式会社 作業車両の移動システム

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9002565B2 (en) * 2003-03-20 2015-04-07 Agjunction Llc GNSS and optical guidance and machine control
US20080004790A1 (en) * 2006-06-30 2008-01-03 General Motors Corporation Methods and system for providing routing assistance to a vehicle
US7463953B1 (en) * 2007-06-22 2008-12-09 Volkswagen Ag Method for determining a tilt angle of a vehicle
US7894957B2 (en) * 2008-01-28 2011-02-22 Textron Innovations Inc. Dynamic tactical steering feedback
JP5027777B2 (ja) * 2008-10-31 2012-09-19 クラリオン株式会社 カーナビゲーション装置およびカーナビゲーション方法
US8577558B2 (en) * 2009-04-02 2013-11-05 Deere & Company System and method for variable steering of an implement
JP5053457B2 (ja) * 2009-03-06 2012-10-17 株式会社小松製作所 建設機械、建設機械の制御方法、及びこの方法をコンピュータに実行させるプログラム
US9278693B2 (en) * 2009-03-24 2016-03-08 Ford Global Technologies, Llc System and method for improving vehicle performance on grade
GB2477543B (en) * 2010-02-05 2013-11-13 Ransomes Jacobsen Ltd Machine with ground working elements and method of improving stability
JP5810621B2 (ja) * 2011-05-16 2015-11-11 株式会社デンソー 道路勾配データ作成装置、記憶媒体、並びに、車両のエネルギー消費量予測装置
US9020757B2 (en) * 2012-05-11 2015-04-28 Trimble Navigation Limited Path planning autopilot
WO2014179638A1 (en) * 2013-05-02 2014-11-06 GM Global Technology Operations LLC Integrated bank and roll estimation using a three-axis inertial-measuring device
KR20150062490A (ko) * 2013-11-29 2015-06-08 주식회사 만도 차량의 차속 제어 장치 및 방법
JP6391945B2 (ja) * 2014-03-05 2018-09-19 国立大学法人東京海洋大学 横転危険警告装置
WO2015177581A1 (en) * 2014-05-19 2015-11-26 Umm Al-Qura University Method and system for vehicle to sense roadblock
US10286809B2 (en) * 2014-07-24 2019-05-14 Mitsubishi Electric Corporation Power management device, power management system, and motor vehicle
US10349572B2 (en) 2014-11-17 2019-07-16 Yanmar Co., Ltd. Work vehicle travel system
US9598843B2 (en) * 2014-12-16 2017-03-21 Caterpillar Inc. Real-time route terrain validity checker
US9616923B2 (en) * 2015-03-03 2017-04-11 Ford Global Technologies, Llc Topographical integration for trailer backup assist system
WO2016195557A1 (en) * 2015-06-03 2016-12-08 Volvo Construction Equipment Ab A method and system for predicting a risk for rollover of a working machine
US9481977B1 (en) * 2015-07-24 2016-11-01 Caterpillar Inc. System and method for controlling a machine
JP6380468B2 (ja) * 2016-06-21 2018-08-29 マツダ株式会社 四輪駆動車の制御装置
JP6837767B2 (ja) * 2016-07-19 2021-03-03 株式会社クボタ 作業車及び作業車のための傾斜走行管理システム
US20180045525A1 (en) * 2016-08-10 2018-02-15 Milemind LLC Systems and Methods for Predicting Vehicle Fuel Consumption
US10860016B1 (en) * 2016-09-07 2020-12-08 Robo Industries, Inc. Automated site based mission planning system
CN106584454B (zh) * 2016-09-21 2019-03-08 苏州瑞得恩光能科技有限公司 一种机器人在矩形斜坡上行驶的路径导航控制方法
US10048086B2 (en) * 2016-11-14 2018-08-14 Qualcomm Incorporated Systems and methods for trip planning
CN108394404A (zh) * 2017-02-06 2018-08-14 北京凌云智能科技有限公司 车辆转向的控制方法、系统和装置
JP6760163B2 (ja) * 2017-03-22 2020-09-23 コベルコ建機株式会社 建設機械
US11377108B2 (en) * 2017-04-03 2022-07-05 Motional Ad Llc Processing a request signal regarding operation of an autonomous vehicle
GB2563262B (en) * 2017-06-08 2020-06-10 Caterpillar Sarl Improvements in the stability of work machines
JP6946234B2 (ja) * 2018-04-27 2021-10-06 株式会社小松製作所 積込機械の制御装置および制御方法
JP7091896B2 (ja) * 2018-07-12 2022-06-28 コベルコ建機株式会社 旋回式作業機械の安全装置
US11142890B2 (en) * 2018-08-08 2021-10-12 Deere & Company System and method of soil management for an implement
US11180902B2 (en) * 2018-08-08 2021-11-23 Deere & Company Forward looking sensor for predictive grade control
US11144055B2 (en) * 2018-09-19 2021-10-12 Caterpillar Paving Products Inc. Construction site planning for autonomous construction vehicles
JP7266383B2 (ja) * 2018-10-26 2023-04-28 株式会社小松製作所 作業機械およびその制御方法
US11208146B2 (en) * 2019-05-21 2021-12-28 Ford Global Technologies, Llc Acceptable zone for automated hitching with system performance considerations
US11414835B2 (en) * 2019-10-28 2022-08-16 Kubota Corporation Working machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268270A (ja) 2008-04-25 2009-11-12 Honda Motor Co Ltd 車両の走行支援装置
JP2010073080A (ja) * 2008-09-22 2010-04-02 Komatsu Ltd 無人車両の走行経路生成方法
JP2013019683A (ja) * 2011-07-07 2013-01-31 Hitachi Ltd 経路作成システム、経路作成方法及びプログラム
US20150292892A1 (en) * 2012-10-11 2015-10-15 Volvo Technology Corporation Method and computer program product for estimating a travel time for a vehicle
JP2016095813A (ja) * 2014-11-17 2016-05-26 ヤンマー株式会社 作業車両の移動システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3674663A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021149395A (ja) * 2020-03-18 2021-09-27 株式会社奥村組 運土計画管理装置、運土計画管理方法および運土計画管理プログラム
JP7465685B2 (ja) 2020-03-18 2024-04-11 株式会社奥村組 運土計画管理装置、運土計画管理方法および運土計画管理プログラム

Also Published As

Publication number Publication date
CN111148968A (zh) 2020-05-12
KR20200078490A (ko) 2020-07-01
US11414834B2 (en) 2022-08-16
US20200240111A1 (en) 2020-07-30
EP3674663B1 (en) 2022-08-31
EP3674663A4 (en) 2020-12-02
EP3674663A1 (en) 2020-07-01
JP2019078730A (ja) 2019-05-23
CN111148968B (zh) 2024-02-23
JP6972924B2 (ja) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2019082692A1 (ja) 走行ルートガイダンス装置
US10301794B2 (en) Construction machine
US11008732B2 (en) Work assist system for work machine
JP5597222B2 (ja) 油圧ショベルの掘削制御システム
KR101942675B1 (ko) 건설 기계
JP6289731B2 (ja) 作業機械の制御システム、作業機械の制御方法、及びナビゲーションコントローラ
KR20130038387A (ko) 유압 셔블의 표시 시스템 및 그 제어 방법
KR102712415B1 (ko) 작업 기계의 제어 시스템, 작업 기계, 작업 기계의 제어 방법
CN108883770A (zh) 行进路推定方法及行进路推定装置
JPWO2019180894A1 (ja) 作業機械
US20130079949A1 (en) Inclination detection systems and methods
US10119250B2 (en) Work machine control system, work machine, and work machine control method
KR101408829B1 (ko) 무한궤도형 주행장치 주행경로 제공방법
KR20230003092A (ko) 건설 기계
JP6054921B2 (ja) 油圧ショベルの掘削制御システム
KR102696731B1 (ko) 건설 기계
JP2018112051A (ja) 作業機械の制御システム、作業機械、作業機械の制御方法及びナビゲーションコントローラ
CN114200924B (zh) 一种路径规划方法、无人车及计算机可读存储介质
US20220292782A1 (en) Modelling of underground worksite
JP6353015B2 (ja) 油圧ショベルの掘削制御システム
JP2018135758A (ja) 油圧ショベルの掘削制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018871466

Country of ref document: EP

Effective date: 20200325

NENP Non-entry into the national phase

Ref country code: DE