WO2019082602A1 - Bonding structure, semiconductor package and semiconductor device - Google Patents

Bonding structure, semiconductor package and semiconductor device

Info

Publication number
WO2019082602A1
WO2019082602A1 PCT/JP2018/036560 JP2018036560W WO2019082602A1 WO 2019082602 A1 WO2019082602 A1 WO 2019082602A1 JP 2018036560 W JP2018036560 W JP 2018036560W WO 2019082602 A1 WO2019082602 A1 WO 2019082602A1
Authority
WO
WIPO (PCT)
Prior art keywords
line conductor
metal terminal
metal
face
semiconductor package
Prior art date
Application number
PCT/JP2018/036560
Other languages
French (fr)
Japanese (ja)
Inventor
森 隆二
谷口 雅彦
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019550901A priority Critical patent/JP6978509B2/en
Priority to CN201880068385.1A priority patent/CN111316425B/en
Priority to CN202410061659.1A priority patent/CN117936483A/en
Publication of WO2019082602A1 publication Critical patent/WO2019082602A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates

Definitions

  • the present invention relates to a junction structure in which a metal terminal and a line conductor are joined, a semiconductor package, and a semiconductor device.
  • a semiconductor package on which a semiconductor element such as an optical semiconductor element is mounted one including a substrate on which the semiconductor element is mounted and a lead terminal (metal terminal) fixed to the substrate is known.
  • the mounting of the semiconductor element and the fixing of the lead terminals to the substrate are performed, for example, through an insulating member such as a dielectric substrate.
  • the signal terminal is bonded and fixed to the dielectric substrate via a brazing material such as gold-tin or tin-silver.
  • the signal terminals are metal lead terminals or the like.
  • a metal layer is previously provided on a portion of the surface of the dielectric substrate to which the brazing material is to be joined.
  • the end of the lead terminal is joined to be opposed to the metal layer along the longitudinal direction of the lead terminal (see, for example, Patent Document 1).
  • a junction structure includes a metal terminal having an end surface, a line conductor having a side surface on which a part of the end surface of the metal terminal faces, metal particles, and the metal A bonding material is disposed so as to cover from the end face of the terminal to a part of the line conductor, and is joined to the metal terminal and the line conductor.
  • a semiconductor package includes a substrate having a first surface and a second surface opposite to the first surface, a line conductor positioned on the first surface side of the substrate, and the substrate of the substrate A metal terminal penetrating from the second surface to the first surface and having an end on the first surface side, and including metal particles, and between the end of the metal terminal and the line conductor And a joining material interposed between the end of the metal terminal and the line conductor.
  • a semiconductor device includes the semiconductor package having the above configuration, and a semiconductor element located on the first surface side and electrically connected to the line conductor.
  • FIG. 1 is a perspective view of a semiconductor package according to an embodiment of the present invention. It is the perspective view seen from the other side of FIG. 2A. It is a top view of the semiconductor package of the embodiment of the present invention.
  • FIG. 3B is a cross-sectional view taken along line XX of FIG. 3A. It is sectional drawing which shows the bonded structure of other embodiment of this invention. It is sectional drawing which shows the bonded structure of other embodiment of this invention. It is sectional drawing which shows the bonded structure of other embodiment of this invention. It is sectional drawing which shows the bonded structure of other embodiment of this invention. It is sectional drawing which shows the bonded structure of other embodiment of this invention. It is sectional drawing which shows the bonded structure of other embodiment of this invention.
  • FIG. 1 is a perspective view of a semiconductor device according to an embodiment of the present invention. It is a figure showing a simulation model. It is a figure showing a simulation model. It is a figure which shows a simulation result. It is a figure which shows a simulation result.
  • FIG. 1 is a cross-sectional view showing a bonded structure according to an embodiment of the present invention.
  • FIG. 2A is a perspective view of a semiconductor package according to an embodiment of the present invention, and FIG. 2B is a perspective view seen from the opposite side of FIG. 2A.
  • FIG. 3A is a plan view of the semiconductor package according to the embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along line XX in FIG. 3A.
  • the junction structure C includes a metal terminal 1 having an end face 1 a, a line conductor 2 having a side face 2 a facing the end face 1 a, and metal particles. And a bonding material 3 which is positioned to cover from the end face 1a to a part of the line conductor 2 (for example, the second end 2b including the side surface 2a) and is joined to the metal terminal 1 and the line conductor 2 There is.
  • the junction structure C includes, for example, a metal terminal 1 for external connection, a line conductor 2 electrically connected to a semiconductor element, and a substrate 4 on which the metal terminal 1 and the line conductor 2 are arranged in a predetermined positional relationship.
  • the metal terminal 1, the line conductor 2, the bonding material 3 interposed between the metal terminal 1 and the line conductor 2, the metal terminal 1 and the line conductor 2 are arranged.
  • the semiconductor package 10 further includes the insulating plate 5 on which the line conductor 2 is actually disposed and fixed to the substrate 4, and the insulating plate 5. And a submount 6 joined.
  • the substrate 4 has a first surface 4a and a second surface 4b opposite to the first surface 4a, and a through hole penetrating the substrate 4 in the thickness direction between the first surface 4a and the second surface 4b. It has 4c.
  • the metal terminal 1 penetrates the substrate 4 from the second surface 4 b to the first surface 4 a through the through hole 4 c.
  • the end face 1 a of the metal terminal 1 and the first end 1 b including the end face are located on the first face 4 a side.
  • the insulating plate 5 is positioned on the side of the first surface 4 a of the substrate 4, whereby the line conductor 2 is disposed on the side of the first surface 4 a of the substrate 4.
  • the metal terminal 1 and the line conductor 2 are bonded to each other via the bonding structure C of the above-described configuration. That is, a part of the end face 1 a of the metal terminal 1 is opposed to the side face 2 a of the line conductor 2.
  • a bonding material 3 including metal particles is positioned so as to cover from a first end 1 b including the end face 1 a of the metal terminal 1 to a second end 2 b including the side 2 a of the line conductor 2.
  • the bonding material 3 is bonded to the metal terminal 1 and the line conductor 2, and the metal terminal 1 and the line conductor 2 are bonded to each other by the bonding material 3.
  • the semiconductor package 10 hermetically seals a semiconductor element (not shown) such as an optical semiconductor element, for example.
  • the semiconductor element is mounted on the insulating plate 5 and electrically connected to the line conductor 2.
  • a metal case (CAN) (not shown)
  • TO Transistor Outline
  • the semiconductor device is an optical semiconductor device
  • a metal case having an opening for input and output of an optical signal is used.
  • the metal terminal 1 has a function as a conductive path for external connection in the semiconductor package 10 as described above, for example.
  • the metal terminal 1 is a strip-like or rod-like lead (pin) terminal.
  • the metal terminal 1 is made of, for example, a metal material such as an iron-nickel-cobalt alloy, an iron-nickel alloy, or an alloy material containing copper. If the metal terminal 1 is made of, for example, an iron-nickel-cobalt alloy, apply a metal processing appropriately selected from rolling, punching, cutting, etching, etc. to an ingot (lump) of iron-nickel-cobalt alloy Can be produced by
  • the metal terminals 1 may be fixed to the substrate 4 such that the plurality of metal terminals 1 are arranged side by side as in the examples shown in FIGS. 2A, 2B, 3A and 3B, for example.
  • a pair of metal terminals 1 for signal transmission is disposed through the substrate 4.
  • Each metal terminal 1 has a first end 1 b including an end face 1 a located on the first surface 4 a side of the substrate 4 and an end face 1 a. It is also possible to regard the portion of the metal terminal 1 located on the side of the first surface 4 a of the substrate 4 (the portion to be hermetically sealed) as the first end portion 1 b.
  • the ground terminal 7 is disposed side by side with the pair of metal terminals 1.
  • the ground terminal 7 can be manufactured by the same method using the same metal material as the metal terminal 1. Details of the configuration and function of the metal terminal 1 in the semiconductor package 10 will be described later.
  • the metal terminal 1 is, for example, a linear shape having a length of 1.5 to 22 mm and a diameter of 0.1 to 1 mm.
  • impedance characteristic impedance
  • the diameter of each metal terminal 1 is 0.15. It shall be ⁇ 0.25 mm. If the diameter of the metal terminal 1 is 0.15 mm or more, for example, it is easy to suppress bending or the like of the metal terminal 1 when the semiconductor package 10 is handled, which is advantageous in improving the workability and the like.
  • the diameter of the metal terminal 1 is 0.25 mm or less, the diameter of the through hole 4c through which the metal terminal 1 penetrates can be kept small, so that the substrate 4 can be miniaturized, that is, the semiconductor package 10 can be miniaturized. Is effective.
  • the line conductor 2 has, for example, a function as a conductor for connecting semiconductor elements in the semiconductor package 10. Electrical connection between the semiconductor element and the line conductor 2 is made via a low melting point brazing material such as a bonding wire or a solder. In the case of a bonding wire, a bonding wire such as a gold wire or an aluminum wire is sequentially bonded to the semiconductor element (electrode) and the line conductor 2 by a bonding method such as a ball bonding method. Thereby, the semiconductor element can be electrically connected to the line conductor 2. The line conductor 2 and the metal terminal 1 are bonded to each other through the bonding material 3 to form a conductive path for electrically connecting the semiconductor element and the external electric circuit.
  • a bonding wire such as a gold wire or an aluminum wire is sequentially bonded to the semiconductor element (electrode) and the line conductor 2 by a bonding method such as a ball bonding method.
  • the line conductor 2 is formed, for example, on the surface of the insulating plate 5.
  • the insulating plate 5 is fixed to the side of the first surface 4 a of the substrate 4, and the line conductor 2 is positioned on the side of the first surface 4 a of the substrate 4.
  • the line conductor 2 has a side surface 2a on the first surface 4a side, and has a second end 2b including the side surface 2a.
  • the end surface 1 a of the metal terminal 1 is positioned to face the side surface 2 a of the line conductor 2. Only a part of the end face 1 a of the metal terminal 1 may be opposed to the side face 2 a of the line conductor 2.
  • the first end 1 b of the metal terminal 1 and the second end 2 b of the line conductor 2 are bonded to each other via a bonding material 3 described later.
  • the bonding material 3 is also bonded to the end surface 1a and the side surface 2a.
  • the line conductor 2 is, for example, a metal material appropriately selected from metal materials such as tungsten, molybdenum, manganese, copper, silver, gold, palladium, platinum, rhodium, nickel and cobalt, or a metal material of an alloy containing these metal materials. It is formed by The line conductor 2 can be formed in the form of a metallized layer, a plating layer, a thin film layer or the like.
  • the line conductor 2 is formed on the insulating plate 5 as described above, and when it contains a thin film layer of gold, copper, nickel, silver or the like, titanium, chromium, tantalum, niobium, nickel-chromium alloy, nitrided It may further include an adhesion metal layer such as tantalum.
  • the adhesion metal layer is located between the insulating plate 5 and the thin film layer, and has a function of improving the adhesion of the line conductor 2 to the insulating plate 5.
  • the thickness of the line conductor 2 is set to about 0.1 to 5 ⁇ m in consideration of, for example, reduction of electric resistance, suppression of internal stress, and the like.
  • the thickness of the adhesion metal layer is set to about 0.01 to 0.2 ⁇ m in consideration of the improvement of the adhesion to the insulating plate 5 and the suppression of the internal stress.
  • the line conductor 2 may further include a diffusion suppression layer that suppresses mutual diffusion between the adhesion metal layer and the thin film layer.
  • the diffusion suppression layer can be formed of, for example, a metal material such as platinum, palladium, rhodium, nickel, or a titanium-tungsten alloy.
  • the thickness of the diffusion suppression layer is set to about 0.05 to 1 ⁇ m in consideration of, for example, the above-described suppression of mutual diffusion and suppression of the electrical resistance in the line conductor 2.
  • the line conductor 2 when the line conductor 2 is disposed on the surface of the insulating plate 5 by a metallizing method, it is appropriately selected from metal materials such as tungsten, molybdenum, manganese, copper, silver, gold, platinum and palladium, for example. Metal materials may be included.
  • the line conductor 2 can be formed by sintering a metal paste prepared by kneading tungsten powder with an organic solvent, a binder, and the like with the insulating plate 5.
  • the insulating plate 5 is formed of, for example, a ceramic insulating material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic sintered body. If the insulating plate 5 is made of, for example, an aluminum oxide sintered body, it can be manufactured as follows. First, a slurry is prepared by adding and mixing an appropriate organic solvent and solvent to raw material powders such as aluminum oxide, silicon oxide, calcium oxide and magnesium oxide. Next, the slurry is formed into a sheet by a doctor blade method, a calender roll method or the like to obtain a ceramic green sheet (hereinafter also referred to as a green sheet). Thereafter, the green sheet is punched into a predetermined shape, laminated as necessary, and sintered at a predetermined temperature of about 1300 to 1600 ° C. The insulating plate 5 can be manufactured by the above steps.
  • a ceramic insulating material such as an aluminum oxide sintered body, an aluminum nit
  • the line conductor 2 is formed of a metallized layer such as tungsten
  • a manufacturing method is used in which a metal paste for the metallized layer (line conductor 2) is printed on a surface of a green sheet to be the insulating plate 5 and fired simultaneously. May be In this case, the insulating plate 5 and the line conductor 2 can be integrally manufactured. Therefore, it is effective to improve the strength, productivity and the like of the connection between the line conductor 2 and the insulating plate 5.
  • the bonding material 3 is positioned so as to cover from the first end 1 b including the end face 1 a of the metal terminal 1 to the second end 2 b including the side 2 a of the line conductor 2.
  • the bonding material 3 bonded to the first end 1b of the metal terminal 1 and the second end 2b of the line conductor 2 includes, for example, a metal material such as silver, copper, gold and palladium or a metal material of these metals. It contains metal particles made of a metal material such as an alloy. The metal particles are bonded to each other by metal bonding, and form a combined shape as the bonding material 3. Further, the metal particles are combined with the metal components contained in the metal terminal 1 and the line conductor 2 respectively. Thus, bonding is performed via the bonding material 3 between the metal terminal 1 and the line conductor 2.
  • the end face 1 a of the metal terminal 1 is perpendicular to the surface 2 bb of the line conductor 2 in the cross-sectional view (vertical cross-sectional view) in the vertical direction as shown in FIG. 1, for example.
  • the direction perpendicular to the surface 2 bb of the line conductor 2 opposite to the insulating plate 5 is referred to as the upward direction, and the opposite direction is the downward direction.
  • the left and right direction with respect to the vertical direction is also defined.
  • the surface 2 bb of the line conductor 2 is hereinafter referred to as the upper surface 2 bb.
  • the upper surface 2 bb of the line conductor 2 constitutes a part of the second end 2 b of the line conductor 2. Further, the side surface 2 a of the line conductor 2 is substantially parallel to the end surface 1 a of the metal terminal 1. Therefore, the end face of the metal terminal 1 and the side face of the line conductor 2 can be disposed to face each other.
  • the junction structure C via the joining member 3 between the metal terminal 1 and the line conductor 2 is connected between the metal terminal 1 and the line conductor 2, that is, the external electrical circuit to which the metal terminal 1 is connected, and the line conductor 2
  • the transmission path of the signal between the semiconductor elements to be it is necessary to match the impedance between the metal terminal 1 and the line conductor 2 so as to cope with the high frequency (for example, 40 GHz or more) of the signal transmitted through the transmission path.
  • the junction structure C of the embodiment such accuracy improvement in impedance matching is easy.
  • the details of the accuracy improvement of the impedance matching are as follows.
  • bonding is performed by the bonding material 3 in a state in which the end surface 1 a of the metal terminal 1 and the side surface 2 a of the line conductor 2 face each other.
  • the term "opposite" means that the metal terminal 1 and the line conductor 2 do not overlap in the longitudinal direction of the metal terminal 1 which is the direction in which the signal is transmitted. In other words, it means that the metal terminal 1 and the line conductor 2 do not overlap in a plan view when viewed in a direction perpendicular to the top surface 2 bb of the line conductor 2. Therefore, the change of the resistance in the transmission line due to the overlapping of the metal terminal 1 and the line conductor 2 is suppressed.
  • the junction structure C effective for improving the accuracy of the characteristic impedance matching in the transmission line of the high frequency signal constituted by the metal terminal 1 and the line conductor 2.
  • the end face 1a of the metal terminal 1 and the side face 2a of the line conductor 2 face each other, and the end face 1a and the side face 2a are in direct contact with each other.
  • the lower surface of the line conductor 2 is located below the metal terminal 1.
  • Bonding between the metal terminal 1 and the line conductor 2 via the bonding material 3 is performed, for example, as follows. First, particles of the above-mentioned metal material such as silver (in fact, an aggregate of many particles) are kneaded with an organic solvent and a binder to prepare a paste. Next, the end face 1a of the metal terminal 1 is made to face the side face 2a of the line conductor 2 and aligned, the above-mentioned paste is placed on the aligned part, and these are temporarily fixed by a jig or the like. Then, these are heated with an electric furnace etc., and the metal particles in a paste are couple
  • the paste wets and spreads over the upper surface 2 bb located at the second end 2 b of the line conductor 2 and the metal terminal 1. Thereby, for example, a bonded structure C as shown in FIG. 1 can be produced.
  • the paste contains an organic component that polymerizes with each other, the paste is hardened at a relatively low temperature by the polymer of the organic component, so the shape maintenance of the paste to be the bonding material 3 is easy . Therefore, bonding via the bonding material 3 between the first end 1 b of the metal terminal 1 and the second end 2 b of the line conductor 2 can be easily performed. Further, since bonding can be performed at a relatively low temperature, the workability of bonding via the bonding material 3 between the metal terminal 1 and the line conductor 2 and the improvement of productivity as the bonding structure C and the semiconductor package 10 are also effective. is there.
  • the metal particles in the bonding material 3 are fine particles (so-called submicron particles, subnanoparticles, etc.) having a particle size of about 1 ⁇ m or less in consideration of ease of bonding between metal particles, strength of bonding, and the like. It may be nanoparticles) or a mixture of microparticles and metal particles of micron size.
  • the paste used as the bonding material 3 may contain an organic resin component that polymerizes with each other when such fine particles are used as metal particles. As such an organic resin component, a polymerizable carboxylic acid derivative etc. can be mentioned, for example.
  • FIG. 4 is an enlarged cross-sectional view of the main part of a bonded structure C according to another embodiment of the present invention. Parts in FIG. 4 similar to those in FIGS. 1 to 3B are assigned the same reference numerals.
  • the end surface 1 a of the metal terminal 1 and the side surface 2 a of the line conductor 2 face each other and are separated from each other. There is a gap 8 between the end surface 1 a and the side surface 2 a, and the bonding material 3 is located in the gap 8. That is, the end surface 1a of the metal terminal 1 which is not in direct contact with each other and the side surface 2a of the line conductor 2 are connected by the bonding material 3 and electrically connected to each other.
  • the junction structure C and the semiconductor package 10 of the other embodiment are the same as the junction structure C and the semiconductor package 10 of the above embodiment in the other points. The description of these same points will be omitted.
  • thermal stress generated between the metal terminal 1 and the line conductor 2 it is advantageous for effective relaxation of the thermal stress generated between the metal terminal 1 and the line conductor 2. That is, thermal stress caused by the difference in coefficient of thermal expansion between the metal terminal 1 and the insulating plate 5 between the metal terminal 1 made of a metal material as described above and the line conductor 2 fixed to the insulating plate 5 Can occur.
  • the bonding material 3 containing a metal material such as silver which is relatively easy to deform, is interposed between the two in such an amount (volume) that the gap 8 is filled, that is, an amount that allows easy deformation. Therefore, thermal stress generated between the metal terminal 1 and the line conductor 2 (insulation plate 5) due to the deformation of the bonding material 3 can be effectively alleviated.
  • the joint structure C is effective not only for improving the accuracy of impedance matching but also for improving the long-term reliability of the junction between the metal terminal 1 and the line conductor 2.
  • the bonding material 3 preferably contains a metal material such as silver or copper having a relatively small elastic modulus (for example, Young's modulus). In the case where the bonding material 3 contains silver or copper, it is also advantageous to reduce the conduction resistance in the bonding material 3.
  • the bonding material 3 contains fine particles such as silver as described above, (macroscopically) deformation as the bonding material 3 due to displacement of bonding between the fine particles is also easy. Therefore, the bonding material 3 is preferably one containing fine particles of silver or copper for the improvement of bonding reliability and the like.
  • the dimension of the gap 8 is, for example, about 10 ⁇ m or more in plan view (as viewed from the direction opposite to the upper surface of the line conductor 2), the above-mentioned thermal stress can be effectively relieved. It is easy to place a quantity of bonding material 3 between the end face 1a and the side face 2a. Further, if the gap 8 is, for example, about 100 ⁇ m or less in plan view, the distance between the end face 1a of the metal terminal 1 and the side face 2a of the line conductor 2 is such that the entry of the bonding material 3 becomes difficult. The possibility of becoming large can be reduced. That is, it is advantageous for securing the workability and bonding strength of bonding between the metal terminal 1 and the line conductor 2 via the bonding material 3. Therefore, when the gap 8 is set between the end face 1a of the metal terminal 1 and the side surface 2a of the line conductor 2, the dimension of the gap 8 in plan view may be set in the range of about 10 to 100 ⁇ m.
  • the bonding material 3 may be joined from the gap 8 to the lower surface of the metal terminal 1 so as to surround the entire circumference of the metal terminal 1 at the first end 1 b of the metal terminal 1 (that is, annularly The bonding material 3 may be located.
  • the upper outer periphery of the bonding material 3 is slightly expanded outward. That is, in the vertical cross section, a part of the outer periphery of the bonding material 3 is convex outward. As a result, the amount of bonding material 3 can be made relatively large, and the effects of reduction in conduction resistance and stress relaxation can be enhanced.
  • the positional relationship between the metal terminal 1 and the line conductor 2 in which the end face 1a and the side face 2a face each other and is joined is not limited to the examples shown in FIGS.
  • the metal terminal 1 may be located below the line conductor 2, and the side surface 2a of the line conductor 2 may be connected to the center of the end face 1a.
  • the metal terminal 1 and the line conductor 2 are parallel to each other in the length direction, and the metal terminal 1 is located above the line conductor 2,
  • the junction structure C in which the lower portion of the end face 1a of the terminal 1 and the upper portion of the side surface of the line conductor face each other has the following advantages. That is, in this case, since the alignment of the metal terminal 1 with respect to the line conductor 2 can be performed from the upper side, which is the direction in which the line conductor 2 is exposed, the alignment operation is easy and the improvement of the position accuracy is easy. is there. Therefore, it is advantageous to the improvement of the characteristics and productivity as the junction structure C and the semiconductor package 10.
  • FIG. 5 is an enlarged cross-sectional view of the main part of a bonded structure C according to still another embodiment of the present invention.
  • the same parts as those in FIGS. 1 to 3B are denoted by the same reference numerals.
  • the lower surface of the metal terminal 1 is located below the line conductor 2 in a cross-sectional view in the vertical direction including the end surface 1 a of the metal terminal 1.
  • the junction structure C and the semiconductor package 10 according to the other embodiment are the same as the junction structure C and the semiconductor package 10 according to the above-described embodiment in other points. The description of these same points will be omitted.
  • the line conductor 2 when the side surface 2 a of the line conductor 2 is made to face the end face 1 a of the metal terminal 1, the line conductor 2 can be made to face a relatively wide range of the end face 1 a. In other words, the strictness of the alignment between the two can be reduced. Therefore, the junction structure C and the semiconductor package 10 including the same can be more easily manufactured.
  • the side surface 2a of the line conductor 2 can be brought into direct contact with the end face 1a of the metal terminal 1 to reduce the contact resistance. Also, the fabrication of such direct contact (connection) structures can be facilitated as described above. Therefore, the impedance matching is easy, and it is effective to reduce the conduction resistance, and the junction structure C and the semiconductor package 10 can be effective also for securing the productivity.
  • FIG. 6 is an enlarged cross-sectional view of the main part of a bonded structure C according to still another embodiment of the present invention. Parts in FIG. 6 similar to those in FIGS. 1 to 3B are assigned the same reference numerals.
  • the end face 1a of the metal terminal 1 and the side face 2a of the line conductor 2 face each other, and the end face 1a and the side face 2a are in direct contact.
  • the bonding material 3 is positioned to cover the outer periphery of the metal terminal 1 at the first end 1 b of the metal terminal 1.
  • the junction structure C and the semiconductor package 10 according to the other embodiment are the same as the junction structure C and the semiconductor package 10 according to the above-described embodiment in other points. The description of these same points will be omitted.
  • the end face 1a and the side face 2a facing each other, a change in resistance in the transmission path caused by the overlapping of the metal terminal 1 and the line conductor 2 is suppressed.
  • the bonding material 3 since the bonding material 3 is positioned so as to cover the outer periphery of the first end 1b, it is possible to suppress the change in impedance at the first end 1b and to suppress the deterioration of the transmission characteristics.
  • the bonding material 3 covers the outer periphery of a portion of the first end 1 b that protrudes from the first surface 4 a.
  • the bonding material 3 may be covered so as to be in direct contact with the outer periphery.
  • FIG. 7 is an enlarged cross-sectional view of the main part of a bonded structure C according to still another embodiment of the present invention.
  • the same reference numerals as in FIGS. 1 to 3B denote the same parts in FIG.
  • the metal terminals 1 among the metal terminals 1, only the end surface 1 a is exposed on the first surface 4 a side of the substrate 4, and the end surface 1 a of the metal terminal 1 and the side surface 2 a of the line conductor 2 are And the end face 1a and the side face 2a are in direct contact with each other.
  • the junction structure C and the semiconductor package 10 according to the other embodiment are the same as the junction structure C and the semiconductor package 10 according to the above-described embodiment in other points. The description of these same points will be omitted.
  • the lower surface of the line conductor 2 is lower than the metal terminal 1 in the cross-sectional view in the vertical direction including the end face 1 a of the metal terminal 1 as in the embodiment shown in FIG. Located on the side.
  • the end surface 1 a is exposed on the first surface 4 a side of the substrate 4, in other words, the first surface 4 a and the end surface 1 a are flush or the length direction of the metal terminal 1
  • the end surface 1a does not protrude from the first surface 4a.
  • the bonding material 3 is positioned so as to cover from the exposed end surface 1 a to the second end 2 b including the side surface 2 a of the line conductor 2.
  • a sealing material made of an insulating material is located in the through holes 4 c of the substrate 4. The sealing material has a function of closing the gap between the metal terminal 1 and the through hole 4c.
  • FIG. 8 is an enlarged cross-sectional view of the main parts of a bonded structure C according to still another embodiment of the present invention.
  • the same parts as those in FIGS. 1 to 3B are denoted by the same reference numerals.
  • the metal terminal 1 is positioned on the first surface 4 a side of the substrate 4 so that only the end face 1 a is exposed.
  • the end face 1a of the line conductor 2 faces the side face 2a of the line conductor 2, and the end face 1a is in direct contact with the side face 2a.
  • the lower surface of the metal terminal 1 is positioned lower than the line conductor 2 in the vertical cross-sectional view including the end face 1a of the metal terminal 1 as in the embodiment shown in FIG. There is.
  • the junction structure C and the semiconductor package 10 according to the other embodiment are the same as the junction structure C and the semiconductor package 10 according to the above-described embodiment in other points. The description of these same points will be omitted.
  • the bonding material 3 extends continuously from the first end 1 b of the metal terminal 1 to a portion adjacent to the side surface of the top surface 2 bb of the line conductor 2. You may be doing what you are doing. In this case, since the bonding material 3 spreads over a relatively wide range and is bonded to the line conductor 2, it is effective to improve the bonding strength between the bonding material 3 and the line conductor 2. In addition, the bonding strength between the metal terminal 1 and the line conductor 2 through the bonding material 3 can also be effectively improved.
  • the tip of the portion of the bonding material 3 bonded to the top surface 2 bb to the line conductor 2 may have a shape that does not have corner portions such as arcs or elliptical arcs in a plan view, for example.
  • corner portions such as arcs or elliptical arcs in a plan view, for example.
  • the possibility of peeling of the bonding material starting from the corner portion can be effectively reduced. Therefore, the bonding strength between the metal terminal 1 and the line conductor 2 through the bonding material 3 can be effectively improved.
  • the metal particles are silver particles
  • the following advantages are obtained. That is, it is advantageous for reducing the electrical resistance in the transmission line of the signal including the line conductor 2 and the metal terminal 1, such as the thermal conductivity of the bonding material 3 (that is, the heat dissipation of the bonding structure C and the semiconductor package 10 including this It is. Moreover, it is hard to remelt also in the heat load process for mounting of a semiconductor element, joining of a metal case, etc., and the advantage of having few outgasses is mentioned.
  • the silver particles in this case may be so-called pure silver containing 99.9% by mass or more of silver, or may contain other components such as a trace amount of copper or gold.
  • all the metal particles may not be silver particles, and for example, both silver particles and copper particles may be contained in the metal particles.
  • the metal particles are copper particles or contains copper particles, the possibility of ion migration is reduced, economic efficiency is improved, etc., as compared to when all the metal particles are silver particles. Is advantageous.
  • the semiconductor package of the embodiment of the present invention has the following configuration. That is, the semiconductor package 10 of the present embodiment includes the substrate 4 having the first surface 4 a and the second surface 4 b opposite to the first surface 4 a, the line conductor 2 positioned on the first surface 4 a side of the substrate 4, and the substrate 4 includes a metal terminal 1 penetrating from the second surface 4b to the first surface 4a and having an end 1b on the first surface 4a side, and metal particles; the end of the metal terminal 1 (first end And a bonding material 3 interposed between the line conductor 2 and the portion 1b.
  • the semiconductor package 10 of the present embodiment includes the junction structure C of any of the above-described configurations between the end portion 1 b of the metal terminal 1 and the line conductor 2.
  • the semiconductor package 10 of the above embodiment since the junction structure C of any of the above configurations is provided, impedance matching in the transmission line of the signal formed of the metal terminal 1 and the line conductor 2 is easy, and high frequency signal The semiconductor package 10 effective for improving the transmission characteristics of
  • the first surface 4 a side of the substrate 4 is a side sealed with the above-described metal case.
  • the end 1 b of the semiconductor element and the metal terminal 1 is sealed in the space formed between the substrate 4 and the metal case.
  • the sealing material (without the reference numeral) is located in the through hole 4c of the substrate 4.
  • the sealing material has a function of closing the gap between the metal terminal 1 and the through hole 4c.
  • the sealing material is made of an insulating material such as a glass material or a ceramic material.
  • Examples of such an insulating material include glasses such as borosilicate glass and soda glass, and those obtained by adding a ceramic filler for adjusting the thermal expansion coefficient and the relative dielectric constant to these glasses.
  • This insulating material can be appropriately selected in consideration of impedance matching (relative dielectric constant) in the metal terminal 1 and reliability of sealing.
  • impedance matching relative dielectric constant
  • the submount 6 is provided on the first surface 4 a of the substrate 4 and has a substrate mounting surface perpendicular to the first surface 4 a.
  • the submount 6 has a function of conducting heat generated by the electronic component mounted on the insulating plate 5 to the substrate 4 and the like. That is, the submount 6 has a function as a heat dissipation material that dissipates heat to the outside of the semiconductor package 10.
  • the submount 6 may be integrally formed with the substrate 4 and may include a cooling member (eg, a Peltier element or the like).
  • a cooling member eg, a Peltier element or the like.
  • FIG. 9 is a perspective view of a semiconductor device according to an embodiment of the present invention.
  • the semiconductor device of the embodiment of the present invention has the following configuration. That is, the semiconductor device 100 of the present embodiment includes the semiconductor package 10 and the semiconductor element 20 located on the first surface 4 a side of the substrate 4 and electrically connected to the line conductor 2.
  • the semiconductor element 20 is, for example, an optical semiconductor element or the like as described above.
  • the semiconductor element 20 is mounted on the insulating plate 5 and electrically connected to the line conductor 2 by a bonding wire or solder.
  • the semiconductor device 100 of the above embodiment since the semiconductor package 10 having any one of the above configurations is provided, it is possible to provide the semiconductor device 100 in which impedance matching is easy and the transmission characteristics of high frequency signals are improved.
  • the end face 1a of the metal terminal 1 does not have to be exactly perpendicular to the upper surface 2bb of the line conductor 2, but may be slightly (about several degrees) inclined according to processing accuracy and the like.
  • the high frequency signal characteristics of the bonded structure (first structure) of the embodiment shown in FIG. 1 and the bonded structure (second structure) of the embodiment shown in FIG. 8 were simulated and compared.
  • the difference between the first structure and the second structure is that the first structure has a structure in which the first end 1b of the metal terminal 1 protrudes from the first surface 4a of the substrate 4, and the second structure However, the first end 1 b of the metal terminal 1 does not protrude from the first surface 4 a of the substrate 4.
  • FIG. 10A and 10B show simulation models
  • FIG. 10A shows a first structure model A
  • FIG. 10B shows a second structure model B.
  • FIG. In the first structure model A the first end 1 b of the metal terminal 1 protrudes 50 ⁇ m from the first surface 4 a of the substrate 4.
  • the second structure model B the first end 1 b of the metal terminal 1 does not protrude from the first surface 4 a of the substrate 4, and only the end surface 1 a is exposed on the first surface 4 a side of the substrate 4.
  • the configuration is located and corresponds to the model of the embodiment shown in FIG. 8 of the present invention.
  • FIG. 10C and 10D show simulation results, and FIG. 10C shows reflection loss (S11) and FIG. 10D shows insertion loss (S21).
  • the reflection loss and the insertion loss are calculation results obtained by S parameter analysis.
  • the result of the first structure model A is shown by a broken line, and the result of the second structure model B is shown by a solid line.
  • the insertion loss is such that the value (dB) on the vertical axis is closer to zero ( The higher the graph, the smaller the loss, indicating that the transmission characteristics are better. As shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

The present invention relates to a bonding structure and the like that facilitate characteristic impedance matching between a metal terminal and a line conductor. According to the present invention, a bonding structure C includes: a metal terminal 1 having an end surface 1a; a line conductor 2 having a side surface 2a which a portion of the end face 1a of the metal terminal 1 faces; and a metal particle. The bonding structure is located so as to cover an area from a first end portion 1b including the end face 1a of the metal terminal 1 to a second end portion 2b including the side surface 2a of the line conductor 2, and is provided with a bonding material 3 bonded to the metal terminal 1 and the line conductor 2.

Description

接合構造体、半導体パッケージおよび半導体装置Junction structure, semiconductor package and semiconductor device
 本発明は、金属端子と線路導体とを接合した接合構造体、半導体パッケージおよび半導体装置に関する。 The present invention relates to a junction structure in which a metal terminal and a line conductor are joined, a semiconductor package, and a semiconductor device.
 光半導体素子等の半導体素子が実装される半導体パッケージとして、半導体素子が実装される基板と、基板に固定されたリード端子(金属端子)とを備えるものが知られている。基板に対する半導体素子の実装およびリード端子の固定は、例えば、誘電体基板等の絶縁性部材を介して行なわれる。 As a semiconductor package on which a semiconductor element such as an optical semiconductor element is mounted, one including a substrate on which the semiconductor element is mounted and a lead terminal (metal terminal) fixed to the substrate is known. The mounting of the semiconductor element and the fixing of the lead terminals to the substrate are performed, for example, through an insulating member such as a dielectric substrate.
 この場合、半導体パッケージにおいて、誘電体基板に、金-スズまたはスズ-銀等のろう材を介して信号端子が接合されて、固定されている。信号端子は金属製のリード端子等である。誘電体基板の表面のうち、ろう材が接合される部分には金属層があらかじめ設けられる。リード端子の端部が、リード端子の長さ方向に沿って金属層と対向して接合される(例えば特許文献1を参照)。 In this case, in the semiconductor package, the signal terminal is bonded and fixed to the dielectric substrate via a brazing material such as gold-tin or tin-silver. The signal terminals are metal lead terminals or the like. A metal layer is previously provided on a portion of the surface of the dielectric substrate to which the brazing material is to be joined. The end of the lead terminal is joined to be opposed to the metal layer along the longitudinal direction of the lead terminal (see, for example, Patent Document 1).
国際公開第2017/033860号International Publication No. 2017/033860
 近年、信号端子と金属層とで構成される伝送路を伝送される信号の高周波化が進んでいる。そのため、上記伝送路における特性インピーダンスの整合をより高い精度で行なうことが求められるようになってきている。また、そのような半導体パッケージの構成が容易な接合構造が求められている。 2. Description of the Related Art In recent years, the frequency of a signal transmitted through a transmission path formed of a signal terminal and a metal layer is increasing. Therefore, it has been required to match the characteristic impedance in the transmission line with higher accuracy. There is also a need for a junction structure that facilitates such a semiconductor package configuration.
 本発明の一つの態様の接合構造体は、端面を有する金属端子と、該金属端子の前記端面の一部が対向している側面を有する線路導体と、金属粒子を含んでいるとともに、前記金属端子の前記端面から前記線路導体の一部にかけて覆うように位置しており、前記金属端子および前記線路導体に接合している接合材とを備える。 A junction structure according to one aspect of the present invention includes a metal terminal having an end surface, a line conductor having a side surface on which a part of the end surface of the metal terminal faces, metal particles, and the metal A bonding material is disposed so as to cover from the end face of the terminal to a part of the line conductor, and is joined to the metal terminal and the line conductor.
 本発明の一つの態様の半導体パッケージは、第1面および該第1面と反対側の第2面を有する基板と、前記基板の前記第1面側に位置する線路導体と、前記基板の前記第2面から前記第1面にかけて貫通しており、前記第1面側に端部を有する金属端子と、金属粒子を含んでおり、前記金属端子の前記端部と前記線路導体との間に介在している接合材とを備えており、前記金属端子の前記端部と前記線路導体との間に上記構成の接合構造体を有している。 A semiconductor package according to one aspect of the present invention includes a substrate having a first surface and a second surface opposite to the first surface, a line conductor positioned on the first surface side of the substrate, and the substrate of the substrate A metal terminal penetrating from the second surface to the first surface and having an end on the first surface side, and including metal particles, and between the end of the metal terminal and the line conductor And a joining material interposed between the end of the metal terminal and the line conductor.
 本発明の一つの態様の半導体装置は、上記構成の半導体パッケージと、前記第1面側に位置し、前記線路導体と電気的に接続される半導体素子と、を備える。 A semiconductor device according to one aspect of the present invention includes the semiconductor package having the above configuration, and a semiconductor element located on the first surface side and electrically connected to the line conductor.
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の実施形態の接合構造体を示す断面図である。 本発明の実施形態の半導体パッケージの斜視図である。 図2Aの反対側から見た斜視図である。 本発明の実施形態の半導体パッケージの平面図である。 図3AのX-X線における断面図である。 本発明の他の実施形態の接合構造体を示す断面図である。 本発明の他の実施形態の接合構造体を示す断面図である。 本発明の他の実施形態の接合構造体を示す断面図である。 本発明の他の実施形態の接合構造体を示す断面図である。 本発明の他の実施形態の接合構造体を示す断面図である。 本発明の実施形態の半導体装置の斜視図である。 シミュレーションモデルを示す図である。 シミュレーションモデルを示す図である。 シミュレーション結果を示す図である。 シミュレーション結果を示す図である。
The objects, features and advantages of the present invention will become more apparent from the following detailed description and the drawings.
It is sectional drawing which shows the bonded structure of embodiment of this invention. FIG. 1 is a perspective view of a semiconductor package according to an embodiment of the present invention. It is the perspective view seen from the other side of FIG. 2A. It is a top view of the semiconductor package of the embodiment of the present invention. FIG. 3B is a cross-sectional view taken along line XX of FIG. 3A. It is sectional drawing which shows the bonded structure of other embodiment of this invention. It is sectional drawing which shows the bonded structure of other embodiment of this invention. It is sectional drawing which shows the bonded structure of other embodiment of this invention. It is sectional drawing which shows the bonded structure of other embodiment of this invention. It is sectional drawing which shows the bonded structure of other embodiment of this invention. FIG. 1 is a perspective view of a semiconductor device according to an embodiment of the present invention. It is a figure showing a simulation model. It is a figure showing a simulation model. It is a figure which shows a simulation result. It is a figure which shows a simulation result.
 本発明の実施形態の接合構造体および半導体パッケージについて、添付の図面を参照して説明する。図1は、本発明の実施形態の接合構造体を示す断面図である。図2Aは本発明の実施形態の半導体パッケージの斜視図であり、図2Bは図2Aの反対側から見た斜視図である。また、図3Aは本発明の実施形態の半導体パッケージの平面図であり、図3Bは図3AのX-X線における断面図である。 The junction structure and the semiconductor package according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a bonded structure according to an embodiment of the present invention. FIG. 2A is a perspective view of a semiconductor package according to an embodiment of the present invention, and FIG. 2B is a perspective view seen from the opposite side of FIG. 2A. FIG. 3A is a plan view of the semiconductor package according to the embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along line XX in FIG. 3A.
 本発明の実施形態の接合構造体Cは、端面1aを有する金属端子1と、その端面1aに対向している側面2aを有する線路導体2と、金属粒子を含んでいるとともに、金属端子1の端面1aから線路導体2の一部(例えば、側面2aを含む第2端部2b)にかけて覆うように位置しており、金属端子1および線路導体2に接合している接合材3とを備えている。この接合構造体Cは、例えば外部接続用の金属端子1と、半導体素子と電気的に接続される線路導体2と、金属端子1および線路導体2が所定の位置関係で配置される基板4を含む半導体パッケージにおける、金属端子1と線路導体2との接合材3を介した接合に用いられる。本発明の実施形態の半導体パッケージ10は、金属端子1と、線路導体2と、金属端子1と線路導体2との間に介在している接合材3と、金属端子1および線路導体2が配置されている基板4とを有し、さらに、金属端子1と線路導体2との間に上記実施形態の接合構造体Cを有している。 The junction structure C according to the embodiment of the present invention includes a metal terminal 1 having an end face 1 a, a line conductor 2 having a side face 2 a facing the end face 1 a, and metal particles. And a bonding material 3 which is positioned to cover from the end face 1a to a part of the line conductor 2 (for example, the second end 2b including the side surface 2a) and is joined to the metal terminal 1 and the line conductor 2 There is. The junction structure C includes, for example, a metal terminal 1 for external connection, a line conductor 2 electrically connected to a semiconductor element, and a substrate 4 on which the metal terminal 1 and the line conductor 2 are arranged in a predetermined positional relationship. It is used for joining via the joining material 3 of the metal terminal 1 and the line conductor 2 in the semiconductor package containing. In the semiconductor package 10 according to the embodiment of the present invention, the metal terminal 1, the line conductor 2, the bonding material 3 interposed between the metal terminal 1 and the line conductor 2, the metal terminal 1 and the line conductor 2 are arranged. And the junction structure C of the above embodiment between the metal terminal 1 and the line conductor 2.
 また、図2A、図2B、図3Aおよび図3Bに示す例において、半導体パッケージ10は、さらに、線路導体2が実際に配置されて基板4に固定されている絶縁板5と、絶縁板5に接合されているサブマウント6とを有している。基板4は、第1面4aおよび第1面4aと反対側の第2面4bを有し、第1面4aと第2面4bとの間で基板4を厚み方向に貫通している貫通孔4cを有している。金属端子1は、第2面4bから第1面4aにかけて、貫通孔4c内を通って基板4を貫通している。金属端子1の端面1aおよび端面を含む第1端部1bは第1面4a側に位置している。基板4の第1面4a側に絶縁板5が位置し、これにより基板4の第1面4a側に線路導体2が配置されている。この、基板4の第1面4a側で、上記構成の接合構造体Cを介して金属端子1と線路導体2とが互いに接合されている。すなわち、金属端子1の端面1aの一部が線路導体2の側面2aと対向している。金属粒子を含む接合材3が、金属端子1の端面1aを含む第1端部1bから線路導体2の側面2aを含む第2端部2bにかけて覆うように位置している。接合材3は、金属端子1および線路導体2に接合し、接合材3によって金属端子1と線路導体2とが互いに接合されている。 Further, in the example shown in FIGS. 2A, 2B, 3A and 3B, the semiconductor package 10 further includes the insulating plate 5 on which the line conductor 2 is actually disposed and fixed to the substrate 4, and the insulating plate 5. And a submount 6 joined. The substrate 4 has a first surface 4a and a second surface 4b opposite to the first surface 4a, and a through hole penetrating the substrate 4 in the thickness direction between the first surface 4a and the second surface 4b. It has 4c. The metal terminal 1 penetrates the substrate 4 from the second surface 4 b to the first surface 4 a through the through hole 4 c. The end face 1 a of the metal terminal 1 and the first end 1 b including the end face are located on the first face 4 a side. The insulating plate 5 is positioned on the side of the first surface 4 a of the substrate 4, whereby the line conductor 2 is disposed on the side of the first surface 4 a of the substrate 4. On the side of the first surface 4 a of the substrate 4, the metal terminal 1 and the line conductor 2 are bonded to each other via the bonding structure C of the above-described configuration. That is, a part of the end face 1 a of the metal terminal 1 is opposed to the side face 2 a of the line conductor 2. A bonding material 3 including metal particles is positioned so as to cover from a first end 1 b including the end face 1 a of the metal terminal 1 to a second end 2 b including the side 2 a of the line conductor 2. The bonding material 3 is bonded to the metal terminal 1 and the line conductor 2, and the metal terminal 1 and the line conductor 2 are bonded to each other by the bonding material 3.
 この半導体パッケージ10は、例えば、光半導体素子等の半導体素子(図示せず)を気密封止するものである。半導体素子は、絶縁板5に搭載されるとともに線路導体2と電気的に接続される。基板4の、半導体素子が搭載された第1面4a側が金属製ケース(CAN)(図示せず)で封止されれば、いわゆるTO(Transistor Outline)-CAN型の半導体パッケージが形成される。半導体素子が光半導体素子であるときには、光信号の入出力用の開口を有する金属製ケースが用いられる。 The semiconductor package 10 hermetically seals a semiconductor element (not shown) such as an optical semiconductor element, for example. The semiconductor element is mounted on the insulating plate 5 and electrically connected to the line conductor 2. When the first surface 4a side of the substrate 4 on which the semiconductor element is mounted is sealed with a metal case (CAN) (not shown), a so-called TO (Transistor Outline) -CAN type semiconductor package is formed. When the semiconductor device is an optical semiconductor device, a metal case having an opening for input and output of an optical signal is used.
 実施形態の接合構造体Cにおいて、金属端子1は、例えば上記のような半導体パッケージ10における外部接続用の導電路としての機能を有する。この場合、金属端子1は、細長い帯状または棒状等のリード(ピン)端子である。金属端子1は、例えば、鉄-ニッケル-コバルト合金、鉄-ニッケル合金または銅を含む合金材料等の金属材料からなる。金属端子1は、例えば鉄-ニッケル-コバルト合金からなる場合は、鉄-ニッケル-コバルト合金のインゴット(塊)に圧延加工、打ち抜き加工、切削加工およびエッチング加工等から適宜選択した金属加工を施すことによって製作することができる。 In the bonded structure C of the embodiment, the metal terminal 1 has a function as a conductive path for external connection in the semiconductor package 10 as described above, for example. In this case, the metal terminal 1 is a strip-like or rod-like lead (pin) terminal. The metal terminal 1 is made of, for example, a metal material such as an iron-nickel-cobalt alloy, an iron-nickel alloy, or an alloy material containing copper. If the metal terminal 1 is made of, for example, an iron-nickel-cobalt alloy, apply a metal processing appropriately selected from rolling, punching, cutting, etching, etc. to an ingot (lump) of iron-nickel-cobalt alloy Can be produced by
 金属端子1は、例えば図2A、図2B、図3Aおよび図3Bに示す例のように、複数の金属端子1が並んで基板4に固定されるものでもよい。図2A、図2B、図3Aおよび図3Bに示す例では、信号伝送用の一対の金属端子1が基板4を貫通して配置されている。それぞれの金属端子1は、基板4の第1面4a側に位置する端面1aおよび端面1aを含む第1端部1bを有している。金属端子1のうち基板4の第1面4a側に位置する部分(気密封止される部分)を第1端部1bとみなすこともできる。 The metal terminals 1 may be fixed to the substrate 4 such that the plurality of metal terminals 1 are arranged side by side as in the examples shown in FIGS. 2A, 2B, 3A and 3B, for example. In the example shown in FIGS. 2A, 2B, 3A and 3B, a pair of metal terminals 1 for signal transmission is disposed through the substrate 4. Each metal terminal 1 has a first end 1 b including an end face 1 a located on the first surface 4 a side of the substrate 4 and an end face 1 a. It is also possible to regard the portion of the metal terminal 1 located on the side of the first surface 4 a of the substrate 4 (the portion to be hermetically sealed) as the first end portion 1 b.
 なお、図2A、図2B、図3Aおよび図3Bに示す例では、一対の金属端子1と並んで、接地端子7が配置されている。接地端子7は、金属端子1と同様の金属材料を用い、同様の方法で製作することができる。半導体パッケージ10における金属端子1の構成および機能の詳細については後述する。 In the example shown in FIG. 2A, FIG. 2B, FIG. 3A and FIG. 3B, the ground terminal 7 is disposed side by side with the pair of metal terminals 1. The ground terminal 7 can be manufactured by the same method using the same metal material as the metal terminal 1. Details of the configuration and function of the metal terminal 1 in the semiconductor package 10 will be described later.
 金属端子1は、例えば、長さが1.5~22mmで直径が0.1~1mmの線状である。信号伝送用の場合、一対の金属端子1の機械的強度、特性インピーダンス(以下、単にインピーダンスという)のマッチングおよび半導体パッケージ10としての小型化等を考慮すれば、それぞれの金属端子1の直径は0.15~0.25mmとする。金属端子1の直径が0.15mm以上であれば、例えば半導体パッケージ10の取り扱い時における金属端子1の曲がり等を抑制することが容易であり、作業性の向上等において有利である。また、金属端子1の直径が0.25mm以下であれば、金属端子1が貫通する貫通孔4cの径を小さく抑えることができるため、基板4の小型化、つまりは半導体パッケージ10の小型化に対して有効である。 The metal terminal 1 is, for example, a linear shape having a length of 1.5 to 22 mm and a diameter of 0.1 to 1 mm. In the case of signal transmission, in consideration of mechanical strength of the pair of metal terminals 1, matching of characteristic impedance (hereinafter simply referred to as impedance) and miniaturization of the semiconductor package 10, the diameter of each metal terminal 1 is 0.15. It shall be ~ 0.25 mm. If the diameter of the metal terminal 1 is 0.15 mm or more, for example, it is easy to suppress bending or the like of the metal terminal 1 when the semiconductor package 10 is handled, which is advantageous in improving the workability and the like. Further, if the diameter of the metal terminal 1 is 0.25 mm or less, the diameter of the through hole 4c through which the metal terminal 1 penetrates can be kept small, so that the substrate 4 can be miniaturized, that is, the semiconductor package 10 can be miniaturized. Is effective.
 線路導体2は、例えば、半導体パッケージ10における半導体素子接続用の導体としての機能を有している。半導体素子と線路導体2との電気的な接続は、ボンディングワイヤまたははんだ等の低融点ろう材を介して行なわれる。ボンディングワイヤの場合であれば、ボールボンド法等のボンディング法によって半導体素子(電極)と線路導体2とに順次、金ワイヤまたはアルミニウムワイヤ等のボンディングワイヤを接合する。これにより、半導体素子を線路導体2に電気的に接続させることができる。この線路導体2と金属端子1とが接合材3を介して互いに接合されて、半導体素子と外部電気回路とを電気的に接続する導電路が構成される。 The line conductor 2 has, for example, a function as a conductor for connecting semiconductor elements in the semiconductor package 10. Electrical connection between the semiconductor element and the line conductor 2 is made via a low melting point brazing material such as a bonding wire or a solder. In the case of a bonding wire, a bonding wire such as a gold wire or an aluminum wire is sequentially bonded to the semiconductor element (electrode) and the line conductor 2 by a bonding method such as a ball bonding method. Thereby, the semiconductor element can be electrically connected to the line conductor 2. The line conductor 2 and the metal terminal 1 are bonded to each other through the bonding material 3 to form a conductive path for electrically connecting the semiconductor element and the external electric circuit.
 前述したように、線路導体2は、例えば絶縁板5の表面に形成されている。この絶縁板5が基板4の第1面4a側に固定されて、線路導体2が基板4の第1面4a側に位置している。線路導体2は、第1面4a側において側面2aを有し、側面2aを含む第2端部2bを有している。また、この第1面4a側において、線路導体2の側面2aに対向して金属端子1の端面1aが位置している。金属端子1の端面1aは、その一部のみが線路導体2の側面2aに対向していてもよい。金属端子1の第1端部1bと線路導体2の第2端部2bとが、後述する接合材3を介して両者が互いに接合されている。接合材3は、端面1aおよび側面2aにも接合している。 As described above, the line conductor 2 is formed, for example, on the surface of the insulating plate 5. The insulating plate 5 is fixed to the side of the first surface 4 a of the substrate 4, and the line conductor 2 is positioned on the side of the first surface 4 a of the substrate 4. The line conductor 2 has a side surface 2a on the first surface 4a side, and has a second end 2b including the side surface 2a. Further, on the first surface 4 a side, the end surface 1 a of the metal terminal 1 is positioned to face the side surface 2 a of the line conductor 2. Only a part of the end face 1 a of the metal terminal 1 may be opposed to the side face 2 a of the line conductor 2. The first end 1 b of the metal terminal 1 and the second end 2 b of the line conductor 2 are bonded to each other via a bonding material 3 described later. The bonding material 3 is also bonded to the end surface 1a and the side surface 2a.
 線路導体2は、例えば、タングステン、モリブデン、マンガン、銅、銀、金、パラジウム、白金、ロジウム、ニッケルおよびコバルト等の金属材料から適宜選択された金属材料またはこれらの金属材料を含む合金の金属材料により形成されている。線路導体2は、メタライズ層、めっき層および薄膜層等の形態で形成することができる。線路導体2は、前述したように絶縁板5に形成されたものであり、金、銅、ニッケル、銀等の薄膜層を含むものであるときには、チタン、クロム、タンタル、ニオブ、ニッケル-クロム合金、窒化タンタル等の密着金属層をさらに含むものでもよい。密着金属層は、絶縁板5と薄膜層との間に位置し、線路導体2の絶縁板5に対する密着性を向上させる機能を有する。 The line conductor 2 is, for example, a metal material appropriately selected from metal materials such as tungsten, molybdenum, manganese, copper, silver, gold, palladium, platinum, rhodium, nickel and cobalt, or a metal material of an alloy containing these metal materials. It is formed by The line conductor 2 can be formed in the form of a metallized layer, a plating layer, a thin film layer or the like. The line conductor 2 is formed on the insulating plate 5 as described above, and when it contains a thin film layer of gold, copper, nickel, silver or the like, titanium, chromium, tantalum, niobium, nickel-chromium alloy, nitrided It may further include an adhesion metal layer such as tantalum. The adhesion metal layer is located between the insulating plate 5 and the thin film layer, and has a function of improving the adhesion of the line conductor 2 to the insulating plate 5.
 線路導体2の厚みは、例えば電気抵抗の低減および内部応力の抑制等を考慮して、0.1~5μm程度に設定される。また、密着金属層の厚みは、絶縁板5に対する密着性の向上および内部応力の抑制等を考慮して、0.01~0.2μm程度に設定される。なお、線路導体2は、密着金属層と薄膜層との間に、両者の相互拡散を抑制する拡散抑制層をさらに含んでいてもよい。拡散抑制層は、例えば、白金、パラジウム、ロジウム、ニッケル、チタン-タングステン合金等の金属材料により形成することができる。拡散抑制層の厚みは、例えば上記の相互拡散の抑制および線路導体2における電気抵抗の抑制等を考慮して、約0.05~1μmに設定される。 The thickness of the line conductor 2 is set to about 0.1 to 5 μm in consideration of, for example, reduction of electric resistance, suppression of internal stress, and the like. The thickness of the adhesion metal layer is set to about 0.01 to 0.2 μm in consideration of the improvement of the adhesion to the insulating plate 5 and the suppression of the internal stress. The line conductor 2 may further include a diffusion suppression layer that suppresses mutual diffusion between the adhesion metal layer and the thin film layer. The diffusion suppression layer can be formed of, for example, a metal material such as platinum, palladium, rhodium, nickel, or a titanium-tungsten alloy. The thickness of the diffusion suppression layer is set to about 0.05 to 1 μm in consideration of, for example, the above-described suppression of mutual diffusion and suppression of the electrical resistance in the line conductor 2.
 また、線路導体2は、メタライズ法によって絶縁板5の表面に配置されたものであるときには、例えば、タングステン、モリブデン、マンガン、銅、銀、金、白金およびパラジウム等の金属材料から適宜選択された金属材料を含んでいて構わない。この場合には、例えば、タングステンの粉末を有機溶剤およびバインダ等とともに混練して作製した金属ペーストを、絶縁板5と焼成することによって線路導体2を形成することができる。 In addition, when the line conductor 2 is disposed on the surface of the insulating plate 5 by a metallizing method, it is appropriately selected from metal materials such as tungsten, molybdenum, manganese, copper, silver, gold, platinum and palladium, for example. Metal materials may be included. In this case, for example, the line conductor 2 can be formed by sintering a metal paste prepared by kneading tungsten powder with an organic solvent, a binder, and the like with the insulating plate 5.
 絶縁板5は、例えば、酸化アルミニウム質焼結体、窒化アルミニウム質焼結体、窒化ケイ素質焼結体またはガラスセラミック焼結体等のセラミックス絶縁材料によって形成されている。絶縁板5は、例えば酸化アルミニウム質焼結体からなる場合であれば、次のようにして製作することができる。まず、酸化アルミニウム、酸化ケイ素、酸化カルシウムおよび酸化マグネシウム等の原料粉末に適当な有機溶剤、溶媒を添加混合してスラリーを作製する。次に、スラリーをドクターブレード法またはカレンダーロール法等によってシート状に成形してセラミックグリーンシート(以下、グリーンシートともいう)を得る。その後、グリーンシートを所定形状に打ち抜き加工するとともに必要に応じて複数枚積層し、これを約1300~1600℃の所定温度で焼成する。以上の工程によって絶縁板5を製作することができる。 The insulating plate 5 is formed of, for example, a ceramic insulating material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic sintered body. If the insulating plate 5 is made of, for example, an aluminum oxide sintered body, it can be manufactured as follows. First, a slurry is prepared by adding and mixing an appropriate organic solvent and solvent to raw material powders such as aluminum oxide, silicon oxide, calcium oxide and magnesium oxide. Next, the slurry is formed into a sheet by a doctor blade method, a calender roll method or the like to obtain a ceramic green sheet (hereinafter also referred to as a green sheet). Thereafter, the green sheet is punched into a predetermined shape, laminated as necessary, and sintered at a predetermined temperature of about 1300 to 1600 ° C. The insulating plate 5 can be manufactured by the above steps.
 線路導体2がタングステン等のメタライズ層からなる場合には、メタライズ層(線路導体2)用の金属ペーストを絶縁板5となるグリーンシートの表面に所定パターンに印刷し、同時焼成する製造方法を用いてもよい。この場合には、絶縁板5と線路導体2とを一体的に製作することができる。そのため、線路導体2と絶縁板5との接合の強度および生産性等の向上に関しては有効である。 When the line conductor 2 is formed of a metallized layer such as tungsten, a manufacturing method is used in which a metal paste for the metallized layer (line conductor 2) is printed on a surface of a green sheet to be the insulating plate 5 and fired simultaneously. May be In this case, the insulating plate 5 and the line conductor 2 can be integrally manufactured. Therefore, it is effective to improve the strength, productivity and the like of the connection between the line conductor 2 and the insulating plate 5.
 接合材3は、金属端子1の端面1aを含む第1端部1bから線路導体2の側面2aを含む第2端部2bにかけて覆うように位置している。金属端子1の第1端部1bと線路導体2の第2端部2bとに接合している接合材3は、例えば、銀、銅、金およびパラジウム等の金属材料またはこれらの金属材料を含む合金等の金属材料からなる金属粒子を含有している。金属粒子同士が互いに金属結合によって結合し合い、接合材3としてまとまった形状になっている。また、この金属粒子が金属端子1および線路導体2それぞれに含有されている金属成分と結合し合っている。これにより、金属端子1と線路導体2との接合材3を介した接合が行なわれている。 The bonding material 3 is positioned so as to cover from the first end 1 b including the end face 1 a of the metal terminal 1 to the second end 2 b including the side 2 a of the line conductor 2. The bonding material 3 bonded to the first end 1b of the metal terminal 1 and the second end 2b of the line conductor 2 includes, for example, a metal material such as silver, copper, gold and palladium or a metal material of these metals. It contains metal particles made of a metal material such as an alloy. The metal particles are bonded to each other by metal bonding, and form a combined shape as the bonding material 3. Further, the metal particles are combined with the metal components contained in the metal terminal 1 and the line conductor 2 respectively. Thus, bonding is performed via the bonding material 3 between the metal terminal 1 and the line conductor 2.
 この接合構造体Cは、例えば図1に示すような上下方向の断面視(縦断面視)において、金属端子1の端面1aが線路導体2の表面2bbに対して垂直になっている。なお、線路導体2の、絶縁板5と反対側の表面2bbに垂直で、表面2bbが臨む方向を上方向とし、その反対を下方向とする。さらに基板4の第1面4aの側から第1面4aを見たときに、この上下方向に対する左右方向も規定する。線路導体2の表面2bbは、以下では上面2bbと呼ぶ。線路導体2の上面2bbは、線路導体2の第2端部2bの一部を構成している。また、線路導体2の側面2aは、金属端子1の端面1aに対してほぼ平行である。そのため、金属端子1の端面と線路導体2の側面とを互いに対向させて配置させることができる。 The end face 1 a of the metal terminal 1 is perpendicular to the surface 2 bb of the line conductor 2 in the cross-sectional view (vertical cross-sectional view) in the vertical direction as shown in FIG. 1, for example. The direction perpendicular to the surface 2 bb of the line conductor 2 opposite to the insulating plate 5 is referred to as the upward direction, and the opposite direction is the downward direction. Furthermore, when the first surface 4 a is viewed from the side of the first surface 4 a of the substrate 4, the left and right direction with respect to the vertical direction is also defined. The surface 2 bb of the line conductor 2 is hereinafter referred to as the upper surface 2 bb. The upper surface 2 bb of the line conductor 2 constitutes a part of the second end 2 b of the line conductor 2. Further, the side surface 2 a of the line conductor 2 is substantially parallel to the end surface 1 a of the metal terminal 1. Therefore, the end face of the metal terminal 1 and the side face of the line conductor 2 can be disposed to face each other.
 金属端子1と線路導体2との接合材3を介した接合構造体Cは、金属端子1と線路導体2との間、つまり金属端子1が接続される外部電気回路と、線路導体2が接続される半導体素子との間の信号の伝送路を構成する。このときに、伝送路を伝送される信号の高周波化(例えば40GHz以上)に対応できるように、この金属端子1と線路導体2との間のインピーダンスを整合させる必要がある。これに対して、実施形態の接合構造体Cでは、そのようなインピーダンス整合の精度向上が容易である。インピーダンス整合の精度向上の詳細は以下のとおりである。 The junction structure C via the joining member 3 between the metal terminal 1 and the line conductor 2 is connected between the metal terminal 1 and the line conductor 2, that is, the external electrical circuit to which the metal terminal 1 is connected, and the line conductor 2 The transmission path of the signal between the semiconductor elements to be At this time, it is necessary to match the impedance between the metal terminal 1 and the line conductor 2 so as to cope with the high frequency (for example, 40 GHz or more) of the signal transmitted through the transmission path. On the other hand, in the junction structure C of the embodiment, such accuracy improvement in impedance matching is easy. The details of the accuracy improvement of the impedance matching are as follows.
 すなわち、実施形態の接合構造体Cによれば、金属端子1の端面1aと線路導体2の側面2aとが対向した状態で接合材3により接合されている。つまり、本発明において、対向とは、信号が伝送される方向である金属端子1の長さ方向において金属端子1と線路導体2とが重なり合っていないことを言う。言い換えると、線路導体2の上面2bbに垂直な方向に見たときの平面視において、金属端子1と線路導体2とが重なり合っていないことを言う。そのため、金属端子1と線路導体2との重なり合いに起因した、伝送路における抵抗の変化が抑制されている。これにより、伝送路の長さ方向における抵抗の変化による特性インピーダンスの変化を低減することができる。したがって、金属端子1と線路導体2とで構成される高周波信号の伝送路における特性インピーダンス整合の精度向上に有効な接合構造体Cを提供することができる。本実施形態では、金属端子1の端面1aと線路導体2の側面2aとが対向し、端面1aと側面2aとが直接に接触している。また、金属端子1の端面1aを含む上下方向の断面視において、線路導体2の下面が金属端子1よりも下側に位置している。 That is, according to the bonding structure C of the embodiment, bonding is performed by the bonding material 3 in a state in which the end surface 1 a of the metal terminal 1 and the side surface 2 a of the line conductor 2 face each other. That is, in the present invention, the term "opposite" means that the metal terminal 1 and the line conductor 2 do not overlap in the longitudinal direction of the metal terminal 1 which is the direction in which the signal is transmitted. In other words, it means that the metal terminal 1 and the line conductor 2 do not overlap in a plan view when viewed in a direction perpendicular to the top surface 2 bb of the line conductor 2. Therefore, the change of the resistance in the transmission line due to the overlapping of the metal terminal 1 and the line conductor 2 is suppressed. Thereby, it is possible to reduce the change of the characteristic impedance due to the change of the resistance in the length direction of the transmission path. Therefore, it is possible to provide the junction structure C effective for improving the accuracy of the characteristic impedance matching in the transmission line of the high frequency signal constituted by the metal terminal 1 and the line conductor 2. In the present embodiment, the end face 1a of the metal terminal 1 and the side face 2a of the line conductor 2 face each other, and the end face 1a and the side face 2a are in direct contact with each other. Further, in a cross-sectional view in the vertical direction including the end face 1 a of the metal terminal 1, the lower surface of the line conductor 2 is located below the metal terminal 1.
 接合材3を介した金属端子1と線路導体2との接合は、例えば次のようにして行なわれる。まず、銀等の上記金属材料の粒子(実際には多数の粒子の集合物)を有機溶剤およびバインダとともに混練してペーストを作製する。次に、金属端子1の端面1aを線路導体2の側面2aに対向させて位置合せし、位置合わせした部分に上記ペーストを配置して、これらをジグ等で仮固定する。その後、これらを電気炉等で加熱してペースト中の金属粒子同士を結合させる。このときに、バインダ成分間の重合等が生じるようにしてもよい。すなわち、接合材3は、金属粒子間の金属結合に加えて、有機成分の重合体による接合の作用を含んでいてもよい。上記バインダ成分を含有するペーストによる接合の温度は、例えば約200~300℃に設定される。 Bonding between the metal terminal 1 and the line conductor 2 via the bonding material 3 is performed, for example, as follows. First, particles of the above-mentioned metal material such as silver (in fact, an aggregate of many particles) are kneaded with an organic solvent and a binder to prepare a paste. Next, the end face 1a of the metal terminal 1 is made to face the side face 2a of the line conductor 2 and aligned, the above-mentioned paste is placed on the aligned part, and these are temporarily fixed by a jig or the like. Then, these are heated with an electric furnace etc., and the metal particles in a paste are couple | bonded. At this time, polymerization or the like between binder components may occur. That is, in addition to the metal bond between metal particles, the bonding material 3 may include the action of bonding by the polymer of the organic component. The temperature of bonding by the paste containing the binder component is set to, for example, about 200 to 300.degree.
 このような接合時の金属粒子等の挙動から、ペーストが線路導体2の第2端部2bに位置する上面2bbおよび金属端子1にかけて濡れ広がる。これにより、例えば図1に示すような接合構造体Cを作製することができる。 From such behavior of metal particles and the like at the time of bonding, the paste wets and spreads over the upper surface 2 bb located at the second end 2 b of the line conductor 2 and the metal terminal 1. Thereby, for example, a bonded structure C as shown in FIG. 1 can be produced.
 また、このときに、上記ペーストが互いに重合する有機成分を含有していれば、有機成分の重合体によってペーストが比較的低温で硬化するため、接合材3となるペーストの形状維持が容易である。そのため、金属端子1の第1端部1bと線路導体2の第2端部2bとの接合材3を介した接合を容易に行なわせることもできる。また、比較的低温で接合ができるため、金属端子1と線路導体2との接合材3を介した接合の作業性、ならびに接合構造体Cおよび半導体パッケージ10としての生産性の向上についても有効である。 At this time, if the paste contains an organic component that polymerizes with each other, the paste is hardened at a relatively low temperature by the polymer of the organic component, so the shape maintenance of the paste to be the bonding material 3 is easy . Therefore, bonding via the bonding material 3 between the first end 1 b of the metal terminal 1 and the second end 2 b of the line conductor 2 can be easily performed. Further, since bonding can be performed at a relatively low temperature, the workability of bonding via the bonding material 3 between the metal terminal 1 and the line conductor 2 and the improvement of productivity as the bonding structure C and the semiconductor package 10 are also effective. is there.
 また、接合材3における金属粒子は、金属粒子間の接合の容易さおよび接合の強度等を考慮したときに、1μm程度またはそれ未満の粒径である微小粒子(いわゆるサブミクロン粒子、サブナノ粒子、ナノ粒子)であってもよいし、微小粒子とミクロン単位の金属粒子との混合物であってもよい。接合材3となるペーストは、このような微小粒子を金属粒子として用いるときに、互いに重合し合う有機樹脂成分を含有していてもよい。このような有機樹脂成分としては、例えば重合性のカルボン酸誘導体等を挙げることができる。 In addition, the metal particles in the bonding material 3 are fine particles (so-called submicron particles, subnanoparticles, etc.) having a particle size of about 1 μm or less in consideration of ease of bonding between metal particles, strength of bonding, and the like. It may be nanoparticles) or a mixture of microparticles and metal particles of micron size. The paste used as the bonding material 3 may contain an organic resin component that polymerizes with each other when such fine particles are used as metal particles. As such an organic resin component, a polymerizable carboxylic acid derivative etc. can be mentioned, for example.
 図4は、本発明の他の実施形態の接合構造体Cにおける要部を拡大して示す断面図である。図4において図1~図3Bと同様の部位には同様の符号を付している。図4に示す例では金属端子1の端面1aと線路導体2の側面2aとが対向しているとともに、互いに離れている。この端面1aと側面2aとの間には間隙8があり、間隙8には接合材3が位置している。すなわち、互いに離れて直接接していない金属端子1の端面1aと線路導体2の側面2aとの間が接合材3でつながり、互いに電気的に接続されている。これ以外の点において、この他の実施形態の接合構造体Cおよび半導体パッケージ10は、上記実施形態の接合構造体Cおよび半導体パッケージ10と同様である。これらの同様の点については説明を省略する。 FIG. 4 is an enlarged cross-sectional view of the main part of a bonded structure C according to another embodiment of the present invention. Parts in FIG. 4 similar to those in FIGS. 1 to 3B are assigned the same reference numerals. In the example shown in FIG. 4, the end surface 1 a of the metal terminal 1 and the side surface 2 a of the line conductor 2 face each other and are separated from each other. There is a gap 8 between the end surface 1 a and the side surface 2 a, and the bonding material 3 is located in the gap 8. That is, the end surface 1a of the metal terminal 1 which is not in direct contact with each other and the side surface 2a of the line conductor 2 are connected by the bonding material 3 and electrically connected to each other. The junction structure C and the semiconductor package 10 of the other embodiment are the same as the junction structure C and the semiconductor package 10 of the above embodiment in the other points. The description of these same points will be omitted.
 このような場合には、金属端子1と線路導体2との間に生じる熱応力の効果的な緩和に対して有利である。すなわち、前述したような金属材料からなる金属端子1と、絶縁板5に固定されている線路導体2との間で、金属端子1と絶縁板5との熱膨張率の差に起因した熱応力が生じる可能性がある。この時に、両者の間に、比較的変形が容易な銀等の金属材料を含む接合材3が、間隙8を埋める程度の量(体積)、つまり変形が容易な量で介在している。そのため、接合材3の変形によって、金属端子1と線路導体2(絶縁板5)との間に生じる熱応力を有効に緩和することができる。 In such a case, it is advantageous for effective relaxation of the thermal stress generated between the metal terminal 1 and the line conductor 2. That is, thermal stress caused by the difference in coefficient of thermal expansion between the metal terminal 1 and the insulating plate 5 between the metal terminal 1 made of a metal material as described above and the line conductor 2 fixed to the insulating plate 5 Can occur. At this time, the bonding material 3 containing a metal material such as silver, which is relatively easy to deform, is interposed between the two in such an amount (volume) that the gap 8 is filled, that is, an amount that allows easy deformation. Therefore, thermal stress generated between the metal terminal 1 and the line conductor 2 (insulation plate 5) due to the deformation of the bonding material 3 can be effectively alleviated.
 この例の場合には、上記のように熱応力の緩和について有利であるため、熱応力による接合構造体Cの機械的な破壊を効果的に抑制することができる。したがって、この場合には、インピーダンス整合の精度向上に有効であるとともに、金属端子1と線路導体2の接合の長期信頼性の向上についても有効な接合構造体Cとすることができる。なお、このような信頼性向上の効果を得る上では、接合材3が、銀または銅等の弾性率(例えばヤング率)が比較的小さい金属材料を含有する方がよい。接合材3が銀または銅を含む場合には、接合材3における導通抵抗の低減についても有利である。 In the case of this example, since it is advantageous for the relaxation of the thermal stress as described above, the mechanical fracture of the bonded structure C due to the thermal stress can be effectively suppressed. Therefore, in this case, the joint structure C is effective not only for improving the accuracy of impedance matching but also for improving the long-term reliability of the junction between the metal terminal 1 and the line conductor 2. In order to obtain such an effect of improving the reliability, the bonding material 3 preferably contains a metal material such as silver or copper having a relatively small elastic modulus (for example, Young's modulus). In the case where the bonding material 3 contains silver or copper, it is also advantageous to reduce the conduction resistance in the bonding material 3.
 また、接合材3が、前述したような銀等の微小粒子を含有するものであれば、微粒子間の結合の変位による接合材3としての(巨視的な)変形も容易である。したがって、接合材3は、接合の信頼性向上等に関しては、銀または銅の微小粒子を含有するものが適している。 Moreover, if the bonding material 3 contains fine particles such as silver as described above, (macroscopically) deformation as the bonding material 3 due to displacement of bonding between the fine particles is also easy. Therefore, the bonding material 3 is preferably one containing fine particles of silver or copper for the improvement of bonding reliability and the like.
 なお、上記の間隙8の寸法は、例えば、平面視において(線路導体2の上面に対向する方向から見て)約10μm以上であれば、上記の熱応力緩和を有効に行なうことができる程度の量の接合材3を、端面1aと側面2aとの間に位置させることが容易である。また、上記の間隙8は、例えば、平面視において約100μm以下であれば、金属端子1の端面1aと線路導体2の側面2aとの間の距離が、接合材3の入り込みが難しくなる程度に大きくなる可能性を低減することができる。つまり、接合材3を介した金属端子1と線路導体2との接合の作業性および接合強度の確保に対して有利である。したがって、金属端子1の端面1aと線路導体2の側面2aとの間に間隙8を設定する場合には、平面視における間隙8の寸法を約10~100μmの範囲に設定すればよい。 If the dimension of the gap 8 is, for example, about 10 μm or more in plan view (as viewed from the direction opposite to the upper surface of the line conductor 2), the above-mentioned thermal stress can be effectively relieved. It is easy to place a quantity of bonding material 3 between the end face 1a and the side face 2a. Further, if the gap 8 is, for example, about 100 μm or less in plan view, the distance between the end face 1a of the metal terminal 1 and the side face 2a of the line conductor 2 is such that the entry of the bonding material 3 becomes difficult. The possibility of becoming large can be reduced. That is, it is advantageous for securing the workability and bonding strength of bonding between the metal terminal 1 and the line conductor 2 via the bonding material 3. Therefore, when the gap 8 is set between the end face 1a of the metal terminal 1 and the side surface 2a of the line conductor 2, the dimension of the gap 8 in plan view may be set in the range of about 10 to 100 μm.
 なお、このような間隙8を含む形態は、図4に示す例に限られない。例えば、接合材3は、間隙8から金属端子1の下面まで回り込んで接合されていてもよく、金属端子1の第1端部1bにおいて金属端子1の全周を囲むように(つまり環状に)接合材3が位置していてもよい。 The form including such a gap 8 is not limited to the example shown in FIG. For example, the bonding material 3 may be joined from the gap 8 to the lower surface of the metal terminal 1 so as to surround the entire circumference of the metal terminal 1 at the first end 1 b of the metal terminal 1 (that is, annularly The bonding material 3 may be located.
 図1および図4に示す例において、接合材3の上部外周は、外側に若干膨らんだようになっている。すなわち、縦断面において接合材3の外周の一部が外側に凸状になっている。これにより、接合材3の量を比較的大きくして、導通抵抗の低減および応力緩和の効果を高めることもできる。 In the example shown in FIG. 1 and FIG. 4, the upper outer periphery of the bonding material 3 is slightly expanded outward. That is, in the vertical cross section, a part of the outer periphery of the bonding material 3 is convex outward. As a result, the amount of bonding material 3 can be made relatively large, and the effects of reduction in conduction resistance and stress relaxation can be enhanced.
 端面1aと側面2aとが対向し合って接合される金属端子1と線路導体2との位置関係は、図1~図4に示す例に限られない。例えば、金属端子1が線路導体2の下方に位置していてもよく、端面1aの中央部に線路導体2の側面2aが接続されていてもよい。 The positional relationship between the metal terminal 1 and the line conductor 2 in which the end face 1a and the side face 2a face each other and is joined is not limited to the examples shown in FIGS. For example, the metal terminal 1 may be located below the line conductor 2, and the side surface 2a of the line conductor 2 may be connected to the center of the end face 1a.
 ただし、例えば図1および図4に示す例のように、金属端子1と線路導体2とが互いに長さ方向に平行であるとともに、金属端子1が線路導体2の上方に位置しており、金属端子1の端面1aの下部と、前記線路導体の前記側面の上部とが互いに対向している接合構造体Cでは、次のような利点がある。すなわち、この場合には、線路導体2に対する金属端子1の位置合せが、線路導体2の露出した方向である上側から行なえるので、位置合せの作業が容易であり、位置精度の向上も容易である。したがって、接合構造体Cおよび半導体パッケージ10としての特性および生産性の向上に有利である。 However, as in the example shown in FIGS. 1 and 4, for example, the metal terminal 1 and the line conductor 2 are parallel to each other in the length direction, and the metal terminal 1 is located above the line conductor 2, The junction structure C in which the lower portion of the end face 1a of the terminal 1 and the upper portion of the side surface of the line conductor face each other has the following advantages. That is, in this case, since the alignment of the metal terminal 1 with respect to the line conductor 2 can be performed from the upper side, which is the direction in which the line conductor 2 is exposed, the alignment operation is easy and the improvement of the position accuracy is easy. is there. Therefore, it is advantageous to the improvement of the characteristics and productivity as the junction structure C and the semiconductor package 10.
 また、この場合には、接合材3が上記のように外側に凸状に膨らんだ形状とすることも容易である。したがって、応力緩の効果を高める上で有利な構造の接合構造体Cを作製することも容易である。 Moreover, in this case, it is also easy to make the bonding material 3 convex outward as described above. Therefore, it is also easy to produce the joint structure C having an advantageous structure in enhancing the effect of stress relaxation.
 図5は、本発明のさらに他の実施形態の接合構造体Cにおける要部を拡大して示す断面図である。図5において図1~図3Bと同様の部位には同様の符号を付している。図5に示す例では、金属端子1の端面1aを含む上下方向の断面視において、金属端子1の下面が線路導体2よりも下側に位置している。これ以外の点において、この他の実施形態の接合構造体Cおよび半導体パッケージ10は、前述した実施形態の接合構造体Cおよび半導体パッケージ10と同様である。これらの同様の点については説明を省略する。 FIG. 5 is an enlarged cross-sectional view of the main part of a bonded structure C according to still another embodiment of the present invention. In FIG. 5, the same parts as those in FIGS. 1 to 3B are denoted by the same reference numerals. In the example shown in FIG. 5, the lower surface of the metal terminal 1 is located below the line conductor 2 in a cross-sectional view in the vertical direction including the end surface 1 a of the metal terminal 1. The junction structure C and the semiconductor package 10 according to the other embodiment are the same as the junction structure C and the semiconductor package 10 according to the above-described embodiment in other points. The description of these same points will be omitted.
 この場合には、線路導体2の側面2aを金属端子1の端面1aに対向させるときに、端面1aの比較的広い範囲に線路導体2を対向させることができる。言い換えれば、両者の位置合せの厳密さを低くすることができる。そのため、接合構造体Cおよびそれを含む半導体パッケージ10の作製をより容易にすることができる。 In this case, when the side surface 2 a of the line conductor 2 is made to face the end face 1 a of the metal terminal 1, the line conductor 2 can be made to face a relatively wide range of the end face 1 a. In other words, the strictness of the alignment between the two can be reduced. Therefore, the junction structure C and the semiconductor package 10 including the same can be more easily manufactured.
 また、この場合には、線路導体2の側面2aを金属端子1の端面1aに直接に接触させて接触抵抗を低減することもできる。また、そのような直接の接触(接続)構造の作製を上記のように容易にすることもできる。したがって、インピーダンスの整合が容易であるとともに、導通抵抗の低減にも有効であり、生産性の確保についても有効な接合構造体Cおよび半導体パッケージ10とすることができる。 In this case, the side surface 2a of the line conductor 2 can be brought into direct contact with the end face 1a of the metal terminal 1 to reduce the contact resistance. Also, the fabrication of such direct contact (connection) structures can be facilitated as described above. Therefore, the impedance matching is easy, and it is effective to reduce the conduction resistance, and the junction structure C and the semiconductor package 10 can be effective also for securing the productivity.
 図6は、本発明のさらに他の実施形態の接合構造体Cにおける要部を拡大して示す断面図である。図6において図1~図3Bと同様の部位には同様の符号を付している。図6に示す例では、図1に示した実施形態と同様の、金属端子1の端面1aと線路導体2の側面2aとが対向し、端面1aと側面2aとが直接に接触する構成に加えて、さらに、金属端子1の第1端部1bにおいて金属端子1の外周を覆うように接合材3が位置している。これ以外の点において、この他の実施形態の接合構造体Cおよび半導体パッケージ10は、前述した実施形態の接合構造体Cおよび半導体パッケージ10と同様である。これらの同様の点については説明を省略する。 FIG. 6 is an enlarged cross-sectional view of the main part of a bonded structure C according to still another embodiment of the present invention. Parts in FIG. 6 similar to those in FIGS. 1 to 3B are assigned the same reference numerals. In the example shown in FIG. 6, similar to the embodiment shown in FIG. 1, the end face 1a of the metal terminal 1 and the side face 2a of the line conductor 2 face each other, and the end face 1a and the side face 2a are in direct contact. Furthermore, the bonding material 3 is positioned to cover the outer periphery of the metal terminal 1 at the first end 1 b of the metal terminal 1. The junction structure C and the semiconductor package 10 according to the other embodiment are the same as the junction structure C and the semiconductor package 10 according to the above-described embodiment in other points. The description of these same points will be omitted.
 端面1aと側面2aとが対向することで、金属端子1と線路導体2との重なり合いに起因した、伝送路における抵抗の変化は抑制される。一方、図1に示すように、第1端部1bにおいて、周面の下方の一部が接合材3で覆われておらず、金属端子1に空気が隣接する部分が有ると、その部分でインピーダンスが局所的に変化する。伝送される信号は、この変化に起因した反射などによって、その伝送特性が劣化してしまう。本実施形態は、接合材3が第1端部1bの外周を覆うように位置しているので、第1端部1bにおけるインピーダンスの変化を抑制し、伝送特性の劣化を抑えることができる。接合材3は、第1端部1bのうち、第1面4aから突出した部分の外周を覆っている。接合材3は、外周に直接接触するように覆っていてもよい。 By the end face 1a and the side face 2a facing each other, a change in resistance in the transmission path caused by the overlapping of the metal terminal 1 and the line conductor 2 is suppressed. On the other hand, as shown in FIG. 1, in the first end portion 1b, if the lower part of the circumferential surface is not covered with the bonding material 3 and there is a portion where air is adjacent to the metal terminal 1, The impedance changes locally. The transmission characteristic of the signal to be transmitted is degraded due to reflection or the like caused by this change. In the present embodiment, since the bonding material 3 is positioned so as to cover the outer periphery of the first end 1b, it is possible to suppress the change in impedance at the first end 1b and to suppress the deterioration of the transmission characteristics. The bonding material 3 covers the outer periphery of a portion of the first end 1 b that protrudes from the first surface 4 a. The bonding material 3 may be covered so as to be in direct contact with the outer periphery.
 図7は、本発明のさらに他の実施形態の接合構造体Cにおける要部を拡大して示す断面図である。図7において図1~図3Bと同様の部位には同様の符号を付している。図7に示す例では、金属端子1のうち、基板4の第1面4a側には、端面1aのみが露出するように位置しており、金属端子1の端面1aと線路導体2の側面2aとが対向し、端面1aと側面2aとが直接に接触している。これ以外の点において、この他の実施形態の接合構造体Cおよび半導体パッケージ10は、前述した実施形態の接合構造体Cおよび半導体パッケージ10と同様である。これらの同様の点については説明を省略する。本実施形態における、上下方向の位置関係については、図1に示す実施形態と同様に、金属端子1の端面1aを含む上下方向の断面視において、線路導体2の下面が金属端子1よりも下側に位置している。 FIG. 7 is an enlarged cross-sectional view of the main part of a bonded structure C according to still another embodiment of the present invention. The same reference numerals as in FIGS. 1 to 3B denote the same parts in FIG. In the example shown in FIG. 7, among the metal terminals 1, only the end surface 1 a is exposed on the first surface 4 a side of the substrate 4, and the end surface 1 a of the metal terminal 1 and the side surface 2 a of the line conductor 2 are And the end face 1a and the side face 2a are in direct contact with each other. The junction structure C and the semiconductor package 10 according to the other embodiment are the same as the junction structure C and the semiconductor package 10 according to the above-described embodiment in other points. The description of these same points will be omitted. As to the positional relationship in the vertical direction in the present embodiment, the lower surface of the line conductor 2 is lower than the metal terminal 1 in the cross-sectional view in the vertical direction including the end face 1 a of the metal terminal 1 as in the embodiment shown in FIG. Located on the side.
 金属端子1のうち、基板4の第1面4a側に端面1aのみが露出するとは、言い換えると、第1面4aと端面1aとが面一となっているか、または金属端子1の長さ方向に見て、端面1aが第1面4aから突出していない。接合材3は、露出した端面1aから線路導体2の側面2aを含む第2端部2bにかけて覆うように位置している。後述のように、基板4の貫通孔4c内には、絶縁材料からなる封止材が位置している。封止材は、金属端子1と貫通孔4cとの間の隙間を塞ぐ機能を有している。第1面4a側に端面1aのみが露出する場合、基板4の貫通孔4c内における金属端子1の周面は、封止材によって全周が覆われており、端面1aは、接合材3によって覆われており、空気と接触する部分が無い。これによりインピーダンスの局所的な変化が抑制され、伝送特性の劣化を抑えることができる。 Of the metal terminals 1, only the end surface 1 a is exposed on the first surface 4 a side of the substrate 4, in other words, the first surface 4 a and the end surface 1 a are flush or the length direction of the metal terminal 1 The end surface 1a does not protrude from the first surface 4a. The bonding material 3 is positioned so as to cover from the exposed end surface 1 a to the second end 2 b including the side surface 2 a of the line conductor 2. As described later, in the through holes 4 c of the substrate 4, a sealing material made of an insulating material is located. The sealing material has a function of closing the gap between the metal terminal 1 and the through hole 4c. When only the end face 1a is exposed on the first surface 4a side, the entire periphery of the metal terminal 1 in the through hole 4c of the substrate 4 is covered with the sealing material, and the end face 1a is formed by the bonding material 3 Covered and without air contact. Thus, local changes in impedance can be suppressed, and deterioration of transmission characteristics can be suppressed.
 図8は、本発明のさらに他の実施形態の接合構造体Cにおける要部を拡大して示す断面図である。図8において図1~図3Bと同様の部位には同様の符号を付している。図8に示す例では、図7に示す実施形態と同様に、金属端子1のうち、基板4の第1面4a側には、端面1aのみが露出するように位置しており、金属端子1の端面1aと線路導体2の側面2aとが対向し、端面1aと側面2aとが直接に接触している。上下方向の位置関係については、図5に示す実施形態と同様に、金属端子1の端面1aを含む上下方向の断面視において、金属端子1の下面が線路導体2よりも下側に位置している。これ以外の点において、この他の実施形態の接合構造体Cおよび半導体パッケージ10は、前述した実施形態の接合構造体Cおよび半導体パッケージ10と同様である。これらの同様の点については説明を省略する。 FIG. 8 is an enlarged cross-sectional view of the main parts of a bonded structure C according to still another embodiment of the present invention. In FIG. 8, the same parts as those in FIGS. 1 to 3B are denoted by the same reference numerals. In the example shown in FIG. 8, as in the embodiment shown in FIG. 7, the metal terminal 1 is positioned on the first surface 4 a side of the substrate 4 so that only the end face 1 a is exposed. The end face 1a of the line conductor 2 faces the side face 2a of the line conductor 2, and the end face 1a is in direct contact with the side face 2a. As to the positional relationship in the vertical direction, the lower surface of the metal terminal 1 is positioned lower than the line conductor 2 in the vertical cross-sectional view including the end face 1a of the metal terminal 1 as in the embodiment shown in FIG. There is. The junction structure C and the semiconductor package 10 according to the other embodiment are the same as the junction structure C and the semiconductor package 10 according to the above-described embodiment in other points. The description of these same points will be omitted.
 また、他の実施形態を含む上記各実施形態の例において、接合材3が、金属端子1の第1端部1bから線路導体2の上面2bbの側面に隣接した部分にかけて連続的に広がって位置しているものでもよい。この場合には、比較的広い範囲で接合材3が広がって線路導体2に接合されるため、接合材3と線路導体2との接合強度の向上に有効である。また、これにより、接合材3を介した金属端子1と線路導体2との接合強度も効果的に向上させることができる。 Moreover, in the example of each of the above embodiments including the other embodiments, the bonding material 3 extends continuously from the first end 1 b of the metal terminal 1 to a portion adjacent to the side surface of the top surface 2 bb of the line conductor 2. You may be doing what you are doing. In this case, since the bonding material 3 spreads over a relatively wide range and is bonded to the line conductor 2, it is effective to improve the bonding strength between the bonding material 3 and the line conductor 2. In addition, the bonding strength between the metal terminal 1 and the line conductor 2 through the bonding material 3 can also be effectively improved.
 この場合、接合材3のうち線路導体2に上面2bbに接合された部分の先端は、例えば、平面視において、円弧状または楕円弧状等の角部分を有していない形状であってもよい。この場合には、その角部分を起点にした接合材の剥がれの可能性を効果的に低減することができる。したがって、接合材3を介した金属端子1と線路導体2との接合強度も効果的に向上させることができる。 In this case, the tip of the portion of the bonding material 3 bonded to the top surface 2 bb to the line conductor 2 may have a shape that does not have corner portions such as arcs or elliptical arcs in a plan view, for example. In this case, the possibility of peeling of the bonding material starting from the corner portion can be effectively reduced. Therefore, the bonding strength between the metal terminal 1 and the line conductor 2 through the bonding material 3 can be effectively improved.
 なお、上記の各例において、金属粒子が銀粒子であるときには、次のような点で有利である。すなわち、接合材3における熱伝導性(つまり、接合構造体Cおよびこれを含む半導体パッケージ10の放熱性等)、線路導体2および金属端子1を含む信号の伝送路における電気抵抗の低減等に有利である。また、半導体素子の実装または金属ケースの接合等のための熱負荷工程においても再溶融しづらい、アウトガスが少ないという利点が挙げられる。 In each of the above examples, when the metal particles are silver particles, the following advantages are obtained. That is, it is advantageous for reducing the electrical resistance in the transmission line of the signal including the line conductor 2 and the metal terminal 1, such as the thermal conductivity of the bonding material 3 (that is, the heat dissipation of the bonding structure C and the semiconductor package 10 including this It is. Moreover, it is hard to remelt also in the heat load process for mounting of a semiconductor element, joining of a metal case, etc., and the advantage of having few outgasses is mentioned.
 この場合の銀粒子は、銀を99.9質量%以上含有する、いわゆる純銀であってもよく、微量の銅または金等の他の成分を含有するものでもよい。また、金属粒子の全部が銀粒子でなくてもよく、例えば銀粒子と銅粒子の両方が金属粒子に含まれていてもかまわない。 The silver particles in this case may be so-called pure silver containing 99.9% by mass or more of silver, or may contain other components such as a trace amount of copper or gold. In addition, all the metal particles may not be silver particles, and for example, both silver particles and copper particles may be contained in the metal particles.
 また、金属粒子が銅粒子であるとき、または銅粒子を含むときには、金属粒子の全部が銀粒子であるときに比べて、イオンマイグレーションの可能性を低減すること、経済性を向上させること等においては有利である。 In addition, when the metal particles are copper particles or contains copper particles, the possibility of ion migration is reduced, economic efficiency is improved, etc., as compared to when all the metal particles are silver particles. Is advantageous.
 前述したように、本発明の実施形態の半導体パッケージは次の構成を有している。すなわち、本実施形態の半導体パッケージ10は第1面4aおよび第1面4aと反対側の第2面4bを有する基板4と、基板4の第1面4a側に位置する線路導体2と、基板4の第2面4bから第1面4aにかけて貫通しており、第1面4a側に端部1bを有する金属端子1と、金属粒子を含んでおり、金属端子1の端部(第1端部)1bと線路導体2との間に介在している接合材3とを有している。また、本実施形態の半導体パッケージ10は、金属端子1の端部1bと線路導体2との間に、上記いずれかの構成の接合構造体Cを有している。 As described above, the semiconductor package of the embodiment of the present invention has the following configuration. That is, the semiconductor package 10 of the present embodiment includes the substrate 4 having the first surface 4 a and the second surface 4 b opposite to the first surface 4 a, the line conductor 2 positioned on the first surface 4 a side of the substrate 4, and the substrate 4 includes a metal terminal 1 penetrating from the second surface 4b to the first surface 4a and having an end 1b on the first surface 4a side, and metal particles; the end of the metal terminal 1 (first end And a bonding material 3 interposed between the line conductor 2 and the portion 1b. In addition, the semiconductor package 10 of the present embodiment includes the junction structure C of any of the above-described configurations between the end portion 1 b of the metal terminal 1 and the line conductor 2.
 上記形態の半導体パッケージ10によれば、上記いずれかの構成の接合構造体Cを有することから、金属端子1と線路導体2とで構成される信号の伝送路におけるインピーダンス整合が容易で、高周波信号の伝送特性向上に有効な半導体パッケージ10を提供することができる。 According to the semiconductor package 10 of the above embodiment, since the junction structure C of any of the above configurations is provided, impedance matching in the transmission line of the signal formed of the metal terminal 1 and the line conductor 2 is easy, and high frequency signal The semiconductor package 10 effective for improving the transmission characteristics of
 基板4の第1面4a側は、前述した金属ケースで封止される側である。基板4と金属ケースとの間に形成される空間内に、半導体素子および金属端子1の端部1bが封止される。また、図2A、図2B、図3Aおよび図3B等に示す例では、基板4の貫通孔4c内に封止材(符号なし)が位置している。封止材は、金属端子1と貫通孔4cとの間の隙間を塞ぐ機能を有している。封止材は、ガラス材料またはセラミック材料等の絶縁材料からなる。このような絶縁材料の例としては、ホウケイ酸ガラス、ソーダガラス等のガラス、およびこれらのガラスに熱膨張係数や比誘電率を調整するためのセラミックフィラーを加えたものが挙げられる。この絶縁材料は、金属端子1におけるインピーダンスマッチング(比誘電率)および封止の信頼性等を考慮して、適宜選択することができる。なお、図1、図4および図5において、金属端子1と基板5の貫通孔4cとの間の封止材を省略している。 The first surface 4 a side of the substrate 4 is a side sealed with the above-described metal case. The end 1 b of the semiconductor element and the metal terminal 1 is sealed in the space formed between the substrate 4 and the metal case. Further, in the examples shown in FIGS. 2A, 2B, 3A, 3B, etc., the sealing material (without the reference numeral) is located in the through hole 4c of the substrate 4. The sealing material has a function of closing the gap between the metal terminal 1 and the through hole 4c. The sealing material is made of an insulating material such as a glass material or a ceramic material. Examples of such an insulating material include glasses such as borosilicate glass and soda glass, and those obtained by adding a ceramic filler for adjusting the thermal expansion coefficient and the relative dielectric constant to these glasses. This insulating material can be appropriately selected in consideration of impedance matching (relative dielectric constant) in the metal terminal 1 and reliability of sealing. In FIGS. 1, 4 and 5, the sealing material between the metal terminal 1 and the through hole 4 c of the substrate 5 is omitted.
 サブマウント6は、基板4の第1面4a上に設けられ、第1面4aに垂直な基板搭載面を有する。半導体パッケージ10において、サブマウント6は、絶縁板5に搭載される電子部品が発生する熱を基板4へ伝導する機能等を有している。すなわち、サブマウント6は、半導体パッケージ10の外部に放熱する放熱材としての機能を有する。 The submount 6 is provided on the first surface 4 a of the substrate 4 and has a substrate mounting surface perpendicular to the first surface 4 a. In the semiconductor package 10, the submount 6 has a function of conducting heat generated by the electronic component mounted on the insulating plate 5 to the substrate 4 and the like. That is, the submount 6 has a function as a heat dissipation material that dissipates heat to the outside of the semiconductor package 10.
 サブマウント6は、基板4と一体に形成されていてもよく、冷却部材(例えば、ペルチェ素子など)を含んでいてもよい。サブマウント6が基板4と一体に形成されている場合、サブマウント6は、基板4と同様の金属材料からなる。これにより、半導体パッケージ10における放熱性が効果的に確保される。 The submount 6 may be integrally formed with the substrate 4 and may include a cooling member (eg, a Peltier element or the like). When the submount 6 is integrally formed with the substrate 4, the submount 6 is made of the same metal material as the substrate 4. Thereby, the heat dissipation in the semiconductor package 10 is effectively ensured.
 図9は、本発明の実施形態の半導体装置の斜視図である。本発明の実施形態の半導体装置は次の構成を有している。すなわち、本実施形態の半導体装置100は、半導体パッケージ10と、基板4の第1面4a側に位置し、線路導体2と電気的に接続される半導体素子20と、を備える。半導体素子20は、前述のとおり、たとえば光半導体素子等である。半導体素子20は、絶縁板5に搭載されるとともに、線路導体2と、ボンディングワイヤまたははんだ等によって電気的に接続される。 FIG. 9 is a perspective view of a semiconductor device according to an embodiment of the present invention. The semiconductor device of the embodiment of the present invention has the following configuration. That is, the semiconductor device 100 of the present embodiment includes the semiconductor package 10 and the semiconductor element 20 located on the first surface 4 a side of the substrate 4 and electrically connected to the line conductor 2. The semiconductor element 20 is, for example, an optical semiconductor element or the like as described above. The semiconductor element 20 is mounted on the insulating plate 5 and electrically connected to the line conductor 2 by a bonding wire or solder.
 上記形態の半導体装置100によれば、上記いずれかの構成の半導体パッケージ10を備えることから、インピーダンス整合が容易で、高周波信号の伝送特性が向上する半導体装置100を提供することができる。 According to the semiconductor device 100 of the above embodiment, since the semiconductor package 10 having any one of the above configurations is provided, it is possible to provide the semiconductor device 100 in which impedance matching is easy and the transmission characteristics of high frequency signals are improved.
 なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨の範囲内であれば種々の変更は可能である。 The present invention is not limited to the examples of the embodiments described above, and various modifications are possible within the scope of the present invention.
 例えば、金属端子1の端面1aは、線路導体2の上面2bbに対して正確に垂直である必要はなく、加工精度等に応じて多少(数度程度)傾斜していてもよい。 For example, the end face 1a of the metal terminal 1 does not have to be exactly perpendicular to the upper surface 2bb of the line conductor 2, but may be slightly (about several degrees) inclined according to processing accuracy and the like.
 図1に示す実施形態の接合構造体(第1構造体)と、図8に示す実施形態の接合構造体(第2構造体)の高周波信号特性についてシミュレーションを行い、比較した。第1構造体と第2構造体との違いは、第1構造体が、金属端子1の第1端部1bが、基板4の第1面4aから突き出ている構造であり、第2構造体が、金属端子1の第1端部1bが、基板4の第1面4aから突き出ていない構造である。 The high frequency signal characteristics of the bonded structure (first structure) of the embodiment shown in FIG. 1 and the bonded structure (second structure) of the embodiment shown in FIG. 8 were simulated and compared. The difference between the first structure and the second structure is that the first structure has a structure in which the first end 1b of the metal terminal 1 protrudes from the first surface 4a of the substrate 4, and the second structure However, the first end 1 b of the metal terminal 1 does not protrude from the first surface 4 a of the substrate 4.
 図10Aおよび図10Bは、シミュレーションモデルを示す図であり、図10Aは第1構造体モデルAを示し、図10Bは、第2構造体モデルBを示す。第1構造体モデルAでは、基板4の第1面4aから、金属端子1の第1端部1bが50μm突出している。第2構造体モデルBは、基板4の第1面4aから、金属端子1の第1端部1bが突出しておらず、基板4の第1面4a側には端面1aのみが露出するように位置している構成であり、本発明の図8に示す実施形態のモデルに相当する。 10A and 10B show simulation models, FIG. 10A shows a first structure model A, and FIG. 10B shows a second structure model B. FIG. In the first structure model A, the first end 1 b of the metal terminal 1 protrudes 50 μm from the first surface 4 a of the substrate 4. In the second structure model B, the first end 1 b of the metal terminal 1 does not protrude from the first surface 4 a of the substrate 4, and only the end surface 1 a is exposed on the first surface 4 a side of the substrate 4. The configuration is located and corresponds to the model of the embodiment shown in FIG. 8 of the present invention.
 図10Cおよび図10Dは、シミュレーション結果を示す図であり、図10Cは反射損失(S11)を示し、図10Dは挿入損失(S21)を示す。反射損失および挿入損失は、Sパラメータ解析によって得た演算結果である。第1構造体モデルAの結果を破線で示し、第2構造体モデルBの結果を実線で示す。反射損失は、縦軸の値(dB)が小さい(グラフの下方側)ほど損失が小さく、伝送特性が良好であることを示し、挿入損失は、縦軸の値(dB)がゼロに近い(グラフの上方側)ほど損失が小さく、伝送特性が良好であることを示す。図10Cに示すように、反射損失では、周波数が高くなるほど、第1構造体モデルAと第2構造体モデルBとの差が大きくなり、第2構造体モデルBのほうが良好な特性を示した。図10Dに示すように、挿入損失では、第2構造体モデルBのほうがやや良好な特性を示した。 10C and 10D show simulation results, and FIG. 10C shows reflection loss (S11) and FIG. 10D shows insertion loss (S21). The reflection loss and the insertion loss are calculation results obtained by S parameter analysis. The result of the first structure model A is shown by a broken line, and the result of the second structure model B is shown by a solid line. The smaller the value (dB) on the vertical axis (the lower side of the graph), the smaller the return loss, indicating that the transmission characteristics are better. The insertion loss is such that the value (dB) on the vertical axis is closer to zero ( The higher the graph, the smaller the loss, indicating that the transmission characteristics are better. As shown in FIG. 10C, in the reflection loss, the higher the frequency, the larger the difference between the first structure model A and the second structure model B, and the second structure model B exhibited better characteristics. . As shown in FIG. 10D, in the insertion loss, the second structure model B exhibited slightly better characteristics.
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。 The present invention can be practiced in various other forms without departing from its spirit or main features. Accordingly, the above-described embodiments are merely illustrative in every respect, and the scope of the present invention is as set forth in the claims, and is not limited by the text of the specification. Furthermore, all variations and modifications that fall within the scope of the claims fall within the scope of the present invention.
1・・金属端子
1a・・端面
1b・・第1端部
2・・線路導体
2a・・側面
2b・・第2端部
2bb・・(線路導体の)上面
3・・接合材
4・・基板
4a・・第1面
4b・・第2面
4c・・貫通孔
5・・絶縁板
6・・サブマウント
7・・接地端子
8・・間隙
10・・半導体パッケージ
20・・半導体素子
100・・半導体装置
C・・接合構造体
1 · · Metal terminal 1a · · End face 1b · · First end 2 · · Line conductor 2a · · Side 2b · · Second end 2bb · · · (Top of line conductor) 3 · · Bonding material 4 · · · 4a · · First surface 4b · · Second surface 4c · · Through hole 5 · · Insulating plate 6 · · Submount 7 · · Ground terminal 8 · · Gap
10 ・ ・ Semiconductor package
20 · · Semiconductor device
100 · · Semiconductor device C · · Junction structure

Claims (9)

  1.  端面を有する金属端子と、
     該金属端子の前記端面の一部が対向している側面を有する線路導体と、
     金属粒子を含んでいるとともに、前記金属端子の前記端面から前記線路導体の一部にかけて覆うように位置しており、前記金属端子および前記線路導体に接合している接合材と、を備える接合構造体。
    A metal terminal having an end face,
    A line conductor having side surfaces on which a part of the end face of the metal terminal is opposed;
    A junction structure including a metal particle and being disposed so as to cover from the end face of the metal terminal to a part of the line conductor, and joined to the metal terminal and the line conductor. body.
  2.  前記金属端子の前記端面と前記線路導体の前記側面とが互いに離れている請求項1記載の接合構造体。 The junction structure according to claim 1, wherein the end surface of the metal terminal and the side surface of the line conductor are separated from each other.
  3.  前記金属端子と前記線路導体とが互いに長さ方向に平行であるとともに、前記金属端子が前記線路導体の上方に位置しており、前記金属端子の前記端面の下部と、前記線路導体の前記側面の上部とが互いに対向している請求項1または請求項2記載の接合構造体。 The metal terminal and the line conductor are parallel to each other in the length direction, and the metal terminal is located above the line conductor, and a lower portion of the end surface of the metal terminal and the side surface of the line conductor The joined structure according to claim 1 or 2, wherein the upper portions of the two face each other face each other.
  4.  前記金属端子の前記端面を含む上下方向の断面視において、前記金属端子の下端が前記線路導体よりも下側に位置している請求項3記載の接合構造体。 The joint structure according to claim 3, wherein a lower end of the metal terminal is positioned lower than the line conductor in a cross-sectional view in the vertical direction including the end surface of the metal terminal.
  5.  前記接合材が、前記金属端子の前記端面から前記線路導体の上面の前記側面に隣接した部分にかけて連続的に位置している請求項3または請求項4記載の接合構造体。 The joint structure according to claim 3, wherein the bonding material is continuously located from the end surface of the metal terminal to a portion adjacent to the side surface of the top surface of the line conductor.
  6.  前記接合材が、前記金属端子の前記端面を含む第1端部の外周を覆うように位置している請求項1~請求項5のいずれか1項記載の接合構造体。 The bonding structure according to any one of claims 1 to 5, wherein the bonding material is positioned to cover an outer periphery of a first end including the end surface of the metal terminal.
  7.  請求項1~6のいずれか1項記載の接合構造体と、
     第1面および該第1面と反対側の第2面を有する基板と、を備えており、
     前記線路導体は、前記基板の前記第1面側に位置し、
     前記金属端子は、前記基板の前記第2面から前記第1面にかけて貫通しており、前記第1面側に端面を有している、半導体パッケージ。
    The bonded structure according to any one of claims 1 to 6;
    A substrate having a first surface and a second surface opposite to the first surface;
    The line conductor is located on the first surface side of the substrate,
    The semiconductor package, wherein the metal terminal penetrates from the second surface to the first surface of the substrate and has an end face on the first surface side.
  8.  前記第1面と前記端面とが面一となっているか、または前記金属端子の長さ方向に見て、前記端面が前記第1面から突出していない、請求項7記載の半導体パッケージ。 The semiconductor package according to claim 7, wherein the first surface and the end surface are flush with each other, or the end surface does not protrude from the first surface when viewed in the length direction of the metal terminal.
  9.  請求項7または8記載の半導体パッケージと、
     前記第1面側に位置し、前記線路導体と電気的に接続される半導体素子と、を備える半導体装置。
    A semiconductor package according to claim 7 or 8,
    A semiconductor element located on the first surface side and electrically connected to the line conductor.
PCT/JP2018/036560 2017-10-26 2018-09-28 Bonding structure, semiconductor package and semiconductor device WO2019082602A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019550901A JP6978509B2 (en) 2017-10-26 2018-09-28 Bonded structures, semiconductor packages and semiconductor devices
CN201880068385.1A CN111316425B (en) 2017-10-26 2018-09-28 Bonding structure, semiconductor package, and semiconductor device
CN202410061659.1A CN117936483A (en) 2017-10-26 2018-09-28 Bonding structure, semiconductor package, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-207259 2017-10-26
JP2017207259 2017-10-26

Publications (1)

Publication Number Publication Date
WO2019082602A1 true WO2019082602A1 (en) 2019-05-02

Family

ID=66247432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036560 WO2019082602A1 (en) 2017-10-26 2018-09-28 Bonding structure, semiconductor package and semiconductor device

Country Status (3)

Country Link
JP (1) JP6978509B2 (en)
CN (2) CN117936483A (en)
WO (1) WO2019082602A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020480A1 (en) * 2019-07-31 2021-02-04 京セラ株式会社 Electronic component mounting package, and electronic device
WO2021166073A1 (en) * 2020-02-18 2021-08-26 三菱電機株式会社 To-can type optical semiconductor module
JP7475176B2 (en) 2020-03-25 2024-04-26 京セラ株式会社 Electronic element mounting package and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009077365A (en) * 2007-08-29 2009-04-09 Kyocera Corp Connection structure for signal terminal and signal line conductor, electronic component mounting package and electronic apparatus
JP2011061750A (en) * 2009-09-15 2011-03-24 Nippon Telegr & Teleph Corp <Ntt> Connection method and structure for high-frequency line, and package having the structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776583B2 (en) * 2011-03-18 2015-09-09 株式会社村田製作所 Multilayer ceramic capacitor
JP2013074048A (en) * 2011-09-27 2013-04-22 Kyocera Corp Semiconductor element housing package and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009077365A (en) * 2007-08-29 2009-04-09 Kyocera Corp Connection structure for signal terminal and signal line conductor, electronic component mounting package and electronic apparatus
JP2011061750A (en) * 2009-09-15 2011-03-24 Nippon Telegr & Teleph Corp <Ntt> Connection method and structure for high-frequency line, and package having the structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020480A1 (en) * 2019-07-31 2021-02-04 京セラ株式会社 Electronic component mounting package, and electronic device
WO2021166073A1 (en) * 2020-02-18 2021-08-26 三菱電機株式会社 To-can type optical semiconductor module
JPWO2021166073A1 (en) * 2020-02-18 2021-08-26
JP7475176B2 (en) 2020-03-25 2024-04-26 京セラ株式会社 Electronic element mounting package and electronic device

Also Published As

Publication number Publication date
CN111316425B (en) 2024-02-06
CN111316425A (en) 2020-06-19
JP6978509B2 (en) 2021-12-08
CN117936483A (en) 2024-04-26
JPWO2019082602A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
US7211934B2 (en) Electronic device and method of manufacturing the same
JP6978509B2 (en) Bonded structures, semiconductor packages and semiconductor devices
JPH05206356A (en) Package for integrated circuit
JPWO2017090651A1 (en) Electronic component mounting package and electronic device
CN109478537B (en) Substrate for mounting semiconductor element and semiconductor device
JP6274358B1 (en) Semiconductor device
EP3136430A1 (en) Wiring board, electronic device, and electronic module
JP3816821B2 (en) High frequency power module substrate and manufacturing method thereof
CN109560062B (en) Bonding structure and semiconductor package
US10985098B2 (en) Electronic component mounting substrate, electronic device, and electronic module
JP2005039168A (en) Ceramic package and tantalum electrolytic capacitor using the same
JP6927829B2 (en) Bonded structure and semiconductor package
JP2008294219A (en) Semiconductor device, and manufacturing method thereof
JP2021005674A (en) Electronic component module, electronic component unit, and manufacturing method of electronic component module
JP6867263B2 (en) Bonded structure and semiconductor package
JP6927850B2 (en) Bonded structure and semiconductor package
JP2006210576A (en) Electronic component mounting board and electronic device
JP2019175939A (en) Package for semiconductor element and semiconductor device
JP7145054B2 (en) Semiconductor device package and semiconductor device
JP3323171B2 (en) Package for storing semiconductor elements
JP4549253B2 (en) Piezoelectric device
JP6525855B2 (en) Semiconductor device package and semiconductor device
JP3838888B2 (en) Semiconductor element storage package and semiconductor device
JP2009158537A (en) Package for housing semiconductor element
CN110945644A (en) Wiring substrate, package for electronic device, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869936

Country of ref document: EP

Kind code of ref document: A1