JP3816821B2 - High frequency power module substrate and manufacturing method thereof - Google Patents

High frequency power module substrate and manufacturing method thereof Download PDF

Info

Publication number
JP3816821B2
JP3816821B2 JP2002077926A JP2002077926A JP3816821B2 JP 3816821 B2 JP3816821 B2 JP 3816821B2 JP 2002077926 A JP2002077926 A JP 2002077926A JP 2002077926 A JP2002077926 A JP 2002077926A JP 3816821 B2 JP3816821 B2 JP 3816821B2
Authority
JP
Japan
Prior art keywords
ring
heat sink
semiconductor element
sink plate
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002077926A
Other languages
Japanese (ja)
Other versions
JP2003282751A (en
Inventor
明義 小阪田
澄夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2002077926A priority Critical patent/JP3816821B2/en
Publication of JP2003282751A publication Critical patent/JP2003282751A/en
Application granted granted Critical
Publication of JP3816821B2 publication Critical patent/JP3816821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、ヒートシンク板とリング状枠体、及び外部接続端子を有し、半導体素子を実装してなる高周波用パワーモジュール基板及びその製造方法に関する。
【0002】
【従来の技術】
高周波用パッケージは、例えば、移動体通信の基地局等に用いるシリコンや、ガリウム砒素電界効果トランジスタ等の高周波、高出力用の半導体素子を実装するのに用いられる。この高周波用パッケージは、半導体素子を実装するためのキャビティ部が、半導体素子の高周波の領域での電気特性を悪化させないために、略長方形状をした高放熱特性を有する金属板上に形成された半導体素子実装領域をセラミック製のリング状枠体で囲繞するように接合して形成されている。そして、高周波用パッケージは、半導体素子が実装された後、リング状枠体上に接合される蓋体でキャビティ部を気密に封止するようになっている。また、高周波信号は、リング状枠体上と蓋体との間に接合された外部接続端子を介して入出力されるようになっている。
【0003】
この高周波用パッケージは、セラミック製のリング状枠体と、半導体素子からの発熱を効率よく放熱するための放熱用の金属板からなるヒートシンク板との接合において、セラミックとヒートシンク板の熱膨張係数を近似させて応力の発生を少なくし、パッケージに発生する反りを回避することで、半導体素子の実装不良の発生を防止している。
【0004】
図4(A)、(B)に従来の高周波用パッケージ50の一例を示す。セラミックと熱膨張係数が近似し、しかも放熱特性が比較的よいCu−W(ポーラス状のタングステンに銅を含浸させたもの)からなるヒートシンク板51には、セラミック製のリング状枠体52が、その裏面側に形成されたメタライズパターンを介してヒートシンク板51にAgろう53でろう付け接合されている。更に、リング状枠体52には、表面側に形成されたメタライズパターン(図示せず)を介して外部と接続するための金属部材からなる外部接続端子54がAgろう53でろう付け接合されている。ヒートシンク板51、リング状枠体52、及び外部接続端子54には、ろう付け接合された後、金属表面にNiめっき、及びAuめっきが施されて高周波用パッケージ50を形成している。略長方形状をしたヒートシンク板51の長手方向の両端部には、固定部材に固定するための固定用切り欠き部55が設けられている。
【0005】
図5に示すように、この高周波用パッケージ50には、半導体素子56がリング状枠体52の内側のヒートシンク板51上にダイボンドされ、半導体素子56と外部接続端子54とをボンディングワイヤ57で接続した後、樹脂や、セラミックや、金属等からなる蓋体58を用いてリング状枠体52の上部と外部接続端子54を間に挟みながら樹脂接着剤59で接着して気密に封止を行い、高周波用パワーモジュール基板60を形成している。この高周波用パワーモジュール基板60は、固定部材に固定用切り欠き部55でねじ止め等を行って固定される。
【0006】
【発明が解決しようとする課題】
しかしながら、前述したような従来の高周波用パワーモジュール基板及びその製造方法は、次のような問題がある。
(1)半導体素子の高周波化が進む中において、高周波の領域で電気特性を悪化させないために更なる高放熱化の要求が強い。そこで、ヒートシンク板にCu−W(熱伝導率が220W/mK程度)からなる金属板に代わって熱伝導率が高く、安価なCu(熱伝導率が390W/mK)板やCu合金板等のCu系金属板を使用するすることが考えられる。しかしながら、ヒートシンク板とセラミック製のリング状枠体をAgろうからなる高温ろう材で接合するときの熱膨張係数のミスマッチングから接合面で応力が発生し、高周波用パッケージに大きな反りが発生する。この反りによって、半導体素子が実装できない場合が発生している。また、半導体素子が実装できたとしても、高周波用パワーモジュール基板を固定部材に固定するときに曲げが発生して、半導体素子を破壊する場合が発生している。
【0007】
(2)移動体通信の基地局等に用いられる高周波用パワーモジュール基板は、低コストの要求が高い。しかしながら、ヒートシンク板に比較的高価なCu−Wからなる金属板を用いる場合においては、低コスト化に限界が生じている。
【0008】
(3)蓋体を樹脂で接合する高周波用パワーモジュール基板は、樹脂から発生する水分及びキャビティ部内の空気中の水分がキャビティ部に含まれた状態で気密封止される。この状態で環境試験等を行った時に、キャビティ部内で露結し、そこに電圧が掛けられると、ヒートシンク板とリング状枠体、及びリング状枠体と外部接続端子の接合に使用したAgろうのAgがイオン化し、Agが析出して樹枝状に成長し、セラミック製のリング状枠体の内部側壁に樹枝状晶(デントライト)が発生することが考えられる。これにより、外部接続端子とヒートシンク板が短絡を起こす場合がある。
【0009】
本発明は、かかる事情に鑑みてなされたものであって、安価で高放熱特性を有するヒートシンク板が使用でき、反りやデントライトの発生を防止する高周波用パワーモジュール基板及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】

【0011】
前記目的に沿う本発明に係る高周波用パワーモジュール基板は、ヒートシンク板とリング状枠体、及び外部接続端子を有し、半導体素子を実装して気密に封止する蓋体を有する高周波用パワーモジュール基板において、ヒートシンク板が高放熱特性を有するCu又はCu系金属板からなり、リング状枠体が電気絶縁性を有する樹脂又はセラミックの絶縁体からなり、ヒートシンク板とリング状枠体で形成するキャビティ部には半導体素子がダイアタッチ材を用いて実装され、しかも、上面側に外部接続端子が樹脂、ろう材、ガラス、又は半田からなる接合部材を介して接合されているリング状枠体の下面側とヒートシンク板が樹脂、半田、又はガラスからなる半導体素子を実装する時の接合温度未満、及び接合部材の接合温度未満の320℃を下まわる接合温度を有する低融点接合材で接合されており、蓋体でキャビティ部が気密に封止されている。これにより、ヒートシンク板が安価なCu又はCu系金属板からなり、高周波用パワーモジュール基板を安価にすることができる。また、ヒートシンク板とリング状枠体との接合に低温度で接合できる低融点接合材を用いているので、熱膨張係数の差により発生する応力の影響を受けることが少なく、反りの発生を防止することができる。更に、ヒートシンク板とリング状枠体との接合にAgろうを用いないので、デントライトの発生を防止することができる。
【0012】
前記目的に沿う本発明に係る高周波用パワーモジュール基板の製造方法は、高放熱特性を有するCu又はCu系金属板からなるヒートシンク板と絶縁体からなるリング状枠体で形成するキャビティ部に半導体素子を接合し、金属板からなる外部接続端子で電気的に接続する高周波用パワーモジュール基板の製造方法において、リング状枠体が樹脂又はセラミックからなり、リング状枠体の上面に外部接続端子を樹脂、ろう材、ガラス、又は半田からなる接合部材で接合する第1工程と、ヒートシンク板のキャビティ部を形成する部分に、ダイアタッチ材を用いて半導体素子をダイボンドする第2工程と、ヒートシンク板にダイボンドされた半導体素子を囲繞するように、ヒートシンク板にリング状枠体の下面を樹脂、半田、又はガラスからなる320℃未満の接合温度を有する低融点接合材を介して当接して接合する第3工程と、半導体素子と外部接続端子をボンディングワイヤで接続する第4工程と、キャビティ部を蓋体で接合して半導体素子を気密に封止する第5工程を有する。これにより、ヒートシンク板に安価なCu又はCu系金属板を用いて、高周波用パワーモジュール基板を安価に製造することができる。また、ヒートシンク板とリング状枠体との接合に低温度で接合できる低融点接合材を用いて接合するので、熱膨張係数の差から発生する応力の影響を受けることが少なく、反りの発生を防止することができる高周波用パワーモジュール基板を製造することができる。更に、ヒートシンク板とリング状枠体との接合にAgろうを用いることなく製造しているので、デントライトの発生を防止することができる高周波用パワーモジュール基板を製造することができる。
【0013】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
ここに、図1(A)、(B)はそれぞれ本発明の一実施の形態に係る高周波用パワーモジュール基板を構成する高周波用パッケージの平面図、正面図、図2(A)、(B)はそれぞれ高周波用パワーモジュール基板の平面図、A−A’線拡大縦断面図、図3(A)〜(E)はそれぞれ同高周波用パワーモジュール基板の製造方法の説明図である。
【0014】
図1(A)、(B)に示すように、本発明の一実施の形態に係る高周波用パワーモジュール基板を構成する高周波用パッケージ10は、略長方形状からなり、高放熱特性を有するCu又はCu合金等のCu系金属板で形成されるヒートシンク板11と、絶縁体からなり、電気絶縁性を有する樹脂又はセラミックのリング状枠体12を有している。ヒートシンク板11の長手方向中央部表面とリング状枠体12は、エポキシ等の樹脂、Pb−Sn系等の半田、又は低融点のガラスからなる低融点接合材13で接合されている。低融点接合材13が半田からなる場合には、リング状枠体12のヒートシンク板11との接合面にメタライズパターンが形成されて、このメタライズパターンを介してリング状枠体12とヒートシンク板11が接合されている。
【0015】
なお、リング状枠体12の上面には、鉄系や、銅系等の薄い金属板からなるリードフレーム形状の外部接続端子14が、樹脂、ろう材、ガラス、又は半田等の接合部材15を介して接合されていてもよい。また、ヒートシンク板11には、略長方形状の長手方向の両端部に、この高周波用パッケージ10を固定するための固定用切り欠き部16が設けられており、外部の固定部材にねじ止め等を行うために使用される。そして、この高周波用パッケージ10の金属表面には、Niめっき及びAuめっきが施されている。この高周波用パッケージ10には、ヒートシンク板11とリング状枠体12の接合に用いた低融点接合材13の接合時の温度より低い温度の接合材、例えば、Agペースト(接合温度は約150℃)等を用いることで半導体素子を接合することができる。
【0016】
次いで、図2(A)、(B)に示すように、本発明の一実施の形態に係る高周波用パワーモジュール基板20は、ヒートシンク板11と、リング状枠体12、及び外部接続端子14を有し、キャビティ部21に半導体素子22を実装して有し、キャビティ部21内を気密に封止する蓋体24を有している。
【0017】
このヒートシンク板11は、略長方形状からなり、高放熱特性を有するCu又はCu合金等のCu系金属板で形成されている。また、リング状枠体12は、電気絶縁性を有する樹脂又はセラミックからなる絶縁体で形成されている。そして、ヒートシンク板11とリング状枠体12を接合して形成するキャビティ部21のヒートシンク板11の上に、半導体素子22が、例えば、Au−Snろうからなるダイアタッチ材23を介してダイボンドされている。リング状枠体12の上面側には、Fe系や、Cu系等の薄い金属板からなるリードフレーム形状の外部接続端子14が、例えば、エポキシ等の樹脂、Agろう材等のろう材、低融点や高融点のガラス、又はPb−Sn半田等の半田からなる低融点や高融点の接合部材15を介して接合されている。また、リング状枠体12の下面側には、ヒートシンク板11がエポキシ等の樹脂、Pb−Sn半田等の半田、又は低融点のガラスからなる低融点接合材13を介して接合されている。蓋体24は、樹脂や、セラミックや、金属部材等を用いて外形寸法がリング状枠体12と実質的に同じ大きさからなり、例えば、箱型に形成されている。そして、蓋体24は、キャビティ部21に実装されている半導体素子22を気密に保つために、リング状枠体12や、外部接続端子14の上面側にエポキシ等の樹脂接着剤25を介して被せられて接合され、キャビティ部21内の半導体素子22を気密に封止している。
【0018】
なお、半導体素子22と外部接続端子14との接続はボンディングワイヤ26で接続されている。また、ヒートシンク板11には、略長方形状の長手方向の両端部に、高周波用パワーモジュール基板20を固定部材に固定するための固定用切り欠き部16が設けられており、固定部材にねじ止め等で固定するのに使用される。
【0019】
次いで、図3(A)〜(E)を参照しながら本発明の一実施の形態に係る高周波用パワーモジュール基板20の製造方法を説明する。
図3(A)に示すように、樹脂又はセラミックからなるリング状枠体12の上面には、エポキシ等の樹脂、Au−Snろう材等のろう材、低融点や、高融点からなるガラス、又はPb−Sn系等の半田からなる接合部材15で外部接続端子14が接合されている。なお、このリング状枠体12は、絶縁性の樹脂を額縁状に成形して形成したり、又はアルミナ(Al)等のセラミック粉末を額縁状にプレスして成形したり、あるいはシート状のセラミックグリーンシートを成形して複数枚を重ね合わせて積層して額縁状に成形したりして形成している。また、外部接続端子14は、Fe系や、Cu系等の薄い金属板を打ち抜き金型等を用いてリードフレーム形状に打ち抜いて形成している。
【0020】
次いで、図3(B)に示すように、Cu又はCu系金属板からなる高放熱特性を有するヒートシンク板11とリング状枠体12を接合させたらキャビティ部21(図3(C)参照)を形成する部分に、半導体素子22をAu−Snろう(接合温度は約320℃)や、Au−Siろう(接合温度は約400℃)等のダイアタッチ材23を用いてダイボンドしている。
【0021】
次いで、図3(C)に示すように、ヒートシンク板11上にダイアタッチ材23を介してダイボンドされた半導体素子22を、外部接続端子14が接合部材15で接合されているリング状枠体12の貫通孔の内側壁27で囲繞するようにして、ヒートシンク板11にリング状枠体12の下面を、エポキシ等の樹脂、低融点のガラス、又はPb−Sn系等の半田からなる低融点接合材13を介して当接して接合している。これにより、ヒートシンク板11とリング状枠体12で囲まれた内部には、キャビティ部21が形成される。低融点接合材13を用いてキャビティ部21を形成することができるのは、キャビティ部21を形成する前に低融点接合材13の接合温度より高い接合温度のダイアタッチ材23を用いて半導体素子22を接合しているからである。従って、キャビティ部21を形成するのにAgろうを用いなくてもよいので、デントライトの発生を防止することができる。
【0022】
次いで、図3(D)に示すように、ヒートシンク板11上に接合された半導体素子22のボンディングパッド(図示せず)と外部接続端子14の端部とをボンディングワイヤ26で接続している。これにより、高周波信号は、リング状枠体12上と蓋体24(図3(E)参照)との間に接合された外部接続端子14を介して半導体素子22との間で入出力させることができる。
【0023】
次いで、図3(E)に示すように、半導体素子22が実装されているキャビティ部21には、半導体素子22を気密に保つために、蓋体24がリング状枠体12と外部接続端子14の上面側にエポキシ等の樹脂接着剤25を介して被せられて接合され、キャビティ部21内の半導体素子22が気密に封止されている。蓋体24は、樹脂や、セラミックや、金属部材等からなり、外形寸法がリング状枠体12と実質的に同じ大きさで、例えば、箱型に形成されている。
【0024】
【発明の効果】

【0025】
請求項1記載の高周波用パワーモジュール基板は、ヒートシンク板が高放熱特性を有するCu又はCu系金属板からなり、リング状枠体が電気絶縁性を有する樹脂又はセラミックの絶縁体からなり、ヒートシンク板とリング状枠体で形成するキャビティ部には半導体素子がダイアタッチ材を用いて実装され、しかも、上面側に外部接続端子が樹脂、ろう材、ガラス、又は半田からなる接合部材を介して接合されているリング状枠体の下面側とヒートシンク板が樹脂、半田、又はガラスからなる半導体素子を実装する時の接合温度未満、及び接合部材の接合温度未満の320℃を下まわる接合温度を有する低融点接合材で接合されており、蓋体でキャビティ部が気密に封止されているので、ヒートシンク板が安価であり、高周波用パワーモジュール基板を安価にすることができる。また、ヒートシンク板とリング状枠体との接合温度が低く、熱膨張係数の差の影響を受けることが少なくて反りの発生を防止することができる。更に、ヒートシンク板とリング状枠体との接合にAgろうを用いないので、デントライトの発生を防止することができる。
【0026】
請求項記載の高周波用パワーモジュール基板の製造方法は、リング状枠体が樹脂又はセラミックからなり、リング状枠体の上面に外部接続端子を樹脂、ろう材、ガラス、又は半田からなる接合部材で接合する第1工程と、ヒートシンク板のキャビティ部を形成する部分に、ダイアタッチ材を用いて半導体素子をダイボンドする第2工程と、ヒートシンク板にダイボンドされた半導体素子を囲繞するように、ヒートシンク板にリング状枠体の下面を樹脂、半田、又はガラスからなる320℃未満の接合温度を有する低融点接合材を介して当接して接合する第3工程と、半導体素子と外部接続端子をボンディングワイヤで接続する第4工程と、キャビティ部を蓋体で接合して半導体素子を気密に封止する第5工程を有するので、ヒートシンク板に安価なCu又はCu系金属板を用いて、高周波用パワーモジュール基板を安価に製造することができる。また、ヒートシンク板とリング状枠体との接合に低温度で接合できる低融点接合材を用いて接合し、熱膨張係数の差から発生する応力の影響を受けることが少なく、反りの発生を防止することができる高周波用パワーモジュール基板を製造することができる。更に、ヒートシンク板とリング状枠体との接合にAgろうを用いることなく製造して、デントライトの発生を防止することができる高周波用パワーモジュール基板を製造することができる。
【図面の簡単な説明】
【図1】 (A)、(B)はそれぞれ本発明の一実施の形態に係る高周波用パワーモジュール基板を構成する高周波用パッケージの平面図、正面図である。
【図2】 (A)、(B)はそれぞれ同高周波用パワーモジュール基板の平面図、A−A’線拡大縦断面図である。
【図3】 (A)〜(E)はそれぞれ同高周波用パワーモジュール基板の製造方法の説明図である。
【図4】 (A)、(B)はそれぞれ従来の高周波用パッケージの平面図、正面図である。
【図5】 従来の高周波用パワーモジュール基板の説明図である。
【符号の説明】
10:高周波用パッケージ、11:ヒートシンク板、12:リング状枠体、13:低融点接合材、14:外部接続端子、15:接合部材、16:固定用切り欠き部、20:高周波用パワーモジュール基板、21:キャビティ部、22:半導体素子、23:ダイアタッチ材、24:蓋体、25:樹脂接着剤、26:ボンディングワイヤ、27:内側壁
[0001]
[Technical field to which the invention belongs]
The present invention, heatsink plate and the ring-shaped frame member, and has an external connection terminal, to a high frequency power module substrate and a manufacturing method thereof formed by mounting a semiconductor element.
[0002]
[Prior art]
The high-frequency package is used for mounting high-frequency, high-power semiconductor elements such as silicon used for mobile communication base stations and the like, and gallium arsenide field effect transistors, for example. In this high frequency package, the cavity for mounting the semiconductor element is formed on a metal plate having a high heat dissipation characteristic that is substantially rectangular so that the electrical characteristics in the high frequency region of the semiconductor element are not deteriorated. The semiconductor element mounting region is joined and surrounded by a ceramic ring-shaped frame. In the high frequency package, after the semiconductor element is mounted, the cavity portion is hermetically sealed with a lid joined on the ring-shaped frame. The high-frequency signal is input / output through an external connection terminal joined between the ring-shaped frame and the lid.
[0003]
This high frequency package has a coefficient of thermal expansion between the ceramic and the heat sink plate in joining the ceramic ring frame to the heat sink plate made of a heat radiating metal plate for efficiently radiating the heat generated from the semiconductor element. The generation of stress in the semiconductor element is prevented by reducing the generation of stress by avoiding the warpage generated in the package.
[0004]
4A and 4B show an example of a conventional high frequency package 50. FIG. A heat sink plate 51 made of Cu-W (a porous tungsten impregnated with copper) having a thermal expansion coefficient approximate to that of ceramic and having a relatively good heat dissipation characteristic is provided with a ceramic ring-shaped frame 52. It is brazed to the heat sink plate 51 with Ag brazing 53 through a metallized pattern formed on the back side. Further, an external connection terminal 54 made of a metal member for connecting to the outside through a metallized pattern (not shown) formed on the surface side is brazed and joined to the ring-shaped frame 52 with an Ag braze 53. Yes. The heat sink plate 51, the ring-shaped frame body 52, and the external connection terminal 54 are brazed and joined, and then Ni plating and Au plating are applied to the metal surface to form the high frequency package 50. At both ends in the longitudinal direction of the heat sink plate 51 having a substantially rectangular shape, fixing notches 55 for fixing to the fixing member are provided.
[0005]
As shown in FIG. 5, in the high frequency package 50, the semiconductor element 56 is die-bonded on the heat sink plate 51 inside the ring-shaped frame body 52, and the semiconductor element 56 and the external connection terminal 54 are connected by the bonding wire 57. After that, a lid body 58 made of resin, ceramic, metal, or the like is used, and the upper part of the ring-shaped frame body 52 and the external connection terminal 54 are bonded with a resin adhesive 59 to perform airtight sealing. The high frequency power module substrate 60 is formed. The high frequency power module substrate 60 is fixed to the fixing member by screwing or the like at the fixing notch 55.
[0006]
[Problems to be solved by the invention]
However, conventional high-frequency power module substrate and a manufacturing method thereof as described above has the following problems.
(1) As the frequency of semiconductor devices increases, there is a strong demand for higher heat dissipation in order not to deteriorate the electrical characteristics in the high frequency region. Therefore, instead of a metal plate made of Cu-W (thermal conductivity of about 220 W / mK) for the heat sink plate, high thermal conductivity, inexpensive Cu (thermal conductivity of 390 W / mK) plate, Cu alloy plate, etc. It is conceivable to use a Cu-based metal plate. However, when the heat sink plate and the ceramic ring-shaped frame are joined with a high-temperature brazing material made of Ag brazing, stress is generated at the joint surface due to mismatching of thermal expansion coefficients, and a large warp is generated in the high frequency package. Due to this warpage, there is a case where the semiconductor element cannot be mounted. Even when the semiconductor element can be mounted, bending occurs when the high-frequency power module substrate is fixed to the fixing member, and the semiconductor element is destroyed.
[0007]
(2) High-frequency power module substrates used for mobile communication base stations and the like are highly demanded for low cost. However, when using a relatively expensive metal plate made of Cu-W for the heat sink plate, there is a limit to cost reduction.
[0008]
(3) The high-frequency power module substrate that joins the lid with resin is hermetically sealed with moisture generated from the resin and moisture in the air in the cavity included in the cavity. When an environmental test or the like is performed in this state, condensation occurs in the cavity, and when voltage is applied thereto, the Ag brazing used for joining the heat sink plate and the ring frame, and the ring frame and the external connection terminal. It is conceivable that Ag is ionized, Ag is precipitated and grows in a dendritic shape, and dendrites are generated on the inner side wall of the ceramic ring-shaped frame. This may cause a short circuit between the external connection terminal and the heat sink plate.
[0009]
The present invention was made in view of such circumstances, inexpensive heat sink plate can be used with high heat dissipation characteristics, a high-frequency power module substrate and a manufacturing method thereof that to prevent the occurrence of warping and dendrites The purpose is to provide.
[0010]
[Means for Solving the Problems]

[0011]
A high-frequency power module substrate according to the present invention that meets the above-described object has a heat sink plate, a ring-shaped frame, and an external connection terminal, and includes a lid for mounting a semiconductor element and hermetically sealing it. In the substrate, the heat sink plate is made of Cu or a Cu-based metal plate having high heat dissipation characteristics, the ring frame is made of an insulating resin or ceramic, and the cavity is formed by the heat sink plate and the ring frame. The lower surface of the ring-shaped frame body in which the semiconductor element is mounted on the part using a die attach material, and the external connection terminals are bonded to the upper surface side via a bonding member made of resin, brazing material, glass, or solder 320 ° C., which is lower than the bonding temperature when the semiconductor element made of resin, solder or glass is mounted on the side and the heat sink plate, and lower than the bonding temperature of the bonding member They are joined by a low-melting-point bonding material having a bonding temperature that falls below, the cavity is sealed hermetically by the lid. As a result, the heat sink plate is made of an inexpensive Cu or Cu-based metal plate, and the high-frequency power module substrate can be made inexpensive. In addition, a low melting point bonding material that can be bonded at a low temperature is used for bonding the heat sink plate and the ring-shaped frame, so it is less affected by the stress caused by the difference in thermal expansion coefficient and prevents warping. can do. Furthermore, since no Ag solder is used for joining the heat sink plate and the ring-shaped frame body, it is possible to prevent the generation of dent light.
[0012]
The method for manufacturing a high-frequency power module substrate according to the present invention that meets the above-described object includes a semiconductor element in a cavity formed by a heat sink plate made of Cu or a Cu-based metal plate having high heat dissipation characteristics and a ring-shaped frame made of an insulator. In the method of manufacturing a high-frequency power module substrate that is electrically connected with an external connection terminal made of a metal plate, the ring-shaped frame is made of resin or ceramic, and the external connection terminal is made of resin on the upper surface of the ring-shaped frame A first step of bonding with a bonding member made of brazing material, glass, or solder, a second step of die-bonding a semiconductor element using a die attach material in a portion where a cavity portion of the heat sink plate is formed, and a heat sink plate The lower surface of the ring-shaped frame body is made of resin, solder, or glass so as to surround the die-bonded semiconductor element. A third step of abutting and joining via a low melting point bonding material having a joining temperature of less than 320 ° C., a fourth step of connecting the semiconductor element and the external connection terminal with a bonding wire, and joining the cavity portion with a lid. And a fifth step of hermetically sealing the semiconductor element. Thereby, a high-frequency power module substrate can be manufactured at low cost by using an inexpensive Cu or Cu-based metal plate for the heat sink plate. In addition, since the low-melting point bonding material that can be bonded at a low temperature is used for bonding the heat sink plate and the ring-shaped frame body, it is less affected by the stress generated due to the difference in thermal expansion coefficient, and warpage occurs. A high-frequency power module substrate that can be prevented can be manufactured. Furthermore, since the heat sink plate and the ring-shaped frame body are manufactured without using Ag brazing, a high-frequency power module substrate that can prevent the generation of dent light can be manufactured.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
Here, FIGS. 1A and 1B are a plan view, a front view, and FIGS. 2A and 2B, respectively, of a high-frequency package constituting a high-frequency power module substrate according to an embodiment of the present invention. Are respectively a plan view of the same high-frequency power module substrate, an AA ′ line enlarged vertical sectional view, and FIGS. 3A to 3E are explanatory views of a method for manufacturing the same high-frequency power module substrate.
[0014]
As shown in FIGS. 1A and 1B, a high frequency package 10 constituting a high frequency power module substrate according to an embodiment of the present invention has a substantially rectangular shape and has a high heat dissipation characteristic. It has a heat sink plate 11 formed of a Cu-based metal plate such as a Cu alloy, and a ring frame 12 made of an insulator and made of an insulating resin or ceramic. The surface of the central portion in the longitudinal direction of the heat sink plate 11 and the ring frame 12 are joined by a low melting point bonding material 13 made of a resin such as epoxy, solder such as Pb—Sn, or low melting point glass. When the low-melting-point bonding material 13 is made of solder, a metallized pattern is formed on the bonding surface of the ring-shaped frame 12 with the heat sink plate 11, and the ring-shaped frame 12 and the heat sink plate 11 are connected via the metallized pattern. It is joined.
[0015]
On the upper surface of the ring-shaped frame 12, a lead frame-shaped external connection terminal 14 made of a thin metal plate such as iron or copper is provided with a joining member 15 such as resin, brazing material, glass, or solder. It may be joined via. Further, the heat sink plate 11 is provided with fixing notches 16 for fixing the high frequency package 10 at both ends of the substantially rectangular shape in the longitudinal direction, and screws or the like are attached to external fixing members. Used to do. The metal surface of the high frequency package 10 is plated with Ni and Au. The high-frequency package 10 includes a bonding material having a temperature lower than the bonding temperature of the low melting point bonding material 13 used for bonding the heat sink plate 11 and the ring-shaped frame 12, for example, Ag paste (the bonding temperature is about 150 ° C. ) And the like can be used to join the semiconductor elements.
[0016]
Next, as shown in FIGS. 2A and 2B, the high-frequency power module substrate 20 according to the embodiment of the present invention includes the heat sink plate 11, the ring-shaped frame body 12, and the external connection terminals 14. The cavity part 21 has a semiconductor element 22 mounted thereon, and has a lid 24 that hermetically seals the cavity part 21.
[0017]
The heat sink plate 11 has a substantially rectangular shape and is formed of a Cu-based metal plate such as Cu or Cu alloy having high heat dissipation characteristics. The ring-shaped frame 12 is formed of an insulator made of resin or ceramic having electrical insulation. Then, the semiconductor element 22 is die-bonded via a die attach material 23 made of, for example, Au—Sn brazing, on the heat sink plate 11 of the cavity portion 21 formed by joining the heat sink plate 11 and the ring-shaped frame body 12. ing. On the upper surface side of the ring-shaped frame 12, there are lead frame-shaped external connection terminals 14 made of a thin metal plate such as Fe-based or Cu-based, for example, resin such as epoxy, brazing material such as Ag brazing material, low Bonding is performed via a low melting point or high melting point bonding member 15 made of a melting point or a high melting point glass, or solder such as Pb-Sn solder. The heat sink plate 11 is bonded to the lower surface side of the ring-shaped frame 12 via a low melting point bonding material 13 made of resin such as epoxy, solder such as Pb-Sn solder, or low melting point glass. The lid body 24 has an outer dimension substantially the same as that of the ring-shaped frame body 12 using resin, ceramic, metal member, or the like, and is formed in a box shape, for example. The lid 24 has a ring-shaped frame 12 and a resin adhesive 25 such as epoxy on the upper surface side of the external connection terminal 14 in order to keep the semiconductor element 22 mounted in the cavity portion 21 airtight. The semiconductor element 22 in the cavity portion 21 is hermetically sealed.
[0018]
The semiconductor element 22 and the external connection terminal 14 are connected by a bonding wire 26. In addition, the heat sink plate 11 is provided with fixing notches 16 for fixing the high frequency power module substrate 20 to the fixing member at both ends of the substantially rectangular shape in the longitudinal direction. Used to fix with etc.
[0019]
Next, a method for manufacturing the high-frequency power module substrate 20 according to the embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 3A, on the upper surface of the ring-shaped frame 12 made of resin or ceramic, a resin such as epoxy, a brazing material such as Au—Sn brazing material, a glass having a low melting point or a high melting point, Alternatively, the external connection terminal 14 is joined by a joining member 15 made of solder such as Pb—Sn. The ring-shaped frame 12 is formed by forming an insulating resin into a frame shape, or formed by pressing ceramic powder such as alumina (Al 2 O 3 ) into a frame shape, or a sheet. A ceramic green sheet is formed, and a plurality of sheets are stacked and stacked to form a frame shape. The external connection terminals 14 are formed by punching a thin metal plate such as Fe-based or Cu-based into a lead frame shape using a punching die or the like.
[0020]
Next, as shown in FIG. 3B, when the heat sink plate 11 made of Cu or a Cu-based metal plate and having a high heat dissipation property and the ring-shaped frame body 12 are joined, the cavity portion 21 (see FIG. 3C) is formed. The semiconductor element 22 is die-bonded to the portion to be formed using a die attach material 23 such as Au—Sn brazing (joining temperature is about 320 ° C.) or Au—Si brazing (joining temperature is about 400 ° C.).
[0021]
Next, as shown in FIG. 3C, the ring-shaped frame 12 in which the external connection terminals 14 are joined to the semiconductor elements 22 that are die-bonded on the heat sink plate 11 via the die attach material 23 by the joining members 15. The lower surface of the ring-shaped frame 12 is attached to the heat sink plate 11 with a low melting point bonding made of a resin such as epoxy, low melting point glass, or solder such as Pb—Sn. Abutting and joining via the material 13. As a result, a cavity portion 21 is formed inside the heat sink plate 11 and the ring-shaped frame body 12. The cavity portion 21 can be formed using the low melting point bonding material 13 by using a die attach material 23 having a bonding temperature higher than the bonding temperature of the low melting point bonding material 13 before the cavity portion 21 is formed. This is because the child 22 is joined. Therefore, it is not necessary to use Ag brazing to form the cavity portion 21, so that the generation of dent light can be prevented.
[0022]
Next, as shown in FIG. 3D, the bonding pads (not shown) of the semiconductor element 22 bonded on the heat sink plate 11 and the ends of the external connection terminals 14 are connected by bonding wires 26. Thereby, a high frequency signal is inputted / outputted to / from the semiconductor element 22 via the external connection terminal 14 joined between the ring-shaped frame 12 and the lid 24 (see FIG. 3E). Can do.
[0023]
Next, as shown in FIG. 3E, in the cavity portion 21 in which the semiconductor element 22 is mounted, a lid 24 is connected to the ring-shaped frame 12 and the external connection terminal 14 in order to keep the semiconductor element 22 airtight. The semiconductor element 22 in the cavity portion 21 is hermetically sealed by being covered and bonded to the upper surface side via a resin adhesive 25 such as epoxy. The lid body 24 is made of resin, ceramic, metal member, or the like, and has an outer dimension substantially the same as that of the ring-shaped frame body 12 and is formed in a box shape, for example.
[0024]
【The invention's effect】

[0025]
The power module substrate for high frequency according to claim 1, wherein the heat sink plate is made of Cu or a Cu-based metal plate having high heat dissipation characteristics, the ring-shaped frame body is made of a resin or ceramic insulator having electrical insulation, and the heat sink plate A semiconductor element is mounted on the cavity formed by the ring-shaped frame using a die attach material, and an external connection terminal is bonded to the upper surface side via a bonding member made of resin, brazing material, glass, or solder. The lower surface side of the ring-shaped frame body and the heat sink plate have a bonding temperature lower than 320 ° C., which is lower than the bonding temperature when mounting a semiconductor element made of resin, solder, or glass, and lower than the bonding temperature of the bonding member. Bonded with a low-melting-point bonding material, and the cavity is hermetically sealed with a lid, so the heat sink plate is inexpensive and the power module for high frequency use. Le substrate can be made inexpensive. Further, the bonding temperature between the heat sink plate and the ring-shaped frame body is low, and the occurrence of warpage can be prevented by being less affected by the difference in thermal expansion coefficient. Furthermore, since no Ag solder is used for joining the heat sink plate and the ring-shaped frame body, it is possible to prevent the generation of dent light.
[0026]
3. The method of manufacturing a high-frequency power module substrate according to claim 2 , wherein the ring-shaped frame is made of resin or ceramic, and an external connection terminal is formed on the upper surface of the ring-shaped frame by resin, brazing material, glass, or solder. A second step of die-bonding a semiconductor element using a die attach material at a portion where the cavity portion of the heat sink plate is formed, and a heat sink so as to surround the semiconductor element die-bonded to the heat sink plate. A third step in which the lower surface of the ring-shaped frame is abutted and bonded to the plate via a low melting point bonding material made of resin, solder, or glass and having a bonding temperature of less than 320 ° C .; and bonding the semiconductor element and the external connection terminal Since it has the 4th process of connecting with a wire, and the 5th process of joining a cavity part with a lid and sealing a semiconductor element airtightly, a heat sink board Using inexpensive Cu or Cu-based metal plate, the high-frequency power module board can be manufactured at low cost. In addition, a low melting point bonding material that can be bonded at a low temperature is used to bond the heat sink plate and the ring-shaped frame body, and it is less affected by the stress generated by the difference in thermal expansion coefficient and prevents warping. A high-frequency power module substrate that can be manufactured can be manufactured. Furthermore, it is possible to manufacture a high-frequency power module substrate that can be manufactured without using Ag solder for joining the heat sink plate and the ring-shaped frame body, and can prevent the generation of dent light.
[Brief description of the drawings]
FIGS. 1A and 1B are a plan view and a front view of a high frequency package constituting a high frequency power module substrate according to an embodiment of the present invention, respectively.
2A and 2B are a plan view and an enlarged longitudinal sectional view taken along line AA ′ of the high frequency power module substrate, respectively.
FIGS. 3A to 3E are explanatory views of a method for manufacturing the high frequency power module substrate, respectively. FIGS.
4A and 4B are a plan view and a front view of a conventional high-frequency package, respectively.
FIG. 5 is an explanatory diagram of a conventional high-frequency power module substrate.
[Explanation of symbols]
10: high frequency package, 11: heat sink plate, 12: ring-shaped frame, 13: low melting point bonding material, 14: external connection terminal, 15: bonding member, 16: notch for fixing, 20: power module for high frequency Substrate, 21: cavity portion, 22: semiconductor element, 23: die attach material, 24: lid, 25: resin adhesive, 26: bonding wire, 27: inner wall

Claims (2)

ヒートシンク板とリング状枠体、及び外部接続端子を有し、半導体素子を実装して気密に封止する蓋体を有する高周波用パワーモジュール基板において、
前記ヒートシンク板が高放熱特性を有するCu又はCu系金属板からなり、前記リング状枠体が電気絶縁性を有する樹脂又はセラミックの絶縁体からなり、前記ヒートシンク板と前記リング状枠体で形成するキャビティ部には前記半導体素子がダイアタッチ材を用いて実装され、しかも、上面側に前記外部接続端子が樹脂、ろう材、ガラス、又は半田からなる接合部材を介して接合されている前記リング状枠体の下面側と前記ヒートシンク板が樹脂、半田、又はガラスからなる前記半導体素子を実装する時の接合温度未満、及び前記接合部材の接合温度未満の320℃を下まわる接合温度を有する低融点接合材で接合されており、前記蓋体で前記キャビティ部が気密に封止されていることを特徴とする高周波用パワーモジュール基板。
In a high-frequency power module substrate having a heat sink plate, a ring-shaped frame body, and an external connection terminal, and having a lid for mounting a semiconductor element and hermetically sealing it,
The heat sink plate is made of Cu or a Cu-based metal plate having high heat dissipation characteristics, the ring frame is made of an insulating resin or ceramic having electrical insulation, and is formed by the heat sink plate and the ring frame. the cavity portion is mounted the semiconductor device by using a die attach material, moreover, the upper surface side external connection terminal resin, brazing material, glass, or the ring being bonded through a bonding member made of solder A low melting point having a bonding temperature lower than 320 ° C. which is lower than the bonding temperature when the semiconductor element made of resin, solder, or glass is mounted on the lower surface side of the frame and the heat sink plate, and lower than the bonding temperature of the bonding member. A high-frequency power module substrate, which is bonded with a bonding material, and wherein the cavity is hermetically sealed with the lid.
高放熱特性を有するCu又はCu系金属板からなるヒートシンク板と絶縁体からなるリング状枠体で形成するキャビティ部に半導体素子を接合し、金属板からなる外部接続端子で電気的に接続する高周波用パワーモジュール基板の製造方法において、
前記リング状枠体が樹脂又はセラミックからなり、該リング状枠体の上面に前記外部接続端子を樹脂、ろう材、ガラス、又は半田からなる接合部材で接合する第1工程と、
前記ヒートシンク板の前記キャビティ部を形成する部分に、ダイアタッチ材を用いて前記半導体素子をダイボンドする第2工程と、
前記ヒートシンク板にダイボンドされた前記半導体素子を囲繞するように、前記ヒートシンク板に前記リング状枠体の下面を樹脂、半田、又はガラスからなる320℃未満の接合温度を有する低融点接合材を介して当接して接合する第3工程と、
前記半導体素子と前記外部接続端子をボンディングワイヤで接続する第4工程と、
前記キャビティ部を蓋体で接合して前記半導体素子を気密に封止する第5工程を有することを特徴とする高周波用パワーモジュール基板の製造方法。
A high frequency device in which a semiconductor element is joined to a cavity formed by a heat sink plate made of Cu or a Cu-based metal plate having high heat dissipation characteristics and a ring-shaped frame made of an insulator, and is electrically connected by an external connection terminal made of a metal plate. In the manufacturing method of the power module substrate for
A first step in which the ring-shaped frame is made of resin or ceramic, and the external connection terminal is bonded to the upper surface of the ring-shaped frame with a bonding member made of resin, brazing material, glass, or solder;
A second step of die-bonding the semiconductor element to the portion of the heat sink plate where the cavity portion is formed using a die attach material ;
The lower surface of the ring-shaped frame is attached to the heat sink plate through a low melting point bonding material having a bonding temperature of less than 320 ° C. made of resin, solder, or glass so as to surround the semiconductor element die-bonded to the heat sink plate. A third step of contacting and joining,
A fourth step of connecting the semiconductor element and the external connection terminal with a bonding wire;
A method of manufacturing a high-frequency power module substrate, comprising a fifth step of sealing the semiconductor element in an airtight manner by joining the cavity portion with a lid.
JP2002077926A 2002-03-20 2002-03-20 High frequency power module substrate and manufacturing method thereof Expired - Lifetime JP3816821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077926A JP3816821B2 (en) 2002-03-20 2002-03-20 High frequency power module substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077926A JP3816821B2 (en) 2002-03-20 2002-03-20 High frequency power module substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003282751A JP2003282751A (en) 2003-10-03
JP3816821B2 true JP3816821B2 (en) 2006-08-30

Family

ID=29228171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077926A Expired - Lifetime JP3816821B2 (en) 2002-03-20 2002-03-20 High frequency power module substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3816821B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1575089B1 (en) * 2004-03-09 2007-11-14 Infineon Technologies AG Highly reliable, cost effective and thermally enhanced AuSn die-attach technology
JP2006041272A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Semiconductor device and package therefor
US7446411B2 (en) * 2005-10-24 2008-11-04 Freescale Semiconductor, Inc. Semiconductor structure and method of assembly
JP2012049224A (en) * 2010-08-25 2012-03-08 Kyocera Corp Packaging structure and method of manufacturing the same
CN102064137A (en) * 2010-12-06 2011-05-18 日月光半导体制造股份有限公司 Semiconductor structure with metal frame
DE102013219833B4 (en) * 2013-09-30 2020-02-13 Infineon Technologies Ag SEMICONDUCTOR MODULE WITH CIRCUIT BOARD AND METHOD FOR PRODUCING A SEMICONDUCTOR MODULE WITH A CIRCUIT BOARD
JP6379494B2 (en) * 2014-01-23 2018-08-29 日産自動車株式会社 Power module
JP2017041541A (en) * 2015-08-20 2017-02-23 三菱電機株式会社 High-frequency high-output device
US10750621B2 (en) * 2017-08-02 2020-08-18 Sumitomo Electric Device Innovations, Inc. Process of assembling semiconductor device
JP7364168B2 (en) * 2019-02-12 2023-10-18 住友電工デバイス・イノベーション株式会社 Semiconductor module and semiconductor device housing
JP7159464B2 (en) * 2019-05-16 2022-10-24 Ngkエレクトロデバイス株式会社 Power semiconductor module and manufacturing method thereof
WO2020261731A1 (en) 2019-06-25 2020-12-30 Ngkエレクトロデバイス株式会社 Package, and method for manufacturing power semiconductor module
JP7290723B2 (en) 2019-06-25 2023-06-13 Ngkエレクトロデバイス株式会社 Package and method for manufacturing power semiconductor module

Also Published As

Publication number Publication date
JP2003282751A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
JP3009788B2 (en) Package for integrated circuit
JP2002203942A (en) Power semiconductor module
JP2009513026A (en) Semiconductor structure and assembly method
JP5091459B2 (en) Manufacturing method of high heat radiation type electronic component storage package
JP3816821B2 (en) High frequency power module substrate and manufacturing method thereof
CN112420678B (en) High-heat-dissipation digital-analog integrated packaging structure and manufacturing method thereof
CN110140205B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP3336982B2 (en) Semiconductor device and method of manufacturing the same
JP2000340876A (en) Optical semiconductor element package and manufacture thereof
JP2021082714A (en) Semiconductor device
JP2005150133A (en) Container for housing semiconductor element
JP2001274278A (en) Microwave semiconductor device and its manufacturing method
JP4608409B2 (en) High heat dissipation type electronic component storage package
JP2001217333A (en) Hermetically sealed semiconductor package
JP3695706B2 (en) Semiconductor package
JP3984107B2 (en) Manufacturing method of high-frequency semiconductor element storage package
JP2004022627A (en) Package for power-amplification semiconductor device, its manufacturing method and power-amplification semiconductor device using it
WO2022195865A1 (en) Four-sided cooling power module
JP2006013241A (en) Semiconductor device and package therefor
JP2005252121A (en) Package for storing semiconductor element and method for manufacturing the same
JP2003282752A (en) Package for high frequency and power module substrate for high frequency
JP2006128534A (en) Package for storing high heat radiation type electronic component
JP2009170758A (en) Package for storing high heat radiation type electronic component package for storing high heat radiation type electronic component
JPS6334962A (en) Structure for package
JPH09283887A (en) Semiconductor device and metal insulation substrate used for this device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3816821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term