JP3838888B2 - Semiconductor element storage package and semiconductor device - Google Patents

Semiconductor element storage package and semiconductor device Download PDF

Info

Publication number
JP3838888B2
JP3838888B2 JP2001136738A JP2001136738A JP3838888B2 JP 3838888 B2 JP3838888 B2 JP 3838888B2 JP 2001136738 A JP2001136738 A JP 2001136738A JP 2001136738 A JP2001136738 A JP 2001136738A JP 3838888 B2 JP3838888 B2 JP 3838888B2
Authority
JP
Japan
Prior art keywords
connection pad
semiconductor
semiconductor element
package
electric circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001136738A
Other languages
Japanese (ja)
Other versions
JP2002334952A (en
Inventor
清吾 松園
廉可 國松
義博 芭蕉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001136738A priority Critical patent/JP3838888B2/en
Publication of JP2002334952A publication Critical patent/JP2002334952A/en
Application granted granted Critical
Publication of JP3838888B2 publication Critical patent/JP3838888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15182Fan-in arrangement of the internal vias
    • H01L2924/15184Fan-in arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Description

【0001】
【発明の属する技術分野】
本発明は、高周波帯域で作動する半導体素子を内部に収納する半導体素子収納用パッケージと、この半導体素子収納用パッケージに半導体素子を収容した半導体装置に関する。
【0002】
【従来の技術】
従来、マイクロ波帯域やミリ波帯域の高周波信号で作動する半導体素子を収容する半導体素子収納用パッケージ(以下、半導体パッケージという)は、外部電気回路装置との電気的接続をリード線で行うタイプが主流であった。しかし、近年、伝送信号の更なる高周波化に対して接続部における伝送損失を少なくするために、接続部の長さをより短くすることが必要になり、そのためリード線に代えて基体の下面に接続パッドを設け、これを半田を用いて外部電気回路装置と接続する表面実装型のチップスケールパッケージ(CSP)やボールグリッドアレイ(BGA)パッケージの採用が進められている。
【0003】
これら表面実装型の半導体パッケージの例を図3に示す。同図は、従来の半導体装置と外部電気回路装置との接続構造を示す断面図である。この半導体パッケージAは、FET(Field Effect Transistor)用として用いられたり、またMMIC(Monolithic Microwave IC)用などとして用いられる。そして、半導体パッケージAは、酸化アルミニウム(Al23)質焼結体やガラスセラミックス質焼結体からなる基体101と、タングステン(W)や銅(Cu)などの金属材料からなる配線導体102とを有し、その基体101上面の載置部101aに半導体素子Cをワイヤボンディング実装法やフリップチップ実装法などを用いて搭載し、半導体パッケージAと半導体素子Cとを電気的に接続させることにより半導体装置Bとなる。さらに、基体101の下面に設けた接続パッド101cを介して外部電気回路装置Dに電気的に接合される(特開2000−299407号公報参照)。
【0004】
この半導体パッケージAは、基体101の内部に配線導体102を有しており、その配線導体102は基体101の上面に形成された上面電極101bと基体101の下面に設けた接続パッド101cとを電気的に導通している。そして、半導体装置Bは、半導体パッケージAの接続パッド101cが金属ボール103およびろう材や半田、所謂導体バンプを用いて外部電気回路装置Dと物理的および電気的に接続されている。この接続パッド101cは、半導体パッケージAを外部電気回路装置Dに半田等を介して物理的に接続するだけでなく、高周波信号を伝送して半導体パッケージAと外部電気回路装置Dとを電気的に接続させる役割を有するものである。
【0005】
一般的に、接続パッド101cにおいて安定した電気的導通を確保し、また同様に安定した接続状態を確保するために、できるだけ大きな面積の接続パッド101cが必要とされる。その面積は、半導体パッケージAの大きさと接続パッド101cの数から規定される接続パッド101c間距離とも関連があり、一般的に、接続パッド101cの面積は0.3〜0.5mm2とされている。
【0006】
そして、特開2000−299407号公報では、半導体パッケージAの下面の接続パッド101cを外部電気回路装置D上の電極に半田を介して接合させる際に、例えば基体101下面の4隅に金属ボール103を配置して金属ボール接合部Eを形成している。そして、金属ボール103を配置していない接合パッド101cは、例えば半田接合部Jにより外部電気回路装置Dに接合されているのであるが、金属ボール103が半導体パッケージAと外部電気回路装置Dとの隙間を一定としているので、半田接合部Jの形状を、いずれの接続パッド101cにおいても応力が集中するようなくびれた部分が発生しない円筒状や樽状の形状とすることができ、接続強度を向上させることができるとしている。
【0007】
【発明が解決しようとする課題】
しかしながら、近時の半導体パッケージにおいては、より高い周波数の高周波信号を伝送させる必要が生じてきたことから、接続パッド101cと上部電極101bや内層のグランド層101dとの間で発生する、高周波信号の伝送に障害となる電気的容量を小さくするために、接続パッド101cの面積をより小さくすることが求められている。この電気的容量を接続パッド101cの面積を変えることなく小さくするためには、例えば基体101を厚くする方法があるが、この場合軽薄化という市場要求に反することになる。
【0008】
また、高い周波数の高周波信号を低損失で伝送するには、接続パッド101cの面積を小さくするのが最良の方法であるが、どの程度面積を小さくすれば接続パッド101cとグランド層101dとの間に高周波信号の入出力に悪影響を及ぼすような高い浮遊容量が発生しなくなるのかが明らかになっていなかった。
【0009】
また、接続パッド101cの面積を小さくした場合、半導体パッケージAにおける接続パッド101cと外部電気回路装置Dとの接合強度が不足したり、さらには、半導体素子Cが発する熱により半導体パッケージAと外部電気回路装置Dの熱膨張係数の差に起因する熱応力により半田接合部Jにクラックが発生し、よって半導体パッケージAと外部電気回路装置Dとの間の高周波信号の伝送特性が大きく損なわれる場合があった。また、高い周波数の高周波信号を伝送させるために接続パッド101cの面積を小さくすると、半導体パッケージAを外部電気回路装置Dに接合する際に横ずれが発生する場合があり、このとき半田接合部Jにくびれが発生し、このくびれに起因してクラックが発生していた。
【0010】
従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、高い周波数で作動する半導体素子を収容した半導体素子収納用パッケージを、外部電気回路装置に長期間に亘って信頼性良く接合保持できるようにするとともに、高周波信号の伝送損失の小さい半導体装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明の半導体素子収納用パッケージは、上面に半導体素子を載置する載置部を有する略長方形の基体と、前記基体の下面に形成され、前記半導体素子と電気的に接続されるとともに高周波信号を入出力する接続パッドと、該接続パッドに接合された固体の導体バンプとを具備した半導体素子収納用パッケージにおいて、前記接続パッドの面積S(mm)は
2≦1000×S≦404.4−4.2F−16.7ε
(ただし、Fは高周波信号の周波数(GHz)、εは基体の比誘電率である。)を満たしており、かつ前記基体の下面の対向する2隅部または対向する2辺部に前記導体バンプの高さと略等しい厚さの補助金属板が接合されていることを特徴とする。
【0012】
本発明は、上記の構成により、半導体パッケージの下面の接続パッドの面積Sを上式を満たすように設定したことから、接続パッドと半導体パッケージの内層接地導体層等との間に高周波信号の伝送に悪影響を及ぼす浮遊容量が発生せず、また接続パッドで特性インピーダンスが急激に変化しないものとなる。
【0013】
また、上記接続パッドに外部電気回路装置との接続媒体となる、金属ボールや金属円柱等から成る固体の導体バンプをろう付けにより接続し、さらに導体バンプと外部電気回路装置との接続を半田付け等で行っていることから、従来接続の際に発生していた、半田のくびれおよびこのくびれに起因するクラックを皆無とすることができる。さらに、基体の下面の対向する2隅部または対向する2辺部に導体バンプの高さと略等しい厚さの補助金属板が接合されていることから、半導体パッケージと外部電気回路装置との隙間を一定とすることができ、また半導体パッケージの外部電気回路装置に対する横ずれも防止し易くなり、その結果、横ずれ等に起因する、半田に発生するクラックを有効に防止できる。
【0014】
本発明において、好ましくは、前記補助金属板の厚さが0.125〜0.5mmであることを特徴とする。
【0015】
本発明は、上記の構成により、さらに半田接合部にクラックが発生することがなく、また半導体パッケージから伝送される高周波信号の伝送路においてインピーダンスのばらつきが極めて小さくなる。
【0016】
本発明の半導体装置は、本発明の半導体素子収納用パッケージと、前記載置部に載置固定され、前記接続パッドに電気的に接続された半導体素子と、前記枠体の上面に接合された蓋体とを具備したことを特徴とする。
【0017】
図4から明らかなように、より高い周波数の信号を伝送させるためには、接続パッド1cの面積Sを小さくする必要があること、また高周波信号の周波数が10GHz以上80GHz以下の領域において、基体1の比誘電率ε、接続パッド1cの面積Sおよび伝送可能な周波数値Fの間には明確な関係があることが判明した。即ち、図4に示すように、接続パッド1cの面積S、横軸を伝送可能な高周波信号の最大周波数値Fとした座標領域上に値をプロットすることによってグラフ化し、最小二乗法を用いてグラフの関係式を求めると、各比誘電率でグラフの傾きが一致し、S−4.2×10−3F+Ye(Y e :各グラフにおける縦軸との切片)で表わすことができた。また、各比誘電率におけるデータの直線の縦軸との切片値と、基体1の比誘電率との関係を上記と同じ方法で求めると、Ye×1000=−16.7ε+404.4で表わされることが判明した。
【0018】
また、補助金属板により半導体素子が発する熱の一部を効率よく外部装置に伝達することができ、例えば外部電気回路装置上の電極を介してこの熱を外部に放散させることができる。さらに、補助金属板により半導体パッケージの接地電位を強化することができ、高周波信号の伝送損失の低減効果がさらに大くなる。
【0019】
【発明の実施の形態】
本発明の半導体パッケージおよび半導体装置を以下に詳細に説明する。図1(a)は本発明の半導体パッケージについて実施の形態の例を示す断面図であり、図1(b)は本発明の補助金属板を下面に接合した半導体パッケージについて実施の形態の例を示す平面図である。また、図2(a)は本発明の半導体装置を外部電気回路装置に搭載した場合の実施の形態の例を示す断面図、図2(b)は図2(a)の要部拡大断面図である。これらの図において、1は略長方形の基体、1aは載置部、1bは基体1上の上面電極、1cは接続パッド、2は基体1上面から下面にかけて形成された配線導体、2aはロウ材、2bは半田、3は固体の導体バンプとしての金属ボール、4は枠体、6は蓋体である。なお、金属ボール3の代わりに金属円柱を用いてもよい。
【0020】
本発明において、基体1の下面には、接続パッド1cとロウ材2aと金属ボール3および半田2bにより構成された、半導体装置Bを外部電気回路装置D上に電気的に接続し搭載するための接続構造Kが形成される。
【0021】
本発明の基体1を構成する絶縁基板は、酸化アルミニウム(Al23)質焼結体,窒化アルミニウム(AlN)質焼結体,ムライト(3Al23・2SiO2)質焼結体,炭化珪素(SiC)質焼結体,ガラスセラミックス質焼結体などの絶縁材料からなる略四角形状の板状体である。そして、その内部に配線導体2を有しており、また上面中央部には、枠体4に囲繞されてなるとともに半導体素子Cを載置するための載置部1aを有している。
【0022】
この基体1は、例えば酸化アルミニウム質焼結体からなる場合以下のようにして作製される。Al23,酸化珪素(SiO2),酸化マグネシウム(MgO),酸化カルシウム(CaO)等の原料粉末に、適当な有機バインダー,有機溶剤,可塑剤,分散剤等を添加混合してスラリー状となし、これを従来周知のドクターブレード法を採用してシート状となすことにより、複数枚のセラミックグリーンシートを得る。しかる後、このセラミックグリーンシートに適当な打抜き加工を施すとともに、タングステン(W),モリブデン(Mo),マンガン(Mn),銅(Cu),銀(Ag),ニッケル(Ni),パラジウム(Pd),金(Au)等の金属材料粉末に適当なバインダー,溶剤を混合してなる導体ペーストを、セラミックグリーンシートに予めスクリーン印刷法等により所定パターンに印刷塗布することによって、接続パッド1c、配線導体2および上面電極1bを形成する。この後、このセラミックグリーンシートを必要に応じて積層し、これを約1600℃の温度で焼成することによって基体1が作製される。
【0023】
接続パッド1cは上記の導体ペーストを、上記セラミックグリーンシートに予めスクリーン印刷法等により所定パターンに印刷塗布し、これをセラミックグリーンシートと一括して焼成することによって形成される。この接続パッド1cは、半導体パッケージAを外部電気回路装置Dに低融点のロウ材2aおよび半田2bを介して物理的に接続するだけでなく、高周波信号を伝送し半導体パッケージAと外部電気回路装置Dとを電気的に接続する機能を有する。また、接続パッド1cの表面に、Ni,Auなどの良導電性で耐食性および低融点ろう材との濡れ性が良好な金属をメッキ法により0.5〜9μmの厚さに被着させておくのがよく、接続パッド1cの酸化腐食を有効に防止し得るとともに半田2bによる半導体パッケージAと外部電気回路装置Dとの接続を強固とすることができる。
【0024】
枠体4は、例えば金属材料またはセラミックスから成り、金属材料から成る場合、Fe−Ni−Co合金,Fe−Ni合金等の金属材料の粉末を混合して加熱溶解させたものをロール圧延法にて所定の厚さに圧延し、得られたシート状部材を従来周知の絞り加工法にてパイプ状部材とし、このパイプ状部材を、従来周知の引き抜き加工法により段階的に加工して所望の矩形状の断面形状を有するパイプを得る。このパイプを適宜の長さに切断することによって、所望の大きさおよび形状の金属製の枠体4が作製される。この枠体4は、基体1の上面に半導体素子Cの載置部1aを囲繞するようにして銀ロウ等のロウ材を介して接合される。
【0025】
また、金属製の枠体4に代えて、Al23,AlN等のセラミックス製のものを用いても良く、例えばAl23セラミックスからなる場合以下のようにして作製される。Al23の粉末と、焼結助材としてのSiO2,CaO,MgO等の粉末と、適当なバインダーおよび溶剤とを混合してこれをスラリー状となす。次いで、従来周知のドクターブレード法等のテープ成形法によって所定厚みのセラミックグリーンシートに成形し、このセラミックグリーンシートを複数枚準備する。ついで、セラミックグリーンシートに打ち抜き加工を施すとともに、載置部1aを囲む側壁となる部位、基体1との接合部、および蓋体5との接合部に予めメタライズ層用の導体ペーストを被着し、積層工程後1600℃程度の温度で焼成工程を経てセラミックスの枠体4が得られる。
【0026】
基体1の載置部1aにエポキシ樹脂や銀エポキシ樹脂等を用いて半導体素子Cを載置固定し、半導体素子C上の電極と半導体パッケージ上の上面電極1bとをAu,Ag,Al等からなる金属細線で電気的に接続した後、Cuや酸化アルミニウム等からなる蓋体6をエポキシ樹脂等の樹脂接着剤やロウ材などによる接着または溶接によって封止して半導体装置Bとなる。
【0027】
そして、基体1の下面に形成された接続パッド1cと外部電気回路装置Dとを、予め接続パッド1cにロウ材2aで接合した金属ボール3を半田2bで外部電気回路装置D上の電極に接続することにより、半導体素子Cと外部電気回路装置Dとが金属細線、上面電極1b、配線導体2および接続パッド1cを介して電気的に接続される。
【0028】
そして、本発明の半導体パッケージAにおいては、接続パッド1cの面積Sは2≦1000×S≦404.4−4.2F−16.7ε(ただし、Fは高周波信号の周波数(GHz)、εは基体の比誘電率である。)を満足する必要がある。上記の式は以下のようにして決定した。
【0029】
まず、図1および図2の構成の半導体パッケージAの基体1として、大きさが11mm×11mm、厚さが0.4mmであり、材質がアルミナセラミックス(比誘電率ε=10)、ガラスセラミックスG(比誘電率ε=7.5)、ガラスセラミックスH(比誘電率ε=5)の3種類のものを準備する。これらの材質の基体1は、印刷法により形成した配線導体2と上面電極1bと接続パッド1cを有する厚さ0.2mmのセラミックグリーンシート2層を積層した後、約1600℃の温度で焼成することによって作製した。配線導体2は、基体1の上面の電極1bと、下面の接続パッド1cを電気的に接続している。基体1上面での配線導体2の幅は0.18mm、長さは3.0mmとした。また、基体1上面の配線導体2から0.1mmの間隔をおいて同一面接地導体層を基体1上面のほぼ全面に形成した。
【0030】
それぞれの基体1の接続パッド1cは、印刷法によって接続パッド1c間の距離を0.8mmで形成し、その面積は、接続パッド1c間の距離が0.8mmである、ボールグリッドアレイタイプの通常の接続パッド1cの面積(直径0.7mm)より小さくする。また、金属ボール3の接合強度を考慮して、それぞれ直径が0.6mmで面積が0.28mm2、直径が0.5mmで面積が0.2mm2、直径が0.4mmで面積が0.13mm2、直径が0.3mmで面積が0.071mm2、直径が0.15mmで面積が0.018mm2とした。
【0031】
配線導体2、上面電極1bおよび接続パッド1cは、その表面に厚さ2μmの無電解Niメッキ層および厚さ0.1μmの無電解Auメッキ層を形成した。このようにして、接続パッド1cの面積S(mm2)を算出するための半導体パッケージAの基体1の試料を得た。なお、基体1の上面には枠体4が接合されるが、ここではシミュレーション用の試料であるため枠体4は省いている。
【0032】
これらの試料について、接続パッド1cと外部電気回路装置D上面の電極とを、金属ボール3よりも融点の低いロウ材2a、錫(Sn)を10重量%、鉛(Pb)を90重量%含む金属ボール3としての半田ボール、Snを37重量%、Pbを63重量%含む半田ペーストを用いて接続した。この外部電気回路装置Dの基板は、フッ素系樹脂基板上に銅配線を形成したものであり、銅配線の幅は0.26mm、長さは4.7mmであった。銅配線から0.1mmの間隔をおいて同一面接地導体層を形成している。
【0033】
そして、基体1上面の配線導体1bの先端部分と外部電気回路装置Dの銅配線の先端部分とを、ウエハープローブを用いてネットワークアナライザーに接続し、各試料について高周波信号に対する反射損失S11、透過損失S21の測定を行なった。伝送可能な高周波信号の最大周波数の判定は、高周波信号伝送のために必要とされる係数値である電圧反射係数Γ=0.18、電圧透過係数Τ=0.9を、S11=−20log|Γ|、S21=−20log|Τ|に導入して得られた値、即ち反射損失S11が−15dB以下、透過損失S21が−1.0dB以上である場合に伝送可能とし、これらの値のいずれかから外れたときの周波数を伝送可能な最大周波数とした。
【0034】
次に、表1および図4に測定結果を示す。表1は評価に用いた各半導体パッケージAにおける接続パッド1cの面積と、それにより伝送可能な信号の最大周波数値(GHz)を示す。そして、図4は表1の結果をグラフ化したものであり、縦軸は接続パッド1cの面積S(mm2)、横軸は伝送可能な高周波信号の最大周波数値F(GHz)をそれぞれ示す。
【0035】
【表1】

Figure 0003838888
【0036】
図4から明らかなように、より高い周波数の信号を伝送させるためには、接続パッド1cの面積Sを小さくする必要があること、また高周波信号の周波数が10GHz以上80GHz以下の領域において、基体1の比誘電率ε、接続パッド1cの面積Sおよび伝送可能な周波数値Fの間には明確な関係があることが判明した。即ち、図4に示すように、接続パッド1cの面積S、横軸を伝送可能な高周波信号の最大周波数値Fとした座標領域上に値をプロットすることによってグラフ化し、最小二乗法を用いてグラフの関係式を求めると、各比誘電率でグラフの傾きが一致し、S−4.2×10 −3 +Yeで表わすことができた(Ye:各グラフにおける縦軸との切片)。また、各比誘電率におけるデータの直線の縦軸との切片値と、基体1の比誘電率との関係を上記と同じ方法で求めると、Ye×1000=−16.7ε+404.4で表わされることが判明した。
【0037】
以上より、本発明者は、高周波信号の周波数が10GHz以上80GHz以下の領域において、基体1の比誘電率ε、接続パッド1cの面積Sおよび伝送可能な周波数値Fの関係は、1000×S≦404.4−4.2F−16.7εで表わされることを見出した。
【0038】
加えて、接続パッド1cは、一般に印刷法等で形成することから、安定して正確に形成できる最小の寸法に限界があり、その大きさは、面積で0.002mm2(直径で0.05mm)であることから、1000×Sの下限値は2で規定されることとなる。従って、高周波信号の周波数10〜80GHzの領域において基体1の比誘電率ε、接続パッド1cの面積Sおよび伝送可能な周波数値Fの関係は、2≦1000×S≦404.4−4.2F−16.7εで表わされる。
【0039】
上記関係により、接続パッド1cの面積を周波数の大きさに応じて最適なものとできることから、接続パッド1cと半導体パッケージAの接地用導体層との間に高周波信号の入出力に悪影響を及ぼすような浮遊容量の発生が少なくなり、接続パッド1cにおいてインピーダンスが急激に変化しないものとなる。その結果、反射損失、透過損失が小さくなり10〜80GHzの高周波信号を良好な伝送特性で伝送することができる。
【0040】
また本発明では、半導体パッケージAの基体1の下面に補助金属板Mが接合される。この補助金属板Mは、Cu,Al,Fe−Ni−Co合金,Fe−Ni合金等からなり、基体1下面に対向する2隅部または対向する2辺部にロウ材を介して接合される。なお、基体1下面の4隅部または4辺部に接合してもよい。
【0041】
補助金属板Mの厚さは、金属ボール3の直径と略同一に設定されており、具体的には0.125〜0.5mmが好ましい。厚さが0.125mm未満であれば、金属ボール3の直径も0.125mm未満とする必要があり、この直径になると金属ボール3を取り扱うことが甚だ困難となり、製造上の実用性が無くなってしまうとともに、基体1に反りが発生している場合には接続パッド1cに接続されない金属ボール3が生じる場合がある。従って、補助金属板Mの厚さは0.125mm以上であるとともに、金属ボールの直径も0.125mm以上とすることがよい。補助金属板Mの厚さが0.5mmを超えると、金属ボール3の直径が0.5mmを超えることになり、狭ピッチの接続パッド1cにおいて金属ボール3同士が接触するという不具合が発生し易くなる。より好ましくは0.125〜0.3mmがよい。
【0042】
また、補助金属板Mは外部電気回路装置Dに対してネジ締めにより取着される。これにより、半導体装置Bを外部電気回路装置Dに対して正確に位置合せでき、また補助金属板Mの位置ずれを防止することができる。従って、ネジ締めのための貫通孔5が、補助金属板Mの基体1外側に突出した突出部に設けられている。貫通孔5は基体1の端面から2mm以上離れた部位に形成されるのがよい。これは、基体1下面に補助金属板Mを例えばロウ材などを用いて接合させる際に、ロウ材によって形成されるメニスカスの影響のない範囲に貫通孔5およびネジ締め部を形成するためである。
【0043】
また、基体1下面における補助金属板Mの接合面積は、基体1下面の10〜30%が好ましい。10%未満になると、熱放散の媒体としての機能が小さくなってしまう。また接合面積が30%を超えると、補助金属板Mと基体1との接合部に生じる熱応力を緩和させることが困難となって補助金属板Mと基体1との接合部にクラックが発生し易くなる。より好ましくは10〜20%が好適である。
【0044】
また、補助金属板Mは、接地用導体としての機能を併せ持つようにすることが可能である。これにより、高周波信号の伝送特性を大きく向上させ得る。
【0045】
また、本発明の半導体装置Bは、上記半導体パッケージAと、載置部1aにSn−Pb半田、銀エポキシ樹脂、ガラスなどの接着剤を介して載置固定された半導体素子Cと、基体1の上面にロウ材を介して接合された枠体4と、枠体4の上面にAu−Sn等の低融点ロウ材により接合され、半導体素子Cを半導体パッケージAの内部に封止する蓋体5とを具備する。
【0046】
本発明の半導体装置Bは、半導体素子Cの作動時に発する熱が非常に大きい場合であっても、基体1および枠体4から、それぞれヒートシンク部や大気中にこの熱を効率良く放散することができる。そのため、半導体素子Cの誤作動や酸化腐食等を有効に防止でき、半導体素子Cを長期間に亘り正常かつ安定に作動させ得るものとなる。
【0047】
なお、本発明は上記実施の形態に限定されず、本発明の要旨を逸脱しない範囲内において種々の変更を行うことは何等支障はない。例えば、半導体装置として、
基体1と枠体4を用い、半導体素子Cを半導体レーザ(LD),フォトダイオード(PD)等の光半導体素子とするとともに半導体パッケージを光信号が伝送できるようにした、所謂光半導体パッケージとすることもできる。
【0048】
【発明の効果】
本発明の半導体素子収納用パッケージは、接続パッドの面積S(mm2)は
2≦1000×S≦404.4−4.2F−16.7ε
(ただし、Fは高周波信号の周波数(GHz)、εは基体の比誘電率である。)を満たしており、かつ基体の下面の対向する2隅部または対向する2辺部に導体バンプの高さと略等しい厚さの補助金属板が接合されていることにより、接続パッドと半導体パッケージの内層接地導体層等との間に高周波信号の伝送に悪影響を及ぼす浮遊容量が発生せず、また接続パッドで特性インピーダンスが急激に変化しないものとなる。
【0049】
また、接続パッドに外部電気回路装置との接続媒体となる固体の導体バンプをろう付けにより接続し、導体バンプと外部電気回路装置との接続を半田付け等で行っていることから、半田の括れおよびこの括れに起因するクラックを皆無とすることができる。さらに、基体の下面の対向する2隅部または対向する2辺部に導体バンプの高さと略等しい厚さの補助金属板が接合されていることから、半導体パッケージと外部電気回路装置との隙間を一定とすることができ、また半導体パッケージの外部電気回路装置に対する横ずれも防止し易くなり、横ずれ等に起因する、半田に発生するクラックを有効に防止できる。
【0050】
本発明は、好ましくは補助金属板の厚さが0.125〜0.5mmであることにより、さらに半田接合部にクラックが発生することがなく、また半導体パッケージから伝送される高周波信号の伝送路においてインピーダンスのばらつきが極めて小さくなる。
【0051】
本発明の半導体装置は、本発明の半導体素子収納用パッケージと、載置部に載置固定され、接続パッドに電気的に接続された半導体素子と、枠体の上面に接合された蓋体とを具備したことにより、半導体装置が補助金属板を介して外部電気回路装置に接合されることで、導体バンプを介した半導体装置と外部電気回路装置との接合における接合強度不足を補うことが可能となる。また、半導体装置と外部電気回路装置との位置ずれが解消できるため、導体バンプおよび半田やロウ材で構成される接合部の高さや形状をどの接合ポイントにおいても略同一とすることができる。その結果、どの接合ポイントにおいてもインピーダンスがほぼ一定となり、極めて伝送損失の小さな高周波信号の伝送が実現できる。
【0052】
また、補助金属板により半導体素子が発する熱の一部を効率よく外部装置に伝達することができ、例えば外部電気回路装置上の電極を介してこの熱を外部に放散させ得る。さらに、補助金属板により半導体パッケージの接地電位を強化することができ、高周波信号の伝送損失の低減効果がさらに大くなる。
【図面の簡単な説明】
【図1】(a)は本発明の半導体パッケージについて実施の形態の一例を示す断面図、(b)は下面に補助金属板を接合した半導体パッケージについて実施の形態の一例を示す平面図である。
【図2】(a)は本発明の半導体装置を外部電気回路装置上に搭載したものの断面図、(b)は(a)の要部拡大断面図である。
【図3】従来の半導体装置を外部電気回路装置上に搭載したものの断面図である。
【図4】表1の結果を示すグラフである。
【符号の説明】
1:基体
1a:載置部
1c:接続パッド
3:金属ボール
4:枠体
5:貫通孔
6:蓋体
A:半導体パッケージ
B:半導体装置
C:半導体素子
M:補助金属板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor element housing package that houses therein a semiconductor element that operates in a high frequency band, and a semiconductor device that houses a semiconductor element in the semiconductor element housing package.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a package for housing a semiconductor element (hereinafter referred to as a semiconductor package) that houses a semiconductor element that operates with a high frequency signal in a microwave band or a millimeter wave band is a type in which electrical connection with an external electric circuit device is performed using a lead wire. It was mainstream. However, in recent years, it has become necessary to shorten the length of the connection portion in order to reduce the transmission loss at the connection portion against further increase in the frequency of the transmission signal. Adoption of a surface mount type chip scale package (CSP) or a ball grid array (BGA) package in which a connection pad is provided and connected to an external electric circuit device using solder is being promoted.
[0003]
Examples of these surface mount type semiconductor packages are shown in FIG. FIG. 1 is a cross-sectional view showing a connection structure between a conventional semiconductor device and an external electric circuit device. The semiconductor package A is used for an FET (Field Effect Transistor) or an MMIC (Monolithic Microwave IC). The semiconductor package A is made of aluminum oxide (Al2OThree) Having a base body 101 made of a sintered material or a glass ceramic sintered body, and a wiring conductor 102 made of a metal material such as tungsten (W) or copper (Cu), and a mounting portion 101a on the upper surface of the base body 101 The semiconductor device C is mounted by using a wire bonding mounting method, a flip chip mounting method, or the like, and the semiconductor package A and the semiconductor element C are electrically connected to form the semiconductor device B. Furthermore, it is electrically joined to the external electric circuit device D through a connection pad 101c provided on the lower surface of the base 101 (see Japanese Patent Laid-Open No. 2000-299407).
[0004]
This semiconductor package A has a wiring conductor 102 inside a base 101, and the wiring conductor 102 electrically connects an upper surface electrode 101b formed on the upper surface of the base 101 and a connection pad 101c provided on the lower surface of the base 101. Is conductive. In the semiconductor device B, the connection pads 101c of the semiconductor package A are physically and electrically connected to the external electric circuit device D using the metal balls 103 and brazing material or solder, so-called conductor bumps. The connection pad 101c not only physically connects the semiconductor package A to the external electric circuit device D via solder or the like, but also transmits a high frequency signal to electrically connect the semiconductor package A and the external electric circuit device D. It has a role to be connected.
[0005]
In general, in order to ensure stable electrical continuity in the connection pad 101c and also to ensure a stable connection state, the connection pad 101c having as large an area as possible is required. The area is also related to the distance between the connection pads 101c defined by the size of the semiconductor package A and the number of connection pads 101c. Generally, the area of the connection pads 101c is 0.3 to 0.5 mm.2It is said that.
[0006]
In Japanese Patent Laid-Open No. 2000-299407, when the connection pads 101c on the lower surface of the semiconductor package A are joined to the electrodes on the external electric circuit device D via solder, for example, metal balls 103 are formed at the four corners on the lower surface of the base 101. To form the metal ball joint E. The bonding pad 101c on which the metal ball 103 is not disposed is bonded to the external electric circuit device D by, for example, a solder bonding portion J. The metal ball 103 is connected to the semiconductor package A and the external electric circuit device D. Since the gap is constant, the shape of the solder joint portion J can be a cylindrical shape or a barrel shape where no constricted portion is generated so that stress is concentrated in any of the connection pads 101c. It can be improved.
[0007]
[Problems to be solved by the invention]
However, in recent semiconductor packages, it has become necessary to transmit a high-frequency signal having a higher frequency. Therefore, a high-frequency signal generated between the connection pad 101c and the upper electrode 101b or the inner ground layer 101d can be reduced. In order to reduce the electrical capacitance that hinders transmission, it is required to further reduce the area of the connection pad 101c. In order to reduce this electric capacity without changing the area of the connection pad 101c, for example, there is a method of increasing the thickness of the substrate 101. In this case, however, it is contrary to the market demand for lightening.
[0008]
In order to transmit a high frequency high frequency signal with low loss, it is the best method to reduce the area of the connection pad 101c. However, how much the area is reduced between the connection pad 101c and the ground layer 101d. However, it has not been clarified whether high stray capacitance that adversely affects the input / output of high-frequency signals does not occur.
[0009]
Further, when the area of the connection pad 101c is reduced, the bonding strength between the connection pad 101c and the external electric circuit device D in the semiconductor package A is insufficient, and further, the semiconductor package A and the external electric circuit are heated by the heat generated by the semiconductor element C. Cracks may occur in the solder joints J due to thermal stress resulting from the difference in thermal expansion coefficient of the circuit device D, and the transmission characteristics of high-frequency signals between the semiconductor package A and the external electric circuit device D may be greatly impaired. there were. Further, if the area of the connection pad 101c is reduced in order to transmit a high-frequency high-frequency signal, a lateral shift may occur when the semiconductor package A is joined to the external electric circuit device D. At this time, the solder joint J Necking occurred, and cracks were generated due to this necking.
[0010]
Accordingly, the present invention has been completed in view of the above problems, and an object of the present invention is to provide a semiconductor element housing package containing a semiconductor element that operates at a high frequency for a long time in an external electric circuit device. An object of the present invention is to provide a semiconductor device that can be bonded and held with good performance and has low transmission loss of high-frequency signals.
[0011]
[Means for Solving the Problems]
  A package for housing a semiconductor element according to the present invention includes a substantially rectangular base body having a mounting portion for mounting a semiconductor element on an upper surface thereof.,in frontIn a package for housing a semiconductor element, comprising a connection pad formed on the lower surface of the substrate, electrically connected to the semiconductor element and for inputting / outputting a high-frequency signal, and a solid conductor bump bonded to the connection pad , The area S (mm) of the connection pad2)
2 ≦ 1000 × S ≦ 404.4-4.2F-16.7ε
Where F is the frequency of the high frequency signal (GHz), and ε is the relative dielectric constant of the substrate.In addition, an auxiliary metal plate having a thickness substantially equal to the height of the conductor bump is joined to two opposing corners or two opposing sides of the lower surface of the substrate.
[0012]
In the present invention, since the area S of the connection pad on the lower surface of the semiconductor package is set so as to satisfy the above formula, the transmission of the high-frequency signal is performed between the connection pad and the inner ground conductor layer of the semiconductor package. The stray capacitance that adversely affects the current does not occur, and the characteristic impedance does not change abruptly at the connection pad.
[0013]
In addition, a solid conductor bump made of a metal ball or a metal cylinder, which becomes a connection medium with the external electric circuit device, is connected to the connection pad by brazing, and the connection between the conductor bump and the external electric circuit device is soldered. Therefore, it is possible to eliminate solder constriction and cracks caused by this constriction, which have been generated at the time of connection. Further, since an auxiliary metal plate having a thickness substantially equal to the height of the conductor bump is joined to two opposing corners or two opposing sides of the lower surface of the base, the gap between the semiconductor package and the external electric circuit device is reduced. It is easy to prevent lateral displacement of the semiconductor package with respect to the external electric circuit device, and as a result, it is possible to effectively prevent cracks generated in the solder due to lateral displacement or the like.
[0014]
In the present invention, preferably, the auxiliary metal plate has a thickness of 0.125 to 0.5 mm.
[0015]
According to the present invention, cracks are not further generated in the solder joint portion due to the above-described configuration, and impedance variation is extremely reduced in the transmission path of the high-frequency signal transmitted from the semiconductor package.
[0016]
The semiconductor device of the present invention is bonded to the upper surface of the frame body, the semiconductor element storage package of the present invention, the semiconductor element mounted and fixed on the mounting portion, and electrically connected to the connection pad. And a lid.
[0017]
  As is clear from FIG. 4, in order to transmit a signal having a higher frequency, it is necessary to reduce the area S of the connection pad 1c, and in the region where the frequency of the high frequency signal is 10 GHz to 80 GHz, the substrate 1 It was found that there is a clear relationship among the relative dielectric constant ε, the area S of the connection pad 1c, and the transmittable frequency value F. That is, as shown in FIG. 4, a graph is formed by plotting values on a coordinate region where the area S of the connection pad 1c and the maximum frequency value F of the high-frequency signal that can be transmitted are on the horizontal axis, and the least square method is used. When the relational expression of the graph is obtained, the slopes of the graph agree with each relative dielectric constant, and S=-4.2 × 10-3F + Ye(Y e : Intercept with vertical axis in each graph)I was able to express it. Further, when the relationship between the intercept value of the linear axis of the data for each relative dielectric constant and the relative dielectric constant of the substrate 1 is obtained by the same method as described above, it is expressed as Ye × 1000 = −16.7ε + 404.4. It has been found.
[0018]
In addition, a part of heat generated by the semiconductor element can be efficiently transmitted to the external device by the auxiliary metal plate, and this heat can be dissipated to the outside through, for example, an electrode on the external electric circuit device. Furthermore, the ground potential of the semiconductor package can be strengthened by the auxiliary metal plate, and the effect of reducing the transmission loss of the high-frequency signal is further increased.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The semiconductor package and semiconductor device of the present invention will be described in detail below. FIG. 1A is a sectional view showing an example of an embodiment of a semiconductor package of the present invention, and FIG. 1B is an example of an embodiment of a semiconductor package in which an auxiliary metal plate of the present invention is bonded to the lower surface. FIG. 2A is a cross-sectional view showing an example of an embodiment in which the semiconductor device of the present invention is mounted on an external electric circuit device, and FIG. 2B is an enlarged cross-sectional view of the main part of FIG. It is. In these drawings, 1 is a substantially rectangular base, 1a is a mounting portion, 1b is an upper surface electrode on the base 1, 1c is a connection pad, 2 is a wiring conductor formed from the upper surface to the lower surface of the base 1, and 2a is a brazing material. 2b is solder, 3 is a metal ball as a solid conductor bump, 4 is a frame, and 6 is a lid. A metal cylinder may be used instead of the metal ball 3.
[0020]
In the present invention, on the lower surface of the substrate 1, a semiconductor device B composed of connection pads 1c, a brazing material 2a, metal balls 3 and solder 2b is electrically connected and mounted on an external electric circuit device D. A connection structure K is formed.
[0021]
The insulating substrate constituting the substrate 1 of the present invention is made of aluminum oxide (Al2OThree) Sintered material, aluminum nitride (AlN) sintered material, mullite (3Al2OThree・ 2SiO2) A substantially rectangular plate-like body made of an insulating material such as a sintered material, a silicon carbide (SiC) material, or a glass ceramic material. And it has the wiring conductor 2 in the inside, and has the mounting part 1a for mounting the semiconductor element C while being surrounded by the frame 4 in the center part of the upper surface.
[0022]
For example, when the base 1 is made of an aluminum oxide sintered body, the base 1 is manufactured as follows. Al2OThree, Silicon oxide (SiO2), Magnesium oxide (MgO), calcium oxide (CaO) and other raw material powders are mixed with an appropriate organic binder, organic solvent, plasticizer, dispersant, etc. to form a slurry. A plurality of ceramic green sheets are obtained by adopting a method to form a sheet. Thereafter, the ceramic green sheet is appropriately punched, and tungsten (W), molybdenum (Mo), manganese (Mn), copper (Cu), silver (Ag), nickel (Ni), palladium (Pd) , By applying a conductive paste made of a metal material powder such as gold (Au) mixed with an appropriate binder and solvent to a ceramic green sheet in advance by screen printing or the like in a predetermined pattern, thereby connecting pad 1c, wiring conductor 2 and the upper surface electrode 1b are formed. Thereafter, the ceramic green sheets are laminated as necessary, and are fired at a temperature of about 1600 ° C., thereby producing the substrate 1.
[0023]
The connection pad 1c is formed by printing and applying the above-mentioned conductive paste to the ceramic green sheet in advance in a predetermined pattern by a screen printing method or the like, and firing this together with the ceramic green sheet. The connection pad 1c not only physically connects the semiconductor package A to the external electric circuit device D via the low melting point brazing material 2a and the solder 2b, but also transmits a high-frequency signal to the semiconductor package A and the external electric circuit device. D has a function of electrically connecting to D. Further, a metal having good conductivity, corrosion resistance, and good wettability with a low melting point brazing material, such as Ni and Au, is deposited on the surface of the connection pad 1c to a thickness of 0.5 to 9 μm by plating. Therefore, the oxidative corrosion of the connection pad 1c can be effectively prevented, and the connection between the semiconductor package A and the external electric circuit device D by the solder 2b can be strengthened.
[0024]
The frame body 4 is made of, for example, a metal material or ceramics. When the frame body 4 is made of a metal material, a material obtained by mixing and melting a powder of a metal material such as an Fe—Ni—Co alloy or an Fe—Ni alloy is subjected to a roll rolling method. The sheet-like member thus obtained is rolled into a pipe-like member by a conventionally known drawing method, and this pipe-like member is processed stepwise by a conventionally known drawing method. A pipe having a rectangular cross-sectional shape is obtained. By cutting this pipe into an appropriate length, a metal frame 4 having a desired size and shape is produced. The frame body 4 is joined to the upper surface of the base body 1 via a brazing material such as silver brazing so as to surround the mounting portion 1 a of the semiconductor element C.
[0025]
Also, instead of the metal frame 4, Al2OThreeCeramics such as AlN may be used. For example, Al2OThreeWhen made of ceramics, it is produced as follows. Al2OThreeAnd SiO as a sintering aid2, CaO, MgO, etc., and a suitable binder and solvent are mixed to form a slurry. Next, a ceramic green sheet having a predetermined thickness is formed by a conventionally known tape forming method such as a doctor blade method, and a plurality of ceramic green sheets are prepared. Next, the ceramic green sheet is punched, and a metal paste paste for the metallized layer is previously applied to the portion that becomes the side wall surrounding the mounting portion 1 a, the joint portion with the base body 1, and the joint portion with the lid 5. After the lamination process, the ceramic frame 4 is obtained through a firing process at a temperature of about 1600 ° C.
[0026]
The semiconductor element C is mounted and fixed on the mounting portion 1a of the base 1 using epoxy resin, silver epoxy resin or the like, and the electrode on the semiconductor element C and the upper surface electrode 1b on the semiconductor package are made of Au, Ag, Al or the like. After being electrically connected with the thin metal wires, the lid 6 made of Cu, aluminum oxide, or the like is sealed by bonding or welding with a resin adhesive such as an epoxy resin or a brazing material, thereby forming the semiconductor device B.
[0027]
Then, the connection pad 1c formed on the lower surface of the substrate 1 and the external electric circuit device D are connected to the electrode on the external electric circuit device D with the solder 2b. The metal ball 3 previously bonded to the connection pad 1c with the brazing material 2a. As a result, the semiconductor element C and the external electric circuit device D are electrically connected through the fine metal wire, the upper surface electrode 1b, the wiring conductor 2 and the connection pad 1c.
[0028]
In the semiconductor package A of the present invention, the area S of the connection pad 1c is 2 ≦ 1000 × S ≦ 404.4-4.2F-16.7ε (where F is the frequency of the high frequency signal (GHz), and ε is It is necessary to satisfy the relative dielectric constant of the substrate). The above formula was determined as follows.
[0029]
First, as the substrate 1 of the semiconductor package A having the configuration shown in FIGS. 1 and 2, the size is 11 mm × 11 mm, the thickness is 0.4 mm, the material is alumina ceramics (relative permittivity ε = 10), and the glass ceramics G Three types of dielectric constant (dielectric constant ε = 7.5) and glass ceramic H (dielectric constant ε = 5) are prepared. The base 1 made of these materials is baked at a temperature of about 1600 ° C. after laminating two layers of 0.2 mm thick ceramic green sheets having a wiring conductor 2 formed by a printing method, an upper surface electrode 1b, and a connection pad 1c. It was prepared by. The wiring conductor 2 electrically connects the electrode 1b on the upper surface of the base 1 and the connection pad 1c on the lower surface. The width of the wiring conductor 2 on the upper surface of the substrate 1 was 0.18 mm and the length was 3.0 mm. Further, the same-surface ground conductor layer was formed on almost the entire upper surface of the substrate 1 with a distance of 0.1 mm from the wiring conductor 2 on the upper surface of the substrate 1.
[0030]
The connection pads 1c of each substrate 1 are formed by a printing method so that the distance between the connection pads 1c is 0.8 mm, and the area is 0.8 mm, which is the distance between the connection pads 1c. It is made smaller than the area (diameter 0.7 mm) of the connection pad 1c. In consideration of the bonding strength of the metal balls 3, the diameter is 0.6mm and the area is 0.28mm.2The diameter is 0.5mm and the area is 0.2mm2The diameter is 0.4mm and the area is 0.13mm2The diameter is 0.3mm and the area is 0.071mm2The diameter is 0.15mm and the area is 0.018mm2It was.
[0031]
The wiring conductor 2, the upper surface electrode 1b, and the connection pad 1c were formed with an electroless Ni plating layer having a thickness of 2 μm and an electroless Au plating layer having a thickness of 0.1 μm on the surface thereof. In this way, the area S (mm) of the connection pad 1c2) To obtain a sample of the substrate 1 of the semiconductor package A. Although the frame body 4 is bonded to the upper surface of the substrate 1, the frame body 4 is omitted here because it is a sample for simulation.
[0032]
About these samples, the connection pad 1c and the electrode on the upper surface of the external electric circuit device D include a brazing material 2a having a melting point lower than that of the metal balls 3, 10% by weight of tin (Sn), and 90% by weight of lead (Pb). The solder balls as the metal balls 3 were connected using a solder paste containing 37 wt% Sn and 63 wt% Pb. The substrate of the external electric circuit device D was obtained by forming a copper wiring on a fluorine-based resin substrate, and the copper wiring had a width of 0.26 mm and a length of 4.7 mm. A coplanar ground conductor layer is formed at a distance of 0.1 mm from the copper wiring.
[0033]
And the front-end | tip part of the wiring conductor 1b of the base | substrate 1 upper surface and the front-end | tip part of the copper wiring of the external electric circuit apparatus D are connected to a network analyzer using a wafer probe, and reflection loss S11 with respect to a high frequency signal, transmission loss about each sample The measurement of S21 was performed. The maximum frequency of a high-frequency signal that can be transmitted is determined by setting a voltage reflection coefficient Γ = 0.18 and a voltage transmission coefficient Τ = 0.9, which are coefficient values required for high-frequency signal transmission, and S11 = −20log | Γ |, S21 = −20log | Τ | values obtained by introducing them, that is, transmission is possible when the reflection loss S11 is −15 dB or less and the transmission loss S21 is −1.0 dB or more. The frequency at the time when it is out of the range is defined as the maximum frequency that can be transmitted.
[0034]
Next, Table 1 and FIG. 4 show the measurement results. Table 1 shows the area of the connection pad 1c in each semiconductor package A used for the evaluation and the maximum frequency value (GHz) of the signal that can be transmitted thereby. FIG. 4 is a graph showing the results of Table 1. The vertical axis represents the area S (mm) of the connection pad 1c.2), The horizontal axis represents the maximum frequency value F (GHz) of the high-frequency signal that can be transmitted.
[0035]
[Table 1]
Figure 0003838888
[0036]
  As is clear from FIG. 4, in order to transmit a signal having a higher frequency, it is necessary to reduce the area S of the connection pad 1c, and in the region where the frequency of the high frequency signal is 10 GHz to 80 GHz, the substrate 1 It was found that there is a clear relationship among the relative dielectric constant ε, the area S of the connection pad 1c, and the transmittable frequency value F. That is, as shown in FIG. 4, a graph is formed by plotting values on a coordinate region where the area S of the connection pad 1c and the maximum frequency value F of the high-frequency signal that can be transmitted are on the horizontal axis, and the least square method is used. When the relational expression of the graph is obtained, the slopes of the graph agree with each relative dielectric constant, and S-4.2 × 10 -3 F+ Ye (Ye: intercept with the vertical axis in each graph). Further, when the relationship between the intercept value of the linear axis of the data for each relative dielectric constant and the relative dielectric constant of the substrate 1 is obtained by the same method as described above, it is expressed as Ye × 1000 = −16.7ε + 404.4. It has been found.
[0037]
As described above, the present inventor found that the relationship between the relative dielectric constant ε of the substrate 1, the area S of the connection pad 1c, and the transmittable frequency value F in the region where the frequency of the high frequency signal is 10 GHz or more and 80 GHz or less is 1000 × S ≦ It was found to be represented by 404.4-4.2F-16.7ε.
[0038]
In addition, since the connection pad 1c is generally formed by a printing method or the like, there is a limit to the minimum dimension that can be stably and accurately formed, and the size is 0.002 mm in area.2Since the diameter is 0.05 mm, the lower limit of 1000 × S is defined by 2. Therefore, the relationship between the relative dielectric constant ε of the substrate 1, the area S of the connection pad 1 c, and the transmittable frequency value F in the frequency range of 10 to 80 GHz of the high frequency signal is 2 ≦ 1000 × S ≦ 404.4-4.2F. It is represented by −16.7ε.
[0039]
Because of the above relationship, the area of the connection pad 1c can be optimized according to the size of the frequency, so that the input / output of the high frequency signal is adversely affected between the connection pad 1c and the grounding conductor layer of the semiconductor package A. As a result, the generation of stray capacitance is reduced, and the impedance does not change abruptly at the connection pad 1c. As a result, reflection loss and transmission loss are reduced, and a high frequency signal of 10 to 80 GHz can be transmitted with good transmission characteristics.
[0040]
In the present invention, the auxiliary metal plate M is joined to the lower surface of the base 1 of the semiconductor package A. The auxiliary metal plate M is made of Cu, Al, Fe—Ni—Co alloy, Fe—Ni alloy or the like, and is joined to the two corners facing the lower surface of the base 1 or the two facing sides via a brazing material. . In addition, you may join to the four corners or four sides of the base 1 lower surface.
[0041]
The thickness of the auxiliary metal plate M is set to be approximately the same as the diameter of the metal ball 3, and specifically, 0.125 to 0.5 mm is preferable. If the thickness is less than 0.125 mm, the diameter of the metal ball 3 also needs to be less than 0.125 mm. If this diameter is reached, it becomes extremely difficult to handle the metal ball 3, and the practicality of manufacturing is lost. In addition, when the base body 1 is warped, a metal ball 3 that is not connected to the connection pad 1c may be generated. Therefore, the thickness of the auxiliary metal plate M is preferably 0.125 mm or more, and the diameter of the metal ball is preferably 0.125 mm or more. When the thickness of the auxiliary metal plate M exceeds 0.5 mm, the diameter of the metal ball 3 exceeds 0.5 mm, and the problem that the metal balls 3 come into contact with each other in the connection pad 1c having a narrow pitch is likely to occur. Become. More preferably, it is 0.125 to 0.3 mm.
[0042]
The auxiliary metal plate M is attached to the external electric circuit device D by screwing. Thereby, the semiconductor device B can be accurately aligned with the external electric circuit device D, and the displacement of the auxiliary metal plate M can be prevented. Accordingly, the through hole 5 for screw tightening is provided in the protruding portion that protrudes outside the base body 1 of the auxiliary metal plate M. The through-hole 5 is preferably formed at a site 2 mm or more away from the end face of the substrate 1. This is because, when the auxiliary metal plate M is joined to the lower surface of the base 1 using, for example, a brazing material, the through hole 5 and the screw tightening portion are formed in a range not affected by the meniscus formed by the brazing material. .
[0043]
Further, the bonding area of the auxiliary metal plate M on the lower surface of the substrate 1 is preferably 10 to 30% of the lower surface of the substrate 1. If it is less than 10%, the function as a heat dissipation medium is reduced. If the bonding area exceeds 30%, it becomes difficult to relieve the thermal stress generated at the joint between the auxiliary metal plate M and the base 1, and a crack occurs at the joint between the auxiliary metal plate M and the base 1. It becomes easy. More preferably, 10 to 20% is suitable.
[0044]
Further, the auxiliary metal plate M can also have a function as a grounding conductor. Thereby, the transmission characteristic of the high frequency signal can be greatly improved.
[0045]
The semiconductor device B of the present invention includes the semiconductor package A, the semiconductor element C mounted and fixed on the mounting portion 1a via an adhesive such as Sn-Pb solder, silver epoxy resin, and glass, and the base 1 A frame body 4 joined to the upper surface of the semiconductor substrate A via a brazing material, and a lid body which is joined to the upper surface of the frame body 4 by a low melting point brazing material such as Au—Sn and seals the semiconductor element C inside the semiconductor package A. And 5.
[0046]
The semiconductor device B of the present invention can efficiently dissipate this heat from the base body 1 and the frame body 4 to the heat sink part and the atmosphere, respectively, even when the heat generated during the operation of the semiconductor element C is very large. it can. Therefore, malfunction or oxidative corrosion of the semiconductor element C can be effectively prevented, and the semiconductor element C can be operated normally and stably over a long period of time.
[0047]
In addition, this invention is not limited to the said embodiment, It does not have any trouble in making a various change within the range which does not deviate from the summary of this invention. For example, as a semiconductor device,
A so-called optical semiconductor package in which the semiconductor element C is an optical semiconductor element such as a semiconductor laser (LD) or a photodiode (PD) and the semiconductor package can transmit an optical signal by using the base 1 and the frame 4 is used. You can also.
[0048]
【The invention's effect】
The semiconductor element storage package of the present invention has a connection pad area S (mm).2)
2 ≦ 1000 × S ≦ 404.4-4.2F-16.7ε
(Where F is the frequency (GHz) of the high-frequency signal, and ε is the relative dielectric constant of the substrate), and the height of the conductor bumps at the two opposite corners or the two opposite sides of the lower surface of the substrate. As a result, the stray capacitance that adversely affects the transmission of high-frequency signals is not generated between the connection pad and the inner ground conductor layer of the semiconductor package. The characteristic impedance does not change abruptly.
[0049]
In addition, solid conductor bumps, which are connection media with external electric circuit devices, are connected to the connection pads by brazing, and the connection between the conductor bumps and the external electric circuit devices is performed by soldering, etc. In addition, it is possible to eliminate any cracks resulting from this constriction. Further, since an auxiliary metal plate having a thickness substantially equal to the height of the conductor bump is joined to two opposing corners or two opposing sides of the lower surface of the base, the gap between the semiconductor package and the external electric circuit device is reduced. It can be made constant, and the lateral displacement of the semiconductor package with respect to the external electric circuit device can be easily prevented, and cracks generated in the solder due to the lateral displacement can be effectively prevented.
[0050]
In the present invention, it is preferable that the thickness of the auxiliary metal plate is 0.125 to 0.5 mm, so that no crack is further generated in the solder joint portion, and the transmission path of the high-frequency signal transmitted from the semiconductor package Variation in impedance is extremely small.
[0051]
The semiconductor device of the present invention includes a semiconductor element storage package of the present invention, a semiconductor element mounted and fixed on the mounting portion and electrically connected to the connection pad, and a lid bonded to the upper surface of the frame. By joining the semiconductor device to the external electric circuit device via the auxiliary metal plate, it is possible to compensate for insufficient bonding strength in the bonding between the semiconductor device and the external electric circuit device via the conductor bump. It becomes. In addition, since the misalignment between the semiconductor device and the external electric circuit device can be eliminated, the height and shape of the joint made of the conductor bump and the solder or brazing material can be made substantially the same at any joint point. As a result, the impedance is almost constant at any junction point, and transmission of a high-frequency signal with extremely small transmission loss can be realized.
[0052]
In addition, a part of heat generated by the semiconductor element can be efficiently transmitted to the external device by the auxiliary metal plate, and this heat can be dissipated to the outside through, for example, an electrode on the external electric circuit device. Furthermore, the ground potential of the semiconductor package can be strengthened by the auxiliary metal plate, and the effect of reducing the transmission loss of the high-frequency signal is further increased.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view showing an example of an embodiment of a semiconductor package of the present invention, and FIG. 1B is a plan view showing an example of an embodiment of a semiconductor package in which an auxiliary metal plate is bonded to the lower surface. .
2A is a cross-sectional view of a semiconductor device according to the present invention mounted on an external electric circuit device, and FIG. 2B is an enlarged cross-sectional view of the main part of FIG.
FIG. 3 is a cross-sectional view of a conventional semiconductor device mounted on an external electric circuit device.
4 is a graph showing the results of Table 1. FIG.
[Explanation of symbols]
1: Substrate
1a: Placement part
1c: Connection pad
3: Metal balls
4: Frame
5: Through hole
6: Lid
A: Semiconductor package
B: Semiconductor device
C: Semiconductor element
M: Auxiliary metal plate

Claims (3)

上面に半導体素子を載置する載置部を有する略長方形の基体と、前記基体の下面に形成され、前記半導体素子と電気的に接続されるとともに高周波信号を入出力する接続パッドと、該接続パッドに接合された固体の導体バンプとを具備した半導体素子収納用パッケージにおいて、前記接続パッドの面積S(mm)は
2≦1000×S≦404.4−4.2F−16.7ε
(ただし、Fは高周波信号の周波数(GHz)、εは基体の比誘電率である。)を満たしており、かつ前記基体の下面の対向する2隅部または対向する2辺部に前記導体バンプの高さと略等しい厚さの補助金属板が接合されていることを特徴とする半導体素子収納用パッケージ。
A substantially rectangular base having a mounting portion for mounting a semiconductor element on the upper surface; a connection pad formed on the lower surface of the base and electrically connected to the semiconductor element and for inputting and outputting a high-frequency signal; and the connection In a package for housing a semiconductor element having a solid conductive bump bonded to a pad, the area S (mm 2 ) of the connection pad is 2 ≦ 1000 × S ≦ 404.4-4.2F-16.7ε.
(Where F is the frequency (GHz) of the high-frequency signal, and ε is the relative dielectric constant of the base) , and the conductor bumps are formed at two opposing corners or two opposing sides of the lower surface of the base . the height and the semiconductor device package for housing substantially the same thickness of the auxiliary metal sheet is characterized that you have joined the.
前記補助金属板の厚さが0.125〜0.5mmであることを特徴とする請求項記載の半導体素子収納用パッケージ。A package for housing semiconductor chip according to claim 1, wherein the thickness of the auxiliary metal plate is 0.125~0.5Mm. 請求項1または請求項記載の半導体素子収納用パッケージと、前記載置部に載置固定され、前記接続パッドに電気的に接続された半導体素子と、前記枠体上面に接合された蓋体とを具備したことを特徴とする半導体装置。A package for housing semiconductor chip according to claim 1 or claim 2 wherein, fixedly mounted on the mounting section, and a semiconductor element electrically connected to the connection pad, the cover joined to the frame upper surface A semiconductor device comprising:
JP2001136738A 2001-05-07 2001-05-07 Semiconductor element storage package and semiconductor device Expired - Fee Related JP3838888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136738A JP3838888B2 (en) 2001-05-07 2001-05-07 Semiconductor element storage package and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001136738A JP3838888B2 (en) 2001-05-07 2001-05-07 Semiconductor element storage package and semiconductor device

Publications (2)

Publication Number Publication Date
JP2002334952A JP2002334952A (en) 2002-11-22
JP3838888B2 true JP3838888B2 (en) 2006-10-25

Family

ID=18983955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136738A Expired - Fee Related JP3838888B2 (en) 2001-05-07 2001-05-07 Semiconductor element storage package and semiconductor device

Country Status (1)

Country Link
JP (1) JP3838888B2 (en)

Also Published As

Publication number Publication date
JP2002334952A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
US6936921B2 (en) High-frequency package
JP2003068928A (en) Mounting structure of wiring board for high frequency
JP2003100924A (en) Semiconductor device
JP3981645B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP3838888B2 (en) Semiconductor element storage package and semiconductor device
JP4009169B2 (en) Semiconductor element storage package and semiconductor device
JP2003249598A (en) Package for storing semiconductor element, and semiconductor device
JP3314163B2 (en) Package for storing semiconductor elements
JP4518664B2 (en) Wiring board mounting structure and semiconductor device
JP2517024B2 (en) Ceramic package and its manufacturing method
JP3323171B2 (en) Package for storing semiconductor elements
JP4172783B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP3771853B2 (en) I / O terminal and semiconductor element storage package
JP4000093B2 (en) Input / output terminal, manufacturing method of input / output terminal, package for storing semiconductor element using input / output terminal, and semiconductor device
JP3840160B2 (en) High frequency device storage package
JP4139165B2 (en) Input / output terminal for semiconductor element storage package, semiconductor element storage package, and semiconductor device
JP2703456B2 (en) Wiring board
JP2004349568A (en) Input/output terminal and package for housing semiconductor element, and semiconductor device
JP3752472B2 (en) Package for storing semiconductor elements
JP2004228532A (en) Input/output terminal, semiconductor element housing package, and semiconductor device
JP3652257B2 (en) Package for storing semiconductor elements
JP4164011B2 (en) Semiconductor element storage package and semiconductor device
JP4295641B2 (en) Manufacturing method of electronic component storage package
JP3840131B2 (en) Package for storing semiconductor elements
JP3805272B2 (en) Semiconductor element storage package and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees