WO2019082372A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置

Info

Publication number
WO2019082372A1
WO2019082372A1 PCT/JP2017/038871 JP2017038871W WO2019082372A1 WO 2019082372 A1 WO2019082372 A1 WO 2019082372A1 JP 2017038871 W JP2017038871 W JP 2017038871W WO 2019082372 A1 WO2019082372 A1 WO 2019082372A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion valve
temperature
refrigerant
heat exchanger
temperature sensor
Prior art date
Application number
PCT/JP2017/038871
Other languages
English (en)
French (fr)
Inventor
拓未 西山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780096117.6A priority Critical patent/CN111247377B/zh
Priority to PCT/JP2017/038871 priority patent/WO2019082372A1/ja
Priority to JP2019549799A priority patent/JP6878612B2/ja
Priority to EP17930030.6A priority patent/EP3702696A4/en
Priority to US16/754,481 priority patent/US11486617B2/en
Priority to AU2017436890A priority patent/AU2017436890B2/en
Publication of WO2019082372A1 publication Critical patent/WO2019082372A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus provided with a plurality of expansion valves.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a refrigeration cycle apparatus capable of realizing optimal operation while reducing the amount of refrigerant required even when the piping is long. There is.
  • a refrigeration cycle apparatus includes an outdoor unit including a compressor, a first heat exchanger, and a first expansion valve, an indoor unit including a second expansion valve, and a second heat exchanger, and an outdoor unit.
  • a first pipe and a second pipe connected between the machine and the indoor unit are provided.
  • the refrigerant discharged from the compressor is returned to the compressor through the first heat exchanger, the first expansion valve, the first pipe, the second expansion valve, the second heat exchanger, and the second pipe in the cooling operation.
  • the first expansion valve changes the liquid-phase refrigerant into a two-phase refrigerant and sends it to the first pipe.
  • the refrigerant in the first pipe connected between the outdoor unit and the indoor unit is made to be two phase instead of the liquid phase, it is possible to reduce the amount of refrigerant required when the pipe is long it can.
  • FIG. 2 is a diagram showing a configuration of a refrigeration cycle apparatus 200 according to Embodiment 1 and a flow of a refrigerant. It is a figure for demonstrating the relationship between the length of piping, and the amount of required refrigerant
  • FIG. 6 is a view showing control of respective expansion valves at the time of cooling and at the time of heating in the first embodiment. It is the figure which showed the tolerance
  • FIG. 7 is a flowchart showing processing during cooling operation of the first embodiment.
  • 5 is a flowchart showing processing during heating operation according to the first embodiment.
  • FIG. 7 is a diagram showing a configuration of a refrigeration cycle apparatus of a second embodiment. It is a characteristic diagram of the 1st example of an expansion valve. It is a characteristic diagram of the 2nd example of an expansion valve.
  • FIG. 16 is a circuit diagram of a refrigeration cycle apparatus 200B according to a third embodiment.
  • FIG. 16 is a circuit diagram of a refrigeration cycle apparatus 200C that is a modification of the third embodiment.
  • FIG. 16 is a circuit diagram of a refrigeration cycle apparatus 200D according to a fourth embodiment.
  • FIG. 17 is a view showing control of respective expansion valves at the time of cooling and at the time of heating in the fourth embodiment.
  • FIG. 20 is a flowchart showing processing during cooling operation of the fourth embodiment.
  • FIG. 16 is a flowchart showing processing at the time of heating operation according to Embodiment 4.
  • FIG. 1 is a diagram showing the structure of the refrigeration cycle apparatus 200 according to the first embodiment and the flow of the refrigerant. As shown in FIG. 1, the refrigeration cycle apparatus 200 includes an outdoor unit 101 and an indoor unit 102.
  • the outdoor unit 101 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a receiver 5, expansion valves 41 and 43, and temperature sensors 10a, 10b and 10f.
  • the arrangement of the control device 100 is not particularly limited, but may be disposed in the outdoor unit 101.
  • the indoor unit 102 includes an indoor heat exchanger 6, an expansion valve 42, and temperature sensors 10c, 10d and 10e.
  • the outdoor unit 101 and the indoor unit 102 are connected by pipes 111 and 112.
  • the pipe diameter of the pipe 112 gas pipe
  • the pipe diameter of the pipe 111 liquid pipe
  • the compressor 1 adiabatically compresses the low pressure gas refrigerant and discharges the high pressure gas refrigerant.
  • Each of the expansion valves 41 to 43 is configured to be capable of depressurizing and flowing out the liquid refrigerant.
  • linear electronic expansion valves LEV: Linear Expansion Valve
  • the receiver 5 is configured to be able to store a refrigerant, and absorbs changes in the amount of refrigerant circulation due to fluctuations in load and the like. In addition, the receiver 5 is used to previously store the amount of refrigerant corresponding to the change in refrigerant pipe length in preparation for the change depending on the installation location.
  • the control device 100 controls the drive frequency of the compressor 1 to control the amount of refrigerant discharged by the compressor 1 per unit time.
  • the control device 100 controls the four-way valve 2 to switch the circulation direction of the refrigerant.
  • Control device 100 controls the opening degree of expansion valves 41-43.
  • the control device 100 acquires the refrigerant temperature of each part from the temperature sensors 10a to 10e. Temperature sensors 10a to 10e are, for example, thermistors.
  • the refrigerant is the compressor 1, four-way valve 2, outdoor heat exchanger 3, expansion valve 43, receiver 5, expansion valve 41, pipe 111, expansion valve 42, indoor heat exchanger 6, pipe 112, four-way valve 2 , It circulates so that it may return to the compressor 1 through the internal flow path of the receiver 5.
  • the four-way valve 2 which is an example of the flow path switching valve, connects the discharge port of the compressor 1 and the outdoor heat exchanger 3 in the cooling operation and connects the pipe 112 and the internal flow path of the receiver 5.
  • the refrigerant flows from the compressor 1 to the outdoor heat exchanger 3 via the four-way valve 2.
  • the outdoor heat exchanger 3 functions as a condenser in the cooling operation.
  • the gas refrigerant from the compressor 1 releases condensation heat in the outdoor heat exchanger 3, condenses, and becomes liquid refrigerant.
  • the refrigerant condensed by the outdoor heat exchanger 3 is decompressed by the expansion valve 43.
  • the refrigerant reduced in pressure by the expansion valve 43 reaches the expansion valve 41 after passing through the receiver 5.
  • the refrigerant throttled by the expansion valve 41 reaches the indoor heat exchanger 6 via the pipe 111 and the expansion valve 42.
  • the indoor heat exchanger 6 functions as an evaporator in the cooling operation.
  • the refrigerant from the expansion valve 42 absorbs the heat of vaporization from the indoor air in the indoor heat exchanger 6 and is vaporized.
  • the refrigerant evaporated in the indoor heat exchanger 6 returns to the compressor 1 via the four-way valve 2 and the receiver 5.
  • the refrigerant from the outdoor heat exchanger 3 exchanges heat with the gas refrigerant from the indoor heat exchanger 6 in the receiver 5, and is cooled.
  • the refrigerant is the compressor 1, four-way valve 2, pipe 112, indoor heat exchanger 6, expansion valve 42, pipe 111, expansion valve 41, receiver 5, expansion valve 43, outdoor heat exchanger 3, four-way It circulates so that it may return to the compressor 1 through the internal flow path of the valve 2 and the receiver 5.
  • the outdoor heat exchanger 3 functions as an evaporator
  • the indoor heat exchanger 6 functions as a condenser.
  • the refrigerant is condensed in the indoor heat exchanger 6 from the compressor 1 via the four-way valve 2 and the pipe 112.
  • the refrigerant condensed in the indoor heat exchanger 6 is decompressed by the expansion valve 42.
  • the refrigerant decompressed by the expansion valve 42 is further decompressed by the expansion valve 43 after passing through the pipe 111, the expansion valve 41, and the receiver 5, and reaches the outdoor heat exchanger 3.
  • the refrigerant evaporated in the outdoor heat exchanger 3 returns to the compressor 1 via the four-way valve 2 and the receiver 5.
  • control device 100 controls the degree of opening of the expansion valves 41 to 43 so that the two-phase refrigerant flows in the pipe 111 and the gas refrigerant flows in the pipe 112. Control is facilitated by changing the inlet state of at least two or more expansion valves in any of the cooling and heating operating states, and switching and control of the control method of each expansion valve is performed according to the operating state. This makes it possible to maintain the operating state, cope with the length of the pipe 111, and reduce the amount of refrigerant.
  • FIG. 2 is a diagram for explaining the relationship between the length of the pipe and the required amount of refrigerant.
  • the horizontal axis indicates the pipe length
  • the vertical axis indicates the amount of refrigerant required.
  • the refrigerant amount is determined by the amount of refrigerant necessary for cooling when the pipe length is shorter than L1, but the pipe length is longer than L1
  • the amount of refrigerant is determined by the amount of refrigerant required for heating.
  • the expansion valve 41 is disposed on the outdoor unit side, and the expansion valve 42 is disposed on the indoor unit side.
  • the line W3 it is also possible to control the refrigerant flowing through the pipe 111 at the time of heating to a two-phase state.
  • the amount of increase in the refrigerant (slope of the graph) with the increase in the pipe length is smaller than in the case of the line W1.
  • the amount of refrigerant necessary for cooling becomes dominant, and the amount of refrigerant required for the refrigeration cycle apparatus can be reduced by the portion shown by the arrow in FIG.
  • FIG. 3 is a view showing control of each expansion valve at the time of cooling and heating in the first embodiment.
  • a method (corresponding to W1 and W2 in FIG. 2) of controlling the refrigerant in the pipe 111 in a liquid phase state is shown as a comparative example, and a control method (corresponding to W1 and W3 in FIG. 2) executed in the present embodiment. ) Is shown as a new control.
  • the refrigeration cycle apparatus of the comparative example is not shown, the expansion valve 42 is omitted from the configuration shown in FIG.
  • the expansion valve 43 is controlled by SC control, and the expansion valve 42 is controlled by suction SH control.
  • This control refers to control for changing the opening degree of the expansion valve 43 so as to be a preset value.
  • the control of changing the opening degree of the expansion valve 41 so as to obtain the above value is referred to.
  • the new control performed in the present embodiment is controlled such that expansion valve 43 is controlled by SC control ( ⁇ ), expansion valve 42 is controlled by suction SH control, and expansion valve 42 is fully opened.
  • SC control SC control
  • the inhalation SH control is the same as the inhalation SH control of the above comparative example, but the SC control ( ⁇ ) is such that the newly introduced parameter ⁇ (epsilon) [0 ⁇ ⁇ ⁇ 1] is within the range of preset values. Control to change the opening degree of the expansion valve 43.
  • the expansion valve 43 is controlled by suction SH control, and the expansion valve 41 is controlled by SC control.
  • This control refers to control for changing the opening degree of the expansion valve 41 so as to be a preset value.
  • the control of changing the opening degree of the expansion valve 43 so as to obtain the above value is referred to.
  • the expansion control 43 is controlled by suction SH control, the expansion control valve 41 is fully opened, and the expansion control 42 is controlled by medium pressure control in the heating operation.
  • the suction SH control is the same as the suction SH control of the comparative example, but the medium pressure control is an expansion valve 42 so that the newly introduced parameter ⁇ (zeta) [ ⁇ 1 1] is within the range of preset values. It is control to change the opening degree of.
  • FIG. 4 is a diagram showing an allowable range of the setting value of the parameter ⁇ .
  • the parameter ⁇ is set lower as the outside air temperature Taout becomes higher, but the allowable range of the set value in consideration of the measurement error of the temperature sensor is indicated by a broken line above and below the solid set value. Therefore, the range of values preset for the parameter ⁇ can be a region between two dashed lines shown by arrows in FIG.
  • the range of values set in advance may be similarly determined in consideration of the measurement error of the temperature sensor.
  • FIG. 5 is a PH diagram during cooling operation when the piping is short.
  • FIG. 6 is a PH diagram at the time of cooling operation when the piping is long.
  • points M1 to M6 correspond to the points M1 to M6 in FIG. 1, respectively.
  • the refrigerant is decompressed by the expansion valve 43, and from point M2 to point M3, the refrigerant is cooled in the receiver 5. Further, the refrigerant is depressurized by the expansion valve 41 from point M3 to point M4.
  • FIG. 7 is a PH diagram at the time of heating operation when the piping is short.
  • FIG. 8 is a PH diagram at the time of heating operation when the pipe is long.
  • points M1 to M6 correspond to the points M1 to M6 in FIG. 1, respectively.
  • the arrangement of the points M1 to M6 is different from that in FIGS. 5 and 6 in the cooling operation. From point M6 to point M5, the refrigerant is decompressed by the expansion valve 42, and from point M5 to point M4, a pressure loss corresponding to the length of the pipe 111 occurs, and from point M3 to point M2, the refrigerant is cooled in the receiver 5 . Further, the refrigerant is depressurized by the expansion valve 43 from point M2 to point M1.
  • FIG. 9 is a flowchart showing a process of determining the operation mode.
  • FIG. 10 is a flowchart showing processing at the time of cooling operation of the first embodiment.
  • FIG. 11 is a flowchart showing processing during heating operation of the first embodiment.
  • the control device 100 determines the operation mode in step S1.
  • the control device 100 may directly read the user setting, or may make a determination according to the state of the four-way valve controlled by the user setting, or a temperature sensor (for example, temperature sensors 10a and 10e) The determination may be made based on the temperature detection result of In step S1, if the determination result is cooling, the process proceeds to step S2, and if heating, the process proceeds to step S3. Cooling control (FIG. 10) is executed in step S2, and heating control (FIG. 11) is executed in step S3.
  • step S4 the control device 100 first confirms the room temperature and the outside air temperature.
  • the temperature sensors 10a and 10e can be used for this confirmation.
  • the confirmation may be made without driving each device at all or, for example, the results of detection after operating the fan inside and outside the room for an appropriate time may be used.
  • the control device 100 switches the four-way valve 2 to the cooling mode (a flow path shown by a solid line of the four-way valve 2 in FIG. 1). Further, the expansion valves 41 and 43 are changed to the initial setting opening degree, and the expansion valve 42 is set to the fixed opening degree (full opening).
  • suction SH control is performed for the expansion valve 41 in steps S5 and S6 based on the operating state of the refrigeration cycle apparatus, and SC control ( ⁇ ) for the expansion valve 43 is performed in steps S7 and S8.
  • step S5 the control device 100 determines whether the temperature difference between the detected temperature T10f of the temperature sensor 10f and the detected temperature T10e of the temperature sensor 10e is within the set range of the degree of superheat SH. If the temperature difference is within the set range (YES in S5), the process proceeds to step S7. If the temperature difference is out of the set range (NO in S5), the process proceeds to step S6. In step S6, the controller 100 restricts the expansion valve 41 because there is a possibility of liquid back when the degree of superheat SH is below the lower limit of the setting range, and the refrigerant is too dry when above the upper limit. Since the discharge temperature becomes high, the expansion valve 41 is opened.
  • the degree of opening change may be adjusted according to the magnitude of the difference from the set range. For example, if the difference between the threshold value and the superheat degree SH is large, the opening degree of the expansion valve is increased, and if the difference between the threshold value and the superheat degree SH is small, control such as decreasing the opening degree of the expansion valve You may do it.
  • step S7 the control device 100 determines whether the parameter ⁇ is within the set threshold.
  • the parameter ⁇ [0 ⁇ ⁇ ⁇ 1] is the temperature difference between the intermediate temperature (temperature sensor 10 a) of the outdoor heat exchanger 3 and the outlet temperature (temperature sensor 10 b) of the outdoor heat exchanger 3 and the temperature of the outdoor heat exchanger 3. It is a value obtained from the ratio of the temperature difference between the intermediate temperature (temperature sensor 10a) and the temperature detected by the temperature sensor 10a before operation.
  • step S7 If ⁇ is in the range (YES in S7), the process proceeds to step S9. If ⁇ is out of the range (NO in S7), the process proceeds to step S8.
  • the controller does not obtain the condensation temperature of the condenser and the subcooling degree SC obtained from the temperature detection result from the condenser outlet to the inlet of the expansion valve 43 up to the set value.
  • the expansion valve 43 is throttled. Conversely, when ⁇ is equal to or greater than the upper limit of the setting range, the control device 100 increases the opening degree of the expansion valve 43. After changing the opening degree of the expansion valve 43, the opening degree is maintained for an appropriate time, and the determination is performed again in step S5.
  • step S9 if ⁇ is the lower limit value of the set range, the control ends, otherwise the process of step S10 is executed.
  • step S10 when ⁇ is not the lower limit value of the setting range, the expansion valve 43 is opened to make the lower limit value (to prevent differential pressure from being applied on the high pressure side), and the determination is performed again in step S5. .
  • the necessary degree of supercooling SC is secured at a minimum, and the inlet of the pipe 111 dries regardless of the length of the pipe 111 The degree can be maximized.
  • step S104 the control device 100 confirms the indoor temperature and the outside air temperature when performing the heating control.
  • the temperature sensors 10a and 10e can be used for this confirmation.
  • the confirmation may be made without driving each device at all or, for example, the results of detection after operating the fan inside and outside the room for an appropriate time may be used.
  • the control device 100 switches the four-way valve 2 to the heating mode (a flow path shown by a broken line of the four-way valve 2 in FIG. 1). Further, the expansion valves 42 and 43 are changed to the initial setting opening degree, and the expansion valve 41 is set to the fixed opening degree (full opening).
  • suction SH control is performed on the expansion valve 43 in steps S105 and S106 based on the operating state of the refrigeration cycle apparatus, and intermediate pressure control on the expansion valve 42 is performed in steps S107 and S108.
  • step S105 the control device 100 determines whether the temperature difference between the detection temperature T10f of the temperature sensor 10f and the detection temperature T10a of the temperature sensor 10a is within the set range of the degree of superheat SH. If the temperature difference is within the set range (YES in S105), the process proceeds to step S107. If the temperature difference is out of the set range (NO in S105), the process proceeds to step S106. In step S106, if the degree of superheat SH is below the lower limit of the setting range, the control device 100 squeezes the expansion valve 43 because there is a possibility of a liquid back state, and the degree of superheat SH is above the upper limit of the setting range. The expansion valve 43 is opened because the discharge temperature may be too high. After the change of the opening degree of the expansion valve 43 in step S106, the control device 100 maintains the opening degree for an appropriate time, and performs the determination again in S105.
  • the change in the degree of opening may be adjusted according to the magnitude of the difference from the set range. For example, if the difference between the threshold value and the superheat degree SH is large, the opening degree of the expansion valve is increased, and if the difference between the threshold value and the superheat degree SH is small, control such as decreasing the opening degree of the expansion valve You may do it.
  • step S107 the control device 100 determines whether or not the parameter 1 is 1 or more.
  • the temperature difference ⁇ Ted T10e ⁇ T10d
  • T10e T10e ⁇ T10d
  • ⁇ 1 holds.
  • may be determined within the range of the set threshold in consideration of the measurement error of the temperature sensor.
  • step S 109 If ⁇ is equal to or greater than the set threshold (1 1 1) (YES in S 107), the process proceeds to step S 109, and if ⁇ is smaller than the set threshold ( ⁇ ⁇ 1) (NO in S 107), step S 108 Processing will proceed.
  • step S108 since the refrigerant on the outlet side of the expansion valve 42 is a liquid refrigerant, the control device 100 throttles the expansion valve 42. After changing the opening degree of the expansion valve 42 in step S108, the control device 100 maintains the opening degree for an appropriate time, and then carries out the determination again in S105.
  • step S109 if the opening degree of the expansion valve 43 is equal to or greater than the threshold value, the control is completed, and if smaller than the threshold value, the process proceeds to S110.
  • step S110 the control device 100 throttles the expansion valve 42 and carries out the determination again in S105.
  • the degree of supercooling SC is hardly added and there is a difference between the detected temperatures of the temperature sensor 10d and 10c, the temperature of the crucible becomes abnormally high and the difference between the detected temperatures of the temperature sensor 10f and 10a Becomes an abnormal value (inhalation SH becomes large).
  • the amount of the enclosed refrigerant may be small originally or the refrigerant may be leaking.
  • the suction SH is more than the set value [ex. May be shown.
  • the refrigeration cycle apparatus of the first embodiment described above According to the refrigeration cycle apparatus of the first embodiment described above, the following effects can be obtained.
  • high-pressure liquid refrigerant condensed in the outdoor unit at the time of cooling flows in a liquid state in the pipe 111 and low pressure is generated by the expansion valve in the room.
  • the refrigerant is a two-phase refrigerant
  • the interior of the pipe 111 can be made two-phase in any of heating and cooling.
  • the refrigerant density in the pipe can be reduced, and the amount of enclosed refrigerant can be reduced.
  • the amount of the enclosed refrigerant it is possible to reduce the total GWP value (GWP of refrigerant ⁇ the amount of refrigerant).
  • the operation state of the refrigeration cycle apparatus can be maintained in the optimum state. .
  • the inlet of the pipe 111 is optimum regardless of the length of the pipe 111 It can be wet.
  • outside air temperature may be estimated from the temperature detected by the temperature sensor 10a before the operation, but an outside air temperature sensor may be separately provided.
  • the operation of the refrigeration cycle apparatus is controlled by controlling each expansion valve according to the temperature difference between the condensation temperature and the expansion valve inlet temperature, the difference obtained from the temperature difference between the expansion valve inlet and outlet, and the set suction SH.
  • the state can be maintained in an optimal state.
  • FIG. 12 is a diagram showing the configuration of the refrigeration cycle apparatus of the second embodiment.
  • the refrigeration cycle apparatus 200A includes the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 43, the expansion valve 41, the expansion valve 42, the receiver 5, and the indoor thermal energy. It includes an exchanger 6, a check valve 71, a check valve 72, temperature sensors 10a to 10f, and a control device 100A.
  • control of the expansion valve is facilitated by setting the inlet state of at least two or more expansion valves in a liquid state in any of the cooling and heating operation states. Further, by switching the control method of each expansion valve according to the operating state, it is possible to maintain the operating state, cope with the length of the pipe 111, and reduce the amount of refrigerant.
  • the flow coefficients of the check valves 71 and 72 shown in FIG. 12 are preferably equal to or higher than the flow coefficients when the opening degrees of the expansion valves 41 and 42 are fully open. Further, the number of check valves 7 is preferably equal to or greater than the number of expansion valves in the mounting portion.
  • FIG. 12 shows an example in which the expansion valve and the check valve are disposed in combination
  • the expansion valve may be configured so that the flow coefficient of the expansion valve itself exhibits a special characteristic.
  • FIG. 13 is a characteristic diagram of a first example of the expansion valve.
  • FIG. 14 is a characteristic diagram of a second example of the expansion valve.
  • the characteristics of the flow coefficient change depending on the flow direction of the refrigerant. That is, there is a characteristic that B> A in the flow directions A and B of the refrigerant.
  • FIG. 14 it may have a characteristic that changes significantly toward the full opening of the flow rate characteristic at an opening degree or more regardless of the flow direction of the refrigerant.
  • FIG. 12 the characteristics of FIG. 13 or FIG. 14 are realized by the combination of the expansion valve and the check valve.
  • the characteristic of FIG. 13 or FIG. 14 is realized by adding a check valve in the embodiment of the present invention, the check valve may be replaced by an on-off valve or the like.
  • the basic operation of the refrigeration cycle apparatus of the second embodiment is the same as that of the first embodiment.
  • the two-phase refrigerant expanded by the expansion valve 41 is separated into the expansion valve 42 and the check valve 72, passes through each valve, joins again, and flows into the indoor heat exchanger 6.
  • the two-phase refrigerant expanded by the expansion valve 42 is divided into the expansion valve 41 and the check valve 71, passes through each valve, merges again, and flows into the receiver 5.
  • the circulating flow rate of the refrigerant flowing through the expansion valve can be reduced by making the circulating flow rate of the refrigerant passing through the expansion valve whose opening degree is set in each operating condition also flow into the check valves 71 and 72.
  • By reducing the refrigerant circulation flow rate it is possible to reduce the pressure loss generated at the time of passage through the expansion valve even with the same flow coefficient.
  • By reducing the pressure loss of the expansion valve the pressure loss generated in M5 to M6 described in the PH diagram of FIG. 5 and the like is reduced, and the expansion valve 41 is further narrowed when achieving the same low pressure. Can.
  • the dryness of the inlet of the pipe 111 can be increased.
  • the average refrigerant density in the pipe 111 can be reduced.
  • the decrease in the average refrigerant density in the pipe 111 can further reduce the amount of the enclosed refrigerant which is required when achieving the equivalent operation state. By reducing the amount of the enclosed refrigerant, it is possible to reduce the total GWP value (GWP of refrigerant ⁇ the amount of refrigerant).
  • FIG. 15 is a circuit diagram of a refrigeration cycle apparatus 200B according to a third embodiment.
  • the refrigeration cycle apparatus 200B includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 43, an expansion valve 41, and expansion valves 42-1 and 42-2. , A receiver 5, indoor heat exchangers 6-1, 6-2, temperature sensors 10a to 10f, and a control device 100B.
  • the control device 100B facilitates the control of the refrigeration cycle apparatus 200B by controlling the inlet states of at least two or more expansion valves in the liquid state in any of the cooling and heating operating states, and according to the operating states, It performs switching and control of the control method of the expansion valve. This makes it possible to maintain the operating state, cope with the length of the pipe 111, and reduce the amount of refrigerant.
  • the basic configuration of the refrigeration cycle apparatus 200B is the same as that of the first embodiment except that two or more indoor units are connected to one outdoor unit.
  • a check valve or the like may be provided as in the second embodiment.
  • FIG. 16 is a circuit diagram of a refrigeration cycle apparatus 200C which is a modification of the third embodiment.
  • the outdoor unit 101B and the indoor unit 102B are connected by two pipes 111 and 112 as in the first embodiment.
  • the refrigeration cycle apparatus 200C is connected between the outdoor unit 101B and the indoor unit 102B by a total of four pipes 111-1, 111-2, 112-1 and 112-2.
  • the basic operations of the refrigeration cycle apparatuses 200B and 200C are the same as in the first embodiment.
  • the liquid pipe can be made two-phased, so the amount of the enclosed refrigerant can be reduced.
  • the expansion valves 42-1 and 42-2 respectively corresponding to the indoor heat exchangers 6-1 and 6-2 are provided, the number of connected pipes connecting the outdoor unit and the indoor unit is one. Even two pairs can be made into two phases in the liquid pipe.
  • FIG. 17 is a circuit diagram of a refrigeration cycle apparatus 200D according to a fourth embodiment.
  • the refrigeration cycle apparatus 200D shown in FIG. 17 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 43, an expansion valve 41, an expansion valve 42, and expansion valves 42-1, 42-. And a receiver 5, an indoor heat exchanger 6-1, 6-2, a temperature sensor 10a to 10j, and a control device 100D.
  • the control device 100D facilitates control of the refrigeration cycle apparatus 200D by making the inlet state of at least two or more expansion valves in a liquid state in any operation state of air conditioning and heating, and each expansion according to the operation state. Switch and control the valve control method. This makes it possible to maintain the operating state, cope with the length of the pipe 111, and reduce the amount of refrigerant.
  • the fourth embodiment takes a form corresponding to the above problem.
  • the basic configuration of the refrigeration cycle apparatus 202D of the fourth embodiment is the same as that of the third embodiment, but an expansion valve 42 is added in the vicinity of the pipe 111 in addition to the expansion valves 42-1 and 42-2 of each indoor unit. The difference is that the temperature sensors 10g1 and 10g2 are added to each indoor heat exchanger inlet / outlet.
  • FIG. 18 is a diagram showing control of respective expansion valves during cooling and heating in the fourth embodiment.
  • the refrigerant flows from the compressor 1 to the outdoor heat exchanger 3 via the four-way valve 2, and the refrigerant condenses.
  • the refrigerant condensed by the outdoor heat exchanger 3 is decompressed by the expansion valve 43.
  • Control device 100D performs SC control ( ⁇ ) on expansion valve 43.
  • the refrigerant decompressed by the expansion valve 43 is sent to the expansion valve 41 after passing through the receiver 5.
  • the control device 100D performs suction SH control on the expansion valve 41.
  • the refrigerant decompressed by the expansion valve 41 is sent to the indoor heat exchanger 6-1 and the indoor heat exchanger 6-2 via the pipe 111, the expansion valve 42, and the expansion valves 42-1 and 42-2.
  • the controller 100D executes the evaporation SH control on the expansion valves 42-1 and 42-2.
  • the control device 100D fixes the opening degree of the expansion valve 42 fully open.
  • the refrigerant evaporated in the indoor heat exchangers 6-1 and 6-2 returns to the compressor 1 via the four-way valve 2 and the receiver 5.
  • the refrigerant reaches the indoor heat exchangers 6-1 and 6-2 from the compressor 1 via the four-way valve 2 and the pipe 112 (gas pipe), and is condensed.
  • the refrigerant condensed in the indoor heat exchangers 6-1 and 6-2 is sent to the expansion valves 42-1 and 42-2.
  • the control device 100D executes SC control ( ⁇ ) on the expansion valves 42-1 and 42-2.
  • the refrigerant reduced in pressure by the expansion valves 42-1 and 42-2 is further reduced in pressure by the expansion valve 42 after merging.
  • Control device 100D performs medium pressure control on expansion valve 42.
  • the refrigerant reduced in pressure by the expansion valve 42 passes through the pipe 111 (liquid pipe), the expansion valve 41, and the receiver 5, is throttled by the expansion valve 43, and is sent to the outdoor heat exchanger 3.
  • the control device 100D performs suction SH control on the expansion valve 43.
  • the control device 100D fixes the opening degree of the expansion valve 41 to the full open state.
  • the refrigerant evaporated in the outdoor heat exchanger 3 returns to the compressor 1 via the four-way valve 2 and the receiver 5.
  • control flow executed by the control device 100D will be described with reference to FIGS. 9 and 19 to 20.
  • the process of determining the operation mode shown in FIG. 9 is similarly executed in the fourth embodiment.
  • the operation mode is determined in step S1 of FIG.
  • the control device 100D may read the user setting directly, or may make a determination according to the state of the four-way valve controlled by the user setting, or the temperature sensor (for example, the temperature sensor 10a or 10e1 ( Or you may judge based on the temperature detection result of 10e2).
  • FIG. 19 is a flowchart showing processing at the time of cooling operation of the fourth embodiment.
  • step S204 the outside air temperatures T10a and T10e indoors and outdoors are checked when performing cooling control according to the determination result.
  • the temperature sensor 10a, 10e1 (or 10e2) can be used for this confirmation.
  • the confirmation may be made without driving each device at all or, for example, the results of detection after operating the fan inside and outside the room for an appropriate time may be used.
  • the control device 100D switches the four-way valve 2 to the cooling mode (a flow path indicated by a solid line of the four-way valve 2 in FIG. 17). Further, the expansion valves 41, 42-1, 42-2, 43 are changed to the initial setting opening degree, and the expansion valve 42 is set as the fixed opening degree (full opening).
  • suction SH control is performed for the expansion valve 41 in steps S205 and S206 based on the operating state of the refrigeration cycle apparatus 200D, and SC control ( ⁇ ) is performed for the expansion valve 43 in steps S207 to S210.
  • SC control
  • the evaporation SH control is executed for the expansion valves 42-1 and 42-2.
  • step S205 the control device 100D determines whether the temperature difference between the detected temperature T10f of the temperature sensor 10f and the detected temperatures T10e1 and T10e2 of the temperature sensors 10e1 and 10e2 is within the set range of the degree of superheat SH. If the temperature difference is within the set range (YES in S205), the process proceeds to step S207. If the temperature difference is out of the set range (NO in S205), the process proceeds to step S206. In step S206, the controller 100D throttles the expansion valve 41 if the degree of superheat SH is less than or equal to the lower limit of the setting range, and opens the expansion valve 41 if it is equal to or greater than the upper limit. Then, after the change of the opening degree of the expansion valve 41, the control device 100D maintains the opening degree of the expansion valve 41 for an appropriate time, and carries out the determination again in step S205.
  • the degree of opening change may be adjusted according to the magnitude of the difference from the set range. For example, if the difference between the threshold value and the superheat degree SH is large, the opening degree of the expansion valve is increased, and if the difference between the threshold value and the superheat degree SH is small, control such as decreasing the opening degree of the expansion valve You may do it.
  • step S207 the control device 100D determines whether the parameter ⁇ is within the set threshold.
  • the parameter ⁇ [0 ⁇ ⁇ ⁇ 1] is the temperature difference between the intermediate temperature (temperature sensor 10 a) of the outdoor heat exchanger 3 and the outlet temperature (temperature sensor 10 b) of the outdoor heat exchanger 3 and the temperature of the outdoor heat exchanger 3. It is a value obtained from the ratio of the temperature difference between the intermediate temperature (temperature sensor 10a) and the temperature detected by the temperature sensor 10a before operation.
  • step S208 if ⁇ is less than or equal to the lower limit of the setting range, supercooling obtained from the condensing temperature of the condenser (temperature sensor 10a) and the temperature detection result (temperature sensor 10b) from the condenser outlet to the inlet of the expansion valve 43 Since the degree SC is not obtained up to the set value, the expansion valve 43 is squeezed, and the expansion valve 43 is opened if the degree is equal to or more than the upper limit. After changing the opening degree of the expansion valve 43, the control device 100D maintains the opening degree of the expansion valve 43 for an appropriate time, and carries out the determination again in step S205.
  • step S209 if ⁇ is the lower limit value of the setting range, the process proceeds to step S211, otherwise the process of step S210 is performed.
  • step S210 when ⁇ is not the lower limit value of the setting range, the expansion valve 43 is opened to set the lower limit value, and the determination is performed again in step S205.
  • step S211 if the temperature difference between the temperature sensor 10g1 and the temperature sensor 10e1 and the temperature difference between the temperature sensor 10g2 and the temperature sensor 10e2 are both less than or equal to the threshold, the control is ended, otherwise the expansion provided individually in the indoor unit The opening degree of the valve 42-1 and the expansion valve 42-2 is adjusted.
  • FIG. 20 is a flowchart showing processing during heating operation of the fourth embodiment.
  • the control device 100D checks the indoor temperature and the outside air temperature when performing heating control.
  • the temperature sensors 10a and 10e can be used for this confirmation.
  • the confirmation may be made without driving each device at all or, for example, the results of detection after operating the fan inside and outside the room for an appropriate time may be used.
  • the control device 100D switches the four-way valve 2 to the heating mode (a flow path indicated by a broken line of the four-way valve 2 in FIG. 17).
  • the expansion valves 42, 42-1, 42-2, 43 are changed to the initial setting opening degree, and the expansion valve 41 is set as the fixed opening degree (full opening).
  • suction SH control is performed on the expansion valve 43 in steps S305 and S306 based on the operating state of the refrigeration cycle apparatus, and intermediate pressure control on the expansion valve 42 is performed in steps S307 and S308. Further, at steps S309 and S310, SC control ( ⁇ ) is executed for the expansion valves 42-1 and 42-2.
  • step S305 the control device 100D determines whether the temperature difference between the detection temperature T10f of the temperature sensor 10f and the detection temperature T10a of the temperature sensor 10a is within the set range of the degree of superheat SH. If the temperature difference is within the set range (YES in S305), the process proceeds to step S307. If the temperature difference is out of the set range (NO in S305), the process proceeds to step S306. In step S306, the control device 100D throttles the expansion valve 43 if the degree of superheat SH is less than or equal to the lower limit of the set range, and opens the expansion valve 43 if the degree of superheat SH is greater than or equal to the upper limit of the set range. After changing the opening degree of the expansion valve 43 in step S306, the control device 100D maintains the opening degree for an appropriate time, and carries out the determination again in step S305.
  • the change in the degree of opening may be adjusted according to the magnitude of the difference from the set range. For example, if the difference between the threshold value and the superheat degree SH is large, the opening degree of the expansion valve is increased, and if the difference between the threshold value and the superheat degree SH is small, control such as decreasing the opening degree of the expansion valve You may do it.
  • the control device 100D determines whether or not the parameters ⁇ 1 and ⁇ 2 are 1 or more.
  • the parameter ⁇ 1 is the temperature difference between the intermediate temperature (temperature sensor 10e1) of the indoor heat exchanger 6-1 and the outlet temperature (temperature sensor 10d1) of the indoor heat exchanger 6-1, and the temperature of the indoor heat exchanger 6-1. It is a value obtained from the ratio of the temperature difference between the outlet temperature (temperature sensor 10d1) and the outlet temperature of the expansion valve 42 (temperature sensor 10c).
  • the parameter ⁇ 2 is the temperature difference between the intermediate temperature (temperature sensor 10e2) of the indoor heat exchanger 6-2 and the outlet temperature (temperature sensor 10d2) of the indoor heat exchanger 6-2, and the temperature of the indoor heat exchanger 6-2. It is a value obtained from the ratio of the temperature difference between the outlet temperature (temperature sensor 10 d 2) and the outlet temperature of the expansion valve 42 (temperature sensor 10 c).
  • ⁇ 1 and 2 it may be determined whether or not it is within the set range in which the measurement error of the temperature sensor is taken into consideration.
  • step S307 If ⁇ 1 or ⁇ 2 is equal to or larger than the set threshold (YES in S307), the process proceeds to step S309, and if both are smaller than the set threshold ( ⁇ 1 ⁇ 1 and ⁇ 2 ⁇ 1) (NO in S307), step S308 Processing will proceed.
  • the determination may be performed by any one indoor heat exchanger, and the determination may be performed on only one of the crucible 1 and the crucible 2.
  • step S308 since the refrigerant on the outlet side of the expansion valve 42 is a liquid refrigerant, the control device 100D throttles the expansion valve 42. After the opening degree of the expansion valve 42 is changed in step S308, the control device 100D maintains the opening degree for an appropriate time, and then performs the determination in S305 again.
  • step S309 the control device 100D controls the degree of subcooling of each indoor heat exchanger 6-1 and 6-2 (
  • the set value of the degree of subcooling or ⁇ of each indoor heat exchanger outputs the necessary capacity to each indoor heat exchanger calculated from the temperature difference between the indoor temperature and the set temperature, and each indoor heat exchanger enters
  • the refrigerant circulation flow rate ratio is calculated and set from the enthalpy difference obtained from the outlet temperature and the condensation temperature.
  • step S309 if the degree of supercooling or ⁇ is within the range of the set threshold, the process proceeds to S311, and if out of the set threshold range, the process proceeds to S310.
  • step S310 the expansion valve 42-1 or the expansion valve 42-2 is squeezed in the case of the lower limit value or less, and the expansion valve 42-1 or the expansion valve 42-2 is opened in the case of the upper limit value or more.
  • the control device 100D maintains the opening degree after the appropriate time change, and then performs the determination in S305 again.
  • step S311 the control device 100D completes the control if the opening degree of the expansion valve 43 is equal to or more than the threshold, and executes the process of step S312 if the opening degree is smaller than the threshold.
  • step S312 the expansion valve 42 is throttled, and the determination is performed again in step S305.
  • the refrigeration cycle apparatus of the fourth embodiment exhibits the following effects in addition to the effects exhibited by the refrigeration cycle apparatus of the first to third embodiments.
  • the temperature sensors 10g1 and 10g2 are provided on the outlet side of the indoor heat exchangers 6-1 and 6-2 during cooling.
  • the state of the individual heat exchange outlet side can be determined, and the refrigerant circulation ratio of the plurality of indoor heat exchangers can be adjusted.
  • control target and the control target become 1: 1 at each expansion valve, and control can be facilitated.
  • multiple indoor units are installed for one outdoor unit, the cost can be reduced.
  • the installation space on the outdoor side can be reduced.
  • the refrigeration cycle apparatuses 200 and 200A to 200C shown in FIGS. 1, 12, and 15 to 16 include a compressor 1, a first heat exchanger (outdoor heat exchanger 3), and a first expansion valve 41.
  • the refrigerant discharged from the compressor 1 is a first heat exchanger (outdoor heat exchanger 3), a first expansion valve 41, a first pipe 111, a second expansion valve 42, a second heat exchanger (in the cooling operation)
  • the indoor heat exchanger 6) and the second pipe 112 sequentially return to the compressor 1, and in the cooling operation, the first expansion valve 41 changes the liquid-phase refrigerant into a two-phase refrigerant and sends it to the first pipe 111.
  • the inside of the first pipe 111 can be made into two phases at the time of cooling.
  • the density in the pipe can be reduced, and the amount of refrigerant sealed in the outdoor unit at the time of product shipment can be reduced.
  • the amount of the enclosed refrigerant it is possible to reduce the total GWP value (GWP of refrigerant ⁇ total amount of refrigerant).
  • the outdoor unit 101 includes a third expansion valve 43 disposed between the first heat exchanger (the outdoor heat exchanger 3) and the first expansion valve 41 in the refrigerant circuit, and the first expansion in the refrigerant circuit.
  • the cooling unit further includes a cooling unit disposed between the valve 41 and the third expansion valve 43 and cooling a refrigerant flowing in a flow path connecting the first expansion valve 41 and the third expansion valve 43.
  • the cooling unit is, for example, the receiver 5.
  • the refrigerant on the inlet side of the first expansion valve 41 can be brought into a liquid state.
  • the operating state can be easily stabilized, and control of the entire refrigeration cycle apparatus can be facilitated.
  • the refrigeration cycle apparatus detects the temperature of the refrigerant in the flow passage between the first heat exchanger and the third expansion valve, and the first temperature sensor 10a that detects the temperature of the refrigerant flowing in the first heat exchanger.
  • Second temperature sensor 10b a third temperature sensor 10f for detecting the suction refrigerant temperature of the compressor, a fourth temperature sensor 10e for detecting the refrigerant temperature flowing in the second heat exchanger, and the first to third expansions
  • a controller 100 for controlling the opening degree of the valve.
  • the control device controls the opening degree of the first expansion valve 41 so that the difference between the detected temperature of the fourth temperature sensor 10e and the detected temperature of the third temperature sensor 10f becomes a predetermined value in the cooling operation.
  • the control device is obtained from the ratio of the difference between the temperature detected by the first temperature sensor 10a and the temperature detected by the second temperature sensor 10b and the difference between the outside air temperature and the temperature detected by the first temperature sensor 10a in the cooling operation.
  • the opening degree of the third expansion valve 43 is controlled so that the value ( ⁇ ) falls within a predetermined set range.
  • the operating state can be maintained in the optimum state by controlling the respective expansion valves in accordance with the temperature detection result before the operation, the ratio ⁇ obtained from the operating state, and the set suction SH.
  • the inlet of the pipe 111 is optimum regardless of the length of the pipe 111 It can be wet.
  • the outside air temperature may be estimated from a temperature sensor before operation, or an exhaust temperature sensor may be separately provided.
  • the refrigerant discharged from the compressor 1 is the second pipe 112, the second heat exchanger (indoor heat exchanger 6), the second expansion valve 42, the first pipe 111, the first expansion in the heating operation. It returns to the compressor 1 through the valve 41 and the first heat exchanger (outdoor heat exchanger 3) in order.
  • the second expansion valve 42 changes the liquid-phase refrigerant into a two-phase refrigerant and sends it to the first pipe 111.
  • the refrigeration cycle apparatus 200 further includes a four-way valve 2 that switches between the cooling operation and the heating operation.
  • an expansion valve is installed on the indoor unit side in an air conditioning switching model with one expansion valve, it is possible to place the pipe 111 in a two-phase state when heating, but when cooling, high pressure liquid refrigerant condensed by the outdoor unit is inside the pipe 111 Flows in a liquid state and becomes a low pressure two-phase state at the expansion valve.
  • the expansion valve is installed on the outdoor unit side, it is possible to put the pipe 111 into a two phase state at the time of cooling, but at the time of heating, the high pressure liquid refrigerant condensed in the outdoor unit flows in the liquid state in the pipe 111 and expands. It becomes a low pressure two-phase refrigerant at the valve.
  • the air conditioning / heat switching model by providing the expansion valve 41 in the outdoor unit and providing the expansion valve 42 in the indoor unit, the inside of the pipe 111 can be made two-phase in any of the air conditioning and heating.
  • the density in the pipe can be reduced, and the amount of refrigerant sealed in the outdoor unit at the time of product shipment can be reduced.
  • the amount of the enclosed refrigerant it is possible to reduce the total GWP value (GWP of refrigerant ⁇ total amount of refrigerant).
  • the refrigeration cycle apparatus 200 includes a first temperature sensor 10a for detecting the temperature of the refrigerant flowing in the first heat exchanger, and a refrigerant temperature in the flow passage between the first heat exchanger and the third expansion valve.
  • a sixth temperature sensor 10c for detecting the temperature of the refrigerant connected to the first pipe 111 of the second expansion valve 42.
  • a control device 100 for controlling the opening degree of the first to third expansion valves.
  • the control device controls the opening degree of the third expansion valve 43 such that the difference between the temperature detected by the first temperature sensor 10a and the temperature detected by the third temperature sensor 10f becomes a predetermined value in the heating operation.
  • the control device is a difference between a detection temperature of the fourth temperature sensor 10e and a detection temperature of the fifth temperature sensor 10d, and a difference between a detection temperature of the fourth temperature sensor 10e and a detection temperature of the fifth temperature sensor 10c.
  • the degree of opening of the second expansion valve 42 is controlled so that the value obtained from the ratio of R becomes a predetermined value.
  • the operating state is controlled by controlling each expansion valve in accordance with the temperature difference between the condensation temperature and the expansion valve inlet temperature, the specific ratio obtained from the temperature difference between the expansion valve inlet and outlet, and the set suction SH. Can be maintained in an optimal state.
  • the inlet of the pipe 111 is optimized regardless of the length of the pipe 111 It can be wet.
  • the third expansion valve 43 changes the liquid phase refrigerant into a two phase refrigerant.
  • the cooling unit includes the receiver 5 configured to exchange heat between the refrigerant sucked by the compressor 1 and the refrigerant flowing in the flow path connecting the first expansion valve 41 and the third expansion valve 43.
  • the refrigeration cycle apparatus 200D includes an outdoor unit 101 including a compressor 1, a first heat exchanger (outdoor heat exchanger 3), and a first expansion valve 41, and a second expansion valve 42. And an indoor unit 102 including a second heat exchanger (indoor heat exchanger 6-1), and a first pipe 111 and a second pipe 112 connected between the outdoor unit 101 and the indoor unit 102. .
  • the refrigerant discharged from the compressor 1 is a first heat exchanger (outdoor heat exchanger 3), a first expansion valve 41, a first pipe 111, a second expansion valve 42, a second heat exchanger (in the cooling operation) It returns to the compressor 1 through the indoor heat exchanger 6-1) and the second pipe 112 sequentially, and in the cooling operation, the first expansion valve 41 changes the liquid-phase refrigerant into a two-phase refrigerant and sends it to the first pipe 111 .
  • the indoor unit 102D further includes a third heat exchanger (indoor heat exchanger 6-2), a fourth expansion valve 42-1, and a fifth expansion valve 42-2.
  • the second heat exchanger (indoor heat exchanger 6-1) and the fourth expansion valve 42-1 are connected in series to form a first flow path, and the third heat exchanger (indoor heat exchanger 6-2) And the fifth expansion valve 42-2 are connected in series to constitute a second flow path.
  • the first flow path and the second flow path are connected in parallel between the second expansion valve 42 and the second pipe 112.
  • the capacity of the indoor heat exchanger can be matched to the load while the refrigerant in the first pipe 111 is in a two-phase state. Can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷凍サイクル装置(200)は、圧縮機(1)と、第1熱交換器(3)と、第1膨張弁(41)とを含む室外機(101)と、第2膨張弁(42)と、第2熱交換器(6)とを含む室内機(102)と、室外機(101)と室内機(102)との間に接続される第1配管(111)および第2配管(112)とを備える。圧縮機(1)から吐出された冷媒は、冷房運転において、第1熱交換器(3)、第1膨張弁(41)、第1配管(111)、第2膨張弁(42)、第2熱交換器(6)、第2配管(112)を順に経て圧縮機(1)に戻り、冷房運転において、第1膨張弁(41)は、液相冷媒を二相冷媒に変化させて第1配管(111)に送る。

Description

冷凍サイクル装置
 この発明は、冷凍サイクル装置に関し、特に、複数の膨張弁を備えた冷凍サイクル装置に関する。
 地球温暖化係数(GWP:Global Warming Potential)の低い冷媒を使用しつつ効率低下を抑制し、しかも接続配管の配管径も小さくすることのできる冷凍サイクル装置が提案されている(たとえば、特開2013-200090号公報参照)
特開2013-200090号公報
 特開2013-200090号公報に示されるように、配管径を小さくすると容積低減により冷媒量削減、銅使用量低減によるコスト低減が可能である反面、配管径は圧力損失への影響が大きく、冷凍サイクル装置の能力悪化や運転範囲を大幅に限定してしまうといった課題が生じる。また、パッケージエアコンなどすでに機器や配管が設置されている場合に、配管径が同等であるときには既設の配管を再利用可能であるが、配管径を小さくするときには新規で配管を入れ替える必要があるため、逆に作業負荷の分コストが増加するといった課題がある。
 また、同等の能力を有する冷凍サイクル装置であっても、室内機と室外機を接続する配管長が長くなる場合には、必要な冷媒量の増加量が大きいといった課題がある。
 本発明は以上のような課題を解決するためになされたもので、配管が長い場合にも必要な冷媒量を削減しつつ、最適な運転を実現可能な冷凍サイクル装置を提供することを目的としている。
 本開示に係る冷凍サイクル装置は、圧縮機と、第1熱交換器と、第1膨張弁とを含む室外機と、第2膨張弁と、第2熱交換器とを含む室内機と、室外機と室内機との間に接続される第1配管および第2配管とを備える。圧縮機から吐出された冷媒は、冷房運転において、第1熱交換器、第1膨張弁、第1配管、第2膨張弁、第2熱交換器、第2配管を順に経て圧縮機に戻り、冷房運転において、第1膨張弁は、液相冷媒を二相冷媒に変化させて第1配管に送る。
 本発明によれば、室外機と室内機との間に接続される第1配管の冷媒を液相ではなく二相にするため、配管が長い場合に必要とされる冷媒量を削減することができる。
実施の形態1に係る冷凍サイクル装置200の構成および冷媒の流れを示す図である。 配管の長さと必要な冷媒量の関係を説明するための図である。 実施の形態1における冷房時および暖房時の各膨張弁の制御について示す図である。 パラメータεの設定値の許容範囲を示した図である。 配管が短尺の場合の冷房運転時のP-H線図である。 配管が長尺の場合の冷房運転時のP-H線図である。 配管が短尺の場合の暖房運転時のP-H線図である。 配管が長尺の場合の暖房運転時のP-H線図である。 運転モードを判別する処理を示すフローチャートである。 実施の形態1の冷房運転時の処理を示すフローチャートである。 実施の形態1の暖房運転時の処理を示すフローチャートである。 実施の形態2の冷凍サイクル装置の構成を示す図である。 膨張弁の第1例の特性線図である。 膨張弁の第2例の特性線図である。 実施の形態3の冷凍サイクル装置200Bの回路図である。 実施の形態3の変形例である冷凍サイクル装置200Cの回路図である。 実施の形態4の冷凍サイクル装置200Dの回路図である。 実施の形態4における冷房時および暖房時の各膨張弁の制御について示す図である。 実施の形態4の冷房運転時の処理を示すフローチャートである。 実施の形態4の暖房運転時の処理を示すフローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
 実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置200の構成および冷媒の流れを併せて示す図である。図1に示されるように、冷凍サイクル装置200は、室外機101と、室内機102とを備える。
 室外機101は、圧縮機1と、四方弁2と、室外熱交換器3と、レシーバー5と、膨張弁41,43と、温度センサ10a,10b,10fとを含む。制御装置100は、配置は特に限定されないが、室外機101に配置されても良い。室内機102は、室内熱交換器6と、膨張弁42と、温度センサ10c,10d,10eとを含む。
 室外機101と室内機102とは、配管111,112によって接続されている。特に限定されないが、配管112(ガス管)の配管径は、配管111(液管)の配管径よりも大きい。
 圧縮機1は、低圧のガス冷媒を断熱圧縮し、高圧のガス冷媒を吐出する。膨張弁41~43の各々は、液冷媒を減圧して流出させることが可能に構成される。膨張弁41~43としては、たとえばリニア電子膨張弁(LEV:Linear Expansion Valve)を用いることができる。
 レシーバー5は、冷媒を貯留可能に構成されており、負荷の変動などによる冷媒循環量の変化を吸収する。また、レシーバー5は、冷媒配管長が設置場所によって変化することに備えて、その変化分の冷媒量を予め蓄積するのに用いられる。
 制御装置100は、圧縮機1の駆動周波数を制御して圧縮機1が単位時間あたりに吐出する冷媒量を制御する。制御装置100は、四方弁2を制御して、冷媒の循環方向を切り替える。制御装置100は、膨張弁41~43の開度を制御する。制御装置100は、温度センサ10a~10eから各部の冷媒温度を取得する。温度センサ10a~10eは、たとえばサーミスタである。
 冷房運転において冷媒は、圧縮機1、四方弁2、室外熱交換器3、膨張弁43、レシーバー5、膨張弁41、配管111、膨張弁42、室内熱交換器6、配管112、四方弁2、レシーバー5の内部流路を経て圧縮機1に戻るように循環する。
 流路切替弁の一例である四方弁2は、冷房運転においては圧縮機1の吐出口と室外熱交換器3とを接続するとともに、配管112とレシーバー5の内部流路とを接続する。
 圧縮機1より四方弁2を経由して冷媒が室外熱交換器3へと流入する。室外熱交換器3は、冷房運転においては凝縮器として機能する。圧縮機1からのガス冷媒は、室外熱交換器3において凝縮熱を放出して凝縮し、液冷媒となる。
 室外熱交換器3にて凝縮された冷媒は、膨張弁43で減圧される。膨張弁43で減圧された冷媒は、レシーバー5を経由後、膨張弁41に至る。膨張弁41で絞られた冷媒は配管111、膨張弁42を経由して室内熱交換器6に至る。
 室内熱交換器6は、冷房運転においては蒸発器として機能する。膨張弁42からの冷媒は、室内熱交換器6において室内空気から気化熱を吸収して気化する。室内熱交換器6で蒸発した冷媒は四方弁2、レシーバー5を経由し圧縮機1へ戻る。
 室外熱交換器3からの冷媒は、膨張弁43を通過した後、レシーバー5において室内熱交換器6からのガス冷媒と熱交換し、冷却される。
 一方、暖房運転において冷媒は、圧縮機1、四方弁2、配管112、室内熱交換器6、膨張弁42、配管111、膨張弁41、レシーバー5、膨張弁43、室外熱交換器3、四方弁2、レシーバー5の内部流路を経て圧縮機1に戻るように循環する。
 暖房運転において室外熱交換器3は蒸発器として機能し、室内熱交換器6は凝縮器として機能する。暖房運転において、冷媒は圧縮機1より四方弁2、配管112を経由して室内熱交換器6で凝縮される。室内熱交換器6において凝縮された冷媒は、膨張弁42で減圧される。膨張弁42で減圧された冷媒は配管111、膨張弁41、レシーバー5を経由後、膨張弁43でさらに減圧され室外熱交換器3に至る。そして、室外熱交換器3で蒸発した冷媒は四方弁2、レシーバー5を経由し圧縮機1へ戻る。
 本実施の形態では、配管111には二相状態の冷媒が流れ、配管112にはガス状態の冷媒が流れるように、制御装置100が膨張弁41~43の開度を制御する。冷暖房のいずれの運転状態においても少なくとも2つ以上の膨張弁の入口状態を液状態にすることで制御を容易にするとともに、運転状態に応じて、各膨張弁の制御方法の切替と制御を行なうことで、運転状態の維持、配管111の長短の対応、冷媒量低減を行なうことが可能となる。
 図2は、配管の長さと必要な冷媒量の関係を説明するための図である。図2には横軸に配管長が示され、縦軸には必要な冷媒量が示される。室外機のみに膨張弁が1つ設けられている構成(図1の膨張弁42が無い構成)では、冷房時には配管111は膨張弁41通過後の二相冷媒が流れ、暖房時には膨張弁41通過前の液相冷媒が流れる。線W1,W2に示すように、配管111を暖房時に流れる冷媒を液相とすると、配管長がL1より短い場合は冷房に必要な冷媒量によって冷媒量が決まるが、配管長がL1より長い場合は暖房に必要な冷媒量によって冷媒量が決まる。
 本実施の形態では、室外機側に膨張弁41が配置され、室内機側に膨張弁42が配置されている。このような構成とすれば、線W3に示すように、暖房時に配管111を流れる冷媒を二相状態に制御することも可能となる。線W3は、配管長の増加にともなう冷媒の増加量(グラフの傾き)が線W1の場合よりも減少している。その結果、配管長がL1より長い場合にも冷房に必要な冷媒量が支配的となり、図2中の矢印に示す部分だけ冷凍サイクル装置に必要とされる冷媒量を削減することができる。
 図3は、実施の形態1における冷房時および暖房時の各膨張弁の制御について示す図である。ここで、配管111の冷媒を液相状態に制御する方法(図2のW1,W2に相当)を比較例として示し、本実施の形態で実行される制御方法(図2のW1,W3に相当)を新規制御として示す。なお、比較例の冷凍サイクル装置は、図示しないが、図1に示した構成から膨張弁42を削除した構成である。
 冷房運転では、比較例の冷凍サイクル装置の場合、膨張弁43は、SC制御によって制御され、膨張弁42は、吸入SH制御によって制御される。
 ここで、SC制御は、室外熱交換器3の中間温度(温度センサ10aで検出)と室外熱交換器3の出口温度(温度センサ10bで検出)との温度差ΔTab(=T10a-T10b)が予め設定された値となるように膨張弁43の開度を変更する制御をいう。
 また、吸入SH制御は、室内熱交換器6の中間温度(温度センサ10eで検出)と圧縮機1の吸入温度(温度センサ10fで検出)との温度差ΔTef(=T10f-T10e)が予め設定された値となるように膨張弁41の開度を変更する制御をいう。
 一方、本実施の形態で実行される新規制御は、冷房運転では、膨張弁43は、SC制御(ε)によって制御され、膨張弁42は、吸入SH制御によって制御され、膨張弁42は全開とされる。吸入SH制御は、上記比較例の吸入SH制御と同じであるが、SC制御(ε)は新しく導入したパラメータε(イプシロン)[0≦ε≦1]が予め設定された値の範囲内となるよう膨張弁43の開度を変更する制御である。
 ここで、パラメータεは、ε=ΔTab/ΔTaoで表される。
 温度差ΔTab(=T10a-T10b)は、室外熱交換器3の中間温度(温度センサ10aで検出)と室外熱交換器3の出口温度(温度センサ10bで検出)との差である。また、温度差ΔTao(=T10a-T10aout)は、室外熱交換器3の中間温度(温度センサ10aで検出)と、運転前の温度センサ10aの検知温度(外気温Tout)との差である。
 次に、暖房運転では、比較例の冷凍サイクル装置の場合、膨張弁43は、吸入SH制御によって制御され、膨張弁41は、SC制御によって制御される。
 この場合のSC制御は、室内熱交換器6の中間温度(温度センサ10eで検出)と室内熱交換器6の出口温度(温度センサ10dで検出)との温度差ΔTed(=T10e-T10d)が予め設定された値となるように膨張弁41の開度を変更する制御をいう。
 また、吸入SH制御は、室外熱交換器3の中間温度(温度センサ10aで検出)と圧縮機1の吸入温度(温度センサ10fで検出)との温度差ΔTaf(=T10f-T10a)が予め設定された値となるように膨張弁43の開度を変更する制御をいう。
 一方、本実施の形態で実行される新規制御は、暖房運転では、膨張弁43は吸入SH制御によって制御され、膨張弁41は全開とされ、膨張弁42は中圧制御によって制御される。吸入SH制御は、上記比較例の吸入SH制御と同じであるが、中圧制御は新しく導入したパラメータζ(ゼータ)[ζ≧1]が予め設定された値の範囲内となるよう膨張弁42の開度を変更する制御である。
 ここで、パラメータζは、ζ=ΔTdc/ΔTedで表される。
 温度差ΔTdc(=T10d-T10c)は、室内熱交換器6の出口温度(温度センサ10dで検出)と膨張弁42の出口温度(温度センサ10cで検出)との差である。また、温度差ΔTed(=T10e-T10d)は、室内熱交換器6の中間温度(温度センサ10eで検出)と室内熱交換器6の出口温度(温度センサ10dで検出)との差である。
 図4は、パラメータεの設定値の許容範囲を示した図である。パラメータεは、外気温Taoutが高くなるほど低く設定されるが、温度センサの測定誤差を考慮した設定値の許容範囲が実線の設定値の上下に破線で示される。したがって、パラメータεに対して予め設定された値の範囲は、図4に矢印で示す2本の破線の間の領域とすることができる。
 またパラメータζに関しても、同様に温度センサの測定誤差を考慮して予め設定された値の範囲を定めても良い。
 図5は、配管が短尺の場合の冷房運転時のP-H線図である。図6は、配管が長尺の場合の冷房運転時のP-H線図である。図5、図6において、点M1~M6は、それぞれ図1の点M1~M6に対応している。点M1から点M2では、膨張弁43によって冷媒が減圧され、点M2から点M3では、レシーバー5において冷媒が冷却される。さらに点M3から点M4では膨張弁41によって冷媒が減圧される。
 ここで、配管111が短尺の場合に比べて長尺の場合は、点M4~点M5の圧力損失が大きくなるので、その分膨張弁41の開度を大きくし、膨張弁41における減圧を少なくしている。
 図7は、配管が短尺の場合の暖房運転時のP-H線図である。図8は、配管が長尺の場合の暖房運転時のP-H線図である。図7、図8において、点M1~M6は、それぞれ図1の点M1~M6に対応している。また冷媒の循環する向きが逆向きであるので、冷房運転時の図5、図6とは点M1~M6の配置が異なっている。点M6から点M5では、膨張弁42によって冷媒が減圧され、点M5から点M4では配管111の配管長に応じた圧力損失が生じ、点M3から点M2では、レシーバー5において冷媒が冷却される。さらに点M2から点M1では膨張弁43によって冷媒が減圧される。
 ここで、配管111が短尺の場合に比べて長尺の場合は、点M4~点M5の圧力損失が大きくなるので、その分膨張弁42の開度を大きくし、膨張弁42における減圧を少なくしている。
 制御装置100が実行する制御フローについて図9~図11を基に説明する。図9は、運転モードを判別する処理を示すフローチャートである。図10は、実施の形態1の冷房運転時の処理を示すフローチャートである。図11は、実施の形態1の暖房運転時の処理を示すフローチャートである。
 図9では、制御装置100は、ステップS1において運転モードを判定する。判定処理においては、制御装置100は、ユーザー設定を直接読み込んでも良いし、ユーザーの設定により制御される四方弁の状態に応じて判定してもよいし、温度センサ(例えば温度センサ10a,10e)の温度検知結果を基に判定しても良い。ステップS1において、判定結果が冷房の場合にはステップS2へ処理が進められ、暖房の場合ステップS3へ処理が進められる。ステップS2では冷房制御(図10)が実行され、ステップS3では暖房制御(図11)が実行される。
 図10の冷房制御では、ステップS4において、制御装置100は、まず、室内の温度と外気温度とを確認する。この確認には、温度センサ10a、10eを使用することができる。確認の際は各機器を一切運転させずに確認してもよいし、例えば室内外のファンを適切な時間運転させてから検知した結果を用いてもよい。併せて、制御装置100は、四方弁2を冷房モードに切換える(図1において四方弁2の実線で示す流路)。また、膨張弁41,43を初期設定開度に変更し、膨張弁42は固定開度(全開)とする。
 以降、冷凍サイクル装置の運転状態に基づいて、ステップS5,S6において膨張弁41について吸入SH制御が実行され、ステップS7,S8において膨張弁43についてSC制御(ε)が実行される。
 ステップS5では、制御装置100は、温度センサ10fの検出温度T10fと、温度センサ10eの検出温度T10eとの温度差が、過熱度SHの設定範囲内であるかを判定する。温度差が設定範囲内であれば(S5でYES)ステップS7に処理が進められ、設定範囲外であれば(S5でNO)ステップS6へ処理が進められる。制御装置100は、ステップS6では、過熱度SHが設定範囲の下限以下である場合、液バック状態の可能性があるため、膨張弁41を絞り、上限以上である場合、冷媒が乾きすぎており吐出温度が高くなるため、膨張弁41を開く。
 膨張弁41の開度は徐々に変更する方が冷凍サイクルの状態が安定しやすく好ましい。過熱度SHが設定範囲内に到達する時間をさらに短くするため設定範囲との差の大小により開度変更の程度を調整してもよい。例えば、閾値と過熱度SHの差が大きい状態であれば膨張弁の開度を大きくし、閾値と過熱度SHの差が小さい状態であれば、膨張弁の開度を小さくする等の制御を行なっても良い。
 ステップS7では、制御装置100は、パラメータεが設定閾値以内かを判定する。パラメータε[0≦ε≦1]は、室外熱交換器3の中間温度(温度センサ10a)と室外熱交換器3の出口温度(温度センサ10b)との温度差と、室外熱交換器3の中間温度(温度センサ10a)と、運転前の温度センサ10aの検知温度との温度差の比より得られる値である。
 εが範囲内であれば(S7でYES)ステップS9へ処理が進められ、εが範囲外であれば(S7でNO)ステップS8へ処理が進められる。εが設定範囲の下限以下である場合、凝縮器の凝縮温度と、凝縮器出口から膨張弁43入口までの温度検知結果から得られる過冷却度SCが設定値まで得られていないため、制御装置100は膨張弁43を絞る。逆にεが設定範囲の上限以上である場合、制御装置100は膨張弁43の開度を増加させる。膨張弁43の開度の変更後は、適切な時間開度を維持し、再度ステップS5にて判定が実施される。
 ステップS9では、εが設定範囲の下限値であれば制御は終了し、そうでなければステップS10の処理が実行される。ステップS10では、εが設定範囲の下限値でない場合、下限値とするために(高圧側で差圧がつかないようにするために)膨張弁43を開き、再度ステップS5にて判定を実施する。
 上記の冷房運転における制御により過冷却度SC、過熱度SHを目標範囲内で維持しつつ、必要な過冷却度SCを最低限確保し、かつ配管111の長短に係わらず配管111の入口の乾き度を最大限大きくすることができる。
 図11の暖房制御では、ステップS104において、制御装置100は、暖房制御を行なうにあたり、室内の温度と外気温度とを確認する。この確認には、温度センサ10a、10eを使用することができる。確認の際は各機器を一切運転させずに確認してもよいし、例えば室内外のファンを適切な時間運転させてから検知した結果を用いてもよい。併せて、制御装置100は、四方弁2を暖房モードに切換える(図1において四方弁2の破線で示す流路)。また、膨張弁42,43を初期設定開度に変更し、膨張弁41は固定開度(全開)とする。
 以降、冷凍サイクル装置の運転状態に基づいて、ステップS105,S106において膨張弁43について吸入SH制御が実行され、ステップS107,S108において膨張弁42について中圧制御が実行される。
 ステップS105では、制御装置100は、温度センサ10fの検出温度T10fと温度センサ10aの検出温度T10aとの温度差が、過熱度SHの設定範囲内であるかを判定する。温度差が設定範囲内であれば(S105でYES)ステップS107に処理が進められ、設定範囲外であれば(S105でNO)ステップS106へ処理が進められる。制御装置100は、ステップS106では、過熱度SHが設定範囲の下限以下である場合、液バック状態の可能性があるので膨張弁43を絞り、過熱度SHが設定範囲の上限以上である場合、吐出温度が高くなり過ぎている可能性あるため膨張弁43を開く。ステップS106において膨張弁43の開度の変更後は、制御装置100は、適切な時間開度を維持し、再度S105にて判定を実施する。
 なお、膨張弁43の開度変更は徐々に変更する方が、冷凍サイクルの状態が安定しやすく好ましい。過熱度SHが設定範囲内に到達する時間をさらに短くするため設定範囲との差の大小により開度変更を調整してもよい。例えば、閾値と過熱度SHの差が大きい状態であれば膨張弁の開度を大きくし、閾値と過熱度SHの差が小さい状態であれば、膨張弁の開度を小さくする等の制御を行なっても良い。
 ステップS107では、制御装置100は、パラメータζが1以上であるか否かを判断する。ここで、パラメータζは、ζ=ΔTdc/ΔTedで表される。温度差ΔTdc(=T10d-T10c)は、室内熱交換器6の出口温度(温度センサ10dで検出)と、膨張弁42の出口温度(温度センサ10cで検出)との差である。また、温度差ΔTed(=T10e-T10d)は、室内熱交換器6の中間温度(温度センサ10eで検出)と、室内熱交換器6の出口温度(温度センサ10dで検出)との差である。すなわち、ζ=(T10d-T10c)/(T10e-T10d)≧1が成立するか否かがステップS107において判定される。
 なお、ζに関してもε同様に温度センサの測定誤差を考慮した設定閾値の範囲内かで判定してもよい。
 ζが設定閾値以上(ζ≧1)であれば(S107でYES)、ステップS109へ処理が進められ、ζが設定閾値より小さければ(ζ<1)であれば(S107でNO)、ステップS108へ処理が進められる。
 ステップS108では膨張弁42出口側の冷媒が液冷媒であるため、制御装置100は膨張弁42を絞る。ステップS108において膨張弁42の開度を変更した後は、制御装置100は、適切な時間開度を維持した後、再度S105にて判定を実施する。
 ステップS109では、膨張弁43の開度が閾値以上であれば制御を完了し、閾値より小さければS110へ処理が進められる。ステップS110では、制御装置100は、膨張弁42を絞り、再びS105にて判定を実施する。
 上記制御により過冷却度SC、過熱度SHを目標範囲内に維持しつつ、配管111の長短に係わらず入口の乾き度を最大限高くすることができる。
 なお、過冷却度SCがほとんど付加されておらず、温度センサ10dと、10cとの検出温度に差がある場合、ζが異常に高くなり、かつ温度センサ10fと、10aとの検出温度の差が異常値を示すようになる(吸入SHが大となる)。その場合、封入冷媒量がそもそも少ないかまたは、冷媒が漏洩している可能性がある。例えばζが設定値異常[ex.ζ>30]かつ、吸入SHが設定値以上[ex.吸入SH>20]となった場合、リモコンや表示機器等で冷媒量が不足していることをユーザーに示してもよい。
 以上説明した実施の形態1に係る冷凍サイクル装置によれば、以下の効果が得られる。
 従来、冷暖房を切替可能な機種において膨張弁の設置個所が室内の場合には、冷房時に室外機にて凝縮された高圧液冷媒は配管111内を液状態で流れ、室内の膨張弁にて低圧二相冷媒となるが、本実施の形態で示した構成とすることによって、配管111内を冷暖房のいずれにおいても二相化することができる。
 配管111内の冷媒を二相化することによって、配管内の冷媒密度を低減でき封入冷媒量を低減できる。封入冷媒量を低減することによって、GWP総量値(冷媒のGWP×冷媒量)を低減できる。
 また、冷媒が膨張弁に二相状態で流入すると単位時間当たりの冷媒の密度変動により膨張弁の制御が困難になったり、能力(暖房能力または冷房能力)が安定しなったりするが、本実施の形態で示した構成とすることによって、制御する膨張弁の入り口側の冷媒状態を液相状態にできる。制御する膨張弁の入り口側の冷媒状態を液状態にすることで運転状態が安定しやすく冷凍サイクル装置の制御を容易にすることができる。
 また、運転前の温度検知結果と運転状態から得られる比εと、設定吸入SHとに応じて各膨張弁を制御することによって、冷凍サイクル装置の運転状態を最適な状態で維持することができる。
 また、運転状態、温度センサの検知結果および低圧側膨張弁の開度状態に応じて高圧側膨張弁の開度を制御することで、配管111の長短に係わらず、配管111の入口を最適な湿り状態にすることができる。
 なお、外気温度は運転前の温度センサ10aの検出温度から推定しても良いが、別途外気温度センサを設けてもよい。
 また、凝縮温度と膨張弁入口温度との温度差と、膨張弁入出口の温度差から得られる比ζと、設定吸入SHとに応じて各膨張弁を制御することによって、冷凍サイクル装置の運転状態を最適な状態で維持することができる。
 実施の形態2.
 図12は、実施の形態2の冷凍サイクル装置の構成を示す図である。実施の形態2では図1の構成に対して2つの逆止弁を追加している。実施の形態2に係る冷凍サイクル装置200Aは、圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁43と、膨張弁41と、膨張弁42と、レシーバー5と、室内熱交換器6と、逆止弁71と、逆止弁72と、温度センサ10a~10fと、制御装置100Aとを備える。
 この冷凍サイクル装置200Aでも、冷暖房のいずれの運転状態においても少なくとも2つ以上の膨張弁の入口状態を液状態にすることで、膨張弁の制御を容易にする。また、運転状態に応じて、各膨張弁の制御方法の切替えを行なうことで、運転状態の維持、配管111の長短の対応、冷媒量の低減を行なうことが可能である。
 図12に示した逆止弁71,72の流量係数は、それぞれ膨張弁41,42の開度が全開の場合の流量係数以上であることが好ましい。また、逆止弁7の個数は取付け部の膨張弁の個数以上であることが好ましい。
 なお、図12には、膨張弁と逆止弁とを組み合わせて配置する例を示したが、膨張弁自体の流量係数が特殊な特性を示すように膨張弁を構成しても良い。
 図13は、膨張弁の第1例の特性線図である。図14は、膨張弁の第2例の特性線図である。
 図13に示す膨張弁では、冷媒の流れ方向によって流量係数の特性が変わっている。すなわち、冷媒の流れ方向AとBとでB>Aとなる特性を有する。図3において、「全開」と記載された制御を行なう場合にB側の特性となるように流路における膨張弁の向きを決定することが好ましい。
 また、図14に記載のように冷媒の流れ方向と関係なくある開度以上の時に流量特性全開に向けて大きく変化する特性を有してもよい。図3において、「全開」と記載された制御を行なう場合に、膨張弁の開度を流量特性が変化する領域の開度とすることが好ましい。
 図12では、膨張弁と逆止弁との組み合わせによって、図13または図14の特性を実現している。なお、本発明の実施の形態では逆止弁を追加することによって図13または図14の特性を実現したが、逆止弁に代えて開閉弁等で構成してもよい。
 実施の形態2の冷凍サイクル装置の基本的動作は実施の形態1と同様である。冷房時には、膨張弁41にて膨張された二相冷媒は、膨張弁42と、逆止弁72に別れて各弁を通過後再度合流して室内熱交換器6へ流入する。
 また、暖房時には、膨張弁42にて膨張された二相冷媒は、膨張弁41と、逆止弁71に分かれて各弁を通過後再度合流してレシーバー5へ流入する。
 以上説明した実施の形態2に係る冷凍サイクル装置によれば、以下の効果が得られる。
 各運転条件において開度が設定されている膨張弁を通過する冷媒の循環流量を逆止弁71,72にも流入させることで、膨張弁を流れる冷媒の循環流量を低減することができる。冷媒循環流量を低減することで同等流量係数であっても膨張弁通過時に発生する圧力損失を低減することができる。膨張弁の圧力損失を低減することで、図5等のP-H線図に記載のM5~M6において発生する圧力損失が小さくなり、同等な低圧を実現する際に膨張弁41をさらに絞ることができる。
 膨張弁41を絞ることによって、配管111の入口の乾き度を大きくすることができる。また、配管111の入口乾き度を大きくすることで、配管111内の平均冷媒密度を小さくすることができる。また、配管111内の平均冷媒密度が小さくなることで、同等運転状態を実現する際に必要となる封入冷媒量をさらに低減することができる。封入冷媒量を低減することで、GWP総量値(冷媒のGWP×冷媒量)を低減できる。
 上記の効果に加えて、図13または図14に記載の特性を有する膨張弁とすることで要素数を増やすことなく同様の効果を得ることができる。要素数を増やす必要がないため、製造コストを増加させずに冷媒量低減効果を得ることができる。
 実施の形態3.
 実施の形態3では、1台の室外機に室内機を複数接続する例を紹介する。この場合、各室内機の負荷は同条件とする。図15は、実施の形態3の冷凍サイクル装置200Bの回路図である。図15を参照して、冷凍サイクル装置200Bは、圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁43と、膨張弁41と、膨張弁42-1,42-2と、レシーバー5と、室内熱交換器6-1,6-2と、温度センサ10a~10fと、制御装置100Bとを備える。
 制御装置100Bは、冷暖房のいずれの運転状態においても少なくとも2つ以上の膨張弁の入口状態を液状態に制御することで冷凍サイクル装置200Bの制御を容易にするとともに、運転状態に応じて、各膨張弁の制御方法の切替えと制御を行なう。これによって、運転状態の維持、配管111の長短の対応、冷媒量低減を行なうことが可能となる。
 冷凍サイクル装置200Bの基本的構成は、実施の形態1と同様であるが、室外機1台に対し、室内機が2台以上接続されている点が異なる。なお、実施の形態2同様に逆止弁等を設けた構成としてもよい。
 図16は、実施の形態3の変形例である冷凍サイクル装置200Cの回路図である。図15の冷凍サイクル装置200Bは、室外機101Bと室内機102Bとの間は、実施の形態1と同様に配管111,112の2本で接続されていた。これに対し冷凍サイクル装置200Cは、室外機101Bと室内機102Bとの間が2本ずつ計4本の配管111-1,111-2,112-1,112-2によって接続されている。
 なお、冷凍サイクル装置200B,200Cとも、基本的動作は実施の形態1と同様である。
 実施の形態3に係る冷凍サイクル装置では、室外機1台に対し、複数台の室内機を接続した場合であっても液管内を二相化できるため、封入冷媒量を低減することができる。
 また、室内熱交換器6-1,6-2にそれぞれ対応する膨張弁42-1,42-2を設けているため、室外機と室内機を接続する配管の接続本数が1対であっても2対であっても液管内を二相化することができる。
 実施の形態4.
 実施の形態4では、室外機1台に複数の室内熱交換器を設けた場合において、複数の室内熱交換器において、室内負荷条件が異なる場合に対応可能な冷凍サイクル装置を説明する。
 図17は、実施の形態4の冷凍サイクル装置200Dの回路図である。図17に示す冷凍サイクル装置200Dは、圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁43と、膨張弁41と、膨張弁42と、膨張弁42-1,42-2と、レシーバー5と、室内熱交換器6-1,6-2と、温度センサ10a~10jと、制御装置100Dとを備える。
 制御装置100Dは、冷暖房のいずれの運転状態においても少なくとも2つ以上の膨張弁の入口状態を液状態にすることで冷凍サイクル装置200Dの制御を容易にするとともに、運転状態に応じて、各膨張弁の制御方法の切替えと制御を行なう。これによって、運転状態の維持、配管111の長短の対応、冷媒量低減を行なうことが可能となる。
 また、複数台の室内熱交換器を接続する場合、室内側の負荷条件や室内温度状態等が各室内熱交換器で異なる場合が発生する。その場合、実施の形態3では、冷房時に個別の室内熱交換器の出口側の状態が判断できないといった課題や、暖房時に中圧制御を行なう際、制御目標となる膨張弁42-1,42-2の出口側は合流しており状態は1つであるのに対し、制御対象となる膨張弁は2つとなり、制御が困難になるといった課題がある。
 実施の形態4は、上記課題に対応した形態としている。実施の形態4の冷凍サイクル装置202Dの基本的構成は、実施の形態3と同様であるが、各室内機の膨張弁42-1,42-2に加え、配管111近傍に膨張弁42が追加されている点と、各室内熱交換器出入口に温度センサ10g1,10g2が追加されている点が異なる。
 図18は、実施の形態4における冷房時および暖房時の各膨張弁の制御について示す図である。次に、図17、図18を参照して、実施の形態4に係る冷凍サイクル装置200Dの基本動作について説明する。
 まず冷房運転では、圧縮機1より四方弁2を経由して室外熱交換器3へと冷媒が流入し冷媒が凝縮する。室外熱交換器3にて凝縮された冷媒は、膨張弁43で減圧される。制御装置100Dは、膨張弁43に対してSC制御(ε)を実行する。膨張弁43で減圧された冷媒は、レシーバー5を経由後、膨張弁41へ送られる。制御装置100Dは、膨張弁41に対して吸入SH制御を実行する。膨張弁41で減圧された冷媒は配管111、膨張弁42、膨張弁42-1,42-2を経由して室内熱交換器6-1と、室内熱交換器6-2へ送られる。制御装置100Dは、膨張弁42-1,42-2に対して蒸発SH制御を実行する。なお、制御装置100Dは、膨張弁42に対しては開度を全開に固定する。室内熱交換器6-1及び6-2で蒸発した冷媒は四方弁2、レシーバー5を経由し圧縮機1へ戻る。
 一方、暖房運転では、圧縮機1より四方弁2、配管112(ガス管)を経由して冷媒が室内熱交換器6-1および6-2に至り、凝縮される。室内熱交換器6-1および6-2にて凝縮された冷媒は、膨張弁42-1,42-2に送られる。制御装置100Dは、膨張弁42-1,42-2に対してSC制御(ε)を実行する。膨張弁42-1,42-2で減圧された冷媒は、合流後さらに膨張弁42にて減圧される。制御装置100Dは、膨張弁42に対して中圧制御を実行する。膨張弁42で減圧された冷媒は、配管111(液管)、膨張弁41、レシーバー5を経由後、膨張弁43で絞られ室外熱交換器3へ送られる。制御装置100Dは、膨張弁43に対して吸入SH制御を実行する。なお、制御装置100Dは、膨張弁41に対しては開度を全開に固定する。室外熱交換器3で蒸発した冷媒は四方弁2、レシーバー5を経由し圧縮機1へ戻る。
 制御装置100Dが実行する制御フローについて図9、図19~図20を用いて説明する。なお、図9に示した運転モードを判別する処理は、同様に実施の形態4でも実行される。
 図9のステップS1にて運転モードが判定される。判定処理においては、制御装置100Dは、ユーザー設定を直接読み込んでも良いし、ユーザーの設定により制御される四方弁の状態に応じて判定してもよいし、温度センサ(例えば温度センサ10a,10e1(または10e2))の温度検知結果を基に判定しても良い。
 以下動作モードが冷房運転時、暖房運転時の処理について順に説明する。
 図19は、実施の形態4の冷房運転時の処理を示すフローチャートである。
 ステップS204において、判定結果により冷房制御を行なうにあたり、室内と室外の外気温度T10a、T10eを確認する。この確認には、温度センサ10a、10e1(または10e2)を使用することができる。確認の際は各機器を一切運転させずに確認してもよいし、例えば室内外のファンを適切な時間運転させてから検知した結果を用いてもよい。併せて、制御装置100Dは、四方弁2を冷房モードに切り替える(図17において四方弁2の実線で示す流路)。また、膨張弁41,42-1,42-2,43は初期設定開度に変更し、膨張弁42を固定開度(全開)とする。
 以降、冷凍サイクル装置200Dの運転状態に基づいて、ステップS205,S206において膨張弁41について吸入SH制御が実行され、ステップS207~S210において膨張弁43についてSC制御(ε)が実行され、ステップS211,S212において膨張弁42-1,42-2について蒸発SH制御が実行される。
 ステップS205では、制御装置100Dは、温度センサ10fの検出温度T10fと、温度センサ10e1,10e2の検出温度T10e1,T10e2との温度差が、過熱度SHの設定範囲内であるかを判定する。温度差が設定範囲内であれば(S205でYES)ステップS207に処理が進められ、設定範囲外であれば(S205でNO)ステップS206へ処理が進められる。制御装置100Dは、ステップS206では、過熱度SHが設定範囲の下限以下である場合、膨張弁41を絞り、上限以上である場合、膨張弁41を開く。そして、制御装置100Dは、膨張弁41の開度の変更後は適切な時間膨張弁41の開度を維持し、再度ステップS205にて判定を実施する。
 なお、膨張弁41の開度は徐々に変更する方が冷凍サイクルの状態が安定しやすく好ましい。過熱度SHが設定範囲内に到達する時間をさらに短くするため設定範囲との差の大小により開度変更の程度を調整してもよい。例えば、閾値と過熱度SHの差が大きい状態であれば膨張弁の開度を大きくし、閾値と過熱度SHの差が小さい状態であれば、膨張弁の開度を小さくする等の制御を行なっても良い。
 ステップS207では、制御装置100Dは、パラメータεが設定閾値以内かを判定する。パラメータε[0≦ε≦1]は、室外熱交換器3の中間温度(温度センサ10a)と室外熱交換器3の出口温度(温度センサ10b)との温度差と、室外熱交換器3の中間温度(温度センサ10a)と、運転前の温度センサ10aの検知温度との温度差の比より得られる値である。
 パラメータεが範囲内(S207でYES)であればステップS209へ、範囲外(S207でNO)であればステップS208へ処理が進められる。ステップS208では、εが設定範囲の下限以下である場合、凝縮器の凝縮温度(温度センサ10a)と、凝縮器出口から膨張弁43入口までの温度検知結果(温度センサ10b)から得られる過冷却度SCが設定値まで得られていないため、膨張弁43を絞り、上限以上である場合、膨張弁43を開く。膨張弁43の開度の変更後は、制御装置100Dは適切な時間膨張弁43の開度を維持し、再度ステップS205にて判定を実施する。
 ステップS209では、εが設定範囲の下限値であればステップS211へ、そうでなければステップS210の処理が実行される。ステップS210では、εが設定範囲の下限値でない場合、下限値とするために膨張弁43を開き、再度ステップS205にて判定を実施する。
 上記制御により過冷却度SC、過熱度SHを目標範囲内に維持しつつ、必要な過冷却度SCを確保し、かつ配管111の長短に係わらず配管111の入口の乾き度を最大限大きくすることができる。
 ステップS211では、温度センサ10g1と温度センサ10e1の温度差、温度センサ10g2と温度センサ10e2の温度差がともに閾値以下であれば制御を終了し、そうでなければ室内機に個別に設けている膨張弁42-1、および膨張弁42-2の開度を調整する。
 図20は、実施の形態4の暖房運転時の処理を示すフローチャートである。まず、ステップS304において、制御装置100Dは、暖房制御を行なうにあたり、室内の温度と外気温度とを確認する。この確認には、温度センサ10a、10eを使用することができる。確認の際は各機器を一切運転させずに確認してもよいし、例えば室内外のファンを適切な時間運転させてから検知した結果を用いてもよい。併せて、制御装置100Dは、四方弁2を暖房モードに切換える(図17において四方弁2の破線で示す流路)。また、膨張弁42,42-1,42-2,43を初期設定開度に変更し、膨張弁41は固定開度(全開)とする。
 以降、冷凍サイクル装置の運転状態に基づいて、ステップS305,S306において膨張弁43について吸入SH制御が実行され、ステップS307,S308において膨張弁42について中圧制御が実行される。また、ステップS309,S310において、膨張弁42-1,42-2についてSC制御(ε)が実行される。
 ステップS305では、制御装置100Dは、温度センサ10fの検出温度T10fと温度センサ10aの検出温度T10aとの温度差が、過熱度SHの設定範囲内であるかを判定する。温度差が設定範囲内であれば(S305でYES)ステップS307に処理が進められ、設定範囲外であれば(S305でNO)ステップS306へ処理が進められる。制御装置100Dは、ステップS306では、過熱度SHが設定範囲の下限以下である場合、膨張弁43を絞り、過熱度SHが設定範囲の上限以上である場合、膨張弁43を開く。ステップS306において膨張弁43の開度の変更後は、制御装置100Dは、適切な時間開度を維持し、再度ステップS305にて判定を実施する。
 なお、膨張弁43の開度変更は徐々に変更する方が、冷凍サイクルの状態が安定しやすく好ましい。過熱度SHが設定範囲内に到達する時間をさらに短くするため設定範囲との差の大小により開度変更を調整してもよい。例えば、閾値と過熱度SHの差が大きい状態であれば膨張弁の開度を大きくし、閾値と過熱度SHの差が小さい状態であれば、膨張弁の開度を小さくする等の制御を行なっても良い。
 ステップS307では、制御装置100Dは、パラメータζ1、ζ2が1以上であるか否かを判断する。パラメータζ1は、室内熱交換器6-1の中間温度(温度センサ10e1)と、室内熱交換器6-1の出口温度(温度センサ10d1)との温度差と、室内熱交換器6-1の出口温度(温度センサ10d1)と、膨張弁42の出口温度(温度センサ10c)との温度差との比より得られる値である。パラメータζ2は、室内熱交換器6-2の中間温度(温度センサ10e2)と、室内熱交換器6-2の出口温度(温度センサ10d2)との温度差と、室内熱交換器6-2の出口温度(温度センサ10d2)と、膨張弁42の出口温度(温度センサ10c)との温度差との比より得られる値である。
 すなわち、ζ1=(T10d1-T10c)/(T10e1-T10d1)≧1、またはζ2=(T10d2-T10c)/(T10e2-T10d2)≧1が成立するか否かがステップS307において判定される。
 なお、ζ1,ζ2に関してもε同様に温度センサの測定誤差を考慮した設定範囲内か否かで判定してもよい。
 ζ1またはζ2が設定閾値以上であれば(S307でYES)、ステップS309へ処理が進められ、いずれも設定閾値より小(ζ1<1かつζ2<1)であれば(S307でNO)、ステップS308へ処理が進められる。
 配管111は、2台の室内熱交換器で共用されているので、どちらか1台の室内熱交換器で判定を行なえばよく、ζ1,ζ2の一方のみについて判定を行なっても良い。
 少なくともζ1またはζ2のいずれかが設定閾値以下であればS309へ、設定閾値外(ζ<1)であればS308へ処理が進められる。
 ステップS308では膨張弁42出口側の冷媒が液冷媒であるため、制御装置100Dは膨張弁42を絞る。ステップS308において膨張弁42の開度を変更した後は、制御装置100Dは、適切な時間開度を維持した後、再度S305にて判定を実施する。
 ステップS309では、制御装置100Dは、各室内熱交換器6-1及び6-2の過冷却度(|T10e1-T10d1|及び|T10e2-T10d2|)、またはεがそれぞれ設定された閾値の範囲内かを判定する。ここで各室内熱交換器の過冷却度またはεの設定値は、室内温度と設定温度との温度差から算出される各室内熱交換器に必要な能力を出力し、各室内熱交換器入出口温度及び凝縮温度より得られるエンタルピー差から冷媒循環流量比を算出し設定される。
 ステップS309において、過冷却度またはεが設定閾値の範囲内であればS311へ処理が進められ、設定閾値範囲外であればS310へ処理が進められる。ステップS310においては、下限値以下の場合、膨張弁42-1または膨張弁42-2を絞り、上限値以上の場合、膨張弁42-1または膨張弁42-2を開く。制御装置100Dは、膨張弁42-1または膨張弁42-2を変更した場合、適切な時間変更後の開度を維持した後、再度S305にて判定を実施する。
 ステップS311では、制御装置100Dは、膨張弁43の開度が閾値以上であれば、制御を完了し、閾値よりも小さければステップS312の処理を実行する。ステップS312では、膨張弁42を絞りステップS305にて再び判定を実施する。
 上記制御により各熱交換器において、過冷却度SC、過熱度SHを目標範囲内に維持しつつ、配管111の長短に係わらず配管111の入口の乾き度を最大限高くすることができる。
 実施の形態4の冷凍サイクル装置は、実施の形態1~3の冷凍サイクル装置が奏する効果に加え、以下の効果を奏する。
 複数台接続の場合、室内側の負荷条件や室内温度状態等が異なる場合が発生するが、冷房時に室内熱交換器6-1,6-2の出口側に温度センサ10g1,10g2を設けたことで、個別の熱交出口側の状態を判断でき、複数台の室内熱交換器の冷媒循環量比を調整することができる。
 また、暖房時には、各膨張弁で制御対象と制御目標が1:1となり制御が容易にできる。また、個別の室内機で発生する負荷に対応することができる。さらに、室外機1台に対し、室内機複数台を設置するためコストを低減することができる。また、室外側の設置スペースを低減することができる。
 最後に、実施の形態1~4に係る冷凍サイクル装置を図面を参照しつつ総括する。
 図1、図12、図15~図16に示す冷凍サイクル装置200,200A~200Cは、圧縮機1と、第1熱交換器(室外熱交換器3)と、第1膨張弁41とを含む室外機101と、第2膨張弁42と、第2熱交換器(室内熱交換器6)とを含む室内機102と、室外機101と室内機102との間に接続される第1配管111および第2配管112とを備える。圧縮機1から吐出された冷媒は、冷房運転において、第1熱交換器(室外熱交換器3)、第1膨張弁41、第1配管111、第2膨張弁42、第2熱交換器(室内熱交換器6)、第2配管112を順に経て圧縮機1に戻り、冷房運転において、第1膨張弁41は、液相冷媒を二相冷媒に変化させて第1配管111に送る。
 本構成とすることで、第1配管111内を冷房時において二相化することができる。二相化することで配管内の密度を低減でき製品出荷時の室外機への封入冷媒量を低減できる。また、封入冷媒量を低減することで、GWP総量値(冷媒のGWP×総冷媒量)を低減できる。
 好ましくは、室外機101は、冷媒回路において第1熱交換器(室外熱交換器3)と第1膨張弁41との間に配置される第3膨張弁43と、冷媒回路において、第1膨張弁41と第3膨張弁43との間に配置され、第1膨張弁41と第3膨張弁43とを結ぶ流路を流れる冷媒を冷却する冷却部とをさらに含む。冷却部は、たとえばレシーバー5である。
 冷媒が膨張弁に二相状態で流入すると単位時間あたりの密度変動により膨張弁の制御が困難になったり、能力(冷房能力)が安定しなかったりするが、上記の構成とすることで、制御する第1膨張弁41の入口側の冷媒状態を液状態にできる。制御する第1膨張弁41の入口側の冷媒状態を液状態にすることで運転状態が安定しやすくなり、冷凍サイクル装置全体の制御を容易にすることができる。
 より好ましくは、冷凍サイクル装置は、第1熱交換器中を流れる冷媒温度を検知する第1温度センサ10aと、第1熱交換器と第3膨張弁との間の流路の冷媒温度を検知する第2温度センサ10bと、圧縮機の吸入冷媒温度を検知する第3温度センサ10fと、第2熱交換器中を流れる冷媒温度を検知する第4温度センサ10eと、第1~第3膨張弁の開度を制御する制御装置100とをさらに備える。
 制御装置は、冷房運転において、第4温度センサ10eの検出温度と第3温度センサ10fの検出温度との差が予め定められた値となるように、第1膨張弁41の開度を制御し、制御装置は、冷房運転において、第1温度センサ10aの検出温度と第2温度センサ10bの検出温度との差と、外気温度と第1温度センサ10aの検出温度との差の比より得られる値(ε)が予め定められた設定範囲内になるように、第3膨張弁43の開度を制御する。
 このように、運転前の温度検知結果と運転状態から得られる比εと、設定された吸入SHに応じて各膨張弁を制御することで運転状態を最適な状態で維持することができる。
 また、運転状態、温度センサの検知結果および低圧側膨張弁の開度状態に応じて高圧側膨張弁の開度を制御することで、配管111の長短に係わらず、配管111の入口を最適な湿り状態にすることができる。
 なお、外気温度は運転前の温度センサから推定してもよく、あるいは別途排気温度センサを設けてもよい。
 より好ましくは、圧縮機1から吐出された冷媒は、暖房運転において、第2配管112、第2熱交換器(室内熱交換器6)、第2膨張弁42、第1配管111、第1膨張弁41、第1熱交換器(室外熱交換器3)を順に経て圧縮機1に戻る。暖房運転において、第2膨張弁42は、液相冷媒を二相冷媒に変化させて第1配管111に送る。
 さらに好ましくは、冷凍サイクル装置200は、冷房運転と暖房運転とを切替える四方弁2をさらに備える。
 膨張弁が1つの冷暖房切替機種において膨張弁を室内機側に設置すると、暖房時には配管111を二相状態にすることは可能だが、冷房時には室外機にて凝縮された高圧液冷媒は配管111内を液状態で流れ膨張弁にて低圧二相状態となる。一方、膨張弁を室外機側に設置すると、冷房時には配管111を二相状態にすることは可能だが、暖房時、室外機にて凝縮された高圧液冷媒は配管111内を液状態で流れ膨張弁にて低圧二相冷媒となる。これに対し、冷暖房切替機種において、室外機に膨張弁41を設け、室内機に膨張弁42を設けることによって、配管111内を冷暖房のいずれにおいても二相化することができる。
 第1配管111内を二相化することで配管内の密度を低減でき製品出荷時の室外機への封入冷媒量を低減できる。また、封入冷媒量を低減することで、GWP総量値(冷媒のGWP×総冷媒量)を低減できる。
 さらに好ましくは、冷凍サイクル装置200は、第1熱交換器中を流れる冷媒温度を検知する第1温度センサ10aと、第1熱交換器と第3膨張弁との間の流路の冷媒温度を検知する第2温度センサ10bと、圧縮機の吸入冷媒温度を検知する第3温度センサ10fと、第2熱交換器中を流れる冷媒温度を検知する第4温度センサ10eと、第2熱交換器と第2膨張弁との間の流路の冷媒温度を検知する第5温度センサ10dと、第2膨張弁42の第1配管111に接続される側の冷媒温度を検知する第6温度センサ10cと、第1~第3膨張弁の開度を制御する制御装置100とをさらに備える。制御装置は、暖房運転において、第1温度センサ10aの検出温度と第3温度センサ10fの検出温度との差が予め定められた値となるように、第3膨張弁43の開度を制御する。制御装置は、暖房運転において、第4温度センサ10eの検出温度と第5温度センサ10dの検出温度との差と、第4温度センサ10eの検出温度と第5温度センサ10cの検出温度との差の比より得られる値が予め定められた値になるように、第2膨張弁42の開度を制御する。
 上記のように、凝縮温度と膨張弁入口温度との温度差と、膨張弁入出口の温度差から得られる比ζと、設定吸入SH、に応じて各膨張弁の制御をすることで運転状態を最適な状態で維持することができる。
 また、運転状態、温度センサの検知結果及び低圧側膨張弁の開度状態に応じて高圧側膨張弁の開度を制御することで、配管111の長短に係わらず、配管111の入口を最適な湿り状態にすることができる。
 さらに好ましくは、第3膨張弁43は、液相冷媒を二相冷媒に変化させる。
 さらに好ましくは、冷却部は、圧縮機1が吸入する冷媒と第1膨張弁41と第3膨張弁43とを結ぶ流路を流れる冷媒とを熱交換させるように構成されたレシーバー5を備える。
 図17に示すように、冷凍サイクル装置200Dは、圧縮機1と、第1熱交換器(室外熱交換器3)と、第1膨張弁41とを含む室外機101と、第2膨張弁42と、第2熱交換器(室内熱交換器6-1)とを含む室内機102と、室外機101と室内機102との間に接続される第1配管111および第2配管112とを備える。圧縮機1から吐出された冷媒は、冷房運転において、第1熱交換器(室外熱交換器3)、第1膨張弁41、第1配管111、第2膨張弁42、第2熱交換器(室内熱交換器6-1)、第2配管112を順に経て圧縮機1に戻り、冷房運転において、第1膨張弁41は、液相冷媒を二相冷媒に変化させて第1配管111に送る。好ましくは、室内機102Dは、第3熱交換器(室内熱交換器6-2)と、第4膨張弁42-1と、第5膨張弁42-2とをさらに含む。第2熱交換器(室内熱交換器6-1)と第4膨張弁42-1とは直列に接続されて第1流路を構成し、第3熱交換器(室内熱交換器6-2)と第5膨張弁42-2とは直列に接続されて第2流路を構成する。第1流路および第2流路は、第2膨張弁42と第2配管112との間に並列接続される。
 上記の構成とすることによって、室内側に複数の熱交換器がありこれらの負荷が異なる場合でも、第1配管111の冷媒を二相状態としつつ、室内熱交換器の能力を負荷に合わせることができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、2 四方弁、3 室外熱交換器、5 レシーバー、6 室内熱交換器、7,71,72 逆止弁、10a,10b,10c,10d,10d1,10d2,10e,10e1,10e2,10f,10g1,10g2,10j 温度センサ、41,42,43 膨張弁、100,100A,100B,100D 制御装置、101,101A~101C 室外機、102,102A~102D 室内機、200,200A~200D 冷凍サイクル装置、111,112 配管。

Claims (8)

  1.  圧縮機と、第1熱交換器と、第1膨張弁とを含む室外機と、
     第2膨張弁と、第2熱交換器とを含む室内機と、
     前記室外機と前記室内機との間に接続される第1配管および第2配管とを備え、
     前記圧縮機から吐出された冷媒は、冷房運転において、前記第1熱交換器、前記第1膨張弁、前記第1配管、前記第2膨張弁、前記第2熱交換器、前記第2配管を順に経て前記圧縮機に戻り、
     前記冷房運転において、前記第1膨張弁は、液相冷媒を二相冷媒に変化させて前記第1配管に送る、冷凍サイクル装置。
  2.  前記室外機は、
     冷媒回路において前記第1熱交換器と前記第1膨張弁との間に配置される第3膨張弁と、
     前記冷媒回路において、前記第1膨張弁と前記第3膨張弁との間に配置され、前記第1膨張弁と前記第3膨張弁とを結ぶ流路を流れる冷媒を冷却する冷却部とをさらに含む、請求項1に記載の冷凍サイクル装置。
  3.  前記第1熱交換器中を流れる冷媒温度を検知する第1温度センサと、
     前記第1熱交換器と前記第3膨張弁との間の流路の冷媒温度を検知する第2温度センサと、
     前記圧縮機の吸入冷媒温度を検知する第3温度センサと、
     前記第2熱交換器中を流れる冷媒温度を検知する第4温度センサと、
     前記第1~第3膨張弁の開度を制御する制御装置とをさらに備え、
     前記制御装置は、前記冷房運転において、前記第4温度センサの検出温度と前記第3温度センサの検出温度との差が予め定められた値となるように、前記第1膨張弁の開度を制御し、
     前記制御装置は、前記冷房運転において、前記第1温度センサの検出温度と前記第2温度センサの検出温度との差と、外気温度と前記第1温度センサの検出温度との差の比より得られる値が予め定められた設定範囲内になるように、前記第3膨張弁の開度を制御する、請求項2に記載の冷凍サイクル装置。
  4.  前記圧縮機から吐出された冷媒は、暖房運転において、前記第2配管、前記第2熱交換器、前記第2膨張弁、前記第1配管、前記第1膨張弁、前記第1熱交換器を順に経て前記圧縮機に戻り、
     前記暖房運転において、前記第2膨張弁は、液相冷媒を二相冷媒に変化させて前記第1配管に送る、請求項2に記載の冷凍サイクル装置。
  5.  前記冷房運転と前記暖房運転とを切替える四方弁をさらに備える、請求項4に記載の冷凍サイクル装置。
  6.  前記第1熱交換器中を流れる冷媒温度を検知する第1温度センサと、
     前記第1熱交換器と前記第3膨張弁との間の流路の冷媒温度を検知する第2温度センサと、
     前記圧縮機の吸入冷媒温度を検知する第3温度センサと、
     前記第2熱交換器中を流れる冷媒温度を検知する第4温度センサと、
     前記第2熱交換器と前記第2膨張弁との間の流路の冷媒温度を検知する第5温度センサと、
     前記第2膨張弁の前記第1配管に接続される側の冷媒温度を検知する第6温度センサと、
     前記第1~第3膨張弁の開度を制御する制御装置とをさらに備え、
     前記制御装置は、前記暖房運転において、前記第1温度センサの検出温度と前記第3温度センサの検出温度との差が予め定められた値となるように、前記第3膨張弁の開度を制御し、
     前記制御装置は、前記暖房運転において、前記第4温度センサの検出温度と前記第5温度センサの検出温度との差と、前記第4温度センサの検出温度と前記第5温度センサの検出温度との差の比より得られる値が予め定められた値になるように、前記第2膨張弁の開度を制御する、請求項4に記載の冷凍サイクル装置。
  7.  前記冷却部は、前記圧縮機が吸入する冷媒と前記第1膨張弁と前記第3膨張弁とを結ぶ流路を流れる冷媒とを熱交換させるように構成される、請求項6に記載の冷凍サイクル装置。
  8.  前記室内機は、
     第3熱交換器と、第4膨張弁と、第5膨張弁とをさらに含み、
     前記第2熱交換器と前記第4膨張弁とは直列に接続されて第1流路を構成し、
     前記第3熱交換器と前記第5膨張弁とは直列に接続されて第2流路を構成し、
     前記第1流路および前記第2流路は、前記第2膨張弁と前記第2配管との間に並列接続される、請求項1に記載の冷凍サイクル装置。
PCT/JP2017/038871 2017-10-27 2017-10-27 冷凍サイクル装置 WO2019082372A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780096117.6A CN111247377B (zh) 2017-10-27 2017-10-27 制冷循环装置
PCT/JP2017/038871 WO2019082372A1 (ja) 2017-10-27 2017-10-27 冷凍サイクル装置
JP2019549799A JP6878612B2 (ja) 2017-10-27 2017-10-27 冷凍サイクル装置
EP17930030.6A EP3702696A4 (en) 2017-10-27 2017-10-27 REFRIGERATION CYCLE DEVICE
US16/754,481 US11486617B2 (en) 2017-10-27 2017-10-27 Refrigeration cycle apparatus
AU2017436890A AU2017436890B2 (en) 2017-10-27 2017-10-27 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038871 WO2019082372A1 (ja) 2017-10-27 2017-10-27 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019082372A1 true WO2019082372A1 (ja) 2019-05-02

Family

ID=66247210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038871 WO2019082372A1 (ja) 2017-10-27 2017-10-27 冷凍サイクル装置

Country Status (6)

Country Link
US (1) US11486617B2 (ja)
EP (1) EP3702696A4 (ja)
JP (1) JP6878612B2 (ja)
CN (1) CN111247377B (ja)
AU (1) AU2017436890B2 (ja)
WO (1) WO2019082372A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223469A1 (ja) * 2022-05-18 2023-11-23 三菱電機株式会社 空気調和機
JP7437754B2 (ja) 2020-05-29 2024-02-26 パナソニックIpマネジメント株式会社 空気調和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069666A1 (ja) * 2017-10-02 2019-04-11 カルソニックカンセイ株式会社 空調装置
CN112178976A (zh) * 2019-07-03 2021-01-05 开利公司 热交换单元,热交换系统及其中确定控制阀故障的方法
CN111538360B (zh) * 2020-07-07 2020-11-10 北京京仪自动化装备技术有限公司 温控系统及温控方法
CN114322106B (zh) * 2022-01-04 2023-09-26 青岛海信日立空调系统有限公司 一种空调系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255860A (ja) * 1990-03-02 1991-11-14 Mitsubishi Electric Corp 冷暖混在型多室空気調和装置
JPH0735390A (ja) * 1993-07-26 1995-02-07 Sanyo Electric Co Ltd 空気調和装置
JP2007187420A (ja) * 2006-01-16 2007-07-26 Daikin Ind Ltd 空気調和機
EP2314957A2 (en) * 2009-05-14 2011-04-27 Halla Climate Control Corporation Multi-evaporation system
JP2012112622A (ja) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp 二元冷凍装置
JP2013200090A (ja) 2012-03-26 2013-10-03 Hitachi Appliances Inc 冷凍サイクル装置
US20160040896A1 (en) * 2014-08-05 2016-02-11 Samsung Electronics Co., Ltd. Air conditioner
WO2016051606A1 (ja) * 2014-10-03 2016-04-07 三菱電機株式会社 空気調和装置
WO2016204194A1 (ja) * 2015-06-18 2016-12-22 ダイキン工業株式会社 空気調和装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2962978B2 (ja) 1993-10-29 1999-10-12 シャープ株式会社 空気調和機
JP4459776B2 (ja) * 2004-10-18 2010-04-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
JP4432773B2 (ja) 2004-12-27 2010-03-17 パナソニック株式会社 空気調和機
CN100366992C (zh) * 2005-11-25 2008-02-06 珠海格力电器股份有限公司 低温空调热泵系统及使用该系统降低温度调节波动的方法
WO2008091243A1 (en) * 2006-12-28 2008-07-31 Carrier Corporation Bracket for thermal expansion valve bulb
JP5125124B2 (ja) 2007-01-31 2013-01-23 ダイキン工業株式会社 冷凍装置
JP2009014210A (ja) * 2007-06-29 2009-01-22 Daikin Ind Ltd 冷凍装置
ES2716469T3 (es) * 2007-10-10 2019-06-12 Daikin Ind Ltd Acondicionador de aire
JP4931848B2 (ja) * 2008-03-31 2012-05-16 三菱電機株式会社 ヒートポンプ式給湯用室外機
JP4497234B2 (ja) * 2008-07-29 2010-07-07 ダイキン工業株式会社 空気調和装置
JP5489507B2 (ja) * 2009-03-30 2014-05-14 三菱重工業株式会社 マルチ型空気調和機
JP2011099591A (ja) 2009-11-04 2011-05-19 Daikin Industries Ltd 冷凍装置
JP5835958B2 (ja) 2011-06-17 2015-12-24 三菱重工業株式会社 マルチ形空気調和装置
WO2013190665A1 (ja) * 2012-06-20 2013-12-27 三菱電機株式会社 ヒートポンプ装置、空気調和機および冷凍機
JP2013053849A (ja) 2012-12-17 2013-03-21 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ装置の室外機
WO2014141375A1 (ja) 2013-03-12 2014-09-18 三菱電機株式会社 空気調和装置
JP6110187B2 (ja) 2013-04-02 2017-04-05 三菱電機株式会社 冷凍サイクル装置
JP6091399B2 (ja) 2013-10-17 2017-03-08 三菱電機株式会社 空気調和装置
GB2543669B (en) * 2014-07-23 2020-05-13 Mitsubishi Electric Corp Refrigeration cycle apparatus
WO2016117113A1 (ja) * 2015-01-23 2016-07-28 三菱電機株式会社 空気調和機
WO2017094172A1 (ja) 2015-12-03 2017-06-08 三菱電機株式会社 空気調和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255860A (ja) * 1990-03-02 1991-11-14 Mitsubishi Electric Corp 冷暖混在型多室空気調和装置
JPH0735390A (ja) * 1993-07-26 1995-02-07 Sanyo Electric Co Ltd 空気調和装置
JP2007187420A (ja) * 2006-01-16 2007-07-26 Daikin Ind Ltd 空気調和機
EP2314957A2 (en) * 2009-05-14 2011-04-27 Halla Climate Control Corporation Multi-evaporation system
JP2012112622A (ja) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp 二元冷凍装置
JP2013200090A (ja) 2012-03-26 2013-10-03 Hitachi Appliances Inc 冷凍サイクル装置
US20160040896A1 (en) * 2014-08-05 2016-02-11 Samsung Electronics Co., Ltd. Air conditioner
WO2016051606A1 (ja) * 2014-10-03 2016-04-07 三菱電機株式会社 空気調和装置
WO2016204194A1 (ja) * 2015-06-18 2016-12-22 ダイキン工業株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3702696A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437754B2 (ja) 2020-05-29 2024-02-26 パナソニックIpマネジメント株式会社 空気調和装置
WO2023223469A1 (ja) * 2022-05-18 2023-11-23 三菱電機株式会社 空気調和機

Also Published As

Publication number Publication date
CN111247377A (zh) 2020-06-05
JPWO2019082372A1 (ja) 2020-11-19
US20200256590A1 (en) 2020-08-13
AU2017436890A1 (en) 2020-04-30
JP6878612B2 (ja) 2021-05-26
AU2017436890B2 (en) 2021-12-09
US11486617B2 (en) 2022-11-01
EP3702696A1 (en) 2020-09-02
EP3702696A4 (en) 2020-11-18
CN111247377B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
JP6878612B2 (ja) 冷凍サイクル装置
EP2270405B1 (en) Refrigerating device
JP6479162B2 (ja) 空気調和装置
JP5447499B2 (ja) 冷凍装置
JP5563609B2 (ja) 冷媒システム及びその制御方法
US20150292777A1 (en) Air-conditioning apparatus
JP6880204B2 (ja) 空気調和装置
JP2011112233A (ja) 空気調和装置
WO2018008139A1 (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
KR101737365B1 (ko) 공기조화기
WO2014203364A1 (ja) ヒートポンプ装置
GB2566381A (en) Refrigeration cycle system
JP6379769B2 (ja) 空気調和装置
JP6045440B2 (ja) 空気調和機の制御装置
JP2019184207A (ja) 空気調和装置
JPWO2020194435A1 (ja) 空気調和装置
JP6479181B2 (ja) 空気調和装置
JP6758506B2 (ja) 空気調和装置
WO2021053924A1 (ja) 空気調和機
KR20190041091A (ko) 공기조화기
JP6081283B2 (ja) 空気調和装置
JP6573723B2 (ja) 空気調和装置
JP7258129B2 (ja) 空気調和装置
JP2018146169A (ja) 空調機
JPH04344085A (ja) 冷凍装置の除霜運転制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549799

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017436890

Country of ref document: AU

Date of ref document: 20171027

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017930030

Country of ref document: EP

Effective date: 20200527