WO2019080928A1 - 一种iap拮抗剂的晶型及其制备方法 - Google Patents

一种iap拮抗剂的晶型及其制备方法

Info

Publication number
WO2019080928A1
WO2019080928A1 PCT/CN2018/112089 CN2018112089W WO2019080928A1 WO 2019080928 A1 WO2019080928 A1 WO 2019080928A1 CN 2018112089 W CN2018112089 W CN 2018112089W WO 2019080928 A1 WO2019080928 A1 WO 2019080928A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
crystal form
mmol
preparation
formula
Prior art date
Application number
PCT/CN2018/112089
Other languages
English (en)
French (fr)
Inventor
孙飞
丁照中
蔡哲
钱文远
胡国平
黎健
陈曙辉
Original Assignee
南京明德新药研发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发股份有限公司 filed Critical 南京明德新药研发股份有限公司
Publication of WO2019080928A1 publication Critical patent/WO2019080928A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings

Definitions

  • the present invention relates to a crystalline form of an IAP antagonist and a process for the preparation thereof, and to the use of the crystalline form for the preparation of a medicament for treating a disease caused by an IAP disorder.
  • Apoptosis refers to the orderly death of cells that are controlled by genes to maintain homeostasis. It plays an important role in the evolution of organisms, the stability of the internal environment, and the development of multiple systems. Apoptosis signaling is divided into intrinsic (mediated by death receptor-ligand interaction) and extrinsic (mediated by cellular stress and mitochondrial permeability). Both pathways eventually converge on caspase. Once the apoptotic signal is activated, caspase cleaves a large number of substrates associated with cell death, causing cell death.
  • IAPs Inhibitors of apoptosis proteins
  • NIP neuronal alapoptosis inhibitor protein
  • apoptosis inhibitory proteins cellular IAP, c-
  • IAP1 and c-IAP2 X-linked inhibitor of apoptosis
  • XIAP X-linked inhibitor of apoptosis
  • Survivin Survivin
  • melanoma-IAP ML-IAP/Livin
  • testicular specific inhibitor of apoptosis hILP
  • the baculovirus IAP repeat of ubiquitin ligase, etc. has found 8 human IAPs family protein members to date.
  • cIAP1, cIAP2, and XIAP were well studied. They all have three structural functional regions, called BIR1, BIR2 and BIR3, which play a role in blocking apoptosis mainly by inhibiting the activities of enzymes such as Caspase 3, 7, and 9.
  • Smac termed second mitochondria-derived activator of caspases
  • Smac is a protein that exists in mitochondria and regulates apoptosis. Its pro-apoptotic effect is through reversal of inhibitors of apoptosis (IAPs), especially X-linked inhibitor of apoptosis (XIAP).
  • IAPs inhibitors of apoptosis
  • XIAP X-linked inhibitor of apoptosis
  • the Smac protein directly binds to various IAP proteins through the N-terminal tetrapeptide, blocks the inhibition of apoptosis of the IAP protein in the cell, and can effectively promote apoptosis.
  • IAP antagonists also known as Smac mimetics
  • Birinapant, LCL-161, AT-406, APG-1387, etc. have entered the clinical phase I or phase II study.
  • new IAP antagonists with better activity, selectivity and safety are still in great demand.
  • IAP antagonists in clinical practice mainly include two types of monovalent and bivalent.
  • Bivalent IAP antagonists have higher binding and inhibit IAP activity compared to monovalent IAP antagonists.
  • Birinapant a bivalent IAP antagonist, is currently undergoing several clinical studies, mainly for clinical trials of various malignancies. And in preclinical animal models, Birinapant can selectively apoptate hepatocytes infected with hepatitis B virus, which may achieve the purpose of curing hepatitis B.
  • the present invention provides a crystalline form of Compound A of formula (I), characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 theta angles: 10.275 ⁇ 0.2 °, 11.619 ⁇ 0.2 °, 17.502 ⁇ 0.2 °, 20.264 ⁇ 0.2 ° , 21.844 ⁇ 0.2 °, 22.496 ⁇ 0.2 °.
  • the A crystalline form has an X-ray powder diffraction pattern having characteristic diffraction peaks at the following 2 theta angles: 7.575 ⁇ 0.2°, 9.603 ⁇ 0.2°, 10.275 ⁇ 0.2°, 11.619 ⁇ 0.2°, 15.112. ⁇ 0.2°, 17.502 ⁇ 0.2°, 18.015 ⁇ 0.2°, 20.264 ⁇ 0.2°, 21.844 ⁇ 0.2°, 22.496 ⁇ 0.2°.
  • the A crystalline form has an X-ray powder diffraction pattern having characteristic diffraction peaks at the following 2 theta angles: 7.575 ⁇ 0.2°, 9.603 ⁇ 0.2°, 10.275 ⁇ 0.2°, 11.619 ⁇ 0.2°, 13.537. ⁇ 0.2°, 14.501 ⁇ 0.2°, 15.112 ⁇ 0.2°, 16.334 ⁇ 0.2°, 17.502 ⁇ 0.2°, 18.015 ⁇ 0.2°, 18.726 ⁇ 0.2°, 20.264 ⁇ 0.2°, 21.844 ⁇ 0.2°, 22.496 ⁇ 0.2°.
  • the map analysis data of the above A crystal form is shown in Table 1.
  • the above A crystalline form has an XRPD pattern as shown in FIG.
  • the above-mentioned Form A crystal has a thermogravimetric analysis curve with a weight loss of 0.2689% at 140.11 ° C ⁇ 3 ° C and a weight loss of 2.274% at 236.31 ° C ⁇ 3 ° C.
  • the A crystal form has a TGA pattern as shown in FIG. 2.
  • the weight is reduced by 0.2689%, and when heated to 236.31%, The weight is again reduced by 2.005%, and a large weight loss begins to occur after 160 °C. .
  • the A crystalline form has a differential scanning calorimetry curve having an endothermic peak at 231.66 °C ⁇ 3 °C.
  • the A crystal form has a DSC pattern as shown in FIG. 3, and the compound A crystal form of the formula (I) has an endothermic peak at a larger initial temperature of 231.66.
  • the endothermic peak at the larger portion of 231.66 may be a melting degradation peak, and the compound A of the formula (I) does not contain crystal water or a crystallization solvent, and has good thermal stability.
  • the invention also provides a preparation method of the crystal form of the compound A of the formula (I), comprising:
  • the solvent is selected from the group consisting of water, ethanol, acetonitrile, ethyl acetate, tetrahydrofuran and tert-butyl methyl ether, or a mixed solvent selected from the group consisting of acetone and water.
  • the volume ratio of acetone to water is 1:2.
  • the present invention also provides the use of the above crystalline form A or the crystalline form prepared according to the above-described method for the preparation of a medicament for treating diseases caused by IAP disorders.
  • the disease caused by the IAP disorder is an infection or a tumor.
  • the infection is a hepatitis B virus infection.
  • the compound of the present invention has a novel parent-nuclear structure of benzimidazole-linked anthracene, and the asymmetry of the branching makes the compound have a high
  • the inhibitory activity of cIAP2 and the moderate inhibitory activity of XIAP showed higher selectivity for cIAP2/XIAP, thereby increasing the in vivo efficacy and safety of the compound.
  • the crystal form of the compound of the invention is easy to prepare, has good stability under high temperature and high humidity conditions, and is not easy to undergo crystal transformation, and has a good prospect of medicine preparation.
  • intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, combinations thereof with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, embodiments of the invention.
  • the present invention uses the following abbreviations:
  • Pd/C Pd/C catalyst 10% palladium mass fraction HATU 2-(7-azobenzotriazole)-N,N,N',N'-tetramethyluron hexafluorophosphate DIAD Diisopropyl azodicarboxylate NMM N-methylmorpholine DCM Dichloromethane THF Tetrahydrofuran Boc Tert-butoxycarbonyl, an amine protecting group Cbz Benzyloxycarbonyl, an amine protecting group DMF N,N-dimethylformamide LiBH 4 Lithium borohydride TFA Trifluoroacetate DMSO Dimethyl sulfoxide Eq Equivalent, equivalent PMBCl P-methoxybenzyl chloride
  • Test method Approximately 10-20 mg samples were used for XRPD detection.
  • DSC Differential Scanning Calorimeter
  • Test method The sample ( ⁇ 1 mg) was placed in a DSC aluminum pan for testing, and the sample was heated from 25 ° C to 300 ° C at a heating rate of 10 ° C / min under 50 mL / min N 2 .
  • TGA Thermal Gravimetric Analyzer
  • Test method Take the sample (2 ⁇ 5mg) in a TGA platinum pot for testing, at 25mL / min N2, at 10 ° C / min
  • Figure 1 is an XRPD spectrum of the crystalline form of Compound A of formula (I).
  • Figure 2 is a TGA spectrum of the crystalline form of Compound A of formula (I).
  • Figure 3 is a DSC chart of the crystalline form of Compound A of formula (I).
  • 1,4-Difluoronitrobenzene (45.70 g, 287.26 mmol) and potassium carbonate (35.8 g, 604.76 mmol) were added to a 1 L acetonitrile solution of Intermediate 1D (66.00 g, crude) at 10 to 20 °C. ).
  • the reaction system was reacted at 80 ° C for 2 hours, cooled to 20 ° C, filtered, and the filtrate was concentrated to give a crude product.
  • the crude product was dissolved in 500 ml of methyl tert-butyl ether and stirred for 16 hours to precipitate a solid which was filtered and dried to give Intermediate 1E (68.00 g, 190.29 mmol).
  • Oxalyl chloride (87.25 g, 687.36 mmol) and DMF (0.25 g, 3.44 mmol) were added to 2A (100.00 g, 374.39 mmol) of toluene (450.00 mL) at 5 to 10 °C. After the reaction mixture was stirred at 25 ° C for 2 hours, it was concentrated under reduced pressure at 50 ° C. to dissolve about 300 ml of solvent, followed by addition of 200 ml of toluene, and then concentrated under reduced pressure at 50 ° C to obtain 2B (98.00 g, 329.60 mmol).
  • Cesium carbonate (66.81 g, 205.06 mmol) was added to a solution of intermediate 2D (52.00 g, 136.71 mmol) in DMF (200.00 mL) at 0 to 5 <RTIgt;</RTI> A solution of gram, 143.54 mmol, 19.55 mL of DMF (50.00 mL).
  • Phosphorus oxychloride (104.60 g, 682.20 mmol, 63.39 ml) was added dropwise to a solution of DMF (49.86 g, 682.20 mmol, 52.48 ml) in dichloromethane (100.00 mL). The mixture was stirred at 5 to 10 °C for 1 hour, and then a solution of Intermediate 2E (69.00 g, 136.44 mmol) in dichloromethane (300.00 ml) was added dropwise to the mixture mixture at 0 to 5 ° C for half an hour. The mixture was heated to 35 to 40 ° C for 12 hours.
  • reaction solution was poured into a solution of sodium carbonate (300 g) (1 liter), then dichloromethane ( ⁇ 600 ml), and after stirring for 10 minutes, the organic layer was separated, and the organic layer was concentrated under reduced pressure at 45 ° C to give crude product. Dissolve in ethyl acetate (500 ml), EtOAc (3 mL), EtOAc EtOAc (EtOAc) .
  • Trifluoroacetic acid (260.00 ml) was added to a mixture of intermediate 2F (72.00 g, 131.57 mmol) and anisole (71.14 g, 657.85 mmol, 71.14 ml) at 0 to 5 ° C. Stir in Celsius for 12 hours. After concentration at 45 ° C under reduced pressure, pour into a sodium hydroxide solution (400 ml, adjust the pH to 8-9), extract twice with dichloromethane, 400 ml each time, and combine the organic phases with water. One time (500 ml), twice with saturated brine (500 ml ⁇ 2), dried over anhydrous sodium sulfate, and concentrated under reduced pressure at 45 ° C to give intermediate 2G (88.00 g, crude).
  • NMM (10.60 g, 104.80 mmol, 11.52 ml) and HATU (23.91 g, 62.88 mmol) were added to a solution of BOC-L-butyric acid (12.78 g, 2.88 mmol) in DMF (300.00 mL) at 25 °C. After the mixture was stirred at 25 ° C for half an hour, Intermediate 3D (37.00 g, 52.40 mmol) was added to the above reaction solution at 25 ° C. The mixture was stirred at 25 ° C for 16 hours, poured into 600 ml of water to precipitate a solid, solid filtered, and washed once with water (100 ml).
  • Test compound was added to DMSO to form a 5 ⁇ M stock solution, and 10 points were serially diluted in a 3-fold gradient. The starting concentration of the test compound was 5 ⁇ M.
  • the compounds of formula (I) of the present invention exhibit higher cIAP2-BIR3 protein in vitro receptor binding activity than Birinapant, comparable cIAP1-BIR3 and XIAP-BIR3 binding activities.
  • test compound is added to the corresponding DMSO to form a 10 mM mother liquor;
  • the first plate is used to detect the activity of the compound; the second plate is used to detect the toxicity of the compound to the cells; the third plate is used for the first plate to change the liquid on the second day:
  • the inducer tumor necrosis factor- ⁇ (TNF- ⁇ ) was mixed with a medium containing 0.1% fetal bovine serum (FBS), added to a third plate and mixed, and the mixture was transferred to the first block of the supernatant. In the board.
  • the HeLa cell density of the NF- ⁇ B-regulated luciferase reporter gene was adjusted to 2.0 ⁇ 10 5 cells/ml with a medium.
  • the cells were added to two Greeper 96-well black cell culture plates containing the compound, 100 ul (2.0 ⁇ 10 4 cells/well) per well, one plate for detecting compound activity; the other plate for detecting compound cells. toxicity.
  • the plated cell plates were incubated for 24 hours in a 37 ° C, 5% CO 2 cell incubator.
  • TNF- ⁇ 100 ug/ml was diluted to 20 ng/ml with a 0.1% FBS culture solution, and 100 ul/well was added to the third compound plate.
  • the first compound activity detection plate was tested for bioluminescence in each well using a multi-function microplate reader (brand model: PerkinElmer-Envision) according to the luciferase assay kit Bright-Glo (brand: Promega) instructions. (Luminescence) signal.
  • the second compound toxicity test plate was tested for the Luminescence signal of each well by a multi-function microplate reader (brand model: PerkinElmer-Envision) according to the cell viability assay kit ATPlite1Step (brand: PerkinElmer).
  • the compounds of formula (I) of the present invention exhibit TNF- ⁇ -induced NF- ⁇ B reporter in vitro cell viability comparable to the control IAP antagonist Birinapant.
  • a sample of the compound A of the formula (I) obtained in Example 20 (2 parts each for 5 g of the relevant substance analysis, 1 part for the crystal form stability test) was placed at the bottom of the glass sample vial and spread into a thin layer. .
  • the samples placed under high temperature and high humidity conditions are sealed with aluminum foil paper, and some small holes are placed on the aluminum foil paper to ensure that the sample can be in full contact with the ambient air; the sample placed under the light condition is open at room temperature and the sample is placed.
  • the light-proof control sample open, the entire sample bottle is wrapped with aluminum foil to protect from light
  • Samples were analyzed at each time point, and the test results were compared with the initial test results of 0 days. The items including appearance, crystal form, content and impurities were examined. The test results are shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种IAP拮抗剂的晶型及其制备方法,还包括所述晶型在制备治疗因IAP紊乱所致疾病药物中的应用。

Description

一种IAP拮抗剂的晶型及其制备方法
本申请主张如下优先权:
CN201711029534.7,申请日2017年10月27日。
技术领域
本发明涉及一种IAP拮抗剂的晶型及其制备方法,还包括所述晶型在制备治疗因IAP紊乱所致疾病药物中的应用。
背景技术
细胞凋亡(apoptosis)指为维持内环境稳定,由基因控制的细胞自主的有序的死亡。它在生物体的进化、内环境的稳定以及多个系统的发育中起着重要的作用。细胞凋亡信号传导分为内在的(由死亡受体-配体相互作用所介导)和外在的(由细胞应激和线粒体通透所介导)。两种途径最终汇合于半胱氨酸天冬氨酸酶(Caspase)。一旦凋亡信号被激活,半胱氨酸天冬氨酸酶就会裂解大量与细胞死亡相关的底物,造成细胞死亡。
凋亡抑制因子凋亡抑制蛋白(inhibitor of apoptosis proteins,IAPs)是一类高度保守的内源性抗细胞凋亡因子家族,主要通过抑制Caspase活性和参与调解核因子NF-κB的作用而抑制细胞凋亡。Roy等于1995年首次从脊髓性肌萎缩症的研究中发现IAP蛋白是神经元性凋亡抑制蛋白(neuron alapoptosis inhibitor protein,NAIP),随后人们陆续发现了细胞凋亡抑制蛋白(cellular IAP、c-IAP1和c-IAP2)、X染色体连锁凋亡抑制因子(XIAP)、Survivin、黑色素瘤凋亡抑制蛋白(melanoma-IAP,ML-IAP/Livin)、睾丸特异凋亡抑制蛋白(hILP)、以及含泛素连接酶的杆状病毒IAP重复序列等,至今已发现8个人类IAPs家族蛋白成员。在8个IAP家族中,cIAP1、cIAP2、XIAP被研究的比较充分。它们都具有三个结构功能区域,分别称为BIR1、BIR2和BIR3,这些区域主要通过抑制Caspase3、7、9等酶的活性而发挥阻断凋亡的作用。
Smac,全称为second mitochondria-derived activator of caspases,是存在于线粒体并调节细胞凋亡的蛋白质,其促凋亡作用是通过逆转凋亡抑制蛋白(IAPs)尤其是X连锁凋亡抑制蛋白(XIAP)的作用实现的。当细胞受到凋亡刺激时,线粒体释放Smac蛋白到细胞质中,后者与IAPs结合,使其丧失抑制半胱氨酸天冬氨酸蛋白酶(caspase)活性的作用,从而促进细胞凋亡。Smac蛋白通过N端四肽直接与多种IAP蛋白相结合,阻断细胞内IAP蛋白的细胞凋亡抑制作用,能够有效的促进细胞凋亡。大量的文献已经报道多种IAP拮抗剂,也即Smac模拟物,在体内和体外模型中具有抑制癌细胞增殖,促进感染的细胞发生凋亡。其中Birinapant,LCL-161,AT-406,APG-1387等已进入临床一期或二期研究。但具有更好的活性,选择性和安全性的新的IAP拮抗剂仍然有很大需求。
目前在临床上的IAP拮抗剂主要有单价和双价两大类。相比于单价IAP拮抗剂,双价IAP拮抗剂具有更高的结合并抑制IAP的活性。其中双价IAP拮抗剂Birinapant目前正在进行多项临床研究,主要用于各种恶性肿瘤的临床实验。并且在临床前的动物模型中显示,Birinapant可以选择性的凋亡被乙肝病毒感染的肝细胞,从而有可能达到治愈乙肝的目的。
Figure PCTCN2018112089-appb-000001
参考文献:
Nat.Rev.Drug Discov.,2012,11,p109-124;
Pharmacology&Therapeutics,2014,144,p82–95;
J.Med.Chem.,2014,57,p3666-3677;
Proc.Natl.Sci.Acad.,USA,2015,112,p5797–5802。
发明内容
本发明提供式(I)化合物A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.275±0.2°、11.619±0.2°、17.502±0.2°、20.264±0.2°、21.844±0.2°、22.496±0.2°。
Figure PCTCN2018112089-appb-000002
在本发明的一些方案中,上述A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.575±0.2°、9.603±0.2°、10.275±0.2°、11.619±0.2°、15.112±0.2°、17.502±0.2°、18.015±0.2°、20.264±0.2°、21.844±0.2°、22.496±0.2°。
在本发明的一些方案中,上述A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.575±0.2°、9.603±0.2°、10.275±0.2°、11.619±0.2°、13.537±0.2°、14.501±0.2°、15.112±0.2°、16.334±0.2°、17.502±0.2°、18.015±0.2°、18.726±0.2°、20.264±0.2°、21.844±0.2°、22.496±0.2°。
本发明的一些方案中,上述A晶型的图谱解析数据如表1所示。
表1
Figure PCTCN2018112089-appb-000003
在本发明的一些方案中,上述A晶型,其XRPD图谱如图1所示。
在本发明的一些方案中,上述A晶型,其热重分析曲线在140.11℃±3℃时失重达0.2689%,在236.31℃±3℃时失重达2.274%。
在本发明的一些方案中,上述A晶型,其TGA图谱如图2所示,式(I)化合物A晶型加热至140.11如表时,重量减少了0.2689%,加热至236.31%表时,重量又减少了2.005%,在160℃以后开始出现较大的重量损失。。
在本发明的一些方案中,上述A晶型,其差示扫描量热曲线在231.46℃±3℃处具有吸热峰。
在本发明的一些方案中,上述A晶型,其DSC图谱如图3所示,式(I)化合物A晶型其在初始温度231.46较大处有1个吸热峰。结合TGA分析,231.46较大处的吸热峰可能为熔融降解峰,式(I)化合物A晶型不含结晶水或结晶溶剂,热稳定性较好。
本发明还提供一种式(I)化合物A晶型的制备方法,包括:
(a)式(I)化合物加入溶剂中;
(b)15~45℃避光搅拌;
(c)离心,过滤,滤饼置于20~40℃下干燥;
其中,所述溶剂选自水、乙醇、乙腈、乙酸乙酯、四氢呋喃和叔丁基甲醚,或者选自丙酮与水的混合溶剂。
在本发明的一些方案中,上述丙酮与水的体积比为1:2。
本发明还提供上述的A晶型或根据上所述的方法制备得到的晶型在制备治疗因IAP紊乱所致疾病药物中的应用。
在本发明的一些方案中,上述因IAP紊乱所致疾病为感染、肿瘤。
在本发明的一些方案中,上述感染为乙型肝炎病毒感染。
技术效果
本发明的化合物具有新颖的苯并咪唑联吲哚的母核结构,支链的不对称性,使化合物具有高的
cIAP2的抑制活性和中等的XIAP的抑制活性,显示出较高cIAP2/XIAP的选择性,从而提高了化合物的体内药效和安全性。
本发明化合物的晶型容易制备,在高温、高湿条件下具有较好的稳定性,且不易发生转晶,具备良好的成药前景。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明采用下述缩略词:
Pd/C Pd/C催化剂,负载钯质量分数10%
HATU 2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯
DIAD 偶氮二甲酸二异丙酯
NMM N-甲基吗啉
DCM 二氯甲烷
THF 四氢呋喃
Boc 叔丁氧羰基,是一种胺保护基团
Cbz 苄氧羰基,是一种胺保护基团
DMF N,N-二甲基甲酰胺
LiBH 4 硼氢化锂
TFA 三氟乙酸
DMSO 二甲亚砜
eq 当量、等量
PMBCl 对甲氧基氯苄
PE 石油醚
PMB 对甲氧基苄基
EtOAc 乙酸乙酯
EtOH 乙醇
MeOH 甲醇
HOAc 乙酸
NaCNBH 3 氰基硼氢化钠
Boc 2O 二叔丁基二碳酸酯
DIPEA 二异丙基乙基胺
NaBH4 硼氢化钠
psi 压力单位,磅/平方英寸
化合物经手工或者
Figure PCTCN2018112089-appb-000004
软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-raypowderdiffractometer,XRPD)方法
仪器型号:布鲁克D8advanceX-射线衍射仪
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
光管:Cu,kα,
Figure PCTCN2018112089-appb-000005
光管电压:40kV,光管电流:40mA
发散狭缝:0.60mm
探测器狭缝:10.50mm
防散射狭缝:7.10mm
扫描范围:4-40deg
步径:0.02deg
步长:0.12秒
样品盘转速:15rpm
本发明差热分析(DifferentialScanningCalorimeter,DSC)方法
仪器型号:TAQ2000差示扫描量热仪
测试方法:取样品(~1mg)置于DSC铝锅内进行测试,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从25℃到300℃。
本发明热重分析(ThermalGravimetricAnalyzer,TGA)方法
仪器型号:TAQ5000IR热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在25mL/minN2条件下,以10℃/min
的升温速率,加热样品从室温到到350℃。
附图说明
图1为式(I)化合物A晶型的XRPD谱图。
图2为式(I)化合物A晶型的TGA谱图。
图3为式(I)化合物A晶型的DSC谱图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1 中间体1B的制备
Figure PCTCN2018112089-appb-000006
在0到5摄氏度下往原料1A(80.00克,323.55毫摩尔)的四氢呋喃(600毫升)溶液中分批加入NaBH 4(24.01克,634.76毫摩尔)。然后再加入三氟化硼乙醚(90.09克,634.76毫摩尔,78.34毫升)。反应液在20摄氏度下搅拌16个小时后,加入EtOAc(300毫升)稀释,再加入HCl水溶液(0.5摩尔/升,400毫升)淬灭。有机相分层后用食盐水洗涤(200毫升*3),干燥后浓缩得到中间体1B(84.00克,383.12毫摩尔)。
1HNMR(CDCl 3,400MHz):δ5.20-4.98(m,1H),4.18(br.s.,1H),4.14-4.04(m,1H),3.83-3.74(m,1H),3.69-3.60(m,1H),3.59-3.48(m,2H),2.28-2.07(m,1H),2.02-1.87(m,1H),1.41(s,9H)。
实施例2 中间体1C的制备
Figure PCTCN2018112089-appb-000007
20摄氏度下下往中间体1B(84.00克,383.123毫摩尔)的450毫升甲苯溶液中加入邻苯二甲酰亚胺(62.01克,421.43毫摩尔)和三苯基膦(110.54g克,421.43毫摩尔)。然后在0~10摄氏度下滴加DIAD(85.22克,421.43毫摩尔)。反应液在10~20摄氏度下搅拌16个小时后,过滤。滤液用水洗涤,浓缩得到中间体1C(190.00克,粗品)。MS(ESI)m/z:293.2[M-56]。
实施例3 中间体1D的制备
Figure PCTCN2018112089-appb-000008
往中间体1C(133.00克,381.78毫摩尔,粗品)的1升乙醇溶液中加入水合肼(48.75克,954.44毫摩尔,85%)。反应体系在60摄氏度下反应2个小时后冷却,加入1升的二氯甲烷稀释,过滤,滤饼用二氯甲烷洗涤。合并的有机相减压浓缩得到残余物。残余物用200毫升二氯甲烷稀释,过滤,滤液浓 缩得到中间体1D(112.00克,粗品)。
1HNMR(CDCl 3,400MHz):δ5.27-5.08(m,1H),3.95-3.77(m,1H),3.59(d,J=10.6Hz,1H),2.98(br.s.,1H),2.73(dd,J=7.8,12.2Hz,1H),2.55-2.41(m,2H),2.19(br.s.,1H),1.45(s,9H)。
实施例4 中间体1E的制备
Figure PCTCN2018112089-appb-000009
在10到20摄氏度下往中间体1D(66.00克,粗品)的1升乙腈溶液中加入1,4-二氟硝基苯(45.70克,287.26毫摩尔)和碳酸钾(35.8克,604.76毫摩尔)。反应体系在80摄氏度下反应2个小时后,冷却至20摄氏度后过滤,滤液浓缩得到粗产品。将粗产品溶于500毫升甲基叔丁基醚中,搅拌16个小时,析出固体,过滤,滤饼干燥得到中间体1E(68.00克,190.29毫摩尔)。
1HNMR(CDCl 3,400MHz):δ8.35-8.11(m,1H),7.89(d,J=9.0Hz,1H),7.35-7.16(m,2H),5.40-5.17(m,1H),4.33-4.16(m,1H),3.88-3.52(m,3H),3.45-3.30(m,1H),2.37-2.06(m,2H),1.59-1.48(m,9H)。MS(ESI)m/z:380.1[M+Na]。
实施例5 中间体1F的制备
Figure PCTCN2018112089-appb-000010
在氮气氛围下往中间体1E(20.00克,55.97毫摩尔)的200毫升甲醇和1升的乙酸乙酯混合溶液中加入Pd/C(2g)。体系用氢气置换三次,在25到30摄氏度,压力为40psi的氢气氛围下搅拌4个小时。反应液过滤,滤液减压浓缩得到1F(18.00克,53.33毫摩尔)。
1HNMR(CDCl 3,400MHz):δ6.48(br.s.,2H),6.41-6.30(m,2H),5.27-5.05(m,1H),4.35-4.21(m,1H),3.72-3.27(m,5H),3.10(dd,J=6.5,12.0Hz,1H),2.31-2.01(m,2H),1.41(br.s.,9H)。MS(ESI)m/z:328.1[M+H +]。
实施例6 中间体2B的制备
Figure PCTCN2018112089-appb-000011
将草酰氯(87.25克,687.36毫摩尔)和DMF(0.25克,3.44毫摩尔)于5至10摄氏度下加入2A(100.00克,374.39毫摩尔)的甲苯(450.00毫升)中。反应液25摄氏度搅拌2小时后,然后于50摄氏度减压浓缩旋掉 约300毫升的溶剂,接着加入200毫升的甲苯,继续于50摄氏度减压浓缩得2B(98.00克,329.60毫摩尔)。
实施例7 中间体2C的制备
Figure PCTCN2018112089-appb-000012
氮气保护下,将乙基溴化镁(3摩尔/升,175.79毫升)经25分钟滴入冷却至负5至5摄氏度的6-氟-1H-吲哚(71.27克,527.36毫摩尔)的氯苯(580.00毫升)和甲苯(380.00毫升)的混合液中。反应液在负15至0摄氏度搅拌95分钟后,接着将中间体2B(98.00克,329.60毫摩尔)的甲苯溶液(100.00毫升)经25分钟滴入冷却至负15至负10摄氏度的上述反应液中。反应液在负15至负10摄氏度搅拌40分钟后,用乙酸(90毫升),水(14毫升)和甲醇(633毫升)的混合液于0至5摄氏度淬灭。然后混合液于45至50摄氏度减压浓缩除去有机溶剂后,用乙酸乙酯(1000毫升)和水(1000毫升)搅拌稀释,分离出的有机层在50摄氏度减压浓缩。所得粗品依次用500毫升和200毫升的甲基叔丁基醚打浆两次析出黄色固体,过滤,甲基叔丁基醚(200毫升)洗涤,45摄氏度真空干燥得100克的粗产品,粗产品用400毫升的甲醇50摄氏度重结晶一次,冷却,过滤,甲醇(20毫升)洗涤,45摄氏度真空干燥得中间体2C(90.80克,230.07毫摩尔)。
1HNMR(400MHz,DMSO-d 6)δ12.09(brs,1H),8.40(dd,J=2.9,8.8Hz,1H),8.26-8.09(m,1H),7.44-7.36(m,2H),7.35-7.03(m,5H),5.42-5.20(m,2H),5.16-4.92(m,2H),3.96-3.59(m,2H),2.96-2.62(m,1H),2.41-2.16(m,1H)。
实施例8 中间体2D的制备
Figure PCTCN2018112089-appb-000013
将硼氢化锂的四氢呋喃溶液(2摩尔/升,287.58毫升)于0至5摄氏度加入中间体2C(90.80克,230.07毫摩尔)的四氢呋喃(900.00毫升)溶液中,0至5摄氏度搅拌10分钟后,加入甲烷磺酸(39.80克,414.12毫摩尔,29.48毫升)。反应液25摄氏度搅拌14小时。反应液0摄氏度下用冰(1000克)淬灭,溶剂45摄氏度减压浓缩后,水层用乙酸乙酯萃取两次,每次600毫升,有机相在45摄氏度减压浓缩后,所得粗品加入乙醇和盐酸(1摩尔/升)的混合液(1:1,480毫升,pH2~3),所得混合物在50摄氏度搅拌,析出的固体过滤,45摄氏度真空干燥得到中间体2D(52.30克,137.50毫摩尔)。
1HNMR(400MHz,DMSO-d 6)δ10.94(brd,J=9.0Hz,1H),7.54-7.30(m,5H),7.27-6.98(m,3H),6.95-6.48(m,1H),5.42-5.22(m,1H),5.21-5.12(m,2H),4.20-4.03(m,1H),3.77-3.59(m,2H),3.32-3.10(m,1H),2.78-2.65(m,1H),2.15-1.95(m,2H)。
实施例9 中间体2E的制备
Figure PCTCN2018112089-appb-000014
将碳酸铯(66.81克,205.06毫摩尔)于0至5摄氏度下加入中间体2D(52.00克,136.71毫摩尔)的DMF(200.00毫升)溶液中,接着于0至5摄氏度下,加入PMBCl(22.48克,143.54毫摩尔,19.55毫升)的DMF(50.00毫升)溶液。反应液在25摄氏度搅拌16小时后,于5至10摄氏度用水(400毫升)稀释,用甲基叔丁基醚萃取两次,每次300毫升,合并有机相用饱和食盐水洗涤4次(每次400毫升)后于45摄氏度减压浓缩得中间体2E(69.00克,136.44毫摩尔)。
实施例10 中间体2F的制备
Figure PCTCN2018112089-appb-000015
0至5摄氏度氮气保护下,将三氯氧磷(104.60克,682.20毫摩尔,63.39毫升)滴入DMF(49.86克,682.20毫摩尔,52.48毫升)的二氯甲烷(100.00毫升)溶液中。混合液在5至10度搅拌1小时,接着将中间体2E(69.00克,136.44毫摩尔)的二氯甲烷(300.00毫升)溶液于0至5摄氏度下,经半小时滴入上述混合液中。混合液加热至35到40摄氏度搅拌12小时。反应液倒入碳酸钠(300克)水溶液(1升)中,接着加入二氯甲烷(约600毫升),搅拌10分钟后,分离出有机层,有机层于45摄氏度减压浓缩,所得粗产品溶于乙酸乙酯中(500毫升),饱和食盐水洗三次除去DMF,每次300毫升,有机层用无水硫酸钠干燥后于45摄氏度减压浓缩得到中间体2F(72.00克,131.57毫摩尔)。
1HNMR(400MHz,DMSO-d 6)δ10.17-9.80(m,1H),7.54-7.28(m,7H),7.13-7.00(m,2H),6.91-6.71(m,3H),5.79-5.57(m,2H),5.50-5.27(m,1H),5.19-4.90(m,2H),4.26-4.11(m,1H),3.83-3.53(m,5H),3.30-3.18(m,1H),2.14-1.83(m,2H)。
实施例11 中间体2G的制备
Figure PCTCN2018112089-appb-000016
0至5摄氏度下,将三氟乙酸(260.00毫升)加入中间体2F(72.00克,131.57毫摩尔)和苯甲醚(71.14克,657.85毫摩尔,71.14毫升)的混合液中,混合液在25摄氏度搅拌12小时。45摄氏度减压浓缩后,倒入0至5摄氏度的氢氧化钠溶液中(400毫升,调pH至8~9),用二氯甲烷萃取两次,每次400毫升,合并的有机 相用水洗一次(500毫升),饱和食盐水洗两次(500毫升×2),无水硫酸钠干燥,45摄氏度减压浓缩得中间体2G(88.00克,粗品)。
实施例12 中间体3A的制备
Figure PCTCN2018112089-appb-000017
将中间体1F(24.13克,73.72毫摩尔)于0到5摄氏度加入到2G(66.00克,82.83毫摩尔)的DMF(300.00毫升)溶液中,接着在0到5摄氏度下加入过硫酸氢钾复合盐(33.10克,53.84毫摩尔),混合液于25摄氏度下搅拌14小时。反应液在0到5摄氏度下用饱和的亚硫酸钠(500毫升)溶液淬灭,甲基叔丁基醚萃取两次,每次500毫升,所得有机层用饱和食盐水洗涤三次,每次300毫升,45摄氏度减压浓缩得中间体3A(55.56克,67.15毫摩尔,粗品)。
实施例13 中间体3B的制备
Figure PCTCN2018112089-appb-000018
25摄氏度下,将氯化氢的乙酸乙酯溶液(4摩尔/升,131.94毫升)加入到中间体3A(55.00克,66.47毫摩尔)的乙酸乙酯(120.00毫升)溶液中,混合液在25摄氏度搅拌16小时析出固体。过滤,滤饼用乙酸乙酯(300毫升)洗涤,所得固体在45摄氏度减压干燥得中间体3B(41.00克,58.75毫摩尔,盐酸盐)。
1HNMR(400MHz,DMSO-d 6)δ12.07(brd,J=14.7Hz,1H),10.60-10.24(m,1H),9.96-9.55(m,1H),8.21-7.99(m,1H),8.21-7.99(m,1H),7.64(brdd,J=8.5,19.1Hz,1H),7.48-7.22(m,7H),7.14-6.64(m,1H),5.29-5.09(m,2H),5.08-4.86(m,3H),4.84-4.52(m,1H),4.23(brd,J=6.1Hz,1H),4.04-3.88(m,1H),3.73-3.17(m,5H),2.91-2.77(m,1H),2.27-1.89(m,1H),1.83-1.65(m,1H),1.56-1.23(m,1H)。
实施例14 中间体3C的制备
Figure PCTCN2018112089-appb-000019
25摄氏度下,将HATU(22.88克,60.18毫摩尔)和NMM(15.22克,150.45毫摩尔,16.54毫升)加入BOC-L-缬氨酸(14.16克,65.19毫摩尔)的DMF(200.00毫升)溶液中,混合液在25摄氏度搅拌半小时后,接着将中间体3B(35.00克,50.15毫摩尔,盐酸盐)于25摄氏度下加入上述反应液中。混合液25摄氏度搅拌4小时后倒入400毫升的水中,析出固体,过滤,滤饼用水洗一次(300毫升),然后将滤饼溶于300毫升的乙酸乙酯中,残留的水相分掉,乙酸乙酯层用无水硫酸钠干燥,45摄氏度减压浓缩得中间体3C(40.00克,47.46毫摩尔)。LCMS(ESI)m/z:805.6(M+1)。
实施例15 中间体3D的制备
Figure PCTCN2018112089-appb-000020
氮气保护下,将Pd/C(4.00克)加入中间体3C(40.00克,47.46毫摩尔)的甲醇(500毫升)溶液中,混悬液真空下脱气后,用氢气置换3次,于25摄氏度氢气气氛(25pis)下搅拌16小时。反应液通过硅藻土过滤,200毫升的甲醇洗涤一次,滤液45摄氏度减压浓缩得中间体3D(37.00克,粗品)。LCMS(ESI)m/z:671.6(M+1)。
实施例16 中间体3E的制备
Figure PCTCN2018112089-appb-000021
25摄氏度下,将NMM(10.60克,104.80毫摩尔,11.52毫升)和HATU(23.91克,62.88毫摩尔)加入BOC-L-丁氨酸(12.78克,2.88毫摩尔)的DMF(300.00毫升)溶液中,混合液25摄氏度搅拌半小时后,接着将中间体3D(37.00克,52.40毫摩尔)于25摄氏度下加入上述反应液中。混合液25摄氏度搅拌16小时后倒入600毫升的水中析出固体,固体过滤,水(100毫升)洗一次,滤饼溶于300毫升的乙酸乙酯后用无水硫酸钠干燥,45摄氏度减压浓缩得中间体3E(42.00克,46.12毫摩尔)。LCMS(ESI)m/z:856.6(M+1)。
实施例17 中间体3F的制备
Figure PCTCN2018112089-appb-000022
25摄氏度下,将三氟乙酸(308.00克,2.70摩尔,200.00毫升)加入中间体3E(42.00克,46.12毫摩尔)的二氯甲烷(200.00毫升)溶液中,反应液25摄氏度搅拌1小时。溶剂45摄氏度减压旋干,用饱和碳酸钠溶液调pH等于10,用乙酸乙酯萃取六次,每次300毫升,合并的有机相用饱和食盐水洗涤两次,每次500毫升,无水硫酸钠干燥,45摄氏度减压浓缩得中间体3F(43.00克,粗品)。LCMS(ESI)m/z:656.6(M+1)。
实施例18 中间体3G的制备
Figure PCTCN2018112089-appb-000023
15摄氏度下,将NMM(11.14克,110.10毫摩尔,12.11毫升)和HATU(41.86克,110.10毫摩尔)加入BOC-N-甲基-L-丙氨酸(22.38克,110.10毫摩尔)的DMF(300.00毫升)溶液中,混合液15摄氏度搅拌半小时后,接着将中间体3F(38.00克,55.05毫摩尔)于15摄氏度下加入上述反应液中。混合液15摄氏度搅拌12小时后倒入600毫升的水中,析出固体,固体过滤,水(200毫升)洗一次,于45摄氏度真空干燥后,所得固体用甲基叔丁基醚/乙酸乙酯(4/3,350毫升)重结晶得白色固体化合物3G(26.00克,25.18毫摩尔)。
1HNMR(400MHz,DMSO-d 6)δ11.79(s,1H),8.00(td,J=5.3,8.8Hz,2H),7.66-7.51(m,1H),7.31-7.14(m,2H),7.05-6.90(m,1H),5.45-5.01(m,2H),4.88-4.13(m,8H),3.99-3.54(m,5H),2.82-2.67(m,5H),2.41-2.16(m,1H),1.97-1.53(m,5H),1.40(brs,18H),1.30-1.14(m,6H),0.99-0.84(m,9H)。
实施例19 式(I)化合物的制备
Figure PCTCN2018112089-appb-000024
25摄氏度下,向化合物3G(35克,34.11毫摩尔)的二氯甲烷(300毫升)溶液中加入三氟乙酸(55.44克,486.22毫摩尔,36.00毫升)。混合液于25摄氏度搅拌16小时后加入20毫升的三氟乙酸,继续搅拌5小时。45摄氏度减压浓缩除去溶剂,用饱和的碳酸钾水溶液调pH至8~9,用乙酸乙酯萃取三次,每次200毫升,合并有机层,水(200毫升)洗一次,无水硫酸钠干燥,45摄氏度减压浓缩后用甲基叔丁基醚(400毫升)打浆,过滤,甲基叔丁基醚洗涤(100毫升),固体于70摄氏度用甲基叔丁基醚和乙酸乙酯(2:1,300毫升)的混合溶剂打浆,过滤,甲基叔丁基醚和乙酸乙酯混合液(2:1,100毫升)洗涤,所得固体于40摄氏度真空干燥24小时得式(I)化合物(23.3克,28.5毫摩尔)。
1HNMR(400MHz,CD3OD)δ8.13(dd,J=4.0,9.2Hz,1H),7.92(dd,J=5.1,8.8Hz,1H),7.85(dd,J=2.3,7.8Hz,1H),7.61-7.51(m,1H),7.46(dd,J=2.1,9.4Hz,1H),7.10(dt,J=2.1,9.2Hz,1H),5.49(brs,1H),5.42-5.31(m,1H),5.01(brd,J=5.5Hz,1H),4.87-4.79(m,1H),4.73(brd,J=6.0Hz,1H),4.58-4.46(m,2H),4.41-4.31(m,1H),4.23- 3.92(m,6H),3.65-3.56(m,1H),2.73-2.58(m,6H),2.25-1.78(m,7H),1.60-1.43(m,6H),1.10(t,J=7.3Hz,3H),1.01-0.83(m,6H)。LCMS(ESI)m/z:826.6(M+1)。
实施例20 式(I)化合物结晶A的制备
取式(I)化合物500毫克,加入4毫升水制成悬浊液,加入磁子后在40℃的磁力搅拌器下搅拌2天(避光)后离心,干燥后得到式(I)化合物A晶型。
取式(I)化合物50毫克,加入乙醇0.2毫升水制成悬浊液,加入磁子后在40℃的磁力搅拌器下搅拌2天(避光)后离心,干燥后得到式(I)化合物A晶型。
取式(I)化合物50毫克,加入0.2毫升乙腈制成悬浊液,加入磁子后在40℃的磁力搅拌器下搅拌2天(避光)后离心,干燥后得到式(I)化合物A晶型。
取式(I)化合物50毫克,加入0.1毫升四氢呋喃制成悬浊液,加入磁子后在40℃的磁力搅拌器下搅拌2天(避光)后离心,干燥后得到式(I)化合物A晶型。
取式(I)化合物50毫克,加入0.3毫升乙酸乙酯制成悬浊液,加入磁子后在40℃的磁力搅拌器下搅拌2天(避光)后离心,干燥后得到式(I)化合物A晶型。
取式(I)化合物50毫克,加入0.6毫升叔丁基甲醚制成悬浊液,加入磁子后在40℃的磁力搅拌器下搅拌2天(避光)后离心,干燥后得到式(I)化合物A晶型。
取式(I)化合物50毫克,加入0.3毫升丙酮与水(体积比1:2)的混合溶剂制成悬浊液,加入磁子后在40℃的磁力搅拌器下搅拌2天(避光)后离心,干燥后得到式(I)化合物A晶型。
实施例21 式(I)化合物对cIAP1-BIR3,cIAP2-BIR3,XIAP-BIR3蛋白的亲和力测试
1.将测试化合物加DMSO配成5μM母液,以3倍的梯度连续稀释10个点,测试化合物的起始浓度为5μM。
2.以100mM磷酸钾、pH 7.5;0.1mg/ml牛血清蛋白(BSA)、0.005%聚乙二醇辛基苯基醚(Triton X-100)和0.5%DMSO作为缓冲液,配制成不同蛋白浓度:cIAP1-BIR3,cIAP2-BIR3,XIAP-BIR3浓度分别为20nM,60nM和30nM。
3.用荧光标记的ARPFAQ-K(5-FAM)-NH 2肽为探针,不同浓度的化合物分别加入上述缓冲液中,孵化15min,然后加入探针,使其浓度达到5nM,再孵化60min后,测试荧光偏振(FP),并计算出mP(millipolarization units)。得到IC 50后换算成抑制常数Ki。实验结果见表2。
表2
Figure PCTCN2018112089-appb-000025
结论:本发明的式(I)化合物展现出比Birinapant更高的cIAP2-BIR3蛋白体外受体结合活性,相当的cIAP1-BIR3和XIAP-BIR3结合活性。
实施例22 TNF-α诱导的NF-κB reporter实验
实验流程:
第一天:
一、化合物稀释:
1)将测试化合物加相应DMSO配成10mM母液;
2)取32ul参考化合物Birinapant(10mM)到128ul DMSO中,配成2mM溶液;
3)利用声控移液系统设备(品牌型号:Labcyte-Echo550)将2mM的参考化合物Birinapant和10mM的测试化合物,各取0.5ul到Greiner的96孔黑色细胞培养板中,使参考化合物的起始浓度为10uM,测试化合物的起始浓度为50uM,之后以5倍的梯度连续稀释9个点;每块板重复3份。
4)以终浓度为10uM的参考化合物Birinapant作为阳性对照,即100%抑制率对照(hundred percent effect,HPE),以终浓度为0.5%的DMSO为阴性对照,即无效对照(Zero percent effect,ZPE)。化合物排版图如下表3:
表3 化合物排版
Figure PCTCN2018112089-appb-000026
5)3个重复板的用途:第一块板用于检测化合物活性;第二块板用于检测化合物对细胞的毒性;第三块板用于第一块板第二天换液时使用:将诱导剂肿瘤坏死因子-α(TNF-α)与含0.1%胎牛血清(FBS)的培养基混合加入第三块板并混匀,再将此混合物转到弃去上清的第一块板中。
二、孵育细胞
1)将含NF-κB调控的荧光素酶报告基因的海拉细胞(NF-κB Luciferase Reporter Hela)培养瓶中的培养基吸掉,用10ml PBS清洗细胞一次。
2)加3ml0.25%的胰酶到该150cm 2(T150)细胞培养瓶中,放置于37℃,5%CO 2的细胞培养箱中消化细胞3分钟,然后加入10ml的培养基终止消化,并用电动移液枪吹打至细胞分散成单个细胞。
3)用自动细胞计数仪(品牌型号:Countstar-BioTech)检测细胞密度。
4)将NF-κB调控的荧光素酶报告基因的海拉细胞密度用培养基调整至2.0×10 5cells/ml。
5)将细胞加入含化合物的2块Greiner的96孔黑色细胞培养板中,每孔100ul(2.0×10 4细胞/孔),一块板用于检测化合物活性;另一块板用于检测化合物的细胞毒性。
6)将铺好的细胞板在37℃,5%CO 2的细胞培养箱中孵育24小时。
第二天:
一、TNF-α诱导
1)用0.1%FBS的培养液将TNF-α(100ug/ml)稀释至20ng/ml,取100ul/孔加入到第三块化合物板中。
2)将化合物处理24小时后的第一块96孔黑色细胞培养板(化合物活性检测板)中的培养基弃去,替换成第三块板中含化合物和20ng/ml TNF-α的新鲜培养液。
3)放置于37℃,5%CO 2的细胞培养箱中共孵育6小时。
4)6小时后,第一块化合物活性检测板按荧光素酶检测试剂盒Bright-Glo(品牌:Promega)说明书方法,用多功能酶标仪(品牌型号:PerkinElmer-Envision)检测各孔生物发光(Luminescence)信号。
5)第二块化合物毒性检测板按细胞活力检测试剂盒ATPlite1Step(品牌:PerkinElmer)说明书方法,用多功能酶标仪(品牌型号:PerkinElmer-Envision)检测各孔生物发光(Luminescence)信号。
6)利用软件分析,得到化合物的EC 50。实验结果见表4。
表4
受试化合物 EC 50(nM)
Birinapant 7.05
式(I)化合物 6.05
结论:本发明的式(I)化合物展现出与对照品IAP拮抗剂Birinapant相当的TNF-α诱导的NF-κB reporter体外细胞活性。
实施例23 A晶型的固体稳定性试验
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),考察化合物在影响因素高温(60℃,敞口)、高湿(25℃/92.5%RH,敞口)条件下放置5天、10天,光照(总照度:1.2×10 6Lux·hr/近紫外:200w·hr/m 2,敞口)条件下放置足够光强度的稳定性。
取实施例20所得式(I)化合物A晶型样品(2份各5mg用于有关物质分析,1份适量用于晶型稳定性检测)置于玻璃样品瓶的底部,摊成薄薄一层。高温及高湿条件下放置的样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触;光照条件下放置的样品为室温敞口竖放,将样品暴露在光源下,照射足够的能量后取样检测,避光对照样品(敞口,整个样品瓶用铝箔纸包裹避光)与光照样品一同放置,排除环境因素对样品的影响。于各时间点取样分析,检测结果与0天的初始检测结果进行比较,考察项目包括外观、晶型、含量及杂质,试验结果见表5。
表5 式(I)化合物A晶型的固体稳定性试验
Figure PCTCN2018112089-appb-000027
Figure PCTCN2018112089-appb-000028
结论:式(I)化合物A晶型在高温、高湿条件下具有较好的稳定性,在光照条件下的稳定性较差,应避光保存。

Claims (13)

  1. 式(I)化合物A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.275±0.2°、11.619±0.2°、17.502±0.2°、20.264±0.2°、21.844±0.2°、22.496±0.2°。
    Figure PCTCN2018112089-appb-100001
  2. 根据权利要求1所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.575±0.2°、9.603±0.2°、10.275±0.2°、11.619±0.2°、15.112±0.2°、17.502±0.2°、18.015±0.2°、20.264±0.2°、21.844±0.2°、22.496±0.2°。
  3. 根据权利要求2所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.575±0.2°、9.603±0.2°、10.275±0.2°、11.619±0.2°、13.537±0.2°、14.501±0.2°、15.112±0.2°、16.334±0.2°、17.502±0.2°、18.015±0.2°、18.726±0.2°、20.264±0.2°、21.844±0.2°、22.496±0.2°。
  4. 根据权利要求3所述的A晶型,其XRPD图谱如图1所示。
  5. 根据权利要求2~4任意一项所述的A晶型,其热重分析曲线在140.11℃±3℃时失重达0.2689%,在236.31℃±3℃时失重达2.274%。
  6. 根据权利要求5所述的A晶型,其TGA图谱如图2所示。
  7. 根据权利要求2~4任意一项所述的A晶型,其差示扫描量热曲线在231.46℃±3℃处具有吸热峰。
  8. 根据权利要求7所述的A晶型,其DSC图谱如图3所示
  9. 式(I)化合物A晶型的制备方法,包括:
    (a)将式(I)化合物加入溶剂中;
    (b)15~45℃避光搅拌;
    (c)离心,过滤,滤饼置于20~40℃下干燥;
    其中,所述溶剂选自水、乙醇、乙腈、乙酸乙酯、四氢呋喃和叔丁基甲醚,或者选自丙酮与水的混合溶剂。
  10. 根据权利要求9所述的制备方法,其特征在于,丙酮与水的体积比为1:2。
  11. 根据权利要求1~8任意一项所述的A晶型或权利要求9或10所述的方法制备得到的晶型在制备治疗因IAP紊乱所致疾病药物中的应用。
  12. 根据权利要求11所述的应用,其中,因IAP紊乱所致疾病为感染或肿瘤。
  13. 根据权利要求12所述的应用,其中,所述感染为乙型肝炎病毒感染。
PCT/CN2018/112089 2017-10-27 2018-10-26 一种iap拮抗剂的晶型及其制备方法 WO2019080928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711029534 2017-10-27
CN201711029534.7 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019080928A1 true WO2019080928A1 (zh) 2019-05-02

Family

ID=66246214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112089 WO2019080928A1 (zh) 2017-10-27 2018-10-26 一种iap拮抗剂的晶型及其制备方法

Country Status (1)

Country Link
WO (1) WO2019080928A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521372A (zh) * 2019-09-18 2021-03-19 南京华威医药科技集团有限公司 一种细胞凋亡蛋白抑制剂及其制备方法和用途
WO2023194547A1 (en) * 2022-04-08 2023-10-12 Medivir Ab Birinapant polymorph h

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080021066A1 (en) * 2006-07-24 2008-01-24 Condon Stephen M Iap inhibitors
CN101516904A (zh) * 2006-07-24 2009-08-26 泰特拉洛吉克药业公司 二聚的iap拮抗剂
CN102471275A (zh) * 2009-07-02 2012-05-23 泰特拉洛吉克药业公司 Smac模拟物
US20140303090A1 (en) * 2013-04-08 2014-10-09 Tetralogic Pharmaceuticals Corporation Smac Mimetic Therapy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080021066A1 (en) * 2006-07-24 2008-01-24 Condon Stephen M Iap inhibitors
CN101516904A (zh) * 2006-07-24 2009-08-26 泰特拉洛吉克药业公司 二聚的iap拮抗剂
CN102471275A (zh) * 2009-07-02 2012-05-23 泰特拉洛吉克药业公司 Smac模拟物
US20140303090A1 (en) * 2013-04-08 2014-10-09 Tetralogic Pharmaceuticals Corporation Smac Mimetic Therapy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521372A (zh) * 2019-09-18 2021-03-19 南京华威医药科技集团有限公司 一种细胞凋亡蛋白抑制剂及其制备方法和用途
WO2021051827A1 (zh) * 2019-09-18 2021-03-25 南京华威医药科技集团有限公司 一种细胞凋亡蛋白抑制剂及其制备方法和用途
WO2023194547A1 (en) * 2022-04-08 2023-10-12 Medivir Ab Birinapant polymorph h

Similar Documents

Publication Publication Date Title
CA2668305C (en) Azaindole derivatives as cftr modulators
WO2017076286A1 (zh) 二氢吡啶并环化合物的晶型、制备方法和中间体
CA2687909C (en) Indolin-2-ones and aza-indolin-2-ones
JP2018506531A (ja) Irak1/4阻害剤としての大環状化合物及びその使用
NZ531678A (en) Carbazole derivatives and their use as NPY5 receptor antagonists
WO2021078021A1 (zh) 一种小分子化合物
CA3008689A1 (en) Pyrido[1,2-a]pyrimidone analog, crystal form thereof, intermediate thereof and preparation method therefor
WO2019080928A1 (zh) 一种iap拮抗剂的晶型及其制备方法
ES2960702T3 (es) Formas cristalinas C y E del compuesto de pirazin-2(1H)-ona y método de preparación de las mismas
WO2017101829A1 (zh) 吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体
US9340573B2 (en) Azaindolines
Shen et al. Synthesis and structure–activity relationships of boswellic acid derivatives as potent VEGFR-2 inhibitors
US9403768B2 (en) Indolines
WO2017162204A1 (zh) 苯并呋喃类似物制备方法及其中间体和晶型
WO2019114792A1 (zh) 一种TGF-βRI抑制剂的晶型、盐型及其制备方法
WO2018095345A1 (zh) 一种7H-吡咯并[2,3-d]嘧啶类化合物的晶型、盐型及其制备方法
CA3107895C (en) A brd4 inhibitor as well as a preparative method and use thereof
CN114292270B (zh) 一种btk抑制剂及其制备方法与应用
KR20210049130A (ko) 세고리식 화합물의 결정 형태 및 이의 용도
Fan et al. Design, synthesis and evaluation of quinazoline derivatives as Gαq/11 proteins inhibitors against uveal melanoma
JP2007523145A (ja) ゴナドトロピン放出ホルモン(gnrh)アンタゴニストとしてのピロール誘導体
WO2022048685A1 (zh) 苯并四氢呋喃肟类化合物的晶型及其制备方法
JP2007523149A (ja) GnRHアンタゴニストとしてのチエノピロールの誘導体
JP2007523146A (ja) GnRHのアンタゴニストとしてのチエノピロール類
CN117843638A (zh) 基于rsl3诱导gpx4蛋白降解的双功能分子化合物的制备与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869606

Country of ref document: EP

Kind code of ref document: A1