WO2017101829A1 - 吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体 - Google Patents

吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体 Download PDF

Info

Publication number
WO2017101829A1
WO2017101829A1 PCT/CN2016/110254 CN2016110254W WO2017101829A1 WO 2017101829 A1 WO2017101829 A1 WO 2017101829A1 CN 2016110254 W CN2016110254 W CN 2016110254W WO 2017101829 A1 WO2017101829 A1 WO 2017101829A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
crystal form
preparation
xrpd pattern
potassium
Prior art date
Application number
PCT/CN2016/110254
Other languages
English (en)
French (fr)
Inventor
于涛
李宁
孔凌微
姜佩佩
王勇
荣哲民
王昌俊
郭峰
李卫东
王峥
吴家虎
吴成德
Original Assignee
辰欣药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辰欣药业股份有限公司 filed Critical 辰欣药业股份有限公司
Priority to CN201680072859.0A priority Critical patent/CN108368111B/zh
Publication of WO2017101829A1 publication Critical patent/WO2017101829A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present invention relates to a crystalline form of a pyrido[1,2-a]pyrimidinone analog, a process for the preparation thereof and an intermediate.
  • PI3K pathway is the most frequently mutated part of human cancer cells, which can lead to cell proliferation, activation, and amplification of signals.
  • PI3K and mTOR are the two most important kinases in the PI3K signaling pathway.
  • PI3 kinase (phosphatidylinositol 3-kinase, PI3Ks) belongs to the family of lipid kinases and is capable of phosphorylating the 3'-OH end of the inositol ring of phosphatidylinositol.
  • Phosphatidylinositol-3-kinase (PI3K) is a lipid kinase composed of the regulatory subunit p85 or p101 and the catalytic subunit p110, which catalyzes the phosphatidylinositol by phosphatidylinositol.
  • PIP2 phosphatidylinositol 3,4,5-trisphosphate
  • PIP3 phosphatidylinositol 3,4,5-trisphosphate
  • PTEN phosphatase and stretching homolog deleted on chromosome ten dephosphorylates PIP3 to form PIP2, thereby achieving negative regulation of PI3K/Akt signaling pathway, inhibiting cell proliferation and promoting apoptosis.
  • the frequent occurrence of PI3K gene mutation and amplification in cancer and the loss of PTEN in cancer suggest a close relationship between PI3K and tumorigenesis.
  • mTOR (mammalian rapamycin target protein) is a silk/threonine protein kinase present in the cytoplasm and belongs to the phosphatidylinositol 3-kinase-associated kinase family, which plays an important role in regulating signaling in many pathways. effect.
  • mTOR has been identified as a downstream target for PI3K/Akt.
  • Two different mTOR complexes, mTORC1 and mTORC2 are currently found in cells. The two functions respectively, the main function of mTORC1 is to stimulate cell growth and proliferation, while mTORC2 regulates cell survival and cytoskeleton by activating AKT, PKC and other kinases.
  • Studies have shown that the mTOR signaling pathway is involved in the development of cancer, and that the simultaneous inhibition of the activity of two mTOR complexes in cancer cells has a broader and more effective anticancer effect.
  • PI3K-mTOR double inhibitors can block multiple links in information transmission at the same time, which will more effectively block the transmission of kinase information, thus overcoming or delaying the development of drug resistance.
  • the invention provides a preparation method of the compound 1,
  • the base C is selected from the group consisting of pyridine, 2,6-lutidine, Et 3 N, 4-DMAP, LiOH, Cs 2 CO 3 and K 2 CO 3 ;
  • Solvent C is selected from the group consisting of pyridine, dichloromethane, toluene, acetonitrile, acetone, DMF and THF;
  • the molar ratio of compound 7 to compound 8 is selected from 1:1 to 3;
  • the molar ratio of the compound 7 to the base C is selected from 1:1 to 3.
  • the preparation of Compound 1 includes the following steps,
  • the base A is selected from the group consisting of potassium carbonate, sodium carbonate, cesium carbonate, potassium hydroxide or sodium hydroxide;
  • Solvent a is selected from DMF, DMSO or NMP.
  • the molar ratio of base A to compound 5 is selected from the group consisting of from 1 to 3:1.
  • the preparation of Compound 1 comprises the steps of:
  • the base B is selected from the group consisting of potassium carbonate, sodium carbonate, barium hydroxide, potassium phosphate, barium carbonate, potassium fluoride, barium fluoride, sodium hydroxide, potassium t-butoxide, sodium t-butoxide, potassium acetate or sodium acetate;
  • Solvent b is selected from 1,4-dioxane, DMSO, THF, 1,4-dioxane/water, or THF/water;
  • the volume ratio of 1,4-dioxane or THF to water is selected from 3 to 6:1;
  • the catalyst is selected from the group consisting of Pd(dppf)Cl 2 or Pd(PPh 3 ) 4 .
  • the volume ratio of 1,4-dioxane or THF to water is selected from the group consisting of 5:1.
  • the molar ratio of base B to compound 6 is selected from the group consisting of from 1 to 3:1.
  • the preparation of Compound 1 comprises the steps of:
  • the invention also provides a compound of the formula: as an intermediate for the preparation of compound 1:
  • the present invention provides a crystalline form I of Compound 1, the XRPD pattern of which is shown in Figure 1.
  • the X crystal form of the above Compound 1 has the XRPD pattern analysis data as shown in Table-1:
  • the present invention provides a crystalline form II of Compound 1, the XRPD pattern of which is shown in FIG.
  • the X-ray XRPD pattern analysis data of Compound 1 above is shown in Table-2.
  • the present invention provides a crystalline form III of Compound 1, the XRPD pattern of which is shown in FIG.
  • the analytical data of the III crystal form of the above Compound 1 is shown in Table-3.
  • the present invention provides an IV crystal form of Compound 1, the XRPD pattern of which is shown in FIG.
  • the analytical data of the IV crystal form XRPD pattern of the above compound 1 is shown in Table-4.
  • the present invention provides a crystalline form of Compound V, the XRPD pattern of which is shown in FIG.
  • V-form XRPD analytical data for Compound 1 above is shown in Table-5.
  • the present invention provides a crystalline form of Compound VI, the XRPD pattern of which is shown in FIG.
  • the X-ray pattern analysis data of the VI form of the above Compound 1 is shown in Table-6.
  • Another object of the present invention is to provide a stable form of Compound 1, Form I, Form III, Form IV, Form V and Form VI of Compound 1 in the preparation of a medicament for treating a disease associated with mTOR/PI3K receptor.
  • intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, combinations thereof with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, embodiments of the invention.
  • DCM dichloromethane
  • PE petroleum ether
  • EA ethyl acetate
  • DMF N,N-dimethylformamide
  • DMAC N,N-dimethylacetamide
  • DMSO dimethyl sulfoxide
  • EtOAc ethyl acetate
  • THF tetrahydrofuran
  • EtOH ethanol
  • MeOH stands for methanol
  • NMP stands for N-methylpyrrolidone
  • 2-METHF stands for 2-methyltetrahydrofuran
  • i-PrOH stands for 2-propane Alcohol
  • HCl (g) represents hydrogen chloride gas
  • HOAc stands for acetic acid
  • TFA stands for trifluoroacetic acid
  • DIPEA diisopropylethylamine
  • DIEA diisopropylethylamine
  • NMM stands for N-methylmorpholine
  • 3 N represents triethylamine
  • XRPD X-ray powder diffractometer
  • Tube voltage 40kV
  • tube current 40mA
  • Anti-scattering slit 7.10mm
  • DSC Differential Scanning Calorimeter
  • Test conditions Samples (0.5 to 1 mg) were placed in a DSC aluminum pan for testing at room temperature to 300 ° C and a heating rate of 10 ° C/min.
  • TGA Thermal Gravimetric Analyzer
  • Test conditions Samples (2 to 5 mg) were placed in a TGA platinum pot for testing at room temperature to 300 ° C and a heating rate of 10 ° C/min.
  • the crystal form, the II crystal form, the III crystal form, the IV crystal form, the V crystal form and the VI crystal form of the compound 1 provided by the invention have stable properties, good solubility and good wettability, and have good pharmaceutical prospects.
  • the process for synthesizing compound 1 and its intermediates provided by the invention has the advantages that the raw materials are cheap and easy to obtain, and the disadvantages of the reagents used are large, the reaction conditions are harsh, the separation and purification are difficult, and the industrialization is difficult.
  • Figure 1 is an XRPD spectrum of Cu-K ⁇ radiation of Form I.
  • Figure 2 is a DSC spectrum of Form I.
  • Figure 3 is a TGA spectrum of Form I.
  • Figure 4 is an XRPD spectrum of Cu-K ⁇ radiation of Form II.
  • Figure 5 is a DSC spectrum of Form II.
  • Figure 6 is a TGA spectrum of Form II.
  • Figure 7 is an XRPD spectrum of Cu-K ⁇ radiation of Form III.
  • Figure 8 is a DSC spectrum of the III crystal form.
  • Figure 9 is a TGA spectrum of the III crystal form.
  • Figure 10 is an XRPD spectrum of Cu-K ⁇ radiation of Form IV.
  • Figure 11 is a DSC spectrum of the IV crystal form.
  • Figure 12 is a TGA spectrum of the IV crystal form.
  • Figure 13 is an XRPD spectrum of Cu-K ⁇ radiation of Form V.
  • Figure 14 is a DSC spectrum of the V crystal form.
  • Figure 15 is a TGA spectrum of the V crystal form.
  • Figure 16 is an XRPD spectrum of Cu-K ⁇ radiation of Form VI.
  • Figure 17 is a DSC spectrum of the VI crystal form.
  • Figure 18 is a TGA spectrum of the VI crystal form.
  • Trifluoroacetic acid (1 L) was added to a 3 L round bottom flask and 3-(benzyloxy)-7-bromo-4H-pyrido[1,2-a]pyrimidin-4-one (260) was added.
  • Gram, 785.12 mmol control the temperature of the reaction solution at 90-100 ° C, and stir the reaction for 2 hours. Sampling test, LCMS showed complete reaction.
  • the reaction solution was cooled to 60 ° C, concentrated, and the solvent was evaporated.
  • reaction solution was concentrated under reduced pressure at an external temperature of 50 ⁇ 5 °C.
  • Water was added to the residue and added to R1, and stirred for 0.5-1 hour, filtered, and the filter cake was rinsed with 0.35 kg of water, and dried under reduced pressure.
  • dichloromethane (1.164 kg) was added to the filter cake. The mixture was stirred for 0.5-1 hour, filtered, and the filter cake was dried at 60 ° C under reduced pressure.
  • Dichloromethane (3.99 kg) and methanol (1.185 kg) were added to the filter cake to dissolve.
  • a TMT solution (thiocyanuric acid: 1.16 g, sodium chloride: 4.5 g, ethanol: 114.55 g, ammonia water: 14.65 g, water: 161 g) was added to the solution, and stirred for 18 ⁇ 0.5 hours. Filtration and concentration of the filtrate under reduced pressure at 45-50 °C. To the crude product was added 0.875 kg of water and stirred for 16 ⁇ 0.5 hours. Filter and filter cake was dried at 45-50 ° C under reduced pressure. It was dissolved in dichloromethane (4.655 kg) and methanol (1.38 kg).
  • a TMT solution (thiocyanuric acid: 1.16 g, sodium chloride: 4.5 g, ethanol: 114.55 g, ammonia water: 14.65 g, water: 161 g) was added to the solution, and stirred for 16 ⁇ 0.5 hours. Filtration and concentration of the filtrate under reduced pressure at 45-50 °C. To the crude product was added 0.875 kg of water and stirred for 2 ⁇ 0.5 hours. After filtration, the cake was dried under reduced pressure at 45-50 ° C to give a product (174 g, purity: 96.96%, yield: 84.59%).
  • the reaction solution was poured into 5 L of water, 3 L of ethyl acetate was added, and the mixture was stirred for 40 minutes, and the mixture was filtered over Celite (200 g).
  • the filter cake was rinsed with ethyl acetate (700 mL), the filtrate was collected, and the mixture was partitioned and separated, and the aqueous phase was extracted with ethyl acetate (2L*4).
  • the organic phase was combined and washed with saturated brine (4L), brine
  • the phases were extracted with EtOAc (EtOAc (EtOAc)EtOAc.
  • Compound Compound 1 Approximately 50 mg of Compound Compound 1 was added to 0.3 mL of methanol (acetonitrile or acetone) to form a suspension. The suspension sample was shaken on a constant temperature uniform (40 ° C) for 2 days (protected from light). The residual solid matter was centrifuged and dried overnight in a vacuum oven at 40 ° C to obtain a crystal form I of Compound 1.
  • methanol acetonitrile or acetone
  • Form II The preparation of Form II was the same as Form I, and only the solvent methanol was changed to 0.3 mL of ethanol (0.35 mL of isopropanol or ethyl acetate).
  • Compound 1 was added to 0.35 mL of an ethanol-water mixed solvent (ethanol-water 3:1, v:v) to form a suspension.
  • the suspension sample was placed on a constant temperature uniformizer (40 ° C) and shaken (protected from light) for 1 day as a solution. After centrifugation, the supernatant was taken and placed in a fume hood to naturally evaporate. The residual solid was dried overnight in a vacuum oven at 40 ° C to obtain Form II of Compound 1.
  • the preparation of the IV crystal form was the same as that of the I crystal form, and only the solvent methanol was changed to 0.35 mL of an acetone-water mixed solvent (acetone-water 1:2, v:v).
  • VI crystal form sample Approximately 5 mg was weighed and placed on the bottom of the glass sample vial to form a thin layer. The sample is sealed with aluminum foil and in aluminum Place some small holes on the foil to ensure that the sample can be in full contact with the ambient air and placed in a constant temperature and humidity chamber at 40 ° C / 75% humidity. Another 25 mg VI crystal form sample was taken and sampled as described above to detect the crystal form of the sample. The samples placed under the above conditions were sampled and tested in the first month, February, and March, and the test results were compared with the initial test results in the month of 0. The test results are shown in Table -7 below:
  • MCF-7 cells were seeded into 96-well plates at a density of 2.5 ⁇ 10 4 per well (the culture medium used was a complete medium containing 10% FBS).
  • Enhancer Solution needs to be removed from the refrigerator in advance.
  • Enhancer solution (Enhancer Solution) was diluted 10-fold with 5X Lysis Buffer to prepare a concentrated lysate.
  • the culture solution in the well was aspirated and rinsed once with PBS.
  • the antibody mixture is prepared by mixing the medium antibody reagent and the enzyme-labeled antibody reagent in equal proportions. Note that when preparing the antibody mixture, do not vortex)
  • the substrate mixture should be used as needed. One hundred microliters of the substrate mixture was added to each well, and the microplate was sealed with tin foil paper and incubated on a microplate shaker for 10 minutes at room temperature.
  • Ming compound 1 has significant inhibitory effect on mTOR/PI3K.

Abstract

本发明公开了一种吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体。(式I)

Description

吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体 技术领域
本发明涉及一种吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体。
背景技术
PI3K通路是人体癌细胞中最常发生变异的地方,可导致细胞的增殖,活化,放大信号。PI3K和mTOR是PI3K信号通路中两个最重要的激酶。
PI3激酶(磷脂酰肌醇3-激酶,PI3Ks)属于脂质激酶家族,能够磷酸化磷脂酰肌醇的肌醇环3’-OH端。磷脂酰肌醇3-激酶(phosphatidylinositol-3-kinase,PI3K)为一种由调节亚单位p85或p101和催化亚单位p110组成的脂激酶,通过催化磷脂酰肌醇4,5-二磷酸(phosphatidylinositol 4,5-bisphosphate,PIP2)磷酸化为磷脂酰肌醇3,4,5-三磷酸(phosphatidylinositol 3,4,5-trisphosphate,PIP3)而激活下游的Akt等从而对细胞的增殖、生存和代谢等起关键作用。因此抑制磷酸酯酰肌醇3激酶,可以影响PI3K通路,从而抑制癌细胞的增殖与活化。
肿瘤抑制基因PTEN(phosphatase and tension homolog deleted on chromosome ten)使PIP3去磷酸化生成PIP2,从而实现PI3K/Akt信号通路的负性调节,抑制细胞增殖和促进细胞凋亡。PI3K基因突变和扩增在癌症中频繁发生以及PTEN在癌症中缺失等都提示PI3K与肿瘤发生的密切关系
mTOR(哺乳动物雷帕霉素靶蛋白)是存在于胞浆中一种丝/苏氨酸蛋白激酶,属于磷脂酰肌醇3-激酶相关激酶家族,在调控许多通路的信号传导中发挥着重要作用。mTOR已经被确定是PI3K/Akt的下游靶点。目前发现细胞内存在两种不同的mTOR复合体,mTORC1和mTORC2。二者分别行使不同的功能,mTORC1主要功能是刺激细胞的生长和增殖,而mTORC2则通过激活AKT,PKC以及其它激酶调控细胞的生存和细胞骨架。研究表明mTOR信号通路与癌症发生有关,在癌细胞中同时抑制两个mTOR复合体的活性有更广泛和更有效的抗癌作用。
PI3K-mTOR双抑制剂可以同时阻断信息传导中的多个环节,将更有效地阻止激酶信息传导,因而克服或延缓抗药性的产生。
诺华公司的专利申请W02008163636和GSK公司的专利申请W02008144463中,报道了对PI3K和mTOR均有抑制作用的系列化合物,这些化合物具有良好的肿瘤治疗活性。但是,目前暂无对PI3K和mTOR均有抑制作用的药物上市,因此,需要研发对PI3K、mTOR均具有抑制作用的多把向药物,以利于癌症的治疗。
发明内容
本发明提供了化合物1的制备方法,
Figure PCTCN2016110254-appb-000001
其包含如下步骤:
Figure PCTCN2016110254-appb-000002
其中,
碱C选自吡啶、2,6-二甲基吡啶、Et3N、4-DMAP、LiOH、Cs2CO3和K2CO3
溶剂C选自吡啶、二氯甲烷、甲苯、乙腈、丙酮、DMF和THF;
化合物7与化合物8的摩尔比选自1:1~3;
化合物7与碱C的摩尔比选自1:1~3。
本发明的一些方案中,化合物1的制备包括如下步骤,
Figure PCTCN2016110254-appb-000003
其中,
碱A选自碳酸钾、碳酸钠、碳酸铯、氢氧化钾或氢氧化钠;
溶剂a选自DMF、DMSO或NMP。
本发明的一些方案中,碱A与化合物5的摩尔比选自1~3:1。
本发明的一些方案中,化合物1的制备包括如下步骤:
Figure PCTCN2016110254-appb-000004
碱B选自碳酸钾、碳酸钠、氢氧化钡、磷酸钾、碳酸铯、氟化钾、氟化铯、氢氧化钠、叔丁醇钾、叔丁醇钠、醋酸钾或醋酸钠;
溶剂b选自1,4-二氧六环、DMSO、THF、1,4-二氧六环/水、或THF/水;
上述溶剂b中,1,4-二氧六环或THF与水的体积比选自3~6:1;
催化剂选自Pd(dppf)Cl2或Pd(PPh3)4
本发明的一些方案中,上述溶剂b中,1,4-二氧六环或THF与水的体积比选自选自5:1。
本发明的一些方案中,碱B与化合物6的摩尔比选自1~3:1。
本发明的一些方案中,化合物1的制备包括如下步骤:
Figure PCTCN2016110254-appb-000005
本发明还提供了作为制备化合物1中间体的下式化合物:
Figure PCTCN2016110254-appb-000006
本发明提供了化合物1的Ⅰ晶型,其XRPD图谱如图1所示。
本发明的一些方案中,上述化合物1的Ⅰ晶型,其XRPD图谱解析数据如表-1所示:
表-1化合物1的Ⅰ晶型XRPD图谱解析数据
Figure PCTCN2016110254-appb-000007
Figure PCTCN2016110254-appb-000008
本发明提供了化合物1的Ⅱ晶型,其XRPD图谱如图4所示。
本发明的一些方案中,上述化合物1的Ⅱ晶型XRPD图谱解析数据如表-2所示。
表-2化合物Ⅱ晶型XRPD图谱解析数据
Figure PCTCN2016110254-appb-000009
本发明提供了化合物1的Ⅲ晶型,其XRPD图谱如图7所示。
本发明的一些方案中,上述化合物1的Ⅲ晶型图谱解析数据如表-3所示。
表-3化合物1的Ⅲ晶型XRPD图谱解析数据
Figure PCTCN2016110254-appb-000010
本发明提供了化合物1的Ⅳ晶型,其XRPD图谱如图10所示。
本发明的一些方案中,上述化合物1的Ⅳ晶型XRPD图谱解析数据如表-4所示。
表-4化合物1的Ⅳ晶型XRPD图谱解析数据
No. d(A) I% No. d(A) I%
1 5.246 16.8322 47.8 15 16.681 5.3102 29.6
2 6.074 14.5392 7.9 16 18.371 4.8255 8.5
3 6.723 13.1361 47.2 17 19.894 4.4593 16.0
4 7.708 11.4600 100.0 18 20.818 4.2634 5.5
5 10.308 8.5742 9.1 19 22.712 3.9119 9.0
6 11.098 7.9658 37.7 20 23.934 3.7149 10.1
7 12.182 7.2595 5.5 21 24.389 3.6467 8.5
8 12.656 6.9887 18.4 22 24.804 3.5866 15.0
9 12.836 6.8911 24.5 23 26.026 3.4208 5.5
10 13.501 6.5530 34.3 24 26.817 3.3217 12.3
11 14.355 6.1651 30.7 25 28.965 3.0800 6.6
12 15.356 5.7655 5.8 26 29.513 3.0242 6.4
13 15.729 5.6293 6.1 27 29.992 2.9769 5.3
14 16.145 5.4854 7.5 28 32.587 2.7456 4.9
本发明提供了化合物1的Ⅴ晶型,其XRPD图谱如图13所示。
本发明的一些方案中,上述化合物1的Ⅴ晶型XRPD解析数据如表-5所示。
表-5化合1的Ⅴ晶型XRPD图谱解析数据
No. d(A) I% No. d(A) I%
1 5.282 16.7167 36.0 16 19.969 4.4427 21.6
2 6.070 14.5476 60.5 17 21.075 4.2120 13.8
3 6.745 13.0937 30.9 18 22.161 4.0080 11.5
4 10.329 8.5569 14.5 19 22.576 3.9351 16.3
5 11.240 7.8654 47.0 20 23.642 3.7602 6.1
6 12.200 7.2489 12.2 21 24.273 3.6638 13.9
7 12.656 6.9885 25.3 22 24.446 3.6382 17.7
8 13.524 6.5419 27.8 23 24.762 3.5925 15.2
9 13.883 6.3735 8.2 24 25.124 3.5416 93.8
10 14.428 6.1339 18.5 25 25.712 3.4620 11.8
11 14.842 5.9639 6.7 26 28.060 3.1774 21.2
12 15.380 5.7565 8.1 27 29.637 3.0117 25.4
13 16.069 5.5112 100.0 28 30.708 2.9091 11.3
14 16.779 5.2794 8.7 29 35.117 2.5533 6.6
15 18.772 4.7233 16.3 30 38.690 2.3253 4.7
本发明提供了化合物1的Ⅵ晶型,其XRPD图谱如图16所示。
本发明的一些方案中,上述化合物1的Ⅵ晶型XRPD图谱解析数据如表-6所示。
表-6化合物1的Ⅵ晶型XRPD图谱解析数据
No. d(A) I% No. d(A) I%
1 8.735 10.1143 7.3 20 25.663 3.4684 8.9
2 10.470 8.4419 13.7 21 26.412 3.3717 22.9
3 12.424 7.1185 100.0 22 27.159 3.2807 4.7
4 13.786 6.4183 50.6 23 27.617 3.2273 11.7
5 15.166 5.8372 1.7 24 27.970 3.1873 15.0
6 16.883 5.2471 10.9 25 30.714 2.9086 8.8
7 18.006 4.9222 1.3 26 31.291 2.8562 2.4
8 18.711 4.7385 4.1 27 31.781 2.8133 1.8
9 19.386 4.5749 5.7 28 32.389 2.7618 10.4
10 19.604 4.5247 2.5 29 33.730 2.6551 2.3
11 20.572 4.3138 11.7 30 34.838 2.5731 2.1
12 20.986 4.2296 2.9 31 35.198 2.5476 1.6
13 21.402 4.1484 11.4 32 35.603 2.5195 2.9
14 22.425 3.9614 13.2 33 35.902 2.4992 5.2
15 23.297 3.8150 2.7 34 37.087 2.4221 3.2
16 24.123 3.6863 79.2 35 37.641 2.3877 1.2
17 24.596 3.6164 11.8 36 38.231 2.3522 2.2
18 25.013 3.5570 3.5 37 38.760 2.3213 1.6
19 25.306 3.5165 5.2 38 39.747 2.2659 2.7
本发明的另一个目的在于提供化合物1的Ⅰ晶型、Ⅱ晶型、Ⅲ晶型、Ⅳ晶型、Ⅴ晶型和Ⅵ晶型性质稳定在制备治疗与mTOR/PI3K受体有关疾病的药物中的应用。
定义和说明:
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别 定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本领域任何合成路线规划中的一个重要考量因素是为反应性官能团(如本发明中的氨基)选择合适的保护基。对于经过训练的从业者来说,Greene and Wuts的(Protective Groups In Organic Synthesis,Wiley and Sons,1991)是这方面的权威。本发明引用的所有参考文献整体上并入本发明。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。反应一般是在惰性氮气下、无水溶剂中进行的。质子核磁共振数据记录在Bruker Avance III 400(400MHz)分光仪上,化学位移以四甲基硅烷低场处的(ppm)表示。质谱是在安捷伦1200系列加6110(&1956A)上测定。LC/MS或Shimadzu MS包含一个DAD:SPD-M20A(LC)和Shimadzu Micromass 2020检测器。质谱仪配备有一个正或负模式下操作的电喷雾离子源(ESI)。
本发明采用下述缩略词:DCM代表二氯甲烷;PE代表石油醚;EA代表乙酸乙酯;DMF代表N,N-二甲基甲酰胺;DMAC代表N,N-二甲基乙酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;THF代表四氢呋喃;EtOH代表乙醇;MeOH代表甲醇;NMP代表N-甲基吡咯烷酮;2-METHF代表2-甲基四氢呋喃;i-PrOH代表2-丙醇;HCl(g)代表氯化氢气体;HOAc代表乙酸;TFA代表三氟乙酸;DIPEA代表二异丙基乙基胺;DIEA代表二异丙基乙基胺;NMM代表N-甲基吗啡啉;Et3N代表三乙胺;Pd(PPh3)4代表四三苯基膦钯;Pd(dppf)Cl2代表1,1'-双(二苯基磷)二茂铁氯化钯;Pd(PPh3)2Cl2代表二氯双(三苯基膦)钯(II);Pd(OAc)2代表醋酸钯。
化合物经手工或者
Figure PCTCN2016110254-appb-000011
软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:布鲁克D8advance X-射线衍射仪
测试条件:详细的XRPD参数如下:
X-ray发生器:Cu,kα,
Figure PCTCN2016110254-appb-000012
管电压:40kV,管电流:40mA.
散射狭缝:0.60mm
探测器狭缝:10.50mm
反散射狭缝:7.10mm
扫描范围:4-40deg
步长:0.02deg
速率:0.1S
样品盘转速:15rpm
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA Q2000差示扫描量热仪
测试条件:取样品(0.5~1mg)置于DSC铝锅内进行测试,方法为:室温~300℃,升温速率为10℃/min。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Q5000IR热重分析仪
测试条件:取样品(2~5mg)置于TGA铂金锅内进行测试,方法为:室温~300℃,升温速率为10℃/min。
技术效果:
本发明所提供的化合物1的Ⅰ晶型、Ⅱ晶型、Ⅲ晶型、Ⅳ晶型、Ⅴ晶型和Ⅵ晶型性质稳定、溶解度好、引湿性好,具有良好的成药前景。
本发明给出的合成化合物1及其中间体的工艺,原料价格便宜易得,克服所用试剂毒害大,反应条件苛刻,分离纯化困难以及不易工业化等缺点。
附图说明
图1为I晶型的Cu-Kα辐射的XRPD谱图。
图2为I晶型的DSC谱图。
图3为Ⅰ晶型的TGA谱图。
图4为Ⅱ晶型的Cu-Kα辐射的XRPD谱图。
图5为Ⅱ晶型的DSC谱图。
图6为Ⅱ晶型的TGA谱图。
图7为Ⅲ晶型的Cu-Kα辐射的XRPD谱图。
图8为Ⅲ晶型的DSC谱图。
图9为Ⅲ晶型的TGA谱图。
图10为Ⅳ晶型的Cu-Kα辐射的XRPD谱图。
图11为Ⅳ晶型的DSC谱图。
图12为Ⅳ晶型的TGA谱图。
图13为Ⅴ晶型的Cu-Kα辐射的XRPD谱图。
图14为Ⅴ晶型的DSC谱图。
图15为Ⅴ晶型的TGA谱图。
图16为Ⅵ晶型的Cu-Kα辐射的XRPD谱图。
图17为Ⅵ晶型的DSC谱图。
图18为Ⅵ晶型的TGA谱图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
参考例1化合物5的制备
Figure PCTCN2016110254-appb-000013
制备甲基2-(苄氧基)乙酸酯(2)
将二氯甲烷(640毫升)加入到3.0升三口圆底烧瓶中,加入甲醇(149.70克,187.13毫升),加入吡啶(236.09毫升,2.92摩尔),将混合物用冰水浴降温至0℃,氮气保护下,将2-苄氧基酰氯(227.00克,1.17摩尔)滴加到圆底烧瓶中,控制温度在0-10℃,滴加。滴加完后撤掉冰水浴,反应液在20℃下搅拌1.5小时。取样检测,TLC(石油醚/乙酸乙酯=5/1)显示反应完全。将水(1000毫升)加入到圆底烧瓶中,搅拌10分钟,分层,收集有机层;有机层用1.0摩尔/升的稀盐酸(600毫升*2)洗涤,分层,收集有机层;有机层用20%碳酸钠溶液(400毫升)洗涤,分层,收集有机层,有机层有机相用无水硫酸钠(80克)干燥,过滤,滤液减压浓缩,得到无色油状产品(208克,1.12摩尔,收率:95.88%,纯度:97%)。1H NMR(400MHz,CHLOROFORM-d)ppm 7.41-7.28(m,5H),4.64(s,2H),4.12(s,2H),3.77(s,3H);LCMS(ESI)m/z:181 (M+1).
Figure PCTCN2016110254-appb-000014
制备甲基2-(苄氧基)-3-(二甲氨基)丙烯酸酯(3)
将甲基2-(苄氧基)乙酸酯(207克,1.11摩尔)加入到3升圆底烧瓶中,加入叔丁氧基二(二甲氨基)甲烷(233克,1.34摩尔),控制反应温度在90-100℃反应16小时。取样检测,TLC(PE/EA=5/1)显示反应完全。反应液冷却到60℃,反应液用油泵浓缩,得到黄色油状产品(275克,粗品),直接用于下一步反应。
1H NMR(400MHz,CHLOROFORM-d)ppm 7.44-7.30(m,5H),6.87(s,1H),4.72(s,2H),3.73(s,3H),2.98(s,6H).
Figure PCTCN2016110254-appb-000015
制备3-(苄氧基)-7-溴-4H-吡啶并[1,2-a]嘧啶-4-酮(4)
将甲基2-(苄氧基)-3-(二甲氨基)丙烯酸酯(130克,552.53毫摩尔)加入到3升圆底烧瓶中,加入醋酸(1.25升),加入2-氨基-5-溴吡啶(100.6克,552.53毫摩尔)。控制反应液温度在120-130℃,搅拌反应16小时。取样检测,反应完全。反应液冷却到60℃,反应液浓缩,蒸去溶剂,加入乙酸乙酯(500毫升),搅拌10min,过滤,向滤饼中加入乙酸乙酯(1升),搅拌10min后过滤,滤饼旋干得到黄色固体状化合物(132.5克,纯度:92%,收率:66.62%)。
1H NMR(400MHz,CHLOROFORM-d)d=9.13(d,J=1.7Hz,1H),8.05(s,1H),7.56(dd,J=2.0,9.5Hz,1H),7.49-7.41(m,3H),7.40-7.27(m,3H),5.29(s,2H);LCMS(ESI)m/z:333(同位素M+1).
Figure PCTCN2016110254-appb-000016
制备7-溴-3-羟基-4H-吡啶并[1,2-a]嘧啶-4-酮(5)
将三氟醋酸(1升)加入到3升圆底烧瓶中,加入3-(苄氧基)-7-溴-4H-吡啶并[1,2-a]嘧啶-4-酮(260 克,785.12毫摩尔),控制反应液温度在90-100℃,搅拌反应2小时。取样检测,LCMS显示基本反应完全。反应液冷却到60℃,浓缩,蒸去溶剂。加入乙酸乙酯(1升),搅拌30分钟后过滤,向滤饼中加入乙酸乙酯(1升)搅拌30分钟,过滤,滤饼40℃减压干燥60小时,得到黄色固体状化合物(167克,含量95.75%,纯度100%,收率88.25%)。
1H NMR(400MHz,DMSO-d6)d=9.92(br,1H),8.87(d,J=1.6Hz,1H),8.05(s,1H),7.71(dd,J=2.0,9.6Hz,1H),7.50(d,J=9.6Hz,1H);MS m/z:240.9(M+1),242.9(同位素M+1).
实施例1化合物1的制备
Figure PCTCN2016110254-appb-000017
制备7-溴-3-(2-甲氧基乙氧基)-4H-吡啶并[1,2-a]嘧啶-4-酮(6)
7-溴-3-羟基-4H-吡啶并[1,2-a]嘧啶-4-酮(140克,0.58摩尔)、2-溴乙基甲基醚(97克,0.70摩尔)、碳酸钾(241克,1.74摩尔)和N,N-二甲基甲酰胺(1.4升中,将0.241k克于95±5℃下,搅拌3.5~4.5小时。反应液在50±5℃下用油泵减压旋干。残余物加入二氯甲烷和甲醇混合液(1.6升,V/V=15:1),20±5℃下搅拌1.5±0.5小时,过滤,滤饼用二氯甲烷和甲醇混合液(0.64升,V/V=15:1)漂洗。收集滤液并减压浓缩,得到化合物3(180克,收率:100%,纯度:99.95%)。
1H NMR(400MHz,CDCl3)d=3.42(s,3H),3.76(t,J=4.8Hz,2H),4.31(t,J=4.8Hz,2H),7.44(d,J=9.6Hz,1H),7.54(dd,J=9.6Hz,2Hz,1H),8.52(s,1H),9.08(d,J=1.6Hz,1H);LCMS(ESI)m/z:301(同位素M+1).
Figure PCTCN2016110254-appb-000018
制备7-(5-氨基-6-甲氧基吡啶-3-基)-3-(2-甲氧基乙氧基)-4H-吡啶并[1,2-a]嘧啶-4-酮(7)
将7-溴-3-(2-甲氧基乙氧基)-4H-吡啶并[1,2-a]嘧啶-4-酮(175克,0.55摩尔)、2-甲氧基-5-(4,4,5,5-四甲基-1,3,2-二氧硼戊烷-2-基)吡啶-3-胺(158克,0.6摩尔)、碳酸钾(227克,1.64摩尔)、1,4-二氧六环(1.7升)和水(350毫升)加入圆底烧瓶中,加入Pd(dppf)Cl2(16.4克,0.016摩尔)。混合液在氮气保护下,在90-95℃搅拌4-4.5小时。反应结束后,反应液在外温50±5℃减压浓缩。向残余物中加入水加入到R1中,并搅拌0.5-1小时,过滤,滤饼用0.35千克水淋洗,减压旋干,在20℃下,向滤饼中加入二氯甲烷(1.164千克),搅拌0.5-1小时,过滤,滤饼在60℃下减压旋干。向滤饼中加入二氯甲烷(3.99千克)和甲醇(1.185千克)使其溶解。在20℃下,向溶液中加入TMT溶液(硫氰尿酸:1.16克,氯化钠:4.5克,乙醇:114.55克,氨水:14.65克,水:161克),搅拌18±0.5小时。过滤,滤液在45-50℃下减压浓缩。向粗品中加入水0.875千克,搅拌16±0.5小时。过滤,滤饼在45-50℃下减压旋干。用二氯甲烷(4.655千克)和甲醇(1.38千克)使其溶解。在20℃下,向溶液中加入TMT溶液(硫氰尿酸:1.16克,氯化钠:4.5克,乙醇:114.55克,氨水:14.65克,水:161克),搅拌16±0.5小时。过滤,滤液在45-50℃下减压浓缩。向粗品中加入水0.875千克,搅拌2±0.5小时。过滤,滤饼在45-50℃下减压旋干,得到产品(174克,纯度:96.96%,收率:84.59%)。
1H NMR(400MHz,DMSO-d6)d=8.91(d,J=1.6Hz,1H),8.21(s,1H),8.04(dd,J=9.6Hz,2Hz,1H),7.79(d,J=2Hz,1H),7.67(d,J=9.6Hz,1H),7.26(d,J=2.4Hz,1H),5.25(s,2H),4.22-4.24(m,2H),3.92(s,3H),3.66-3.69(m,2H),3.32(s,3H);LCMS(ESI)m/z:343(M+1).。
Figure PCTCN2016110254-appb-000019
制备N-(2-甲氧基-5-(3-(2-甲氧基乙氧基)-4-氧代-4H-吡啶并[1,2-a]嘧啶-7-基)吡啶-3-基)-2,4-二甲基噻唑-5-磺酰胺(1)
将7-(5-氨基-6-甲氧基吡啶-3-基)-3-(2-甲氧基乙氧基)-4H-吡啶并[1,2-a]嘧啶-4-酮(170g,454.86mmol)加入到3L圆底烧瓶R1中,向R1中加入吡啶(1.7L),将R1冷却至0-10度,向R1中滴加SM4(142.91g,659.54mmol)。滴加完毕,控制R1温度10-20度,搅拌20-21小时。取样检测,原料基本反应完。将反应液倒入到5L水中,加入3L乙酸乙酯,搅拌40分钟,混合液用硅藻土(200g)过滤, 滤饼用乙酸乙酯(700mL)淋洗,收集滤液,静置分层,分液,水相用乙酸乙酯(2L*4)萃取,合并有机相,用饱和食盐水(4L)洗,盐水相用乙酸乙酯(1L*2)萃取,合并所有有机相,并用无水硫酸钠(1KG)干燥,过滤,滤液浓缩,加入二氯甲烷(1L)使其完全溶解,浓缩。加入二氯甲烷(2.35L),加入活性炭16400A(23.5g),在40度下,搅拌2小时。过滤,滤液浓缩。向残余物中加入乙醇(1.38L),80度下搅拌16小时。冷却至室温,过滤,滤饼在50度下减压干燥得浅黄色产品(183g,纯度:98.8%,产率80%)。
1H NMR(400MHz,CHLOROFORM-d)d=9.09(s,1H),8.21(s,1H),8.17(d,J=2.4Hz,1H),8.01(d,J=2.4Hz,1H),7.74-7.67(m,2H),7.29(br,1H),4.35(t,J=4.8Hz,2H),3.97(s,3H),3.80(t,J=4.8Hz,2H),3.45(s,3H),2.64(s,3H),2.56(s,3H);LCMS(ESI)m/z:518(M+1).
实施例2 Ⅰ晶型的制备
取大约50mg的化合物化合物1加入0.3mL甲醇(乙腈或丙酮)形成悬浊液。悬浊液样品置于恒温均匀仪上(40℃)振摇2天(避光)。残留的固体物离心分离,并在40℃真空干燥箱中干燥过夜,得化合1的Ⅰ晶型。
实施例3 Ⅱ晶型的制备
Ⅱ晶型的制备过程同Ⅰ晶型,仅把溶剂甲醇改为0.3mL乙醇(0.35mL异丙醇或乙酸乙酯)。
实施例4 Ⅲ晶型的制备:
取大约50mg的化合物1加入0.35mL乙醇-水混合溶剂(乙醇-水3:1,v:v)形成悬浊液。悬浊液样品置于恒温均匀仪上(40℃)振摇(避光)1天后为溶液,离心后取上清液置于通风橱中自然挥发。残留的固体物在40℃真空干燥箱中干燥过夜,得化合物1的Ⅱ晶型。
实施例5 Ⅳ晶型的制备
Ⅳ晶型的制备过程同Ⅰ晶型,仅把溶剂甲醇变为0.35mL丙酮-水混合溶剂(丙酮-水1:2,v:v)。
实施例6 Ⅴ晶型的制备
取大约50mg的化合物1加入0.15mL四氢呋喃(THF),有少量固体残留,继续加入0.15mL THF使成溶液,离心后取上清液置于通风橱中自然挥发。残留的固体物在40℃真空干燥箱中干燥过夜,得化合1的Ⅴ晶型。
实施例7 Ⅵ晶型的制备
将化合物1(170克)溶于无水二氯甲烷(2.66千克),将上述溶液用硅胶(17 0克,100-200目)过滤,滤饼用二氯甲烷(2.66kg*3)淋洗。合并滤液,并在45-50℃减压浓缩至145克。向所得固体中加入无水乙醇(711克),混合液于80-85℃搅拌12-14小时。混合液冷却至20±10℃后,过滤。滤饼用无水乙醇(237克)淋洗后,40-45℃下真空干燥至恒重,得到N-(2-甲氧基-5-(3-(2-甲氧基乙氧基)-4-氧代-4H-吡啶并[1,2-a]嘧啶-7-基)吡啶-3-基)-2,4-二甲基噻唑-5-磺酰胺(133克,纯度:98.94%,收率:78.2%),为Ⅵ晶型。
Ⅵ晶型在高温,高湿及强光照条件下的固体稳定性试验
称取Ⅵ晶型样品约5mg,置于玻璃样品瓶的底部,摊成薄薄一层。样品用铝箔纸封瓶口,并在铝 箔纸上扎些小孔,保证样品能与环境空气充分接触,置于40℃/75%湿度条件恒温恒湿箱。另取25mgⅥ晶型样品,按上述方法放样,用于检测样品晶型。上述条件下放置的样品于第1月,2月,3月天取样检测,检测结果与0月的初始检测结果进行比较,试验结果见下表-7所示:
表-7Ⅵ晶型的固体稳定性试验
时间点(月) 外观 晶型 含量(%) 总杂质(%)
0 黄色粉末 Ⅵ晶型 99.8 0.18
1 黄色粉末 Ⅵ晶型 99.6 0.19
2 黄色粉末 Ⅵ晶型 100.3 0.17
3 黄色粉末 Ⅵ晶型 99.4 0.17
实验结论:本发明晶型稳定性好,易于成药。
实验例体外细胞活性测试
实验步骤和方法:
1.将MCF-7细胞以每孔2.5×104个的密度种进96孔板中(使用的培养液需为含10%FBS的完整培养液)。
2.第二天将孔中的培养液抽走,将某一个浓度(初步筛选)或一系列浓度(IC50测试)的化合物溶解在不含血清的培养液中,加入96孔板培养细胞2小时。
3.把胰岛素溶解在不含血清的培养液中,加入细胞培养30分钟,胰岛素终浓度为10微克/毫升。
4.等待反应时,按如下方法准备裂解液:
a)增强液(Enhancer Solution)需要提前从冰箱里取出融化。
b)将增强液(Enhancer Solution)用5X的裂解缓冲液(Lysis Buffer)稀释10倍,制备成浓缩裂解液。
c)将浓缩裂解液用双蒸水稀释5倍,制成裂解液。
5.将孔内的培养液吸净,并用PBS迅速的润洗一次。
6.每个孔加入150微升新鲜制备的裂解液,然后室温震荡10分钟。
7.确认所有细胞都已脱落后,将裂解液同细胞碎片一起转移到1.5毫升管内。
8.涡旋几次,使裂解液和细胞完全混合,然后将混合液在4℃用12000g离心10分钟。
9.计算出需要的ELISA-one微板条的数目。把多出的微板条从框架上取下,放回储存袋中密封好。使用微板条之前,先用200微升双蒸水润洗一下每个孔,以除去上面的防腐剂。
10.往每个孔中加入50微升的抗体混合液。(抗体混合液是通过将媒介抗体试剂和酶标抗体试剂等比例混合而成,注意制备抗体混合液时不要涡旋)
11.向ELISA-One微板的每个孔中加入25微升细胞裂解产物。用粘性封口膜盖住微板,室温下在微板震荡仪上孵育1小时。
12.每个孔用150微升1X清洗缓冲液洗3次。最后一次洗完后,将孔内的清洗缓冲液抽净。如果需要,可让1X清洗缓冲液在微板中停留最长30分钟,以留出时间准备底物混合液。
13.底物混合液应随用随配。向每个孔内加入100微升底物混合液,然后用锡箔纸封住微板,室温下在微板震荡仪上孵育10分钟。
14.向每个孔内加入10微升终止液,然后在微板震荡仪上稍微(5-10秒)混匀一下。
15.装配好相应的ELISA-One滤镜组,读出荧光信号强度。
实验结果见表1:
表1体外细胞活性测试结果
Figure PCTCN2016110254-appb-000020
注:A≤50nM。
结论:明化合物1对mTOR/PI3K抑制作用显著。

Claims (10)

  1. 化合物1的制备方法,
    Figure PCTCN2016110254-appb-100001
    其包含如下步骤:
    Figure PCTCN2016110254-appb-100002
    其中,
    碱C选自吡啶、2,6-二甲基吡啶、Et3N、4-DMAP、LiOH、Cs2CO3和K2CO3
    溶剂C选自吡啶、二氯甲烷、甲苯、乙腈、丙酮、DMF和THF;
    化合物7与化合物8的摩尔比选自1:1~3;
    化合物7与碱C的摩尔比选自1:1~3。
  2. 根据权利要求1所述的制备方法,其包括如下步骤,
    Figure PCTCN2016110254-appb-100003
    Figure PCTCN2016110254-appb-100004
    其中,
    碱A选自碳酸钾、碳酸钠、碳酸铯、氢氧化钾或氢氧化钠;
    溶剂a选自DMF、DMSO或NMP;
    碱B选自碳酸钾、碳酸钠、氢氧化钡、磷酸钾、碳酸铯、氟化钾、氟化铯、氢氧化钠、叔丁醇钾、叔丁醇钠、醋酸钾或醋酸钠;
    溶剂b选自1,4-二氧六环、DMSO、THF、1,4-二氧六环/水、或THF/水;
    所述溶剂b中,1,4-二氧六环或THF与水的体积比选自3~6:1,优选自5:1;
    催化剂选自Pd(dppf)Cl2或Pd(PPh3)4
  3. 作为制备化合物1中间体的下式化合物:
    Figure PCTCN2016110254-appb-100005
  4. 化合物1的Ⅰ晶型,其XRPD图谱如图1所示。
  5. 化合物1的Ⅱ晶型,其XRPD图谱如图4所示。
  6. 化合物1的Ⅲ晶型,其XRPD图谱如图7所示。
  7. 化合物1的Ⅳ晶型,其XRPD图谱如图10所示。
  8. 化合物1的Ⅴ晶型,其XRPD图谱如图13所示。
  9. 化合物1的Ⅵ晶型,其XRPD图谱如图16所示。
  10. 化合物1的Ⅰ晶型、Ⅱ晶型、Ⅲ晶型、Ⅳ晶型、Ⅴ晶型和Ⅵ晶型在制备治疗与mTOR/PI3K受体有关疾病的药物中的应用。
PCT/CN2016/110254 2015-12-16 2016-12-16 吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体 WO2017101829A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680072859.0A CN108368111B (zh) 2015-12-16 2016-12-16 吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510943897.6 2015-12-16
CN201510943897 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017101829A1 true WO2017101829A1 (zh) 2017-06-22

Family

ID=59055756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110254 WO2017101829A1 (zh) 2015-12-16 2016-12-16 吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体

Country Status (3)

Country Link
CN (1) CN108368111B (zh)
TW (1) TWI713655B (zh)
WO (1) WO2017101829A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021219101A1 (zh) * 2020-04-30 2021-11-04 广州嘉越医药科技有限公司 一种含杂环的化合物的应用
WO2022152296A1 (zh) * 2021-01-18 2022-07-21 广州嘉越医药科技有限公司 一种吡啶并[1,2-a]嘧啶酮类似物的应用
CN114788829A (zh) * 2021-01-25 2022-07-26 广州嘉越医药科技有限公司 一种吡啶并[1,2-a]嘧啶酮类似物的应用
CN115671289A (zh) * 2021-07-27 2023-02-03 广州嘉越医药科技有限公司 药物组合及其应用
WO2023051725A1 (zh) * 2021-09-30 2023-04-06 广州嘉越医药科技有限公司 一种药物组合及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448827A (zh) * 2006-05-22 2009-06-03 阿斯利康(瑞典)有限公司 吲哚衍生物
CN101754759A (zh) * 2007-05-18 2010-06-23 史密丝克莱恩比彻姆公司 用作pi3激酶抑制剂的喹啉衍生物
WO2010151735A2 (en) * 2009-06-25 2010-12-29 Amgen Inc. Heterocyclic compounds and their uses
CN103539777A (zh) * 2012-07-13 2014-01-29 广东东阳光药业有限公司 Pi3激酶调节剂及其使用方法和用途
WO2015192761A1 (zh) * 2014-06-17 2015-12-23 辰欣药业股份有限公司 作为mTOR/PI3K抑制剂的吡啶并[1,2-a]嘧啶酮类似物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677425B2 (ja) * 2009-06-29 2015-02-25 インサイト・コーポレイションIncyte Corporation Pi3k阻害剤としてのピリミジノン
CN105461712B (zh) * 2014-06-17 2019-01-29 上海嘉坦医药科技有限公司 作为mTOR/PI3K抑制剂的吡啶并[1,2-a]嘧啶酮类似物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448827A (zh) * 2006-05-22 2009-06-03 阿斯利康(瑞典)有限公司 吲哚衍生物
CN101754759A (zh) * 2007-05-18 2010-06-23 史密丝克莱恩比彻姆公司 用作pi3激酶抑制剂的喹啉衍生物
WO2010151735A2 (en) * 2009-06-25 2010-12-29 Amgen Inc. Heterocyclic compounds and their uses
CN103539777A (zh) * 2012-07-13 2014-01-29 广东东阳光药业有限公司 Pi3激酶调节剂及其使用方法和用途
WO2015192761A1 (zh) * 2014-06-17 2015-12-23 辰欣药业股份有限公司 作为mTOR/PI3K抑制剂的吡啶并[1,2-a]嘧啶酮类似物

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021219101A1 (zh) * 2020-04-30 2021-11-04 广州嘉越医药科技有限公司 一种含杂环的化合物的应用
EP4144734A4 (en) * 2020-04-30 2023-11-01 Guangzhou Joyo Pharmatech Co., Ltd APPLICATION OF A HETEROCYCLIC COMPOUND
WO2022152296A1 (zh) * 2021-01-18 2022-07-21 广州嘉越医药科技有限公司 一种吡啶并[1,2-a]嘧啶酮类似物的应用
CN114796228A (zh) * 2021-01-18 2022-07-29 广州嘉越医药科技有限公司 一种吡啶并[1,2-a]嘧啶酮化合物的应用
CN114796228B (zh) * 2021-01-18 2024-01-09 广州嘉越医药科技有限公司 一种吡啶并[1,2-a]嘧啶酮化合物的应用
CN114788829A (zh) * 2021-01-25 2022-07-26 广州嘉越医药科技有限公司 一种吡啶并[1,2-a]嘧啶酮类似物的应用
WO2022156803A1 (zh) * 2021-01-25 2022-07-28 广州嘉越医药科技有限公司 一种吡啶并[1,2-a]嘧啶酮类似物的应用
CN115671289A (zh) * 2021-07-27 2023-02-03 广州嘉越医药科技有限公司 药物组合及其应用
WO2023051725A1 (zh) * 2021-09-30 2023-04-06 广州嘉越医药科技有限公司 一种药物组合及其应用

Also Published As

Publication number Publication date
CN108368111A (zh) 2018-08-03
TW201725204A (zh) 2017-07-16
TWI713655B (zh) 2020-12-21
CN108368111B (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2017101829A1 (zh) 吡啶并[1,2-a]嘧啶酮类似物的晶型及其制备方法和中间体
WO2017101847A1 (zh) 吡啶并[1,2-a]嘧啶酮类似物、其晶型、其中间体及其制备方法
JP6092376B2 (ja) Jak1およびjak2の阻害剤
CN112047950B (zh) 咪唑并吡嗪类衍生物及其合成方法和应用
CN114174271B (zh) 吡嗪-2(1h)-酮类化合物的c晶型和e晶型及其制备方法
WO2017071607A1 (zh) 4H-吡唑并[1,5-α]苯并咪唑类化合物晶型及其制备方法和中间体
CN114269723B (zh) 吡嗪-2(1h)-酮类化合物的d晶型及其制备方法
CN114174270B (zh) 吡嗪-2(1h)-酮类化合物的a晶型和b晶型及其制备方法
JP6974618B2 (ja) Fgfr及びvegfr阻害剤としての化合物の塩形態、結晶形およびその製造方法
EP3511333B1 (en) Crystal form and salt form of 7h-pyrrolo[2,3-d]pyrimidine compound and preparation method therefor
WO2017050224A1 (zh) 喹啉衍生物的盐型、晶型及其制备方法和中间体
CN111606891B (zh) (1,1,1-三氯-2)氨基甲酸酯类衍生物及其制备方法和应用
CN117050073A (zh) 一种多取代苯基联咪唑并吡啶类化合物及合成方法与用途
CN115836069A (zh) 一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐、其制备方法及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874886

Country of ref document: EP

Kind code of ref document: A1