WO2019080886A1 - 强化传热管以及包括其的裂解炉和常减压加热炉 - Google Patents

强化传热管以及包括其的裂解炉和常减压加热炉

Info

Publication number
WO2019080886A1
WO2019080886A1 PCT/CN2018/111797 CN2018111797W WO2019080886A1 WO 2019080886 A1 WO2019080886 A1 WO 2019080886A1 CN 2018111797 W CN2018111797 W CN 2018111797W WO 2019080886 A1 WO2019080886 A1 WO 2019080886A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer tube
rib
tube
tube according
Prior art date
Application number
PCT/CN2018/111797
Other languages
English (en)
French (fr)
Inventor
王国清
刘俊杰
张利军
周丛
张兆斌
杨沙沙
申东发
李晓锋
杨士芳
杜志国
张永刚
石莹
郭敬杭
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711027588.XA external-priority patent/CN109724445B/zh
Priority claimed from CN201711023424.XA external-priority patent/CN109724444B/zh
Priority claimed from CN201711029500.8A external-priority patent/CN109724446B/zh
Priority claimed from CN201711057043.3A external-priority patent/CN109724448B/zh
Priority claimed from CN201711056794.3A external-priority patent/CN109724447B/zh
Priority to KR1020207015185A priority Critical patent/KR102442584B1/ko
Priority to US16/758,155 priority patent/US11976891B2/en
Priority to SG11202003475RA priority patent/SG11202003475RA/en
Priority to CA3079647A priority patent/CA3079647A1/en
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to RU2020115573A priority patent/RU2753091C1/ru
Priority to EP18871432.3A priority patent/EP3702715A4/en
Publication of WO2019080886A1 publication Critical patent/WO2019080886A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/203Tube furnaces chemical composition of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/006Tubular elements; Assemblies of tubular elements with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/165Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by using additional preformed parts, e.g. sleeves, gaskets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0024Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion apparatus, e.g. for boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0056Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for ovens or furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Definitions

  • the present invention relates to the field of fluid heat transfer technology, and in particular to an enhanced heat transfer tube and a cracking furnace and an atmospheric and vacuum heating furnace including the same.
  • the heat transfer tube refers to a heat transfer element capable of enhancing heat transfer between the inside and the outside of the tube, that is, transferring as much heat as possible per unit time of the unit heat transfer area.
  • Heat transfer tubes are used in many industries, such as thermal power generation, petrochemical, food, pharmaceutical, light industry, metallurgy, and ships.
  • the cracking furnace is an important equipment in petrochemical industry, and the heat transfer tube has been widely used in cracking furnaces.
  • the heat transfer tube there is a flow boundary layer between the fluid flow body and the tube wall surface, and the heat transfer resistance is large.
  • the coke gradually deposits and adheres to the inner surface of the furnace tube to form a dense focal layer during the cracking process, and the thermal resistance of the coke layer is extremely large. Therefore, the maximum resistance to heat transfer in the heat transfer tubes in the radiant section of the cracking furnace is in the boundary layer region of the inner wall of the tube.
  • No. 5,605,400 A discloses enhanced heat transfer by providing ribs or the like on the inner wall of the heat transfer tube.
  • the ribs not only increase the surface area of the heat transfer tube, but also increase the kinetic energy in the tube.
  • the ribs are in the form of a twisted sheet, and the ribs are usually disposed in the middle of the heat transfer tube, and the boundary layer of the fluid is thinned by the rotation of the fluid itself, thereby achieving the purpose of enhancing heat transfer.
  • the reinforced heat transfer tube having fins has a better heat transfer enhancement effect, the ribs are joined to the wall of the heat transfer tube by welding. During the operation, the stress at the welded portion is too high, so that the ribs and the wall of the enhanced heat transfer tube are often cracked.
  • the object of the present invention is to overcome the problem of shortening the service life of the enhanced heat transfer tube existing in the prior art, and to provide an enhanced heat transfer tube capable of reducing its own thermal stress and thereby enhancing the enhanced transmission.
  • the service life of the heat pipe is to overcome the problem of shortening the service life of the enhanced heat transfer tube existing in the prior art, and to provide an enhanced heat transfer tube capable of reducing its own thermal stress and thereby enhancing the enhanced transmission.
  • an aspect of the present invention provides an enhanced heat transfer tube including a tubular body having an inlet for entering a fluid and an outlet for flowing the fluid, the inner wall of the tube being disposed toward the tube a raised rib in the tubular body, the rib extending in a spiral shape along an axial direction of the tubular body, wherein the height of the rib is gradually increased from one end at least within a portion of the extending extent of the rib.
  • the present invention provides a cracking furnace or an atmospheric and vacuum heating furnace comprising a radiation chamber in which at least one furnace tube assembly is installed, the furnace tube assembly comprising a plurality of sequentially arranged furnace tubes and An enhanced heat transfer tube that connects adjacent furnace tubes, the enhanced heat transfer tubes being the enhanced heat transfer tubes described above.
  • Figure 1 is a partial cross-sectional view of a reinforced heat transfer tube in accordance with a preferred embodiment of the present invention, wherein the height of the ribs gradually increases from the inlet end at least over a portion of the rib.
  • FIG. 2 is an end elevational view of a reinforced heat transfer tube in accordance with another preferred embodiment of the present invention, wherein the height of the ribs gradually increases from both ends toward the middle.
  • Figure 3 is a perspective view of the enhanced heat transfer tube of Figure 2, wherein the ribs have a trapezoidal cross section and a transition angle of 35°.
  • FIG. 4 is a perspective view of a heat-strengthening tube according to another preferred embodiment of the present invention, wherein the height of the ribs gradually increases from the both ends toward the middle only at a portion near the both ends, and the height of the ribs is at the intermediate portion. Wave changes.
  • Fig. 5 is a perspective view showing a heat transfer tube according to another embodiment of the present invention, wherein the rib has a trapezoidal cross section and a transition angle of 38°, and the height of the rib gradually increases from the outlet end.
  • Fig. 6 is a perspective view showing a heat transfer tube of another preferred embodiment of the present invention, wherein the rib has a trapezoidal cross section and a transition angle of 35°.
  • Figure 7 is an end elevational view of a reinforced heat transfer tube in accordance with another preferred embodiment of the present invention, wherein the ribs have a trapezoidal cross section, the number of gaps provided in the ribs is one, and the transition angle is 35°.
  • Figure 8 is a side perspective view of a heat transfer tube of another preferred embodiment of the present invention, wherein the ribs are triangular in a side view;
  • Fig. 9 is a perspective view showing a heat transfer tube of another preferred embodiment of the present invention, wherein the rib has a trapezoidal cross section, and the number of gaps provided in the rib is 1 and the transition angle is 35°.
  • Figure 10 is a graph showing the stress distribution of the enhanced heat transfer tube of the present invention and the prior art heat transfer tube.
  • Figure 11 is a perspective view showing a heat-strengthening tube of another preferred embodiment of the present invention, wherein the rib has a trapezoidal cross section, the number of gaps provided in the rib is 2, and the transition angle is 38°.
  • Figure 12 is a perspective view of a heat-strengthening tube of another preferred embodiment of the present invention, wherein the rib has a trapezoidal cross section with a transition angle of 35°, the rib of the rib facing the central axis of the tube
  • the top surface is formed as a third transition surface that is concave.
  • Figure 13 is a schematic cross-sectional view showing the heat transfer tube of Figure 12;
  • Figure 14 is a schematic view showing the structure of a radiant furnace tube assembly in a cracking furnace according to a preferred embodiment of the present invention.
  • Figure 15 is a perspective view of a heat-strengthening tube of a preferred embodiment of the present invention, wherein a heat insulating member is disposed outside the tube body, the rib portion has a trapezoidal cross section and a transition angle of 30°.
  • Figure 16 is a schematic cross-sectional view showing the heat transfer tube of Figure 15;
  • Figure 17 is a perspective view showing a heat-strengthening tube of another preferred embodiment of the present invention, wherein a heat insulating member is disposed outside the tube body, the rib portion has a trapezoidal cross section and a transition angle of 35°.
  • Figure 18 is a schematic cross-sectional view showing the heat transfer tube of Figure 17;
  • Fig. 19 is a perspective view showing another embodiment of the reinforced heat transfer tube according to another preferred embodiment of the present invention, wherein a heat insulating member is disposed outside the tube body, the rib portion has a trapezoidal cross section and a transition angle of 40°.
  • Figure 20 is a schematic cross-sectional view showing the heat transfer tube of Figure 19;
  • Figure 21 is a perspective view of a heat transfer tube of another preferred embodiment of the present invention, wherein the connecting member supported between the tube body and the heat insulating member is a second connecting piece.
  • Fig. 22 is a perspective view showing another angle of the heat transfer tube shown in Fig. 21.
  • FIG. 23 is a perspective view of a heat-strengthening tube according to another preferred embodiment of the present invention, wherein a heat insulating member is disposed outside the tube body, the rib portion has a trapezoidal cross section, and the number of gaps provided in the rib sheet is 1, The transition angle is 35°.
  • Figure 24 is a schematic cross-sectional view showing the heat transfer tube of Figure 23;
  • Figure 25 is a perspective view showing another embodiment of the reinforced heat transfer tube according to another preferred embodiment of the present invention, wherein a heat insulating member is disposed outside the tube body, the rib portion has a trapezoidal cross section, a transition angle of 35°, and the orientation of the rib sheet
  • the top surface of the central axis of the tubular body is formed as a third transition surface that is concave.
  • Figure 26 is a schematic cross-sectional view showing the heat transfer tube shown in Figure 25.
  • FIG. 27 is a schematic cross-sectional structural view of a heat-strengthening heat transfer tube according to a preferred embodiment of the present invention, wherein a heat insulating layer is provided on an outer surface of the pipe body, the rib piece has a trapezoidal cross section, and the number of gaps provided in the rib piece is 1 The transition angle is 35°.
  • Figure 28 is a partial structural view of the heat-strengthening heat transfer tube shown in Figure 27, wherein an outer surface of the tube body is provided with a heat insulating layer, the heat insulating layer including the outer surface of the tube body sequentially stacked Metal alloy layer, oxide layer and ceramic layer.
  • 1-enhanced heat transfer tube 10-tube body; 100-inlet; 101-outlet; 11-ribbed; 110-first end face; 111-top surface; 112-side wall face; 113-smooth transition fillet; Second end face; 12-gap; 120-side wall; 13-through hole; 14-insulation member; 140-straight pipe segment; 141-first tapered pipe segment; 142-second tapered pipe segment; 15-void; - first connecting piece; 161 - second connecting piece; 162 - connecting rod; 17 - insulating layer; 170 - metal alloy layer; 171 - ceramic layer; 172 - oxide layer;
  • orientation words used such as “up, down, left, and right", are generally used in conjunction with the orientation shown in the drawings and the orientation in the actual application, “inside, The outer” is relative to the axis of the heat transfer tube.
  • the height of the rib refers to the height or distance between the top surface of the rib facing the central axis of the tubular body and the inner wall of the tubular body.
  • the axial length of the ribs refers to the length or distance of the ribs along the central axis in the side view of the reinforced heat transfer tube.
  • the present invention contemplates providing an enhanced heat transfer tube in the radiant furnace tube assembly to enhance heat transfer to reduce or prevent the formation of a char layer.
  • a plurality of radiant furnace tube assemblies are disposed in the radiant chamber of the cracking furnace, and each radiant furnace tube assembly is provided with a reinforced heat transfer tube 1, and each radiant furnace tube assembly is provided with a radiant furnace tube 2 reinforced heat transfer tubes 1 arranged axially apart, each reinforced heat transfer tube 1 has an inner diameter of 65 mm, and in each radiant furnace tube assembly, radiation between two adjacent reinforced heat transfer tubes 1 The axial length of the furnace tube 2 is 50 times the inner diameter of the heat transfer tube 1. It should be understood that the number and spacing of the enhanced heat transfer tubes 1 may vary depending on the particular application without departing from the scope of the invention.
  • the enhanced heat transfer tube 1 includes a tubular body 10 having an inlet 100 for fluid entry and an outlet 101 for the fluid to flow out.
  • the inner wall of the tubular body 10 is disposed facing the tubular body 10.
  • the raised ribs 11 and the ribs 11 spirally extend in the axial direction of the pipe body 10.
  • the height of the rib 11 that is, the distance between the top surface 111 of the rib 11 facing the central axis of the tube 10 and the inner wall of the tube 10 is preferably greater than 0 and less than or equal to 150 mm.
  • the height of the ribs 11 may be 10 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm or 140 mm.
  • the height of the ribs 11 gradually increases from one end at least over a portion of the extent of the ribs.
  • the height of the rib 11 gradually increases in the direction from the inlet 100 to the outlet 101; however, it should be understood that the height of the rib 11 may also be from the outlet 101 to the inlet 100.
  • the direction of extension gradually increases, as shown in FIG.
  • the height of the ribs 11 may also gradually increase in the direction from the both ends to the middle, as shown in FIGS. 2-3.
  • the height of the rib 11 may be gradually increased from the both ends toward the middle only at a portion close to both ends, and at the intermediate portion, the height of the rib 11 is wavy, as shown in Fig. 4.
  • FIG. 10 is a graph showing the stress distribution of the enhanced heat transfer tube of the present invention and the prior art heat transfer tube.
  • the joint between the rib and the tube wall of the enhanced heat transfer tube has a significant stress concentration (as shown in the upper half of FIG. 10);
  • the thermal stress of the enhanced heat transfer tube 1 of the present invention is significantly reduced as compared to the technical heat transfer tube (as shown in the lower half of FIG. 10).
  • the ratio of the height of the highest portion of the rib 11 to the height of the lowest portion of the rib 11 is 1.1 - 1.6: 1, for example, the height of the highest portion of the rib 11 and the rib
  • the ratio of the heights of the lowest portions of the sheets 11 is 1.2:1, 1.3:1, 1.4:1 or 1.5:1.
  • a plurality of, for example, two, three, or four ribs 11 may be provided on the inner wall of the pipe body 10, and the plurality of ribs 11 may be clockwise or counterclockwise as seen from the direction of the inlet 100.
  • the arrangement of the plurality of ribs 11 into the above structure not only improves the heat transfer effect of the heat transfer tube 1 but also reduces the thermal stress of the heat transfer tube 1 and improves the ability of the heat transfer tube 1 to withstand high temperatures. The service life of the heat transfer tube 1 is greatly extended.
  • the plurality of fins 11 may be enclosed at the center of the pipe body 10 to form a through hole 13 extending in the axial direction of the pipe body 10 so as to facilitate the flow of the fluid entering the pipe body 10 as viewed in the direction of the inlet 100. , reducing the pressure drop.
  • the ratio between the diameter d of the through hole 13 and the inner diameter D of the pipe body 10 may preferably be d: D is greater than 0 and less than 1, for example, d: D may be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 or 0.9.
  • the angle of rotation of the ribs 11 may preferably be 90-1080.
  • the angle of rotation of the ribs 11 may be 120, 180, 360, 720 or 1080.
  • the ratio of the axial length of the rib 11 rotated by 180° to the inner diameter D of the tubular body 10 is a twist ratio which determines the length of each rib 11 and the angle of rotation of the rib 11 determines the rib 11
  • the degree of distortion that affects heat transfer efficiency may be 2.3 to 2.6.
  • the twist ratio of the fins 11 may be 2.35, 2.4, 2.5, 2.49 or 2.5.
  • the present invention also provides a cracking furnace comprising a radiant chamber in which at least one radiant furnace tube assembly is mounted, as shown in Figure 14, the radiant furnace tube assembly comprising a plurality of sequential arrangements
  • the radiant furnace tube 2 and the reinforced heat transfer tube connecting the adjacent radiant furnace tubes 2, that is, the reinforced heat transfer tubes 1 may be axially disposed in the radiant furnace tubes in a spaced manner, the reinforced heat transfer tubes being the reinforcement provided by the present invention.
  • Heat transfer tube 1. By providing the enhanced heat transfer tube 1 provided by the present invention in the radiation chamber of the cracking furnace, not only the heat transfer effect of the fluid in the radiation chamber can be improved, but also the cracking is enhanced by reducing the thermal stress of the heat transfer tube 1. The operating cycle of the furnace and the ability to withstand high temperatures. Specifically, two, three, four, five, six, seven, eight, nine or ten enhanced heat transfer tubes 1 may be provided in the radiant furnace tube assembly.
  • a plurality of radiant furnace tube assemblies are disposed in the radiant chamber of the cracking furnace, and the radiant heat transfer tubes 1 are disposed in each of the three radiant furnace tube assemblies, and each radiant furnace tube assembly is disposed along the radiant furnace tubes 2
  • Two reinforced heat transfer tubes 1 arranged axially apart, each reinforced heat transfer tube 1 has an inner diameter of 65 mm, and in each radiant furnace tube assembly, a radiant tube between two adjacent reinforced heat transfer tubes 1 The axial length of 2 is 50 times the inner diameter of the heat transfer tube 1.
  • Each of the reinforced heat transfer tubes 1 has a structure in which two ribs 11 are disposed on the inner wall of the tube body 10, and the two ribs 11 are clockwise vortexed as viewed from the direction of the inlet 100, and the two ribs 11 are in the tube.
  • the center of the body 10 is enclosed to form a through hole 13 extending in the axial direction of the pipe body 10.
  • the ratio of the diameter of the through hole 13 to the inner diameter of the pipe body 10 is 0.6, and the rotation angle of each rib 11 is 180°.
  • the twist ratio of each of the fins 11 is 2.5, and the height of the fins 11 gradually increases in the extending direction from the inlet 100 to the outlet 101, and the ratio of the height of the highest portion of the fins 11 to the height of the lowest portion of the fins 11 It is 1.3:1, wherein the cracking furnace has an outlet temperature of 820-830°.
  • the height of the rib 11 may also gradually increase in the extending direction from the outlet 101 to the inlet 100, and the height of the highest portion of the rib 11 and the height of the lowest portion of the rib 11 The ratio is 1.4:1 and the rest of the conditions are unchanged.
  • the height of the fins 11 can also be gradually increased in the direction from the both ends to the middle, and the remaining conditions are unchanged.
  • a reinforcing heat transfer tube of the prior art wherein only one rib 11 is provided in the tube body, the rib 11 extends in a spiral shape in the axial direction of the tube body, and the rib 11 separates the inside of the tube body into The two chambers that are not connected to each other have the same conditions.
  • the enhanced heat transfer tube provided by the invention is disposed in the cracking furnace, so that the heat transfer load is increased by up to 6620w, the heat transfer efficiency is greatly improved, and the pressure drop is greatly reduced, and at the same time, the heat transfer tube is strengthened.
  • the maximum thermal stress is reduced by about 50%, which greatly improves the service life of the enhanced heat transfer tube.
  • the ribs 11 may extend continuously or in sections.
  • the rib 11 When the rib 11 is extended in sections, the rib 11 includes a plurality of rib sections divided by the gap 12. Accordingly, when the ribs 11 are continuously extended, the ribs 11 can be considered to include a single rib section. Therefore, the rib 11 has one or a plurality of rib sections extending in a spiral shape in the axial direction of the pipe body 10. It should be understood that the length of each rib section may be the same or different.
  • each rib section includes a first end surface facing the inlet 100 and a second end surface facing the outlet 101.
  • At least one of the first end surface and the second end surface of at least one of the rib sections is formed as a transition surface along a direction in which the spiral extends.
  • the first end surface 110 closest to the inlet 100 is referred to as a first transition surface
  • the second end surface 115 closest to the outlet 101 is referred to as a second transition surface
  • the first end surface and the second end surface defined by the side walls 120 are referred to as a fourth transition surface.
  • the transition surfaces formed by the first end surface and/or the second end surface of each rib section may be the same or different .
  • transition surface may be a curved surface or a flat surface.
  • the curved surface may be convex or concave.
  • the curved surface is concave to further enhance the heat transfer effect of the heat transfer tube and further reduce the thermal stress of the heat transfer tube.
  • the transition surface can also reduce the impact of the fluid on the ribs.
  • Transition angle refers to the angle between the transition plane of the transition surface or the transition surface at the joint location (when the transition surface is a curved surface) and the tangent plane of the tube wall. The transition angle extends at an angle greater than or equal to 0° and less than 90°.
  • the first end face 110 of the rib 11 closest to the inlet 100 is formed as a first transition face along the direction of the spiral extension.
  • the rib 11 projecting toward the inside of the pipe body 10 is provided on the inner wall of the pipe body 10, and the first end face 110 of the rib 11 closest to the inlet 100 is formed as a first transition face along the spiral extending direction, thereby reinforcing
  • the heat transfer tube has a good heat transfer effect, and at the same time, can reduce the thermal stress of the heat transfer tube 1 and correspondingly improve the ability of the heat transfer tube 1 to resist local overheating, thereby improving the service life of the heat transfer tube.
  • the first end surface 110 is formed as a first transition surface, which has a strong turbulence effect on the fluid in the tube body 10, and reduces the coking phenomenon.
  • the above-described reinforced heat transfer tube 1 is suitable for use in a heating furnace and is also suitable for use in a cracking furnace.
  • the above-described reinforced heat transfer tube 1 may be installed in a cracking furnace such as an ethylene cracking furnace so that the fluid in transit may enter the tube 10 of the heat-enhancing heat transfer tube 1 from the inlet 100, and thereafter, under the action of the ribs 11.
  • the fluid becomes a swirling flow, the fluid destroying the boundary layer due to the tangential velocity, reducing the coking rate, prolonging the life cycle of the cracking furnace, and at the same time, due to the rib 11 closest to the inlet 100
  • the one end surface 110 is formed as a first transition surface along the direction in which the spiral extends, thereby reducing the thermal stress of the heat transfer tube 1 and prolonging the service life of the heat transfer tube 1.
  • the first transition surface is formed along the spiral extending direction, wherein the first transition surface has a slope shape in a direction extending along the spiral.
  • the above-described reinforced heat transfer tube 1 is suitable for use in a heating furnace and is also suitable for use in a cracking furnace.
  • the fluid in the heat transfer tube 1 is not particularly limited, and may be selected according to the actual application environment of the heat transfer tube 1.
  • the first transition surface may be formed as a first curved surface.
  • the first curved surface may be convex or concave, and preferably, the first curved surface is concave to further improve the heat transfer effect of the heat transfer tube 1 and further reduce the heat transfer tube 1 Thermal Stress.
  • the first curved surface may be a partial paraboloid intercepted on a paraboloid.
  • transition angle of the first transition surface may be greater than or equal to 0° and less than 90°, so that the thermal stress of the heat transfer tube 1 can be further reduced, and the service life of the heat transfer tube 1 is greatly improved.
  • the transition angle of the first transition surface may be 10°, 15°, 20°, 25°, 30°, 35°, 38°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80° or 85°.
  • the second end surface 115 of the rib 11 closest to the outlet 101 may be formed as a second transition surface along the spiral extending direction, wherein the second end surface 115 extends along the spiral
  • the direction can be sloped, which correspondingly increases the service life of the heat transfer tube 1.
  • the second transition surface may be formed as a second curved surface.
  • the second curved surface may be convex, and the second curved surface may also be concave.
  • the second curved surface may be concave.
  • transition angle of the second transition surface is greater than or equal to 0° and less than 90°, so that the thermal stress of the heat transfer tube 1 can be further reduced, and the service life of the heat transfer tube 1 is greatly improved.
  • the transition angle of the second transition surface may be 10, 15, 20, 25, 30, 35, 38, 40, 45, 50, 55, 60, 65, 70°, 75°, 80° or 85°.
  • the top surface 111 of the rib 11 facing the central axis of the pipe body 10 can be formed as a third transition surface, so that the heat transfer effect of the heat transfer tube 1 can be reduced without affecting the heat transfer effect of the heat transfer tube 1.
  • the thermal stress of the heat transfer tube 1 is strengthened.
  • the third transition surface is concave.
  • the third transition surface has a parabolic shape.
  • the two side wall faces 112 of the ribs 11 facing each other are gradually approached in the direction from the inner wall of the pipe body 10 to the center of the pipe body 10, that is, each of the side wall faces 112 can be inclined, so that The ribs 11 are caused to enhance the disturbance to the fluid entering the pipe body 10, thereby improving the heat transfer effect while further reducing the thermal stress of the heat transfer tube 1 .
  • the cross section of the rib 11 which is taken in a plane parallel to the radial direction of the tubular body 10 may be substantially trapezoidal or trapezoidal.
  • the cross section of the rib 11 may be substantially rectangular.
  • a joint of at least one of the two side wall faces 112 of the ribs 11 opposed to the inner wall of the tube body 10 may be formed with a smooth transition fillet 113.
  • the radius of the smooth transition fillet 113 is greater than 0 and less than or equal to 10 mm, and the radius of the smooth transition fillet 113 is set within the above range, which can further reduce the thermal stress of the heat transfer tube 1 and enhance the heat transfer tube 1 The service life.
  • the radius of the smooth transition fillet 113 may be 5 mm, 6 mm, or 10 mm.
  • the angle formed by each of the side wall faces 112 and the inner wall of the pipe body 10 at the joints with each other may be 5°-90°, that is, each of the side wall faces 112 and the inner wall of the pipe body 10 are at the joints of the pipes
  • the angle between the cut planes may be 5°-90°, and the angle is set within the above range, which can further reduce the thermal stress of the heat transfer tube 1 and improve the service life of the heat transfer tube 1.
  • the angle formed by each of the side wall faces 112 and the inner wall of the tubular body 10 at the junction with each other may be 20°, 30°, 40°, 45°, 50°, 60°, 70° or 80°.
  • the ribs 11 may be provided with a gap 12 to enable the ribs 11 to be spaced apart, which not only allows the heat transfer tube 1 to have a good heat transfer effect, but also reduces the heat transfer tube 1 The thermal stress also increases the ability to resist local over-temperature.
  • the reinforced heat transfer tube 1 provided with the gap 12 is applied to a heating furnace or a cracking furnace, it is also possible to increase the operating cycle of the heating furnace or the cracking furnace.
  • the number of the gaps 12 is not limited, and can be selected according to actual needs. For example, one gap 12 may be provided, or two, three, four or five gaps may be provided. When a plurality of gaps 12 are provided, the plurality of gaps 12 are preferably arranged along the extending direction of the ribs 11.
  • both side walls 120 of the gap 12 may be formed as transition faces, and the distance between the two side walls 120 is near the inner wall of the pipe body 10 to the inner wall away from the pipe body 10. The direction gradually increases.
  • the distance between the two sidewalls 120, that is, the gap 12 may be greater than 0 and less than or equal to 10000 mm.
  • the distance between the two sidewalls 120 may be 1000 mm, 2000 mm, 3000 mm, 4000 mm, 5000 mm, 6000 mm, 7000 mm, 8000mm or 9000mm.
  • the fourth transition surface may be recessed in a direction away from the center of the gap 12.
  • Example 11 Same as Example 11, except that the first transition surface and the second transition surface described above are provided, the transition angle of the first transition surface is 40°, and the transition angle of the second transition surface is 40° .
  • Example 21 wherein the difference is that the ratio of the height of the highest portion of the rib 11 to the height of the lowest portion of the rib 11 is 1.4:1, and the transition angle of the first transition surface is 35°, The transition angle of the second transition surface is 35°, and the cross section of each rib 11 is taken to be substantially triangular in cross section taken along a plane parallel to the radial direction of the pipe body 10, and the remaining conditions are unchanged.
  • the difference is that the heat transfer tube 1 is used for the atmospheric and vacuum heating furnace, the inner diameter of each of the enhanced heat transfer tubes 1 is 75 mm, and the transition angle of the first transition surface is 60°.
  • the transition angle of the second transition surface is 60°, wherein the furnace outlet temperature is 406°.
  • the structure of the enhanced heat transfer tube is changed, that is, the heat transfer tube of the prior art is provided, wherein only one rib 11 is provided in the tube body, and the rib 11 is along the axial direction of the tube body.
  • the direction extends in a spiral shape, and the rib 11 separates the inside of the tube body into two chambers which are not connected to each other, and the remaining conditions are unchanged.
  • the structure of the enhanced heat transfer tube is changed, that is, the prior art heat transfer tube is provided, wherein only one rib 11 is provided in the tube body, and the rib 11 is along the axial direction of the tube body.
  • the direction extends in a spiral shape, and the rib 11 separates the inside of the tube body into two chambers which are not connected to each other, and the remaining conditions are unchanged.
  • the enhanced heat transfer tube provided by the invention is disposed in the cracking furnace, so that the heat transfer load is increased by up to 6550w, the heat transfer efficiency is greatly improved, and the pressure drop is greatly reduced, and at the same time, the maximum heat transfer tube is strengthened.
  • the thermal stress is reduced by more than 50%, which greatly improves the service life of the enhanced heat transfer tube.
  • Example 23 After the normal-pressure reduction furnaces of Example 23 and Comparative Example 22 were operated under the same conditions, the respective detection results are shown in Table 2.2 below.
  • the atmospheric and vacuum heating furnace has a better heat transfer effect, and the heat transfer tube has less thermal stress.
  • the exterior of the tubular body 10 is provided with a thermal insulation 14 that at least partially surrounds the outer circumference of the tubular body 10.
  • a thermal insulation 14 that at least partially surrounds the outer circumference of the tubular body 10.
  • the heat insulating member 14 can completely surround the outer circumference of the pipe body 10 in the circumferential direction of the pipe body 10, that is, 360° around the outer circumference of the pipe body 10, and the heat insulating member 14 can also be in the circumferential direction of the pipe body 10.
  • the outer circumference of the pipe body 10 is partially surrounded by the outer circumference of the pipe body 10.
  • the heat insulation member 14 may have a suitable angle around the outer circumference of the pipe body 10 according to actual needs, and it should be noted that when the above-described reinforced heat transfer tube 1 is applied to a cracking furnace, and the outside of the tube body 10 is provided with a heat insulating member 14 partially surrounding the outer circumference of the tube body 10, it is preferable to provide a heat insulating member 14 on the heat receiving surface of the tube body 10. .
  • the heat insulating member 14 may be preferably disposed on the outside of the pipe body 10 provided with the ribs 11, so that the ribs 11 are not easily detached from the pipe body 10, and the use of the heat-strengthening heat-transfer pipe 1 can be improved. life.
  • the heat insulating member 14 can be tubular, and the heat insulating member 14 is preferably sleeved on the outside of the pipe body 10, which can further reduce the temperature of the pipe wall of the pipe body 10, thereby further reducing the heat transfer enhancement. Thermal stress of tube 1.
  • the shape and structure of the heat insulating member 14 it is not particularly limited. As shown in FIG. 15, the heat insulating member 14 may have a cylindrical shape, or as shown in FIG. 17, the heat insulating member 14 may have an elliptical shape.
  • the manner of disposing the heat insulating member 14 is not particularly limited. As shown in FIG. 19 and FIG. 20, the heat insulating member 14 may be attached to the outer surface of the pipe body 10, or as shown in FIGS. 22 and 23. As shown, the heat insulating member 14 can be sleeved on the outside of the pipe body 10, and a gap 15 can be left between the heat insulating member 14 and the outer wall of the pipe body 10, due to the outer wall of the heat insulating member 14 and the pipe body 10. A gap 15 is left therebetween, which further lowers the temperature of the tube wall of the tube 10 in use, thereby further reducing the thermal stress of the heat transfer tube 1.
  • connection between the heat insulating member 14 and the tube body 10 may be provided with a connection between the heat insulating member 14 and the tube body 10.
  • the structural form of the connecting member is not particularly limited as long as the heat insulating member 14 and the tubular body 10 can be connected.
  • the connector may include a first connecting piece 160 that may extend in an axial direction parallel to the tubular body 10; as shown in FIG. 21, the connecting member may include The second connecting piece 161, the second connecting piece 161 may extend spirally along the outer wall of the pipe body 10; as shown in FIG. 15 and FIG.
  • the connecting piece may include a connecting rod 162, and both ends of the connecting rod 162 may be They are respectively connected to the outer wall of the pipe body 10 and the inner wall of the heat insulating member 14. It is also understood that any two or more of the connectors of the above three configurations may be optionally disposed between the heat insulating member 14 and the tubular body 10.
  • the connector is obtained from a hard material such as 35Cr45Ni or from a soft material such as ceramic fiber.
  • the thermal insulation 14 can include a straight tubular section 140 and a first tapered tubular section 141 and a second tapered tubular section that are coupled to the first and second ports of the straight tubular section 140, respectively.
  • first tapered tube segment 141 is tapered in a direction from the first port to away from the first port
  • second tapered tube segment 142 is adjacent to the second port to away from the first
  • the direction of the two ports is tapered, and the heat insulating member 14 is disposed in the above structure, so that the temperature of the pipe wall of the pipe body 10 is effectively reduced, and the temperature variation in the axial direction of the pipe body 10 is relatively uniform.
  • the thermal stress of the heat transfer tube 1 is also reduced.
  • an angle formed between the outer wall surface of the first tapered tube section 141 and the horizontal plane is preferably 10-80°, specifically, an angle formed between the outer wall surface of the first tapered tube section 141 and the horizontal plane. It may be 20°, 30°, 40°, 50°, 60° or 70°; the angle between the outer wall surface of the second tapered tube section 142 and the horizontal plane is preferably 10-80°, and the second The angle between the outer wall surface of the tapered tube section 142 and the horizontal plane may be 20°, 30°, 40°, 50°, 60° or 70°.
  • the length of the heat insulating member 14 in the axial direction of the pipe body 10 is preferably 1-2 times the length of the pipe body 10, and the axial length of the heat insulating member 14 is set within the above range, which can be further reduced in use.
  • each rib 11 is taken in a section parallel to the radial direction of the pipe body 10 to obtain a substantially trapezoidal cross section.
  • the angle between the side wall surface 112 and the inner wall of the pipe body 10 at the junction with each other is 45°.
  • the heat insulating member 14 has an elliptical shape, the transition angle of the first transition surface is 35°, and the transition angle of the second transition surface is 35°, and the remaining conditions are unchanged. .
  • the first transition surface has a transition angle of 40°
  • the second transition surface has a transition angle of 40°. The rest of the conditions are unchanged.
  • the prior art enhanced heat transfer tube is disposed, wherein no heat insulating member is disposed outside the tube body, and only one rib 11 is disposed in the tube body, and the rib 11 is spiraled along the axial direction of the tube body.
  • the ribs 11 extend the interior of the tubular body into two chambers that are not connected to each other, and the remaining conditions are unchanged.
  • the enhanced heat transfer tube provided by the invention is disposed in the cracking furnace, the heat transfer load is increased, the heat transfer efficiency is greatly improved, and the pressure drop is greatly reduced, and the maximum heat of the heat transfer tube is reduced.
  • the stress greatly increases the service life of the heat transfer tube.
  • the outer surface of the pipe body 10 is provided with a heat insulating layer 17.
  • a heat insulating layer 17 By providing the heat insulating layer 17 on the outer surface of the pipe body 10, heat transfer between the high temperature flue gas and the outer wall of the pipe body 10 is hindered, and the temperature of the outer wall of the pipe body 10 can be lowered, thereby reducing the pipe body 10 and the ribs 11
  • the temperature difference is such that the thermal stress of the heat transfer tube 1 is effectively reduced, the service life of the heat transfer tube 1 is prolonged, and the heat resistance layer 17 is provided, and the high temperature resistance and heat of the heat transfer tube 1 are also improved. Impact properties and high temperature corrosion resistance.
  • the above-described reinforced heat transfer tube 1 When the above-described reinforced heat transfer tube 1 is applied to a cracking furnace, long-term stable operation of the cracking furnace can be ensured. Since the ribs 11 are disposed in the tubular body 10, the fluid entering the tubular body 10 can become a swirling flow which, due to the tangential velocity, destroys the boundary layer and reduces the coking rate.
  • the heat insulating layer 17 may be preferably disposed on the outside of the pipe body 10 provided with the ribs 11, so that the ribs 11 are not easily detached from the pipe body 10, and the heat of the heat transfer tube 1 can be reduced. stress.
  • the heat insulation layer 17 may include a metal alloy layer 170 disposed on the outer surface of the tube body 10 and a ceramic layer 171 on the metal alloy layer 170.
  • a metal alloy layer 170 disposed on the outer surface of the tube body 10
  • a ceramic layer 171 on the metal alloy layer 170 By providing the metal alloy layer 170 and the ceramic layer 171 on the metal alloy layer 170 on the outer surface of the pipe body 10, the heat insulating effect of the heat insulating layer 17 can be improved to further reduce the thermal stress of the heat transfer tube 1.
  • the metal alloy layer 170 can be formed by a metal alloy material including M, Cr, and Y, wherein M is selected from one or more of Fe, Ni, Co, and Al, and M is selected as two of them.
  • the metal alloy layer 170 may be formed of a metal alloy material including Ni, Co, Cr, and Y, and when the metal alloy layer 170 contains Ni and Co, the heat insulation of the heat insulating layer 17 can be further improved. The ability and the oxidation resistance and hot corrosion resistance of the heat insulating layer 17 are improved.
  • the content of each metal in the metal alloy material it can be configured according to actual needs, and there is no particular requirement.
  • the weight fraction of Al may be 5-12%, and the weight fraction of Y may be 0.5-0.8%, which can improve the firmness of the heat insulating layer 17, while reducing the oxidation rate of the metal alloy layer 170, and the weight fraction of Cr can be It is 25-35%.
  • the metal alloy material may be sprayed on the outer surface of the tube body 10 to form the metal alloy layer 170 by means of low pressure plasma, atmospheric plasma or electron beam-physical vapor deposition.
  • the metal alloy layer 170 may have a thickness of 50 to 100 ⁇ m.
  • the metal alloy layer 170 may have a thickness of 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, or 90 ⁇ m.
  • an additive material may be added to the metal alloy material for preparing the metal alloy layer 170, that is, the metal alloy layer 170 may be made of a metal alloy material and The additive material is prepared by mixing, wherein the metal alloy material comprises M, Cr and Y, wherein M is selected from one or more of Fe, Ni, Co and Al, and the additive material is selected from the group consisting of Si and Ti. Co, or Al 2 O 3 , the amount of the additive to be added is not particularly limited, and may be added according to actual needs. Wherein, the metal alloy material has been described in the foregoing, and will not be described herein.
  • the ceramic layer 171 may be formed of one or more materials selected from the group consisting of yttria-stabilized zirconia, magnesia-stabilized zirconia, calcium oxide-stabilized zirconia, and yttria-stabilized zirconia.
  • the ceramic layer 171 is formed by two or more materials, any two or more of the above materials may be mixed, and then the mixed material is formed into the ceramic layer 171.
  • the ceramic layer 171 can have a higher thermal expansion system such as to reach 11 ⁇ 10 -6 K -1 , and the ceramic layer 171 can also be made.
  • the low thermal conductivity is 2.0-2.1Wm -1 K -1 , and the ceramic layer 171 also has good thermal shock resistance. It should also be noted that when yttria-stabilized zirconia is selected as the ceramic layer 171, the weight fraction of cerium oxide is 6-8%.
  • cerium oxide may be added to the material forming the ceramic layer 171. Specifically, the cerium oxide may be added in an amount of 20-30% of the total weight of the yttria-stabilized zirconia. Further, the amount of cerium oxide added may be 25% of the total weight of yttria-stabilized zirconia.
  • one or more of yttria-stabilized zirconia, magnesia stabilized zirconia, calcium oxide stabilized zirconia, and yttria stabilized zirconia may be formed by low pressure plasma, atmospheric plasma or electron beam-physical vapor deposition.
  • a material is sprayed on the outer surface of the metal alloy layer 170 to form a ceramic layer 171.
  • the thickness of the ceramic layer 171 may be 200-300 ⁇ m, for example, the thickness of the ceramic layer 171 may be 210 ⁇ m, 220 ⁇ m, 230 ⁇ m, 240 ⁇ m, 250 ⁇ m, 260 ⁇ m, 270 ⁇ m, 280 ⁇ m, or 290 ⁇ m.
  • the Al in the metal alloy layer 170 reacts with the oxygen in the ceramic layer 171 to form a thin and dense aluminum oxide protective film, thereby achieving the function of protecting the tube 10. .
  • an oxide layer 172 may be provided between the metal alloy layer 170 and the ceramic layer 171.
  • the oxide layer 172 is preferably formed by a mixture of alumina, silica, titania or a mixture of two or more of alumina, silica and titania.
  • the oxide layer 172 is prepared by using alumina to improve the heat insulating properties of the heat insulating layer 17.
  • the above oxide material may be sprayed on the surface of the metal alloy layer 170 by low pressure plasma, atmospheric plasma or electron beam-physical vapor deposition to form the oxide layer 172.
  • the thickness of the oxide layer 172 may be 3-5 ⁇ m, for example, the thickness of the oxide layer 172 may be 4 ⁇ m.
  • the heat insulating layer 17 may have a porosity of 8 to 15%.
  • the heat insulation layer 17 may include a flat a straight section and a first tapered section and a second tapered section respectively connected to the first port and the second port of the straight section, wherein the first tapered section is adjacent to the first port to be far away
  • the first port is tapered in a direction
  • the second tapered portion is tapered in a direction from the second port to away from the second port.
  • the thickness of the heat insulating layer 17 is thinner and thinner near the port, and the thickness of the heat insulating layer 17 can be gradually decreased by a value of 5-10%.
  • the heat insulating layer 17 is thicker at a position corresponding to the ribs 11.
  • a heat insulating layer 17 is provided on the outer surface of the pipe body 10, and the heat insulating layer 17 includes a 70 ⁇ m thick metal alloy layer 170, which is sequentially disposed on the outer surface of the pipe body 10, and has a thickness of 4 ⁇ m.
  • the method is sprayed, and the oxide layer 172 is formed by spraying aluminum oxide on the surface of the metal alloy layer 170 by using a low pressure plasma.
  • the ceramic layer 171 is made up of 25% of the total weight of the yttria-stabilized zirconia-doped yttria-stabilized zirconia.
  • the cerium oxide is sprayed by atmospheric plasma.
  • the weight fraction of cerium oxide is 6%
  • the transition angle of the first transition surface is 35°
  • the transition of the second transition surface The angle is 35°
  • the cross section of each of the fins 11 is substantially trapezoidal in cross section taken along a plane parallel to the radial direction of the pipe body 10, and each of the side wall faces 112 and the inner wall of the pipe body 10 are connected to each other.
  • the metal alloy layer 170 is composed of a metal alloy including Ni, 30% Cr, 5% Al, and 0.8% Y, respectively, having a weight fraction of 64.2%.
  • the material is formed, and the ceramic layer 171 is formed by yttria-stabilized zirconia. In the yttria-stabilized zirconia, the weight fraction of yttrium oxide is 8%, and the remaining conditions are unchanged.
  • the reinforced heat transfer tube of the prior art is disposed (the outer surface of the tube body is not provided with a heat insulating layer), wherein no heat insulating member is disposed outside the tube body, and only one rib 11 is disposed in the tube body.
  • the rib 11 extends in a spiral shape in the axial direction of the tubular body, and the rib 11 divides the inside of the tubular body into two chambers which are not connected to each other, and the remaining conditions are unchanged.
  • the enhanced heat transfer tube provided by the invention is disposed in the cracking furnace, the heat transfer load is increased, the heat transfer efficiency is greatly improved, and the pressure drop is greatly reduced, and the maximum heat of the heat transfer tube is reduced.
  • the stress greatly increases the service life of the heat transfer tube.

Abstract

一种强化传热管以及包括其的裂解炉和常减压加热炉,强化传热管(1)包括具有供流体进入的进口(100)和供流体流出的出口(101)的呈管状的管体(10),管体(10)的内壁设置有朝向管体(10)内凸起的肋片(11),肋片(11)沿管体(10)的轴向方向作螺旋状延伸,其中,肋片(11)的高度至少在肋片的一部分延伸范围内从一端逐渐增大。强化传热管(1)能够降低自身的热应力,从而提高了强化传热管(1)的使用寿命。

Description

强化传热管以及包括其的裂解炉和常减压加热炉 技术领域
本发明涉及流体传热技术领域,具体地涉及一种强化传热管以及包括其的裂解炉和常减压加热炉。
背景技术
传热管是指能够实现强化管内外流体传热的传热元件,即在单位时间内使单位传热面积传递尽可能多的热量。传热管被应用于众多行业,如热力发电、石油化工、食品、制药、轻工、冶金、船舶等。裂解炉是石油化工中的重要设备,传热管便在裂解炉中得到了广泛应用。
对于传热管而言,在流体流动主体和管壁表面之间存在流动边界层,且传热阻力很大。同时由于边界层内流体流速极低,在裂解过程中不断有焦逐渐沉积并附着在炉管的内表面形成一层致密的焦层,这种焦层热阻极大。因此在裂解炉辐射段中传热管传热的最大阻力在管内壁的边界层区域。
US5605400A公开了通过在传热管的内壁上设置肋片等方式进行强化传热,肋片不仅增加了传热管的表面积,还能增加管内的湍动动能。肋片采用扭曲片的形式,肋片通常设置在强化传热管的中间,利用流体自身的旋转,使流体的边界层变薄,从而达到强化传热的目的。尽管具有肋片的强化传热管拥有较好的强化传热效果,但是由于肋片是通过焊接方式与强化传热管的管壁连接在一起的。在运行过程中,焊接部位处应力过高,因此经常会发生肋片与强化传热管的管壁裂开的情况。尤其是在长时间的运行过程中,加之处于超高温的环境中,更加容易导致肋片与强化传热管的管壁发生开裂的现象,从而缩短了强化传热管的使用寿命。
因此,在保证强化传热管的传热效果的同时,还需降低强化传热管的热应力以提高强化传热管的使用寿命。
发明内容
本发明的目的是为了克服现有技术存在的强化传热管的使用寿命较短的问题,提供了一种强化传热管,该强化传热管能够降低自身的热应力,从而提高了强化传热管的使用寿命。
为了实现上述目的,本发明一方面提供一种强化传热管,包括具有 供流体进入的进口和供所述流体流出的出口的呈管状的管体,所述管体的内壁设置有朝向所述管体内凸起的肋片,所述肋片沿所述管体的轴向方向作螺旋状延伸,其中,所述肋片的高度至少在肋片的一部分延伸范围内从一端逐渐增大。
在另一方面,本发明提供一种裂解炉或常减压加热炉,包括辐射室,所述辐射室中安装有至少一个炉管组件,所述炉管组件包括多个依次排列的炉管以及连通相邻炉管的强化传热管,所述强化传热管为上文所述的强化传热管。
附图说明
图1是本发明优选实施方式的强化传热管的部分剖面示意图,其中,肋片的高度至少在肋片的一部分延伸范围内从进口端开始逐渐增大。
图2是本发明另一优选实施方式的强化传热管的端视图,其中肋片的高度从两端向中间逐渐增大。
图3是图2所示的强化传热管的立体示意图,其中,肋片的截面为梯形,过渡角为35°。
图4是本发明另一优选实施方式的强化传热管的立体示意图,其中肋片的高度仅仅在靠近两端的一部分处从两端向中间逐渐增大,在中间部分处,肋片的高度呈波状变化。
图5是本发明另一实施方式的强化传热管的立体示意图,其中,肋片的截面为梯形,过渡角为38°,肋片的高度从出口端开始逐渐增大。
图6是本发明另一优选实施方式的强化传热管的立体示意图,其中,肋片的截面为梯形,过渡角为35°。
图7是本发明另一优选实施方式的强化传热管的端视图,其中,肋片的截面为梯形,设置于肋片的间隙的个数为1,过渡角为35°。
图8是本发明另一优选实施方式的强化传热管的侧视立体示意图,其中,所述肋片从侧面看呈三角形;
图9是本发明另一优选实施方式的强化传热管的立体示意图,其中,肋片的截面为梯形,设置于肋片的间隙的个数为1,过渡角为35°。
图10是本发明的强化传热管与现有技术传热管的应力分布图。
图11是本发明另一优选实施方式的强化传热管的立体示意图,其中,肋片的截面为梯形,设置于肋片的间隙的个数为2,过渡角为38°。
图12是本发明另一优选实施方式的强化传热管的立体示意图,其 中,其中,肋片的截面为梯形,过渡角为35°,所述肋片的朝向所述管体的中心轴线的顶表面形成为呈凹陷状的第三过渡面。
图13是图12所示的强化传热管的剖面结构示意图。
图14是本发明优选实施方式的裂解炉中的辐射炉管组件的结构示意图。
图15是本发明优选实施方式的强化传热管的立体示意图,其中,在管体的外部设置隔热件,肋片的截面为梯形,过渡角为30°。
图16是图15所示的强化传热管的剖面结构示意图。
图17是本发明另一优选实施方式的强化传热管的立体示意图,其中,在管体的外部设置隔热件,肋片的截面为梯形,过渡角为35°。
图18是图17所示的强化传热管的剖面结构示意图。
图19是本发明另一优选实施方式的强化传热管的立体示意图,其中,在管体的外部设置隔热件,肋片的截面为梯形,过渡角为40°。
图20是图19所示的强化传热管的剖面结构示意图。
图21是本发明另一优选实施方式的强化传热管的立体示意图,其中,支撑在管体和隔热件之间的连接件为第二连接片。
图22是图21所示的强化传热管的另一角度的立体示意图。
图23是本发明另一优选实施方式的强化传热管的立体示意图,其中,在管体的外部设置隔热件,肋片的截面为梯形,设置于肋片的间隙的个数为1,过渡角为35°。
图24是图23所示的强化传热管的剖面结构示意图。
图25是本发明另一优选实施方式的强化传热管的立体示意图,其中,在管体的外部设置隔热件,肋片的截面为梯形,过渡角为35°,所述肋片的朝向所述管体的中心轴线的顶表面形成为呈凹陷状的第三过渡面。
图26是图25所示的强化传热管的剖面结构示意图。
图27是根据本发明优选实施方式的强化传热管的剖面结构示意图,其中,在管体的外表面设置隔热层,肋片的截面为梯形,设置于肋片的间隙的个数为1,过渡角为35°。
图28是图27所示的强化传热管的局部结构示意图,其中,在所述管体的外表面设置有隔热层,所述隔热层包括依次叠置于所述管体的外表面的金属合金层、氧化层和陶瓷层。
附图标记说明:
1-强化传热管;10-管体;100-进口;101-出口;11-肋片;110-第一端面;111-顶表面;112-侧壁面;113-光滑过渡圆角;115-第二端面;12-间隙;120-侧壁;13-通孔;14-隔热件;140-直管段;141-第一渐缩管段;142-第二渐缩管段;15-空隙;160-第一连接片;161-第二连接片;162-连接杆;17-隔热层;170-金属合金层;171-陶瓷层;172-氧化层;2-辐射炉管。
具体实施方式
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、左、右”通常是指结合附图中所示的方位和实际应用中的方位理解,“内、外”是相对于强化传热管的轴线而言。
此外,肋片的高度指的是肋片的朝向管体的中心轴线的顶表面与管体的内壁之间的高度或距离。肋片的轴向长度指的是肋片在强化传热管的侧视图中沿中心轴线的长度或距离。
本发明提出了在辐射炉管组件中设置强化传热管,以强化传热从而减少或防止焦层的形成。如图14所示,在裂解炉的辐射室中设置有多个辐射炉管组件,每个辐射炉管组件均设置有强化传热管1,每个辐射炉管组件中设置有沿辐射炉管2的轴向间隔设置的2个强化传热管1,每个强化传热管1的内径为65mm,在每个辐射炉管组件中,相邻的2个强化传热管1之间的辐射炉管2的轴向长度为强化传热管1的内径的50倍。应当理解的是,强化传热管1的数量和间隔可以根据具体应用变化,而不偏离本发明的范围。
参见图1-8所示,强化传热管1包括具有供流体进入的进口100和供所述流体流出的出口101的呈管状的管体10,管体10的内壁设置有朝向管体10内凸起的肋片11,肋片11沿管体10的轴向方向作螺旋状延伸。为了降低强化传热管1的热应力,肋片11的高度即肋片11的朝向管体10的中心轴线的顶表面111与管体10的内壁之间的距离优选为大于0且小于等于150mm,例如,肋片11的高度可为10mm、20mm、30mm、40mm、50mm、60mm、70mm、80mm、90mm、100mm、110mm、120mm、130mm或140mm。
根据一个示例,肋片11的高度至少在肋片的一部分延伸范围内从一端逐渐增大。在附图1所示的示例中,肋片11的高度在从进口100 到出口101的延伸方向上逐渐增大;然而应当理解的是,肋片11的高度也可以在从出口101到进口100的延伸方向上逐渐增大,如图5所示。此外,肋片11的高度也可以在从两端到中间的方向上逐渐增大,如图2-3所示。另外,肋片11的高度也可以仅仅在靠近两端的一部分处从两端向中间逐渐增大,在中间部分处,肋片11的高度呈波状变化,如图4所示。
通过在管体10的内壁设置朝向管体10内凸起的肋片11,并且使得肋片11的高度从一端开始逐渐增大,从而使得强化传热管具有更好的传热效果,由此能够降低强化传热管1的热应力,相应的提高了强化传热管1的抗局部超温的能力,这样提高了强化传热管的使用寿命。图10是本发明的强化传热管与现有技术传热管的应力分布图。从图10可以看出,在现有技术的传热管中,肋片与强化传热管的管壁的连接处具有明显的应力集中(如图10的上半部所示);与现有技术传热管相比,本发明的强化传热管1的热应力明显降低(如图10的下半部所示)。
为了进一步降低强化传热管1的热应力,肋片11的最高部分的高度与肋片11的最低部分的高度的比值为1.1-1.6:1,例如,肋片11的最高部分的高度与肋片11的最低部分的高度的比值为1.2:1、1.3:1、1.4:1或1.5:1。
此外,可在管体10的内壁上设置多个如2个、3个、或4个肋片11,从进口100的方向看,多个肋片11呈顺时针或者呈逆时针旋涡状。将多个肋片11配置成为上述结构,不仅提高了强化传热管1的传热效果,而且还降低了强化传热管1的热应力,提高了强化传热管1的抵抗高温的能力,大大延长了强化传热管1的使用寿命。
优选地,从进口100的方向看,多个肋片11可在管体10的中心处围合形成沿管体10的轴向方向延伸的通孔13以便于进入管体10内的流体的流动,降低了压降。为了尽量将压降降至较低,通孔13的直径d与管体10的内径D之间的比值可优选为d:D为大于0小于1,例如,d:D可为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9。
为了提高肋片11对流体的扰动作用,肋片11的旋转角度可优选为90-1080°,例如,肋片11的旋转角度可为120°、180°、360°、720°或1080°。
通常,肋片11旋转180°的轴向长度与管体10的内径D的比值为扭曲比,该扭曲比决定了每个肋片11的长度,而肋片11的旋转角度决定了肋片11的扭曲程度,从而影响传热效率。肋片11的扭曲比可为2.3-2.6,例如,肋片11的扭曲比可为2.35、2.4、2.5、2.49或2.5。
另外,肋片11的沿管体10的轴向方向的长度L 1与管体10的内径D之间的比值为L 1:D=1-10:1,优选地,L 1:D=1-6:1。
本发明还提供了一种裂解炉,所述裂解炉包括辐射室,所述辐射室中安装有至少一个辐射炉管组件,如图14中所示,所述辐射炉管组件包括多个依次排列的辐射炉管2以及连通相邻的辐射炉管2的强化传热管即强化传热管1可以间隔方式轴向设置在辐射炉管中,所述强化传热管为本发明所提供的强化传热管1。通过在裂解炉的辐射室中设置本发明所提供的强化传热管1,不仅能够提高辐射室中的流体的传热效果,而且由于降低了强化传热管1的热应力,因此提高了裂解炉的运行周期以及抗高温的能力。具体来讲,可在辐射炉管组件中设置2个、3个、4个、5个、6个、7个、8个、9个或10个强化传热管1。
优选地,辐射炉管2的轴向长度L 2与管体10的内径D的比值为L 2:D=15-75,这样,能够进一步提高传热效果和裂解炉的运行周期。进一步优选地,L 2:D=25-50。
以下通过实例以及对比例进一步说明本发明的效果。
实例11
在裂解炉的辐射室中设置有多个辐射炉管组件,在其中的3个辐射炉管组件中均设置有强化传热管1,每个辐射炉管组件中设置有沿辐射炉管2的轴向间隔设置的2个强化传热管1,每个强化传热管1的内径为65mm,在每个辐射炉管组件中,相邻的2个强化传热管1之间的辐射炉管2的轴向长度为强化传热管1的内径的50倍。每个强化传热管1的结构为:在管体10的内壁上设置2个肋片11,从进口100的方向看,两个肋片11呈顺时针旋涡状,两个肋片11在管体10的中心处围合形成沿管体10的轴向方向延伸的通孔13,通孔13的直径与管体10的内径的比值为0.6,每个肋片11的旋转角度为180°,每个肋片11的扭曲比为2.5,肋片11的高度在从进口100到出口101的延伸方向上逐渐增大,肋片11的最高部分的高度与肋片11的最低部分的高度的比值为1.3:1,其中,裂解炉的出口温度为820-830°。
实例12
与实例11相同,其中不同之处在于,肋片11的高度也可以在从出口101到进口100的延伸方向上逐渐增大,肋片11的最高部分的高度与肋片11的最低部分的高度的比值为1.4:1,其余条件均不变。
实例13
与实例11相同,其中不同之处在于,肋片11的高度也可以在从两端到中间的方向上逐渐增大,其余条件均不变。
对比例11
设置现有技术中的强化传热管,其中,管体内仅设置一个肋片11,该肋片11沿管体的轴向方向呈螺旋状延伸,并且该肋片11将管体的内部分隔成互不连通的两个腔室,其余条件均不变。
对实例和对比例中的裂解炉经过在相同条件下运行后,各自的检测结果如下表1中所示。
表1
Figure PCTCN2018111797-appb-000001
由此可以得知,将本发明提供的强化传热管设置于裂解炉中,使得传热负荷最高提高了6620w,大大提高了传热效率,而且压降大大降低,同时由于强化传热管的最大热应力降低了50%左右,大大提高了强化传热管的使用寿命。
根据一个示例,肋片11可以连续地延伸或者分段地延伸。当肋片11分段地延伸时,肋片11包括由间隙12分割成多个肋片部段。相应地,当肋片11连续地延伸时,肋片11可认为是包括单个肋片部段。因此,肋片11具有沿所述管体10的轴向方向作螺旋状延伸的一个或多个肋片部段。应当理解的是,每个肋片部段的长度可以相同或不同。此外,每个肋片部段包括朝向进口100的第一端表面和朝向出口101的第二端表面。所述肋片部段中的至少一个的第一端表面和第二端表面中的至少一个沿着螺旋延伸方向形成为过渡面。为了便于区分,在 本申请中,将最靠近进口100的第一端表面110称为第一过渡面;将最靠近出口101的第二端表面115称为第二过渡面;将由间隙12的两个侧壁120限定的第一端表面和第二端表面称为第四过渡面。当多个肋片部段的第一端表面和/或第二端表面为过渡面时,各个肋片部段的第一端表面和/或第二端表面所形成的过渡面可以相同或不同。
此外,还需要说明的是,过渡面可以是曲面,也可以是平面。所述曲面可呈凸起状也可呈凹陷状,优选地,所述曲面呈凹陷状,以进一步提高强化传热管的传热效果,并且进一步降低强化传热管的热应力。此外,过渡面也可以减少流体对肋片的冲击力。“过渡角”指的是在连接位置处过渡面或者过渡面的切平面(在过渡面是曲面时)与管壁的切平面之间的角度。过渡角以大于或等于0°且小于90°的角度延伸。
参考图1-5,肋片11的最靠近进口100的第一端面110沿着螺旋延伸方向形成为第一过渡面。通过在管体10的内壁设置朝向管体10内凸起的肋片11,并且使得肋片11的最靠近进口100的第一端面110沿着螺旋延伸方向形成为第一过渡面,从而使得强化传热管具有良好的传热效果,同时能够降低强化传热管1的热应力,相应地提高了强化传热管1的抗局部超温的能力,这样提高了强化传热管的使用寿命,另外,第一端面110形成为第一过渡面,对管体10内所述流体的扰流作用较强,降低了结焦现象。
上述强化传热管1适合应用于加热炉,也适合应用于裂解炉。可在裂解炉如乙烯裂解炉中安装上述强化传热管1,这样,传输中的所述流体可由进口100进入到强化传热管1的管体10内,之后,在肋片11的作用下,所述流体变成旋转流,所述流体由于具有切向速度而会破坏了边界层,降低了结焦速率,延长了裂解炉的使用周期,同时,由于肋片11的最靠近进口100的第一端面110沿着螺旋延伸方向形成为第一过渡面,因此降低了强化传热管1的热应力,延长了强化传热管1的使用寿命。其中,图4清楚的示出了所述第一过渡面为沿着螺旋延伸方向形成,其中,第一过渡面在沿着螺旋延伸的方向上呈坡面状。上述强化传热管1适合应用于加热炉,也适合应用于裂解炉。此外,还需要说明的是,强化传热管1中的流体并不受到具体的限制,可根据强化传热管1的实际应用环境进行选择。
此外,第一过渡面可以形成为第一曲面。所述第一曲面可呈凸起状 也可呈凹陷状,优选地,所述第一曲面呈凹陷状,以进一步提高强化传热管1的传热效果,并且进一步降低强化传热管1的热应力。具体来讲,所述第一曲面可为抛物面上截取的部分抛物面。
另外,所述第一过渡面的过渡角可大于等于0°且小于90°,这样,能够进一步降低强化传热管1的热应力,大大提高了强化传热管1的使用寿命。所述第一过渡面的过渡角可为10°、15°、20°、25°、30°、35°、38°、40°、45°、50°、55°、60°、65°、70°、75°、80°或85°。
为了进一步降低强化传热管1的热应力,肋片11的最靠近出口101的第二端面115沿着螺旋延伸方向可形成为第二过渡面,其中,第二端面115在沿着螺旋延伸的方向上可呈坡面状,这样相应的提高了强化传热管1的使用寿命。此外,第二过渡面可以形成为第二曲面。所述第二曲面可呈凸起状,所述第二曲面也可呈凹陷状,优选地,所述第二曲面可呈凹陷状。此外,所述第二过渡面的过渡角为大于等于0°且小于90°,这样,能够进一步降低强化传热管1的热应力,大大提高了强化传热管1的使用寿命。所述第二过渡面的过渡角可为10°、15°、20°、25°、30°、35°、38°、40°、45°、50°、55°、60°、65°、70°、75°、80°或85°。
如图12中所示,肋片11的朝向管体10的中心轴线的顶表面111可形成为第三过渡面,这样,在不影响强化传热管1的传热效果的前提下,能够降低强化传热管1的热应力。进一步优选地,所述第三过渡面呈凹陷状。具体地,所述第三过渡面呈抛物面的形状。
优选地,肋片11的彼此相对的两个侧壁面112在从管体10的内壁到管体10的中心的方向上逐渐靠近,也就是说,每个侧壁面112可倾斜设置,这样,能够使得肋片11加强对进入管体10内的所述流体的扰动,提高传热效果,同时进一步降低强化传热管1的热应力。还可以理解的是,肋片11的截面即以沿平行于管体10的径向方向的面截取所获得的截面可大致呈梯形或者类梯形。当然,肋片11的截面可大致呈矩形。
为了降低强化传热管1的热应力,肋片11的彼此相对的两个侧壁面112中的至少一者与管体10的内壁的连接处可形成有光滑过渡圆角113。进一步地,光滑过渡圆角113的半径为大于0且小于等于10mm,将光滑过渡圆角113的半径设置在上述范围内,可进一步降低强化传 热管1的热应力,提高强化传热管1的使用寿命。具体地,光滑过渡圆角113的半径可为5mm、6mm或10mm。
另外,每个侧壁面112与管体10的内壁在彼此连接处所形成的夹角可为5°-90°,也就是说,每个侧壁面112与管体10的内壁在该彼此连接处的切平面之间的夹角可为5°-90°,将夹角设置在上述范围内,能够进一步降低强化传热管1的热应力,提高强化传热管1的使用寿命。每个侧壁面112与管体10的内壁在彼此连接处所形成的夹角可为20°、30°、40°、45°、50°、60°、70°或80°。
结合图7-9中所示,肋片11上可设置有间隙12以能够将肋片11间隔开,这样不仅使得强化传热管1具有良好的传热效果,而且能够降低强化传热管1的热应力,同时还能够提高抗局部超温的能力。当设置有间隙12的强化传热管1应用于加热炉或者裂解炉后,还能够提高加热炉或者裂解炉的运行周期。其中,间隙12的个数并不受到具体的限制,可根据实际需求进行选择。例如可设置1个间隙12,也可设置2个、3个、4个或者5个间隙,当设置有多个间隙12时,多个间隙12优选沿肋片11的延伸方向排列。
优选地,间隙12的两个侧壁120中的至少一者形成为第四过渡面。例如,如图7-9中所示,间隙12的两个侧壁120均可形成为过渡面,并且两个侧壁120之间的距离在靠近管体10的内壁到远离管体10的内壁的方向上逐渐增大。其中,两个侧壁120之间距离即间隙12的宽度可为大于0且小于等于10000mm,例如,两个侧壁120之间距离可为1000mm、2000mm、3000mm、4000mm、5000mm、6000mm、7000mm、8000mm或9000mm。另外,所述第四过渡面可沿背离间隙12的中心的方向凹陷。
以下通过实例以及对比例进一步说明本发明的效果。
实例21
与实例11相同,其中不同之处在于,设置了上述的第一过渡面和第二过渡面,所述第一过渡面的过渡角为40°,所述第二过渡面的过渡角为40°。
实例22
与实例21相同,其中不同之处在于,肋片11的最高部分的高度与肋片11的最低部分的高度的比值为1.4:1,所述第一过渡面的过渡角 为35°,所述第二过渡面的过渡角为35°,每个肋片11的截面即以沿平行于管体10的径向方向的面截取所获得的截面大致呈三角型,其余条件均不变。
实例23
与实例22相同,其中不同之处在于,强化传热管1用于常减压加热炉,每个强化传热管1的内径为75mm,所述第一过渡面的过渡角为60°,所述第二过渡面的过渡角为60°,其中,加热炉出口温度为406°。
对比例21
与实例21相同,不同之处在于改变强化传热管的结构,即设置现有技术中的强化传热管,其中,管体内仅设置一个肋片11,该肋片11沿管体的轴向方向呈螺旋状延伸,并且该肋片11将管体的内部分隔成互不连通的两个腔室,其余条件均不变。
对比例22
与实例23相同,不同之处在于改变强化传热管的结构,即设置现有技术中的强化传热管,其中,管体内仅设置一个肋片11,该肋片11沿管体的轴向方向呈螺旋状延伸,并且该肋片11将管体的内部分隔成互不连通的两个腔室,其余条件均不变。
1、对实例21-22和对比例21中的裂解炉经过在相同条件下运行后,各自的检测结果如下表2.1中所示。
表2.1
Figure PCTCN2018111797-appb-000002
此可以得知,将本发明提供的强化传热管设置于裂解炉中,使得传热负荷最高提高了6550w,大大提高了传热效率,而且压降大大降低,同时由于强化传热管的最大热应力降低了50%以上,大大提高了强化传热管的使用寿命。
2、对实例23和对比例22中的常减压加热炉经过在相同条件下运行后,各自的检测结果如下表2.2中所示。
表2.2
Figure PCTCN2018111797-appb-000003
由此可以得知,将本发明提供的强化加热管应用于常减压加热炉中后,使得常减压加热炉具有更好的传热效果,并且强化传热管具有较小的热应力。
根据另一个实例,管体10的外部设置有至少部分环绕于管体10的外周的隔热件14。通过在管体10的外部设置至少部分环绕于管体10的外周的隔热件14,阻碍高温烟气与管体10的外壁之间的传热,能够降低管体10的外壁的温度,从而降低管体10和肋片11的温差,这样使得强化传热管1的热应力得到有效降低,延长了强化传热管1的使用寿命,并且相应的提高了强化传热管1的许可温度。当将上述强化传热管1的应用于裂解炉时,能够保证裂解炉的长期稳定运行。可以理解的是,隔热件14可以在管体10的周向上完全环绕于管体10的外周,即360°环绕于管体10的外周,隔热件14也可以在管体10的周向上部分环绕于管体10的外周,如可90°环绕于管体10的外周,当然也可根据实际需求使得隔热件14具有合适的角度环绕于管体10的外周,需要说明的是,当将上述强化传热管1应用于裂解炉时,并且管体10的外部设置有部分环绕于管体10的外周的隔热件14时,可优选在管体10的受热面设置隔热件14。另外,隔热件14可优选设置于管体10的设置有所述肋片11的外部,这样能够使得所述肋片11不易于与管体10裂开,可提高强化传热管1的使用寿命。
结合图15-26中所示,隔热件14可呈管状,隔热件14优选套设于管体10的外部,这样能够进一步降低管体10的管壁的温度,从而进一步降低强化传热管1的热应力。至于隔热件14的形状结构并不受到具体的限制,如图15中所示,隔热件14可呈圆柱状,也可如图17中所示,隔热件14可呈椭圆状。
另外,隔热件14的设置方式也并没有特别的限制,结合图19和图20中所示,隔热件14可贴附于管体10的外表面,也可如图22和图23中所示,隔热件14可套设于管体10的外部,并且隔热件14和管体10的外壁之间可留设有空隙15,由于在隔热件14和管体10的外壁之 间留设有空隙15,这样进一步降低使用中的管体10的管壁的温度,从而进一步降低了强化传热管1的热应力。
为了进一步提高强化传热管1的结构稳固性,隔热件14和管体10之间可设置有连接隔热件14和管体10的连接件。其中,所述连接件的结构形式并不受到具体的限制,只要能够将隔热件14和管体10相连接即可。如图23中所示,所述连接件可包括第一连接片160,第一连接片160可沿平行于管体10的轴向方向延伸;如图21中所示,所述连接件可包括第二连接片161,第二连接片161可沿管体10的外壁呈螺旋状延伸;如图15和图17中所示,所述连接件可包括连接杆162,连接杆162的两端可分别连接于管体10的外壁和隔热件14的内壁。还可以理解的是,可任选上述三种结构的连接件中任意两种或两种以上以设置在隔热件14和管体10之间。优选地,所述连接件由硬质材料如35Cr45Ni制备获得或者由软质材料如陶瓷纤维制备获得。
如图15、图16和图18中所示,隔热件14可包括直管段140和分别连接于直管段140的第一端口和第二端口的第一渐缩管段141和第二渐缩管段142,其中,第一渐缩管段141在靠近所述第一端口到远离所述第一端口的方向上呈渐缩状,第二渐缩管段142在靠近所述第二端口到远离所述第二端口的方向上呈渐缩状,将隔热件14设置为上述结构,不仅使得管体10的管壁的温度得到有效的降低,而且使得管体10的轴向上的温度变化较为均匀,同时还降低了强化传热管1的热应力。
进一步地,第一渐缩管段141的外壁面与水平面之间所成的夹角优选为10-80°,具体来讲,第一渐缩管段141的外壁面与水平面之间所成的夹角可为20°、30°、40°、50°、60°或70°;第二渐缩管段142的外壁面与水平面之间所成的夹角优选为10-80°,同样的,第二渐缩管段142的外壁面与水平面之间所成的夹角可为20°、30°、40°、50°、60°或70°。
另外,隔热件14在管体10的轴向方向上的延伸长度优选为管体10的长度的1-2倍,将隔热件14的轴向长度设置在上述范围内,能够进一步降低使用中的管体10的管壁的温度,并且进一步降低管体10的热应力。
以下通过实例以及对比例进一步说明本发明的效果。
实例31
与实例11相同,其中不同之处在于,在管体10的外部设置呈圆柱状的隔热件14,隔热件14完全环绕于管体10的外周并且与管体10的外壁之间留设有空隙15,隔热件14通过连接杆162与管体10相连接,每个肋片11的截面即以沿平行于管体10的径向方向的面截取所获得的截面大致呈梯形,每个侧壁面112与管体10的内壁在彼此连接处所形成的夹角为45°。
实例32
与实例31相同,其中不同之处在于,隔热件14呈椭圆状,所述第一过渡面的过渡角为35°,所述第二过渡面的过渡角为35°,其余条件均不变。
实例33
与实例31相同,其中不同之处在于,隔热件14贴附于管体10的外壁,所述第一过渡面的过渡角为40°,所述第二过渡面的过渡角为40°,其余条件均不变。
对比例31
与对比例31相同,即设置现有技术中的强化传热管,其中,管体外不设置隔热件,管体内仅设置一个肋片11,该肋片11沿管体的轴向方向呈螺旋状延伸,并且该肋片11将管体的内部分隔成互不连通的两个腔室,其余条件均不变。
对实例和对比例中的裂解炉经过在相同条件下运行后,各自的检测结果如下表3中所示。
表3
Figure PCTCN2018111797-appb-000004
由此可以得知,将本发明提供的强化传热管设置于裂解炉中,提高了传热负荷,大大提高了传热效率,而且压降大大降低,同时降低了强化传热管的最大热应力,大大提高了强化传热管的使用寿命。
根据本发明的另一个实例,管体10的外表面上设置有隔热层17。通过在管体10的外表面设置隔热层17,阻碍高温烟气与管体10的外壁之间的传热,能够降低管体10的外壁的温度,从而降低管体10和肋片11的温差,这样使得强化传热管1的热应力得到有效降低,延长了强化传热管1的使用寿命,并且由于设置了隔热层17,还提高了强化传热管1的抗高温性能、热冲击性能和耐高温腐蚀性能。当将上述强化传热管1的应用于裂解炉时,能够保证裂解炉的长期稳定运行。由于在管体10内设置有肋片11,进入管体10内的流体可变成旋转流,所述流体由于具有切向速度而会破坏了边界层,降低了结焦速率。另外,隔热层17可优选设置于管体10的设置有所述肋片11的外部,这样能够使得所述肋片11不易于与管体10裂开,可降低强化传热管1的热应力。
优选地,隔热层17可包括设置于管体10的外表面上的金属合金层170和位于金属合金层170上的陶瓷层171。通过在管体10的外表面设置金属合金层170和位于金属合金层170上的陶瓷层171,从而能够提高隔热层17的隔热效果以进一步降低强化传热管1的热应力。
可以理解的是,金属合金层170可由包括M、Cr和Y的金属合金材料制备形成,其中,M选自Fe、Ni、Co和Al中的一种或多种,当M选用其中的两种以上金属如Ni和Co时,金属合金层170可由包括Ni、Co、Cr和Y的金属合金材料制备形成,当金属合金层170中含有Ni和Co时,能够进一步提高隔热层17的隔热能力,并且提高了隔热层17的抗氧化性和抗热腐蚀性。至于金属合金材料中的各个金属的含量可根据实际需求进行配置,并无特别的要求。例如,Al的重量分数可为5-12%,Y的重量分数可为0.5-0.8%,这样能够提高隔热层17的牢固性,同时降低金属合金层170的氧化速率,Cr的重量分数可为25-35%。此外,还需要说明的是,可采用低压等离子、大气等离子或电子束-物理气相沉积的方式将所述金属合金材料喷涂于管体10的外表面以形成金属合金层170。金属合金层170的厚度可为50-100μm,具体地,金属合金层170的厚度可为60μm、70μm、80μm或90μm。
为了进一步提高隔热层17的抗氧化性和延长隔热层17的使用寿命,可在制备金属合金层170的金属合金材料中加入添加材料,也就是说,金属合金层170可由金属合金材料和添加材料混合后制备形成,其中, 所述金属合金材料包括M、Cr和Y,其中,M选自Fe、Ni、Co和Al中的一种或多种,所述添加材料选自Si、Ti、Co或Al 2O 3,至于所述添加材料的添加量并无特别的限制,可根据实际需求进行添加。其中,所述金属合金材料已在前述内容中被描述,此处不再赘述。
另外,陶瓷层171可由氧化钇稳定氧化锆、氧化镁稳定氧化锆、氧化钙稳定氧化锆和氧化铈稳定氧化锆中的一种或多种材料制备形成。当陶瓷层171由两种以上材料制备形成时,可将上述材料中的任意两种以上的材料混合,然后使得混合后的材料形成陶瓷层171。具体来讲,当选用氧化钇稳定氧化锆作为陶瓷层171的材料时,可使得陶瓷层171具有较高的热膨胀系统例如可到达11×10 -6K -1,还可使得陶瓷层171具有较低的热导率2.0-2.1Wm -1K -1,同时陶瓷层171还具有较好的抗热冲击性能。还需要说明的是,选用氧化钇稳定氧化锆作为陶瓷层171时,氧化钇的重量分数为6-8%。为了进一步提高隔热层17的隔热性能,还可在上述形成陶瓷层171的材料中添加氧化铈,具体地,氧化铈的添加量可为氧化钇稳定氧化锆的总重量的20-30%,进一步地,氧化铈的添加量可为氧化钇稳定氧化锆的总重量的25%。同样的,可采用低压等离子、大气等离子或电子束-物理气相沉积的方式将氧化钇稳定氧化锆、氧化镁稳定氧化锆、氧化钙稳定氧化锆和氧化铈稳定氧化锆中的一种或多种材料喷涂于金属合金层170的外表面以形成陶瓷层171。另外,陶瓷层171的厚度可为200-300μm,例如陶瓷层171的厚度可为210μm、220μm、230μm、240μm、250μm、260μm、270μm、280μm或290μm。需要指出的是,当强化传热管1处于使用状态时,金属合金层170中的Al和陶瓷层171中的氧反应形成薄而致密的氧化铝保护膜,从而能够达到保护管体10的作用。
为了提高隔热层17的抗剥落性,可在金属合金层170和陶瓷层171之间设置氧化层172。其中,氧化层172优选由氧化铝、氧化硅、氧化钛或者由氧化铝、氧化硅和氧化钛中的任意两种以上的材料混合后得到的混合材料制备形成。优选地,选用氧化铝制备氧化层172以提高隔热层17的隔热性能。同样的,可采用低压等离子、大气等离子或电子束-物理气相沉积的方式将上述氧化物材料喷涂于金属合金层170的表面以形成氧化层172。另外,氧化层172的厚度可为3-5μm,例如氧化层172的厚度可为4μm。
此外,隔热层17的孔隙率可为8-15%。
为了使得管体10的管壁的温度得到有效的降低,而且使得管体10的轴向上的温度变化较为均匀,同时还能够降低强化传热管1的热应力,隔热层17可包括平直段和分别连接于所述平直段的第一端口和第二端口的第一渐缩段和第二渐缩段,其中,所述第一渐缩段在靠近所述第一端口到远离所述第一端口的方向上呈渐缩状,所述第二渐缩段在靠近所述第二端口到远离所述第二端口的方向上呈渐缩状。可以理解的是,隔热层17的厚度在靠近端口处越来越薄,隔热层17的厚度可以5-10%的数值进行逐步递减。为了进一步降低强化传热管1的热应力,隔热层17位于所述肋片11对应位置处的厚度较厚。
以下通过实例以及对比例进一步说明本发明的效果。
实例41
与实例11相同,其中不同之处在于,在管体10的外表面设置隔热层17,隔热层17包括依次设置于管体10的外表面的70μm厚的金属合金层170、4μm厚的氧化层172和240μm厚的陶瓷层171,其中,金属合金层170由包括重量分数分别为64.5%的Ni、30%的Cr、5%的Al和0.5%的Y的金属合金材料经过大气等离子喷涂的方式喷涂形成,氧化层172由选用低压等离子的方式将氧化铝喷涂于金属合金层170的表面形成,陶瓷层171由氧化钇稳定氧化锆中掺杂氧化钇稳定氧化锆的总重量的25%的氧化铈经过大气等离子的方式喷涂形成,在氧化钇稳定氧化锆中,氧化钇的重量分数为6%,所述第一过渡面与的过渡角为35°,所述第二过渡面的过渡角为35°,每个肋片11的截面即以沿平行于管体10的径向方向的面截取所获得的截面大致呈梯形,每个侧壁面112与管体10的内壁在彼此连接处所形成的夹角为45°。
实例42
与实例41相同,其中不同之处在于,在隔热层17中,金属合金层170由包括重量分数分别为64.2%的Ni、30%的Cr、5%的Al和0.8%的Y的金属合金材料制备形成,陶瓷层171由氧化钇稳定氧化锆制备形成,在氧化钇稳定氧化锆中,氧化钇的重量分数为8%,其余条件均不变。
对比例41
与对比例11相同,即设置现有技术中的强化传热管(管体的外表 面不设置隔热层),其中,管体外不设置隔热件,管体内仅设置一个肋片11,该肋片11沿管体的轴向方向呈螺旋状延伸,并且该肋片11将管体的内部分隔成互不连通的两个腔室,其余条件均不变。
对实例和对比例中的裂解炉经过在相同条件下运行后,各自的检测结果如下表4中所示。
表4
Figure PCTCN2018111797-appb-000005
由此可以得知,将本发明提供的强化传热管设置于裂解炉中,提高了传热负荷,大大提高了传热效率,而且压降大大降低,同时降低了强化传热管的最大热应力,大大提高了强化传热管的使用寿命。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个具体技术特征以任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。但这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (20)

  1. 一种强化传热管(1),包括具有供流体进入的进口(100)和供所述流体流出的出口(101)的呈管状的管体(10),所述管体(10)的内壁设置有朝向所述管体(10)内凸起的肋片(11),所述肋片(11)沿所述管体(10)的轴向方向作螺旋状延伸,其中,所述肋片(11)的高度至少在肋片的一部分延伸范围内从一端逐渐增大。
  2. 根据权利要求1所述的强化传热管,其特征在于,所述肋片(11)的高度从靠近进口(100)的一端逐渐增大。
  3. 根据权利要求1所述的强化传热管,其特征在于,所述肋片(11)的高度从靠近出口(101)的一端逐渐增大。
  4. 根据权利要求1所述的强化传热管,其特征在于,所述肋片(11)的高度从肋片的两端向中间逐渐增大。
  5. 根据权利要求1所述的强化传热管,其特征在于,所述肋片(11)的高度仅仅在靠近进口(100)和/或出口(101)的一部分延伸范围内从进口端和/或出口端向中间逐渐增大,在肋片(11)的其它部分处肋片(11)的高度呈波状变化。
  6. 根据权利要求1所述的强化传热管,其特征在于,所述肋片(11)的最靠近进口(100)的第一端面(110)形成为第一过渡面;和/或所述肋片(11)的最靠近出口(101)的第二端面(115)形成为第二过渡面。
  7. 根据权利要求1-6中任意一项所述的强化传热管,其特征在于,所述管体(10)的外部设置有至少部分环绕于所述管体(10)的外周的隔热件(14)。
  8. 根据权利要求7所述的强化传热管,其特征在于,所述隔热件(14)呈管状,所述隔热件(14)套设于所述管体(10)的外部。
  9. 根据权利要求8所述的强化传热管,其特征在于,所述隔热件(14)和所述管体(10)的外壁之间留设有空隙(15)。
  10. 根据权利要求9所述的强化传热管,其特征在于,所述隔热件(14)和所述管体(10)之间设置有连接所述隔热件(14)和所述管体(10)的连接件。
  11. 根据权利要求10所述的强化传热管,其特征在于,所述连接 件选自下述三种结构中的一种或多种:所述连接件包括第一连接片(160),所述第一连接片(160)沿平行于所述管体(10)的轴向方向延伸;所述连接件包括第二连接片(161),所述第二连接片(161)沿所述管体(10)的外壁呈螺旋状延伸;所述连接件包括连接杆(162),所述连接杆(162)的两端分别连接于所述管体(10)的外壁和所述隔热件(14)的内壁。
  12. 根据权利要求8所述的强化传热管,其特征在于,所述隔热件(14)包括直管段(140)和分别连接于所述直管段(140)的第一端口和第二端口的第一渐缩管段(141)和第二渐缩管段(142),其中,所述第一渐缩管段(141)在靠近所述第一端口到远离所述第一端口的方向上呈渐缩状,所述第二渐缩管段(142)在靠近所述第二端口到远离所述第二端口的方向上呈渐缩状。
  13. 根据权利要求1-6中任意一项所述的强化传热管,其特征在于,所述管体(10)的外表面上设置有隔热层(17)。
  14. 根据权利要求13所述的强化传热管,其特征在于,所述隔热层(17)包括设置于所述管体(10)的外表面上的金属合金层(170)和位于所述金属合金层(170)上的陶瓷层(171)。
  15. 根据权利要求14所述的强化传热管,其特征在于,所述隔热层(17)包括设置于所述金属合金层(170)和所述陶瓷层(171)之间的氧化层(172);和/或所述氧化层(172)由氧化铝、氧化硅、氧化钛或者由氧化铝、氧化硅和氧化钛中的任意两种以上的材料混合后得到的混合材料制备形成。
  16. 根据权利要求14所述的强化传热管,其特征在于,所述金属合金层(170)由包括M、Cr和Y的金属合金材料制备形成,其中,M选自Fe、Ni、Co和Al中的一种或多种。
  17. 根据权利要求16所述的强化传热管,其特征在于,所述金属合金层(170)还包括添加材料,所述添加材料选自Si、Ti、Co或Al 2O 3
  18. 根据权利要求14所述的强化传热管,其特征在于,所述陶瓷层(171)由氧化钇稳定氧化锆、氧化镁稳定氧化锆、氧化钙稳定氧化锆和氧化铈稳定氧化锆中的一种或多种材料制备形成。
  19. 根据权利要求13所述的强化传热管,其特征在于,所述隔热层(17)包括平直段和分别连接于所述平直段的第一端口和第二端口 的第一渐缩段和第二渐缩段,其中,所述第一渐缩段在靠近所述第一端口到远离所述第一端口的方向上呈渐缩状,所述第二渐缩段在靠近所述第二端口到远离所述第二端口的方向上呈渐缩状。
  20. 一种裂解炉或常减压加热炉,包括辐射室,所述辐射室中安装有至少一个炉管组件,所述炉管组件包括多个依次排列的炉管(2)以及连通相邻炉管(2)的强化传热管,所述强化传热管为权利要求1-19中任意一项所述的强化传热管(1)。
PCT/CN2018/111797 2017-10-27 2018-10-25 强化传热管以及包括其的裂解炉和常减压加热炉 WO2019080886A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18871432.3A EP3702715A4 (en) 2017-10-27 2018-10-25 IMPROVED HEAT TRANSFER PIPE, AS WELL AS PYROLYSIS OVEN AND ATMOSPHERIC AND VACUUM HEATING OVEN INCLUDING THIS
RU2020115573A RU2753091C1 (ru) 2017-10-27 2018-10-25 Интенсифицирующая теплопередачу труба, а также содержащие ее крекинговая печь и атмосферно-вакуумная нагревательная печь
KR1020207015185A KR102442584B1 (ko) 2017-10-27 2018-10-25 열 전이 향상 파이프, 이를 포함하는 열분해로 및 대기 및 진공 가열로
CA3079647A CA3079647A1 (en) 2017-10-27 2018-10-25 Heat transfer enhancement pipe as well as cracking furnace and atmospheric and vacuum heating furnace including the same
SG11202003475RA SG11202003475RA (en) 2017-10-27 2018-10-25 Heat transfer enhancement pipe as well as cracking furnace and atmospheric and vacuum heating furnace including the same
US16/758,155 US11976891B2 (en) 2017-10-27 2018-10-25 Heat transfer enhancement pipe as well as cracking furnace and atmospheric and vacuum heating furnace including the same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201711027588.XA CN109724445B (zh) 2017-10-27 2017-10-27 强化传热管和裂解炉
CN201711056794.3A CN109724447B (zh) 2017-10-27 2017-10-27 强化传热管
CN201711057043.3 2017-10-27
CN201711056794.3 2017-10-27
CN201711029500.8 2017-10-27
CN201711057043.3A CN109724448B (zh) 2017-10-27 2017-10-27 强化传热管、裂解炉以及常减压加热炉
CN201711023424.X 2017-10-27
CN201711027588.X 2017-10-27
CN201711029500.8A CN109724446B (zh) 2017-10-27 2017-10-27 强化传热管和裂解炉
CN201711023424.XA CN109724444B (zh) 2017-10-27 2017-10-27 传热管和裂解炉

Publications (1)

Publication Number Publication Date
WO2019080886A1 true WO2019080886A1 (zh) 2019-05-02

Family

ID=66246186

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2018/111797 WO2019080886A1 (zh) 2017-10-27 2018-10-25 强化传热管以及包括其的裂解炉和常减压加热炉
PCT/CN2018/111795 WO2019080885A1 (zh) 2017-10-27 2018-10-25 强化传热管以及包括其的裂解炉和常减压加热炉
PCT/CN2018/111798 WO2019080887A1 (zh) 2017-10-27 2018-10-25 强化传热管以及包括其的裂解炉和常减压加热炉

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/111795 WO2019080885A1 (zh) 2017-10-27 2018-10-25 强化传热管以及包括其的裂解炉和常减压加热炉
PCT/CN2018/111798 WO2019080887A1 (zh) 2017-10-27 2018-10-25 强化传热管以及包括其的裂解炉和常减压加热炉

Country Status (7)

Country Link
US (3) US20210180879A1 (zh)
EP (3) EP3702714A4 (zh)
KR (3) KR102482259B1 (zh)
CA (3) CA3079638A1 (zh)
RU (3) RU2757041C1 (zh)
SG (2) SG11202003475RA (zh)
WO (3) WO2019080886A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727863B (zh) * 2020-07-23 2021-05-11 中國鋼鐵股份有限公司 用於輻射管加熱器之節能裝置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161354B2 (ja) * 2018-09-21 2022-10-26 住友精密工業株式会社 熱交換器
US11573053B2 (en) * 2019-08-13 2023-02-07 General Electric Company Cyclone cooler device
EP4105588A1 (de) * 2021-06-15 2022-12-21 Materials Center Leoben Forschung GmbH Kühlkörper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605400A (en) 1994-04-19 1997-02-25 Kojima; Hisao Mixing element and method of producing the same
CN203443422U (zh) * 2013-06-19 2014-02-19 上海宝钢节能技术有限公司 一种换热效率高、寿命长的换热器
CN104560111A (zh) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 传热管以及使用其的裂解炉
CN104833242A (zh) * 2015-05-11 2015-08-12 中山市莎丽卫浴设备有限公司 一种高效废热水热能交换装置
US20150300746A1 (en) * 2012-04-05 2015-10-22 C.I. Kasei Company, Limited Heat exchanger tube and heat exchanger employing the same
CN106959032A (zh) * 2017-04-01 2017-07-18 中国科学院上海高等研究院 一种高温熔盐相变蓄放热装置

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB745122A (en) 1951-02-28 1956-02-22 Head Wrightson Processes Ltd Improvements in and relating to tubular furnaces for heating, distilling or cracking processes
US4192374A (en) 1977-02-04 1980-03-11 United Kingdom Atomic Energy Authority Heat exchangers
IT1128365B (it) * 1980-02-18 1986-05-28 Ricerche Spa Centro Scambiatore di calore gas liquido
JPS6099998A (ja) * 1983-11-02 1985-06-03 Hitachi Ltd 内面リブ付き伝熱管
JPS6099998U (ja) 1983-12-15 1985-07-08 株式会社フアーストクラフト 玩具用発射装置
SU1177654A1 (ru) * 1984-03-30 1985-09-07 Организация П/Я В-8466 Теплообменна труба
JPS62144738A (ja) * 1985-12-20 1987-06-27 Hisao Kojima 流体混合器
SU1451533A2 (ru) * 1987-04-13 1989-01-15 Симферопольский Филиал Центрального Проектно-Конструкторского И Технологического Бюро Главсантехпрома Турбулизатор теплообменной трубы
US4937064A (en) * 1987-11-09 1990-06-26 E. I. Du Pont De Nemours And Company Process of using an improved flue in a titanium dioxide process
US4936689A (en) * 1988-07-11 1990-06-26 Koflo Corporation Static material mixing apparatus
US5458191A (en) * 1994-07-11 1995-10-17 Carrier Corporation Heat transfer tube
JP3001181B2 (ja) * 1994-07-11 2000-01-24 株式会社クボタ エチレン製造用反応管
DE4445687A1 (de) 1994-12-21 1996-06-27 Borsig Babcock Ag Wärmetauscher zum Kühlen von Spaltgas
JP3323682B2 (ja) * 1994-12-28 2002-09-09 株式会社日立製作所 混合冷媒用内面クロス溝付き伝熱管
US5807616A (en) 1995-04-24 1998-09-15 Corning Incorporated Thermal cracking process and furnace elements
JP3303599B2 (ja) * 1995-05-17 2002-07-22 松下電器産業株式会社 伝熱管
JPH0972683A (ja) 1995-09-04 1997-03-18 Hitachi Cable Ltd 伝熱管
KR100245383B1 (ko) * 1996-09-13 2000-03-02 정훈보 교차홈 형성 전열관 및 그 제조 방법
KR200155231Y1 (ko) 1997-02-25 1999-08-16 이점주 파이프 부재
JP2001041672A (ja) 1999-08-02 2001-02-16 Furukawa Electric Co Ltd:The 内面溝付伝熱管及び内面溝付伝熱管用フィン加工ロール
DE10233961A1 (de) * 2002-07-25 2004-02-12 Schmidt + Clemens Gmbh + Co. Edelstahlwerk Kaiserau Verfahren zum thermischen Spalten von Kohlenwasserstoffen
CN1267692C (zh) * 2002-10-11 2006-08-02 西安交通大学 一种传热管
AU2003280759A1 (en) 2002-11-15 2004-06-15 Kubota Corporation Cracking tube with spiral fin
CN2632612Y (zh) * 2003-06-18 2004-08-11 张国鸿 螺旋管构件热交换器
US7185698B1 (en) 2004-01-22 2007-03-06 Bernert Jr Robert E Thermal shield for heat exchangers
US7363769B2 (en) * 2005-03-09 2008-04-29 Kelix Heat Transfer Systems, Llc Electromagnetic signal transmission/reception tower and accompanying base station employing system of coaxial-flow heat exchanging structures installed in well bores to thermally control the environment housing electronic equipment within the base station
RU2286217C1 (ru) * 2005-04-28 2006-10-27 Виктор Николаевич Хлопонин Труба к кассете-панели теплоизоляционного экрана рольганга стана горячей полосовой прокатки
ES2693585T3 (es) * 2006-07-05 2018-12-12 Nippon Steel & Sumitomo Metal Corporation Tubo metálico para reacción de craqueo térmico
CN101155501B (zh) * 2006-09-27 2011-11-09 鸿富锦精密工业(深圳)有限公司 散热器
DE102006052937A1 (de) 2006-11-08 2008-05-21 Uhde Gmbh Sammelleitung für Röhrenspaltöfen
JP4860531B2 (ja) 2007-03-30 2012-01-25 株式会社クボタ 熱分解管
US9873305B2 (en) * 2008-02-22 2018-01-23 Dow Global Technologies Inc. Heater module including thermal energy storage material
CN101266114A (zh) * 2008-05-13 2008-09-17 许雪峰 一种铝螺旋散热管
CN101551205A (zh) * 2008-12-15 2009-10-07 郑州大学 螺旋肋片自支撑换热器
FR2942471A1 (fr) * 2009-02-24 2010-08-27 Saint Gobain Ct Recherches Piece ceramique revetue.
EP2408551A1 (en) * 2009-03-17 2012-01-25 Total Petrochemicals Research Feluy Process for quenching the effluent gas of a furnace
RU84524U1 (ru) * 2009-03-30 2009-07-10 Общество с ограниченной ответственностью "Научно-производственная фирма "ЭНТЕХМАШ" Аппарат воздушного охлаждения
US20100307729A1 (en) * 2009-06-04 2010-12-09 Rocky Research Firetube heat exchanger
JP2011144989A (ja) * 2010-01-13 2011-07-28 Mitsubishi Electric Corp 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
KR101000021B1 (ko) 2010-10-09 2010-12-09 김종남 이종유체의 열교환을 위한 전열튜브 어셈블리
US8784047B2 (en) * 2010-11-04 2014-07-22 Hamilton Sundstrand Corporation Gas turbine engine heat exchanger with tapered fins
CN202126200U (zh) 2011-06-10 2012-01-25 江苏兴荣高新科技股份有限公司 一种传热管
JP5842573B2 (ja) * 2011-11-25 2016-01-13 新日鐵住金株式会社 スキッドポスト
CN103791753B (zh) 2012-10-30 2016-09-21 中国石油化工股份有限公司 一种传热管
MX2016008353A (es) * 2013-12-27 2016-10-14 Mitsubishi Hitachi Power Sys Tubo de transferencia de calor, caldera y dispositivo de turbina de vapor.
JP6327868B2 (ja) * 2014-01-29 2018-05-23 三桜工業株式会社 熱交換器の製造方法
CN203881179U (zh) 2014-05-29 2014-10-15 唐山德业节能环保科技有限公司 焦炉荒煤气余热回收装置
KR101746194B1 (ko) 2014-09-30 2017-06-13 (주)지오테크 나선형 지중 열교환기
CN105664749B (zh) 2016-03-10 2016-09-28 南京林业大学 三角形管壁叶片式静态混合器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605400A (en) 1994-04-19 1997-02-25 Kojima; Hisao Mixing element and method of producing the same
US20150300746A1 (en) * 2012-04-05 2015-10-22 C.I. Kasei Company, Limited Heat exchanger tube and heat exchanger employing the same
CN203443422U (zh) * 2013-06-19 2014-02-19 上海宝钢节能技术有限公司 一种换热效率高、寿命长的换热器
CN104560111A (zh) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 传热管以及使用其的裂解炉
CN104833242A (zh) * 2015-05-11 2015-08-12 中山市莎丽卫浴设备有限公司 一种高效废热水热能交换装置
CN106959032A (zh) * 2017-04-01 2017-07-18 中国科学院上海高等研究院 一种高温熔盐相变蓄放热装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3702715A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727863B (zh) * 2020-07-23 2021-05-11 中國鋼鐵股份有限公司 用於輻射管加熱器之節能裝置

Also Published As

Publication number Publication date
RU2757041C1 (ru) 2021-10-11
EP3702714A1 (en) 2020-09-02
US20200326141A1 (en) 2020-10-15
SG11202003475RA (en) 2020-05-28
US20210180879A1 (en) 2021-06-17
CA3079647A1 (en) 2019-05-02
KR102442585B1 (ko) 2022-09-08
KR20200068740A (ko) 2020-06-15
EP3702713A1 (en) 2020-09-02
KR102442584B1 (ko) 2022-09-08
SG11202003400PA (en) 2020-05-28
US11976891B2 (en) 2024-05-07
CA3079638A1 (en) 2019-05-02
WO2019080885A1 (zh) 2019-05-02
RU2753098C1 (ru) 2021-08-11
EP3702713A4 (en) 2021-11-24
US20210190442A1 (en) 2021-06-24
KR20200068743A (ko) 2020-06-15
KR20200068741A (ko) 2020-06-15
EP3702715A1 (en) 2020-09-02
WO2019080887A1 (zh) 2019-05-02
EP3702714A4 (en) 2021-07-21
EP3702715A4 (en) 2021-11-24
RU2753091C1 (ru) 2021-08-11
KR102482259B1 (ko) 2022-12-27
CA3079047A1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
WO2019080886A1 (zh) 强化传热管以及包括其的裂解炉和常减压加热炉
RU2654766C2 (ru) Теплопередающая труба и крекинг-печь с использованием теплопередающей трубы
RU2640876C2 (ru) Теплопередающая труба и крекинг-печь с использованием теплопередающей трубы
MX2007001705A (es) Tubo compuesto, metodo de produccion para un tubo compuesto y uso de un tubo compuesto.
WO2013139172A1 (zh) 一种换热器
RU2429904C2 (ru) Коллекторный трубопровод для трубчатых печей риформинга
CN104930540B (zh) 空气预热器烟气入口的导流结构
CN212929195U (zh) 一种新型防火隔热防排烟风管
CN109724447B (zh) 强化传热管
CN207991332U (zh) 一种交错凹面换热管套管式换热器
CN109724448B (zh) 强化传热管、裂解炉以及常减压加热炉
CN109724446B (zh) 强化传热管和裂解炉
WO2020001573A1 (zh) 一种防止管道氢损伤的方法及使用该方法的炼油制氢转化炉转油线及集合管
CN203363462U (zh) 一种连接高温富集烟气与喷淋塔的进气管
WO2012022236A1 (zh) 一种防腐收尘烟囱
JP2001262159A (ja) クラッキングコイル
CN218994146U (zh) 一种内部设置扰流件的辐射传热管
CN213120145U (zh) 回转反应炉高温烟气通道结构
CN109724445A (zh) 强化传热管和裂解炉
CN111102872B (zh) 传热管的制造方法
CN112745885B (zh) 两程辐射段乙烯裂解炉用导热炉管及其制备方法和应用
TWM574673U (zh) 可做為反應器使用之化工廠纏繞管式熱交換器
CN112745883A (zh) 单程辐射段乙烯裂解炉用导热炉管及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3079647

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207015185

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018871432

Country of ref document: EP

Effective date: 20200527